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Let I be a compact interval of the real line. For a continuous mapf : I ! I by
Misiurewicz et al. ([1, 12, 13]) the following relation between the topological entropyh(f ) and the growth rate of the number of periodic points is known:

h(f ) � lim supn!1
1n log℄Per(f; n)(�)

where Per(f; n) denotes the set of all fixed points off n for n � 1, and℄A the number
of elements of a setA. (The equality of the expression (�) does not hold in general.
For instance, the topological entropy of the identity map iszero, nevertheless all of
points of the interval are fixed by this map.)

For a periodic pointp of f with period n we put

O+f (p) = fp; f (p); � � � ; f n�1(p)g:
Then we say thatq is a homoclinic pointof p if q =2 O+f (p) and there are a positive
integerm with f m(q) = p and a sequenceq0, q1, : : :, qk, : : : 2 I with q0 = q such
that

f (qk) = qk�1 (k � 1); limk!1 jqk �O+f (p)j = 0

where jx � Aj = inffjx � yj : y 2 Ag for x 2 I , A � I . It is known by Block ([2, 3])
that h(f ) is positive if and only iff has a homoclinic point of a periodic point.

In this paper we shall establish more results (Theorems 1 and2) for differentiable
maps of intervals. To describe them we need some notations.

Let f : I ! I be aC1+� map (� > 0). A periodic pointp of f with period n is
a sourceif

�(p) = j(f n)0(p)j1=n > 1:
For n � 1, � > 1 andÆ > 0 we define anf -invariant set by
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Per(f; n; �; Æ) = fp 2 Per(f; n) : �(p) � �; jf 0(f i(p))j � Æ for all 0� i � n� 1g:
Then we have

Per(f; n; �1; Æ1) � Per(f; n; �2; Æ2) if �1 � �2; Æ1 � Æ2;
and

fp : source off g =
[
�>1

[
Æ>0

1[
n=1

Per(f; n; �; Æ):
One of our results is the following:

Theorem 1.

h(f ) = max

�
0; lim�!1

limÆ!0
lim supn!1

1n log℄Per(f; n; �; Æ)� :
By Theorem 1 it is clear that for aC1+� map of a compact interval if the topo-

logical entropy is positive then the map has infinitely many sources. However, the con-
verse is not true in general. In fact, for anyr � 1 it is easy to constract aCr diffeo-
morphism of a compact interval having infinitely many sourcefixed points. But every
diffeomorphism of an interval has zero entropy.

REMARK. It is known that iff is aC2 map with non-flat critical points, then any
periodic point off with sufficiently large period is a source ([10]). In Theorem1 we
do not assume any conditition concerned with critical points. Then the mapf may
have flat critical points.

For a sourcep of f with period n we denote byW u
loc(p) the maximal intervalJ

of I containingp such that

j(f n)0(x)j � f(1 + �(p))=2gn for all x 2 J:
We say that a homoclinic pointq of p is transversalif there are non-negative integersm1, m2 and a pointq 0 2 W u

loc(p) such that

f m1(q 0) = q; f m1+m2(q 0) = f m2(q) = p and (f m1+m2)0(q 0) 6= 0:
If f has a transversal homoclinic point of a source, then there isa C1 neighborhood
U of f such that every mapg belonging toU has a transversal homoclinic point of
a source. We denote the set of transversal homoclinic pointsof a sourcep of f by
TH(p), and its closure byTH(p): We call TH(p) the transversal homolinic closureof
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p. It is easy to see thatp 2 TH(p), and TH(p) is f -invariant. Form � 1 and Æ > 0
define

H (p;m; Æ) = fq 2 W u
loc(p) : f m(q) = p; jf 0(f i(q))j � Æ for all 0� i � m� 1g:

Then we have

H (p;m; Æ1) � H (p;m; Æ2) if Æ1 � Æ2

and

TH(p) =
[
Æ>0

1[
m=1

m�1[
i=0

f iH (p;m; Æ) nO+f (p):
The second result of this paper is the following:

