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Abstract

Virtual knot theory, introduced by L. Kauffman, is a genération of classical
knot theory. It naturally yields the notion of a virtual kataiwhich is closely related
to the notion of a welded braid due to R. Fenn, R. Rayi and C. Rourke. In this
paper we prove that any virtual link or welded link can be désd as the closure
of a virtual braid or welded braid, respectively, which isique up to certain basic
moves. This is analogous to the Alexander and Markov theofemslassical braids
and links.

1. Introduction

The theory of a virtual knot was introduced by L. Kauffman agemeralization
of classical knot theory (cf. [14], [15]). It is related to anpdles/biquandles and their
homology groups (cf. [5], [6], [18]). It naturally yields ¢hnotion of a virtual braid,
defined in§2 (cf. [14], [15], [16]). The virtual braid group containsettbraid group in
a natural way. This group is closely related to the weldeddbgaoup introduced by
R. Fenn, R. Riméanyi and C. Rourke [7]. In this paper we prowa #ny virtual link or
welded link can be described as the closure of a virtual boaidelded braid, respec-
tively, which is unique up to certain basic moves. This islagaus to the Alexander
and Markov theorems for classical braids and links.

The Alexander theorem states that any link is described esltsure of a braid,
and the Markov theorem states that such a braid presentationiue up to conjuga-
tions and stabilizations (cf. [1], [19], [20], [22], [26]2F], [28], etc.). The Alexander
theorem for virtual links (Proposition 3) and for weldedkiin(Proposition 8) are eas-
ily obtained by observing a relationship between virtuak$é and Gauss code diagrams
given in [10] and [14] . In his talk at the AMS Meeting, WashingtD.C. in January
2000, Kauffman asked whether there is a result analogouketdviarkov theorem for
virtual links. The following theorem answers the questiord &nsures a relationship
between virtual braids and virtual links.

Theorem 1. Two virtual braid diagramgor two virtual braids respectively have
equivalent closures as virtual link if and only if they ardated to each other by a
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finite sequence of the followingM0-, VM1-, VM2- and VM3-moves(or VM1-, VM2-
and VM3-moves resp):

e (VMO-move) a virtual braid move

e (VM1-move) a conjugation in the virtual braid group

e (VM2-move) a right stabilization of positivenegative or virtual typeand its in-
verse operation

e (VM3-move) a right/left virtual exchange move

The VMO0-, VM1- and VM2-moves are analogous to the Markov movescfas-
sical braids. The VM3-moves are analogous to exchange mafeg2{, [3]). It is
remarkable that VM3-moves are not consequences of VMO-, VMY \dM2-moves
[12], whereas exchange moves for classical braids are qoasees of Markov moves.
We also note that left stabilizations of positive/negatiype for virtual braids are not
consequences of VMO-, VM1- and VM2-moves [12], whereas lefbibzations of
positive/negative for classical braids are consequentdgaokov moves.

For welded braids and links, we have an analogous result lEsvéo

Theorem 2. Two welded braid diagramgor welded braids respectively have
equivalent closures as welded link if and only if they arextedi by a finite sequence
of the followingWMO0-, WM1- and WM2-moves(or WM1- and WM2-moves resp):

e (WMO-move) a welded braid move

e (WM1-move)a conjugation in the welded braid group

e (WM2-move) a right stabilization of positivenegative or welded typend its in-
verse operation

The original version [11] of this paper was archived in 20@66d was not pub-
lished since virtual knot theory was not popular yet. Howetleese days the author
has been asked by a lot of researchers about the paper, aneclied to submit it
for publication here. Note that this current paper is shottb@t the original one [11]
because Section 6 of [11], concerned with virtual braid liards, was separated as
[12] in order to be discussed in more general situation. lalso updated. Recently,
L. Kauffman and S. Lambropoulou discovered an alternatpygr@ach to the Alexander
and Markov theorems for virtual links usind.-moves’ [17].