Theorem 2. If h(f ) > 0 then

h(f ) = supfh(f jTH(p)) : p is a source off g;
and for a sourcep of f we have

h(f jTH(p)) = max

�
0; limÆ!0

lim supm!1
1m log℄H (p;m; Æ)� :

A result corresponding to Theorem 2 is known for surface diffeomorphisms by
Mendoza ([11]). As an easy corollary of Theorem 2 we have:

Corollary 3. The following statements are equivalent:
(i) h(f ) > 0;
(ii) f has a transversal homoclinic point of a source;
(iii) f has a homoclinic point of a periodic point.

1. Proofs of Theorems

Let f : I ! I be a continuous map. For integersk; l � 1 we say that a closedf -
invariant set0 is a (k; l)-horseshoeof f if there are subsets00, : : :, 0k�1 of I such
that

0 = 00 [ � � � [ 0k�1; f (0j ) = 0j+1 (mod k)
and f k j00: 00 ! 00 is topologically conjugate to a one-sided full shift inl-symbols.
If 0 is a (k; l)-horseshoe, then it is clear that

h(f j0) =
1k log l and ln � ℄[Per(f; kn) \ 0] � kln
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for all n � 1. It was proved by Misiurewicz et al. ([1, 12, 13]) that if the topological
entropy off is positive then there are sequenceskj , lj of positive integers with a (kj ,lj )-horseshoe0j of f (j � 1) such that

h(f ) = limj!1h(f j0j ) = limj!1 1kj log lj :
Then the formula (�) follows from this fact.

In order to prove our results, we need the notion of hyperbolic horseshoe and
ideas of the theory of hyperbolic measures ([14, 15]). Katok([9]) has proved that if aC1+� diffeomorphism of a manifold has a hyperbolic measure then its metric entropy
is approximated by the entropy of a hyperbolic horseshoe. The author has shown in
[5] that the result of Katok is also valid forC1+� (non-invertible) maps.

Let f : I ! I be a differentiable map. For integersk; l � 1, numbers� > 1
and Æ > 0 we say that0 is a (k; l; �; Æ)-hyperbolic horseshoeof f if 0 is a (k; l)-
horseshoe and

j(f k)0(x)j � �k; jf 0(x)j � Æ (x 2 0):
The following lemma plays an important role for the proofs ofTheorems 1 and 2.

Lemma 4. Let f : I ! I be a C1+� map. If h(f ) > 0, then for a number�0

with 1 < �0 < expfh(f )g there exist sequenceskj ; lj of positive integers andÆj > 0
(j � 1) such that forj � 1 there is a(kj ; lj ; �0; Æj )-hyperbolic horseshoe0j of f so
that

h(f ) = limj!1h(f j0j ) = limj!1 1kj log lj :
This is corresponding to the result obtained by Katok for surface diffeomorphisms

([9]). For the proof we use the result stated in [5].

Proof of Lemma 4. For a number�0 with 1 < �0 < expfh(f )g we take a se-
quence�j of positive numbers (j � 1) such that expfh(f )� 3�j g > �0 and �j ! 0 asj ! 1. By the variational principle for the topological entropy ([6, 7, 8]), we have
an f -invariant ergodic Borel probability measure�j on I such that

hj � h(f )� �j > 0

wherehj denotes the metric entropy of�j with respect tof . If �j denotes the Lya-
punov exponent of�j , that is,

�j =
Z

log jf 0(x)jd�j (x);
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then by the Ruelle inequality ([17]) we have

�j � hj > 0;
and so�j is a hyperbolic measure off . Then by Theorem C (and its proof) of [5],
we can construct sequences of integerskj , lj � 1 with (1=kj )�log lj � hj��j , numbers
j � 1 and closed sets3j � I (j � 1) such that:
(1) f kj (3j ) = 3j ;
(2) j(f kj i)0(x)j � 
j�1 � expfkj i(�j � �j )g for all x 2 3j and i � 1;
(3) f kj j3j : 3j ! 3j is topologically conjugate to a one-sided full shift inlj -
symbols.
For j � 1 we set

0j = 3j [ f3j � � � [ f kj�13j :
Then0j is f -invariant. Moreover we put

Æj = minfjf 0(x)j : x 2 0j g > 0;
ej = max

� jf 0(x)jjf 0(y)j : x; y 2 0j
� 2 [1;1)

and take an integernj � 1 large enough so that

expfkjnj�j g � 
jej kj :
Then we have

j(f kjnj )0(x)j � �0
kjnj (x 2 0j ):

This follows from the fact that for 0� i � kj � 1 andx 2 f i3j
j(f kjnj )0(x)j = j(f kjnj )0(f kj�i(x))j � j(f kj�i)0(x)j � j(f kj�i)0(f kjnj (x))j�1

� 
j�1 � expf(kjnj )(�j � �j )g � ej�kj+i
� expfkjnj (�j � 2�j )g� expfkjnj (h(f )� 3�j )g� �0

kjnj :
It is easy to see thatf kjnj j3j : 3j ! 3j is topologically conjugate to a one-sided full
shift in lj nj -symbols. Thus0j is a (kjnj ; lj nj ; �0; Æj )-hyperbolic horseshoe, and from
which

h(f j0j ) =
1kjnj log lj nj
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=
1kj log lj

� hj � �j� h(f )� 2�j :
Since�j ! 0 asj !1, we have

h(f ) = limj!1h(f j0j ):
Lemma 4 was proved.

Proof of Theorem 1. For� > 1 andÆ > 0 we want to find
0 = 
0(�; Æ) > 0 such
that Per(f; n; �; Æ) is an (n; 
0)-separated set off for all n � 1. Take
1 = 
1(Æ) > 0
so small that ifx; y 2 I satisfy jx � yj � 
1 then

jf 0(x)� f 0(y)j � Æ
2
:

We put

IÆ =

�x 2 I : jf 0(x)j � Æ
2

� :
Obviously, IÆ is closed. Forn � 1 andx 2 I ,

jx � Per(f; n; �; Æ)j � 
1 implies that x 2 IÆ:
Since a functionx 7! log jf 0(x)j is bounded and varies continuously onIÆ, there is
2 = 
2(�; Æ) > 0 such that ifx; y 2 IÆ satisfy jx � yj � 
2 then

�� log jf 0(x)j � log jf 0(y)j�� � 1

2
log�:

We put 
0 = minf
1; 
2g. Then it is checked that Per(f; n; �; Æ) is an (n; 
0)-separated
set of f for n � 1. Indeed, if a pairp; p0 2 Per(f; n; �; Æ) with p � p0 satisfies

maxfjf i(p)� f i(p0)j : 0� i � n� 1g � 
0;
then we see that forx 2 [p; p0] and 0� i � n� 1,

jf i(x)� f i(p)j � 
0; f i(x) 2 IÆ:
On the other hand, by the mean value theorem there is a point� 2 [p; p0] such that

jf n(p)� f n(p0)j = j(f n)0(� )j � jp � p0j:
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Sincef i(� ), f i(p) 2 IÆ and jf i(� )� f i(p)j � 
0 for 0� i � n� 1, we have

�� log j(f n)0(� )j � log j(f n)0(p)j�� � n�1X
i=0

�� log jf 0(f i(� ))j � log jf 0(f i(p))j��
� n

2
log�;

and so

j(f n)0(� )jj(f n)0(p)j � exp
��n

2
log�� = ��n=2:

Sincep; p0 2 Per(f; n; �; Æ), we have

jp � p0j = jf n(p)� f n(p0)j
= j(f n)0(� )j � jp � p0j
=
j(f n)0(� )jj(f n)0(p)j � j(f n)0(p)j � jp � p0j