2. Virtual braids and welded braids

Let m be a positive integer an@,, a set ofm interior points of the interval [0, 1].
We denote byE the 2-disk [0, 1]x [0, 1] and by p: E — [0, 1] the second factor
projection. Avirtual braid diagram of degree nis an immersed 1-manifolth = a; U
««-Uay in E such that
1. 9b=Qmn x{0,1 C E,
2. for eachi € {1,...,m}, p2l5: & — [0, 1] is @ homeomorphism,



BRAID PRESENTATION OF VIRTUAL KNOTS 443
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Fig. 1. Crossings
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Fig. 2. Standard generators

3. the multiple point se¥/ (b) consists of transverse double points,

4. p2lvw): V(b) — [0, 1] is injective,

5. each point oV (b) is assigned information gfositive negativeor virtual crossing

as in Fig. 1. (The labels 1,.,4 in the figure are used later. Ignore them at this
moment.)

The arcsay,. . .,an are assumed to be oriented from the top ([6s11}) to the bottom
([0, 1] x {0}) of E. Two virtual braid diagrams are identified if one is transied to
the other continuously keeping the above conditions. Thefegirtual braid diagrams
of degreem, with the concatenation product, forms a monoid generated; bafl, T
(i=1,...,m—=1) illustrated in Fig. 2. The identity element {3, x [0, 1] C E.

DEerINITION (cf. [14], [15], [16], [17]). Thevirtual braid group VB, of degree
m is the group obtained from the monoid of virtual braid diagsaof degreem by
introducing the following relations:

(Trivial relations) ooy =0t =1

(Braid relations) { 919} =i h=ii=1
0i0i+10j = 0i+10i0j+1
?=1

(Permutation group relations){ T = TjT, ih—j]>1
TiTi+1Ti = Ti+1TiTi+1

(Mixed relations) { oIty = T =11

OiTi+1Ti = Ti+1TiOj+1.
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A virtual braid of degree mis an element oVB;,.

DEerINITION ([7]). The welded braid group WR is the group that is obtained
from VB, by introducing additional relations;oi+10i = oj+10iti+1 (i = 1,...,m—2).
A welded braid diagranis a diagram representing an element of this group.

REMARK. There is a canonical epimorphisWB,, — WB,,. Fenn, Rimanyi and
Rourke [7] proved that the welded braid groMuB,, is isomorphic to the braid-
permutation groupBP,. By an argument in [7], we see that the subgroupVé,
generated by; (i =1,...,m) is isomorphic to the braid group,, and the subgroup
generated by (i =1,...,m) is isomorphic to the symmetric groug,.

3. Braid presentation of virtual links

A virtual link diagramis a closed oriented 1-manifold immersed inR? such
that the multiple point se¥ (K) consists of transverse double points each of which has
information of positive, negative or virtual crossing asHig. 1. Positive and negative
crossings are callerbal crossings The set of real crossings will be denoted Wy(K).
We assume that virtual link diagrams are the same if they sompic inR2. Virtual
Reidemeister moveare the local moves illustrated in Fig. 3. (The moves indidat
by (b) are consequences of the moves indicated by (a) and d2smor V2-moves.)
Two virtual link diagrams aresquivalentif they are related by a finite sequence of
virtual Reidemeister moves. Airtual link or a virtual link type is the equivalence
class of a virtual link diagram, [10], [14], [15].

The closureof a virtual braid diagram (or a virtual link) is defined in teeandard
way in knot theory (Fig. 4). The following proposition is w&hown. We shall give
a proof ing4.

Proposition 3. Any virtual link can be described as the closure of a virtuedit.

When virtual braid diagram¥; and b, represent the same virtual braid, we say
that b, is obtained fromb; by a virtual braid moveor a VMO-move

For virtual braid diagram$; and b, of the same degree, we say that the virtual
braid diagramb;b, is obtained fromb,b; by a conjugationor a VM1-move

For a virtual braid diagranb of degreem, we denote by:i(b) the virtual braid
diagram of degreen + s+t obtained fromb by addings trivial arcs to the left ofb
andt trivial arcs to the right. (This defines a monomorphismVBy, — VBruss.)

For a virtual braid diagranbh of degreem, aright stabilizationof positive negative
or virtual typeis the replacement db by the virtual braid diagram})(b)am, Lé(b)argl
or Lé(b)l’m, respectively, of degreen+ 1. See Fig. 5. This operation and the inverse
operation are called VMPaoves
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Fig. 6. Right/left virtual exchange moves

Similarly, aleft stabilizationis the replacement df by (d(b)o1, ((b)a, * or O(b);.
(A left stabilization will be used irt6. Note that we do not call a left stabilization a
VM2-move in this paper.)