� ��n=2 � �n � jp � p0j
= �n=2 � jp � p0j;

and sop = p0 because of� > 1. Thus Per(f; n; �; Æ) is an (n; 
0)-separated set off ,
and then

lim supn!1
1n log℄Per(f; n; �; Æ) � lim supn!1

1n logs(f; n; 
0)(1.1)

� lim
!0
lim supn!1

1n logs(f; n; 
 )

= h(f )

for � > 1 and Æ > 0, where s(f; n; 
 ) denotes the maximal cardinality of (n; 
 )-
separated sets forf . Therefore we have the conclusion of Theorem 1 whenh(f ) = 0.
Thus it remains to give the proof for the case whenh(f ) > 0. Fix 1 < �0 <
expfh(f )g. Take sequenceskj , lj , Æj and0j (j � 1) as in Lemma 4. Since

lj n � ℄[Per(f; nkj ; �0; Æj ) \ 0j ] � kj lj n
for all n � 1, we have

limÆ!0
lim supn!1

1n log℄Per(f; n; �0; Æ) � limn!1 1nkj log℄[Per(f; nkj ; �0; Æj ) \ 0j ]
=

1kj log lj :
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If j !1, then

limÆ!0
lim supn!1

1n log℄Per(f; n; �0; Æ) � h(f ):(1.2)

Combining (1.1) and (1.2) we have

h(f ) � limÆ!0
lim supn!1

1n log℄Per(f; n; �0; Æ)
� lim�!1

limÆ!0
lim supn!1

1n log℄Per(f; n; �; Æ)
� h(f ):

Theorem 1 was proved.

REMARK. In fact, from the proof of Theorem 1 it follows that

h(f ) = limÆ!0
lim supn!1

1n log℄Per(f; n; �0; Æ)
if 1 < �0 < expfh(f )g.

Proof of Theorem 2.
Proof of the first statement.Under the assumption of Theorem 2 we fix a num-

ber �0 with 1 < �0 < expfh(f )g. By Lemma 4, forj � 1 there arekj , lj � 1 andÆj > 0 with a (kj ; lj ; �0; Æj )-hyperbolic horseshoe0j = 00j [ � � � [ 0kj�1j such that

h(f j0j ) =
1kj log lj ! h(f )

as j !1. For j � 1 define a product space

6j =
1Y
m=1

f1; : : : ; lj g
with the product topology and a shift�j : 6j ! 6j by

�j ((am)m�1) = (am+1)m�1 ((am)m�1 2 6j ):
From the definition of hyperbolic horseshoe, there is a homeomorphism'j : 6j ! 00j
such that'j Æ �j = (f kj j00j ) Æ 'j . Thenpj = 'j (1;1; : : :) is a source off . For m � 1
and a1; : : : ; am 2 f1; : : : ; lj g with ai 6= 1 for some 1� i � m, 'j (a1; : : : ; am;1;1; : : :)
is a transversal homoclinic point ofpj . Thus,TH(pj ) � 0j , from which
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h(f ) = limj!1 h(f j0j )
� limj!1 h(f jTH (pj ))

� supfh(f jTH (p)) : p is a source off g
� h(f ):

The first statement was proved.
Proof of the second statement.Let p be a source off . Without loss of general-

ity we may assume thatp is a fixed point, i.e.,f (p) = p. To show that forÆ > 0

h(f jTH(p)) � lim supm!1
1m log℄H (p;m; Æ);

take 
0 = 
0(Æ) > 0 so small that ifx; y 2 I satisfy jx � yj � 
0 then

jf 0(x)� f 0(y)j � Æ
2
:

Then, form � 1 and a pairq; q 0 2 H (p;m; Æ) satisfying

maxfjf i(q)� f i(q 0)j : 0� i � m� 1g � 
0;
we can find a sequence�0, : : :, �m�1 2 I such that

j�i � f i(q)j � 
0

and

jf i+1(q)� f i+1(q 0)j = jf 0(�i)j � jf i(q)� f i(q 0)j (0� i � m� 1):
Sincef m(q) = f m(q 0) = p, we have