A right virtual exchange movés the replacement

13(b1)o i (02)am < (1) Tmtg(02)Tm

and aleft virtual exchange movis a replacement

B(br)o; 3 (b2)or < G(br)Ted(br)Ta

whereb; andb, are virtual braid diagrams of degree See Fig. 6. These moves are
called VM3-moves

4. Braiding process

For a virtual link diagramK, we denote byS(K): Vr(K) — {+1,—1} the map
assigning the real crossings their signs. For a real crgssia Vr(K), let N(v) be a
regular neighborhood of as in Fig. 1. We denote by, v@, v® y® the four points
of 3N(v) N K ordered as in the figure. PW = W(K) = CI(R? — |, .y, k) N(v)) and
VA(K) = {v) | v e VR(K), | €{1,2,3,4}, where Cl means the closure. The restriction
of K to W is denoted byK |y, which is the union of some oriented arcs and loops
immersed inW such that the multiple points are virtual crossingskofand that the
boundary of the arcs is equal to the 3&4(K).

Define a subseG(K) C VA(K) x V3(K) such that 4, b) € G(K) if and only if
Klw has an oriented arc starting from and terminating ab. We denote byu(K)
the number of components d&€. For example, for a virtual link diagram illustrated
in Fig. 7,

VR(K) = {v1, v, v3},

S(K):vi > +1, wvyt>+1, vz —1,
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Fig. 7. A virtual link diagram

600 = (42,18, (69,0, (6494, (42,49, (69,0, (649,48,
n(K) = 2.

The Gauss dataof K is the quadruple \(r(K), S(K), G(K), u(K)). We say that
two virtual link diagramsK and K’ have thesame Gauss datd w(K) = n(K’) and if
there is a bijectiorg: Vr(K) — Vr(K’) such thatg preserves the signs of the crossing
points and thatd, b) € G(K) implies @(a), g(b)) € G(K’), whereg: V3(K) — VA(K)
is the bijection induced frony: VR(K) — VRr(K’). This condition is equivalent to the
condition thatKk and K’ have the same Gauss diagram in the sense of [10] or the same
Gauss code in the sense of [14].

Let K be a virtual link diagram and létv = W(K) = CI(R? — () N(v)) be
as before. Suppose th#t’ is a virtual link diagram with the same Gauss datakas
Then we can defornkK’ by an isotopy ofR? such that
1. K and K’ are identical inN(v) for everyv € Vgr(K),

2. K’ has no real crossings iw, and

3. there is a one-to-one correspondence between the amps/tf K |, and those of
K’|w satisfying a condition that each arc &f|y and the corresponding arc &'|w
have the same endpoints.

In this situation, we say that’ is obtained fromK by replacing K|w.

Lemma 4 ([10], [14]). If two virtual link diagrams K and K have the same
Gauss datathen K is equivalent to K Moreover we can transform K to K up to
isotopy of R?, by a finite sequence o¥1-, V2-, V3- and M-moves
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Fig. 8. Moves on immersed curves

Proof. SinceK and K’ have the same Gauss data, without loss of generality we

may assume thaK’ is obtained fromK by replacingK|y. Let a;,...,as be the
arcs/loops ofK|w, and letay,...,a, be the corresponding arcs/loops Kf|w. We
may assume thad; intersectsa,. . .,as transversely. The arc or loog is homotopic

to a; in R? (relative to the boundary of, if a; is an arc). Taking the homotopy
generically with respect to the arcs/loogs. . .,as and the 2-diskdN(v) (v € Vr(K)),
we see that the arc/loog, is transformed toa; by a finite sequence of moves as in
Fig. 8 up to isotopy oR?, whereN meansN(v) for v € Vg(K). Each move is a V1-,
V2-, V3-, or M-move. Inductively, every; is transformed te by such moves. [

Let O be the origin ofR?. Identify R? — {O} with R+ x St by polar coordinates
and letr: R?> — {0} = Ry x S' — S' be the projection, wher®, is the half-line
consisting of positive numbers and we assume 8tais oriented counterclockwise. A
braided virtual link diagram(of degreem) is a virtual link diagramK such that
(i) it is contained inR? — {0},

(ii) for the underlying immersiork: | | St — R? — {0} of K, the compositionr o

k: ]St — S'is an orientation preserving covering map of degneéwhere| | St is
the disjoint union ofu(K) circles), and

(i) 7lv): V(K) — Stis injective.