0 = jf m(q)� f m(q 0)j = jf 0(�m�1)j � jf m�1(q)� f m�1(q 0)j
= � � � =

m�1Y
i=0

jf 0(�i)j � jq � q 0j

� m�1Y
i=0

�jf 0(f i(q))j � Æ
2

� � jq � q 0j

� � Æ
2

�m � jq � q 0j;
and soq = q 0. ThusH (p;m; Æ) is an (m; 
0)-separated set off jTH(p), from which it
follows that
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lim supm!1
1m log℄H (p;m; Æ) � lim supm!1

1m logs(f jTH(p);m; 
0)(1.3)

� h(f jTH(p)):
If h(f jTH(p)) = 0, then nothing to prove for the second statement. Thus we must check
the conclusion for the case whenh(f jTH(p)) > 0. To do so fix a number�0 with
1 < �0 < minf�(p);exph(f jTH(p))g. By the same way as in the proof of Lemma 4,
we can take sequences of integerskj , lj � 1, numbersÆj > 0 with (kj ; lj ; �0; Æj )-
hyperbolic horseshoes0j = 00j [ � � � [ 0kj�1j containingp (j � 1) such that

h(f j0j ) = (1=kj ) � log lj ! h(f jTH(p)) as j !1:
Then there is a homeomorphism'j : 6j ! 00j such that'j Æ�j = (f kj j00j )Æ'j , where�j : 6j ! 6j is the shift defined as in the proof of the first statement. Without loss
of generality we may assume that'j (1;1; : : :) = p. By taking an integernj � 1 large
enough we have

'j ([1; : : : ;1]nj ) � W u
loc(p)

where

[1; : : : ;1]nj = f(bm)m�1 2 6j : bm = 1 for all 1� m � nj g:
Since

'j (
nj timesz }| {

1; : : : ;1; a1; : : : ; am�nj ;1;1; : : :) 2 H (p;mkj ; Æj )
holds for allm � nj + 1 anda1, : : :, am�nj 2 f1; : : : ; lj g, we have

℄H (p;mkj ; Æj ) � lm�njj :
Thus,

limÆ!0
lim supm!1

1m log℄H (p;m; Æ) � lim supm!1
1mkj log℄H (p;mkj ; Æj )

� limm!1 m� njmkj log lj
=

1kj log lj
for j � 1. If j !1, then we have

limÆ!0
lim supm!1

1m log℄H (p;m; Æ) � h(f jTH(p)):(1.4)
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Combining (1.3) and (1.4),

h(f jTH(p)) � limÆ!0
lim supm!1

1m log℄H (p;m; Æ)
� h(f jTH(p)):

The second statement was proved. This completes the proof ofTheorem 2.

2. Circle Maps

In the same way as above, it can be checked that our results (Theorems 1 and 2)
are also valid forC1+� maps (� > 0) of the circleS1. However, the existence of a
homoclinic point does not imply that the topological entropy is positive. In fact, we
know an example of aC1 map g : S1 ! S1 such thatg has a homoclinic point of
a source fixed point, neverthelessh(g) = 0 ([16]). It is known that the topological en-
tropy of a continuous circle map is positive if and only if themap has a nonwandering
homocinic point of a periodic point ([4]). Since any transversal homoclinic point of a
source is nonwandering, we have:

Corollary 5. For a C1+� map f : S1! S1 (� > 0) the following statements are
equivalent:
(i) h(f ) > 0;
(ii) f has a transversal homoclinic point of a source;
(iii) f has a nonwandering homoclinic point of a periodic point.

Added in proof. After this manuscript was completed the author learned from
A. Katok that he and A. Mezhirov had obtained a result that overlaps with Theorem
1 for C1 maps with finitely many critical points ([18]).

References
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