A point 6 of St is called aregular valueif V(K) N z~1(9) = #. Cutting K along
the half-line 7~1(0) for a regular valued, we obtain a virtual braid diagram whose
closure isK. Such a virtual braid diagram is uniquely determined up tojuga-
tion (VM1-move).

Proof of Proposition 3 (Braiding Process). LKt be a virtual link diagram and
let Ng,..., N, be regular neighborhoods of the real crossingkofBy an isotopy of
R?, we may assume that al; (i =1,...,n) are inR? — {O}, 7(N;) N 7(Nj) = ¢
for i # j and that the restriction oK to eachN; consists of two oriented arcs each
of which is mapped intdS' by 7 homeomorphically with respect to the orientation of
S'. Replace the remaindef |y, arbitrarily such that the result is a braided virtual
link diagram. By Lemma 4K is equivalent to this diagram. U

5. Proof of Theorem 1

The terminologies ‘virtual braid moves’, ‘right stabilttans’ and ‘right/left vir-
tual exchange moves’ defined K8 are also used for braided virtual link diagrams.
These moves and their inverse moves are also called VMO-, VM@-\4V3-moves,
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positive negative virtual
Fig. 9. Right stabilizations (VM2-moves)

respectively. For example, the moves illustrated in Figré®right stabilizations (VM2-
moves) for braided virtual link diagrams. If two braidedtual link diagrams are re-
lated by a finite sequence of VMO- and VM2-moves, then we saythet arevirtually
Markov equivalent in the strict sens# they are related by a finite sequence of VMO-,
VM2- and VM3-moves, then we say that they asietually Markov equivalent

Lemma 5. Let K and K be braided virtual link diagramg possibly of distinct
degree} such that K is obtained from K by replacing Kyx). Then K and K are
virtually Markov equivalent in the strict sense

Proof. LetNy,..., N, be regular neighborhoods of the real crossingKofand
hence ofK’) with W = W(K) = CI(R? — [J{L; Ni). Taking Ny, ..., N, to be smaller,
without loss of generality we may assume thdiN;) Nz (N;) =¥ for i # j and hence
7(ULi Ni) #S' Leta,...,as be the arcs/loops oK |w and letay, ..., a, be the
corresponding arcs/loops &’|yy. Take a common regular valug € St for K and
K’ such thatd is not in 7 (i, Ni). If there exists an arc/loop; of K|y and the
corresponding one of K'|y such that #§ Nz 1(6o)) # #(& N7 1(f)), then move a
small segment of; or & toward the origin by a series of VM0-moves corresponding
to .[iZ =1 and apply some VM2-moves of virtual type so that #{x 1(6o)) = #(& N
7n71(6)). Thus we may assume thatag( = ~1(6p)) = #@& N7 ~1(6p)) for i =1,...,s.
Let k and k' be underlying immersion | S* — R? — {O} of K and K’ such that
they are identical near the preimages of the real crossibgsl,,.. ., |s be intervals
or circles in| | St with k(l;)) =g fori=1,...,s, and putk =k|,. Let Ki, .. kg
be such immersions foK’. Note thatw oki: l; — St andz ok': I; — S are ori-
entation preserving immersions amdo ki|s;, = 7 o k/|5,. Sincea and & have the
same degree with respect #3, there exists a homotopwit: i > R2 — {O}}teo,
in R2 — {O} betweenk; =k° and k' = k! relative to the boundaryl; such that for
eacht € [0,1], m ok!: I} — S' is an immersion. Taking such a homotopy generically
with respect to the other arcs/loops Kflyw (and K'|w) and the 2-disksNy, ..., Ny,
we have a finite sequence of VMO-moves transformagto & (recall the proof of
Lemma 4). Applying this procedure inductively, we see tKatis transformed toK’
by VMO-moves. ]
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Lemma 6. Two braided virtual link diagrams with the same Gauss data r-
tually Markov equivalent in the strict sense

Proof. LetK and K’ be braided virtual link diagrams with the same Gauss data.

Let Ng,..., N, be regular neighborhoods (as in Fig. 1) of the real crossings ., v,
of K, and Nj,..., N/ be regular neighborhoods of the corresponding real crgssin
vy, ..., v, of K.

CASE 1. Suppose that (Ny),...,7(Ny) and(N;),...,7(N}) appear inS' in
the same (cyclic) order. By an isotopy B?, deform K keeping the conditions of a
braided virtual link diagram such tha&t = N/ (i =1,...,n) and that the restrictions of
K and K’ to these disks are identical. By Lemma K, and K’ are virtually Markov
equivalent in the strict sense.

Case 2. Suppose that(N1),...,7(Ny) andz(Nj),...,7(N}) do not appear in
St in the same (cyclic) order. It is sufficient to consider a sglecase thatr(Ny),. . .,
7 (Np) and(Nj),...,w(N}) appear inS' in the same order except a pair, sagN;)
and 7 (N2). Applying VMO-moves, we may assume thit is the closure of a virtual
braid diagram which looks like the left one of Fig. 10, whdreis a virtual braid
diagram without real crossings ard is a virtual braid diagram. The middle of the
figure is obtained from the left by VMO- and VM2-moves. The rigime is obtained
from the middle by VMO-moves. By Case 1, the right one &fdare virtually Markov
equivalent in the strict sense. This and K’ are virtually Markov equivalent in the
strict sense. ]

Since the braiding process (the proof of Proposition 3) dusschange the Gauss
data of a virtual link diagram, we have the following.
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Fig. 11. Oriented virtual Reidemeister moves
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Fig. 12.

Corollary 7. For a virtual link diagram K, a braided virtual link diagram ob-
tained by the braiding process is uniquely determined upirtoal Markov equivalence
in the strict sense

Proof of Theorem 1. The if part is obvious. We prove the onhpadfit. Let K
and K’ be braided virtual link diagrams which represent the samiali link. There
is a finite sequence of virtual link diagrams frafto K’ each step of which is one of
the moves in Fig. 11 (cf§7, Proposition 11). By use of V2-moves, an R2c-move and
an R2d-move are obtained from an Xa-move and an Xb-move ingrespectively.
Therefore, there is a finite sequence of virtual link diaggaftn= Kg, Ky, ..., Ks =K’
such that eacl; is obtained fromK;_; by an Rla-, R1b-, V1-, R2a-, R2b , Xa-, Xb-,
V2a-, V2b-, V2c-, R3-, V3- or M-move.

Apply the braiding process to eadfy and letK; be a braided virtual link diagram
with the same Gauss data 5. Note thatK; is uniquely determined up to virtual
Markov equivalence in the strict sense (Lemma 6). We assustekifi= Ko = K and
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Rs = Ks=K’. Then it is sufficient to prove that for ea¢h(i = 1,...,s), Ki and Ri_l
are virtually Markov equivalent.

If Ki is obtained fromK;_; by a V1-, V2a-, V2b-, V2c-, V3- or M-move, then
Ki and Kj_; have the same Gauss data and sdzd(nnd Ki_l. By Lemma G,Ri and
Ri_l are virtually Markov equivalent.

Suppose thaK; is obtained fromK;_; by an Rla-, R1b-, R2a-, R2b-, Xa-, Xb-,
or R3-move. LetA be a 2-disk inR? where the move is applied, and |I&€ be the
complement ofA in R? so thatK; N A = K;_; N AC,

If the move is not an Xb-move, then we can defokn and K;_; by an isotopy
of R? such thatk; N A and K;_; N A satisfy the conditions of a braided virtual link
diagram. Apply the braiding process to the remainden A® = K;_1N A€, and we have
braided virtual link diagrams, sal{/ and K/_, such thatk/NA = K;NA, K/_;NA =
Ki_1N A, and Ki’ NAC = }Zi’_l N A°. If the move is an Rla-, R1b-, or Xa-move, then
A contains the originO of R? and K/ and K/_, are related by a right stabilization of
positive/negative type or a right virtual exchange movethd# move is an R2a-, R2b-,
or R3-move, them is disjoint from O and K/ and K/_, are related by a VMO-move.
Since Ki’ has the same Gauss data ks it is virtually Markov equivalent toK; by
Lemma 6. SimilarlyK/ , is virtually Markov equivalent toK; ;. ThereforeK; and
Ri_l are virtually Markov equivalent.

If the move is an Xb-move, then transforky, and K;_;, without changing their
Gauss data, to the closures of the (virtual) tangles depiase(Al) and (B1) in Fig. 13,
say K{ and K/_,, whereb; and b, are virtual braid diagrams. (First deforig N A
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and K;_1 N A by isotopies ofR? such that they are locally as in the thick boxes of
(Al) and (B1). Then apply the braiding process to the ren&ihdLet IZ{ and R(,l

be the closures of the virtual braid diagrams depicted a9 @kl (B2) in the figure.
Note thatK/ has the same Gauss data l&s and hence ax;. Thus K/ is virtually
Markov equivalent toK (Lemma 6). SimilarIyIZiLl is virtually Markov equivalent to
Ki_1. On the other handK/ and K/_, are related by a left virtual exchange move.
ThereforeK; and Ki_; are virtually Markov equivalent. U

6. Welded links and their braid presentation

Throughout this section, a virtual link diagram is refertedas awelded link di-
agram We call the local move illustrated in the left hand side of.F14 a Wmove
Two welded link diagrams arequivalent as welded linK they are related by a finite
sequence of virtual Reidemeister moves and W-moves. Thiwadence class is called
a welded linkor a welded link type It is easily verified that the oriented W-move il-
lustrated in the right of Fig. 14 is sufficient to realize abisgible orientations for a
W-move up to oriented moves in Fig. 11 (cf. the proof of Prépas 11, §7).

We refer to a virtual braid diagram asveelded braid diagram Recall that the
welded braid groupVB,, is the quotient ofVB; by adding the relations;oj.10i =
oi+10iTi+1 (i =1,...,m—2) corresponding to W-moves.

Proposition 8. Any welded link can be described as the closure of a weldeid.bra
Proof. This is a direct consequence of Proposition 3. Ul

When two welded braid diagrants and b’ represent the same welded braid, we
say thatt’ is obtained fromb by a WMO-moveor awelded braid moveA WM1-move
or a WM2moveis a VM1-move or a VM2-move, respectively. A right/left stabd-
tion of virtual type is referred to as maght/left stabilization of welded type

Lemma 9. A left stabilization of positivenegative or welded type is a conse-
guence ofWMO-, WM1- and WM2-moves

Proof. For the case of welded type, see the first row of Fig. 15.

For the case of positive type, see the second row. The step>(§)) is allowed
in the welded braid group, whereas it is not allowed in théuair braid group. The
case of negative type is treated similarly. J

Lemma 10. A right/left virtual exchange move is a consequence VBMO-,
WM1- and WM2-moves
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1 A&

Fig. 14. W-move

Fig. 15.

Proof. A right virtual exchange move is realized by WMO0-, WMIrdaWM2-
moves as follows:
bioy, hoom = bion, LmTmboom € WBpe1
< b1o Mt Tme1Tmboom € WBw2 (WML + WM2)
= 010, i1 Tm Tm+10207m € WB42
= D1 T T oy Tme1D20m € WBne2
= Tme101Tmb207 1 Tme10m € WBns2
< D1 Tmb20 T 10mTmes € WBne2  (WML)
= bytmbooy, Jrllrmamﬂrm € WBn+2
= blrmbzomrmﬂar;lrm € WB+2
< b1 TMb2omo s tm € WBney (WML + WM2)
= b1tmbotm € WBn41,

where by, b, € WB, (and we also denote blg (i = 1,2) the natural imageg(bi) €
WB+; and Lg(bi) € WBy+2). Similarly, a left virtual exchange move is realized by
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WMO-, WM1-moves and left stabilizations. By Lemma 9, we have tasult. U

Here we also call a braided virtual link diagrambeaided welded link diagram
Two braided welded link diagrams aveelded Markov equivalerif they are related by
a finite sequence of WMO- and WM2-moves. By Lemma 10, if two tedidvelded
link diagrams are virtually Markov equivalent, then they arelded Markov equivalent.

Proof of Theorem 2. The if part is obvious. We prove the onlpdirt. Let K
and K’ be braided welded link diagrams representing the same ddidle. There is a
finite sequence of welded link diagranks= Ky, Ky, . .., Ks = K’ such that eack; is
obtained fromK;_; by an Rla-, R1b-, V1-, R2a-, R2b-, Xa-, Xb-, V2a-, V2b-, V2c-,
R3-, V3-, M- or W-move (in Figs. 11, 12 and 14). Apply the braigliprocess to each
Ki and let k“i be a braided welded link diagram with the same Gauss dat§ a8y
Lemmas 6 and 10K is uniquely determined up to welded Markov equivalence. We
assume thatzo =Ky =K and Ks = Ks = K’. It is sufficient to prove that for each
(i=1,...,s), Ki andK;j_; are welded Markov equivalent. In the proof of Theorem 1,
we have already seen thit and K;_; are welded Markov equivalent, except the case
whereK; is obtained fromK;_; by a W-move. Suppose th#; is obtained fromK;_;
by a W-move. LetA be a 2-disk inR? where the W-move is applied, and I&€ be
the complement ofA so thatK; N A® =K;_1NA®. DeformK; andK;_; by an isotopy
of R? such thatk; NA and K;_;N A satisfy the condition of a braided virtual (welded)
link diagram. Apply the braiding process to the remaindgm A® = K;_; N A®, and
we have braided welded link diagrams, sy and K/ ; such thatK/ N A = K; N A,
K/ ,NA=Ki_1NA, andK/ N A®=K/_, nA°. ThenK/ and K/, are related by
a WMO-move corresponding teox+10kx = 0x+10kTk+1. Since K{ has the same Gauss
data asK;, it is welded Markov equivalent t&;. Similarly K/ , is welded Markov
equivalent toK;_;. ThereforeK; and Ki_; are welded Markov equivalent. O

7. Remarks

The following proposition is folklore.

Proposition 11. Two virtual link diagrams K and Krepresent the same virtual
link if and only if there is a finite sequence of virtual linkagrams from K to K each
step of which is one of the moves kig. 11.

Proof. The if part is obvious by definition. The only if partpsoved by showing
that any move illustrated in Fig. 3 with the arcs orientediteatily is a consequence
of the moves in Fig. 11.

First we note that all possible orientations of arcs for annR®e and V2-move
in Fig. 3 are listed in Fig. 11.

For an R3-move (a) or (b) in Fig. 3, give orientations to thee¢harcs.
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braid-
wise oriented

Fig. 16. Cyclically oriented R3-move

\ R
\/"‘—’L\/‘)‘—' —

Fig. 17. Whitney trick

(1) If one can name the three crossilfyB andC such that the arcs are oriented
from A to B, from B to C and fromA to C, respectively, then we say that the arcs are
orientedbraid-wise In this case, the oriented R3-move is expressed by repkceat
braid words,

aielafzof?’ s o?afza-ﬂ,
where{i, j} = {1, 2 and ey, €2, €3 are £1 such that; =€, or €, = €3. However it is a
consequence of a particular replacement with= €, = €3 = 1 and some insertions and
deletions ofoo, © wherek = 1,2 ande is £1. Thus, a braid-wise oriented R3-move
is a consequence of an R3-move and some R2a-moves and R2&s-imofFig. 11.

(2) If one can name the three crossilryB andC such that the arcs are oriented
from A to B, from B to C and fromC to A, respectively, then we say that the arcs
are orientectyclically. A cyclically oriented R3-move is a consequence of a braigkw
oriented R3-move and some oriented R2-moves as in Fig. 16s,This a consequence
of moves in Fig. 11.

For an R1-move, consider an orientation of the arc. If it i$ imFig. 11, then
it is reduced to an R1-move in Fig. 11 by a sequence of orieR2dand R3-moves
as in Fig. 17; this process is sometimes called the Whitniek.trSince all oriented
R2-moves and R3-moves are consequences of moves in Fighd briented R1-move
is so.

The other cases involving virtual crossings are shown aityil U

REMARK. (1) J.S. Birman and R. Trapp introduced and studied theonati a
braided chord diagram [4]. It is different from our braideditwal link diagrams and
braided welded link diagrams.
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Fig. 18. W-move

(2) D. Silver and S. Williams [25] proved that knot groups aftwal (or welded) links
are isomorphic to knot groups of ribbon-wise knotted torihie 4-sphere, and S. Satoh
[24] showed a geometric relationship between them. Frompthiat of view of [24],
welded braids are related to the motion group of a trivigk lin R® (cf. [8], [9], [21]).
(3) When we use the move illustrated in Fig. 18, called &Mbve instead of a W-
move, we have another notion which is analogous to a welddd Define the group
WE;, to be the quotient oBy, by the relationstio; 1o, * = 010 't (i = 1,.. .,
m—2), instead oftjoi+10; = 0i+10i Ti+1. Then we have results analogous to those in this
section. Note that one should not use both of W-moves ahdridwes simultaneously.
If we use both moves, every virtual (or welded) knot diagramanges into the unknot
(cf. [10], [13], [23]).
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