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Abstract
We study subelliptic harmonic morphisms i.e. smooth maps� : � ! �̃ among

domains� � RN and �̃ � RM, endowed with Hörmander systems of vector fields
X and Y, that pull back local solutions toHYv = 0 into local solutions toHXu = 0,
where HX and HY are Hörmander operators. We show that any subelliptic harmonic
morphism is an open mapping. Using a subelliptic version of the Fuglede-Ishihara
theorem (due to E. Barletta, [5]) we show that given a strictly pseudoconvex CR
manifold M and a Riemannian manifoldN for any heat equation morphism9 : M�
(0,1) ! N � (0,1) of the form 9(x, t) = (�(x), h(t)) the map� : M ! N is a
subelliptic harmonic morphism.

1. The Hörmander operator

Let � � RN be a domain andXa 2 X1(�), 1 � a � m, a set ofC1 vector
fields on�. X = (X1, : : : , Xm) is a Hörmander systemif the vector fieldsXa together
with their commutators up to a fixed length1 r span the tangent space toRN at each
x 2 �. For instance, letHn = Cn�R be the Heisenberg group (cf. e.g. [16], p. 11–14)
with coordinates (z1, : : : , zn, t). Let us consider the complex vector fields onHn given
by L� = �=�z� � p�1z� �=�t (the Lewy operators). Then the following set of (left
invariant) vector fields

(1) X� = L� + L�, X�+n =
p�1(L� � L�), 1� � � n,

is a Hörmander system (r = 2) on R2n+1. Here L� = L�. If Xa = bi
a(x) �=�xi we set

X�
a f = ��(bi

a f )=�xi for any f 2 C1
0(U ) (the formal adjoint ofXa). The Hörmander

operator is the second order differential operatorH = HX given by

Hu � � mX
a=1

X�
a Xau =

NX
i , j =1

��xi

�
ai j (x)

�u�x j

�

2000 Mathematics Subject Classification. Primary 32V20, 53C43; Secondary 35H20, 58E20.
1A commutator of the form[Xa1 , [Xa2 , [ : : : , Xar ] � � � ] has lengthr . By convention eachXa has

length 1.
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whereai j (x) =
Pm

a=1 bi
a(x)b j

a(x). When m = N and Xa = �=�xa the Hörmander opera-
tor is the ordinary Laplacian onRN. In generalai j (x) is only positive semi-definite, so
that H is a degenerate elliptic operator (and actuallyH satisfies the conditions (1)–(3)
of M. Bony, [11], p. 278–279). Also, by a well known result of L.Hörmander, [23],
H is hypoelliptic. The analogy to the theory of elliptic operators, and in particular
to harmonic function theory, prompted the study of (local) properties of (weak) solu-
tions to Hu = 0 (cf. e.g. M. Bony, [11], A. Sánchez-Calle, [34], A. Bonfiglioli and
E. Lanconelli, [8]–[10], G. Citti, N. Garofallo and E. Lanconelli, [13], F. Uguzzoni
and E. Lanconelli, [35]) and of solutions to certain nonlinear subelliptic systems of
variational origin (with principal partH ) such as the subelliptic harmonic map system
(cf. J. Jost and C.-J. Xu, [27], Z.-R. Zhou, [39]).

On the same line of thought E. Barletta, [4], started the study of subelliptic har-
monic morphismsi.e. localizable2 maps� : � ! N, where N is a Riemannian man-
ifold, such that for any local harmonic functionv : V ! R (with V � N open) one
has i)vÆ� 2 L1

loc(U ) for any open subsetU �� such that�(U )� V, and ii) H (vÆ�) =
0 in distributional sense. Any subelliptic harmonic morphism is easily seen to be a
C1 map, as a consequence of the existence of harmonic local coordinates on the tar-
get Riemannian manifoldN. By a result of E. Barletta (cf.op. cit.) if dim(N) = � > m
then there are no nonconstant subelliptic harmonic morphisms � : �! N. Moreover,
if � � m then every subelliptic harmonic morphism is a subelliptic harmonic map (in
the sense of J. Jost and C.-J. Xu, cf.op. cit.). The elliptic counterpart of this result is
the well known Fuglede-Ishihara theorem (cf. B. Fuglede, [19], T. Ishihara, [25]).

The present work is devoted to further exploring the geometry of subelliptic har-
monic morphisms and their variants. One of the main results is

Theorem 1. Let�� RN and �̃� RM be two domains and X= (X1,:::, Xm) and
Y = (Y1, : : : , Yn) two Hörmander systems of vector fields onRN and RM respectively.
Let � : �! �̃ be a smooth map pulling back the local harmonics of the Hörmander
operator associated to Y to local harmonics of the Hörmanderoperator associated to
X. Then� is an open map, that is � maps open subsets of� into open subsets of̃�.

Theorem 1 extends (from elliptic to subelliptic theory) a result of B. Fuglede, [20].
The ingredients in the proof of Theorem 1 are the existence offundamental solutions
to the Hörmander operatorH (due to M. Bony, [11]), the estimates on the fundamental
solution to H (due to A. Sánchez-Calle, [34]) and a version of the Harnack inequality
for degenerate elliptic operators (due again to M. Bony, cf.op. cit.). Our second main
result is

2That is for anyx0 2 � there is an open neighborhoodx0 2 U � � and a local coordinate system
(V , y1, : : : , y� ) on N such that�(U ) � V.
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Theorem 2. Let M be a strictly pseudoconvex CR manifold and� a contact form
such that the Levi form G� is positive definite. Let N be a Riemannian manifold and9 : M � (0, +1)! N � (0, +1) a smooth map of the form9(x, t) = (�(x), h(t)) for
any x2 M, t > 0. Then9 is a heat equation morphism if and only if� : M ! N is
a subelliptic harmonic morphism of constant�-dilation � and h(t) = �2t + C for some
C 2 R.

The paper is organized as follows. In Section 2 we discuss complex valued subelliptic
harmonic morphisms from the lowest dimensional HeisenberggroupH1. Various gener-
alizations of subelliptic harmonic morphisms, both in the context of Hörmander systems
of vector fields and within CR geometry, are considered in Section 3 (where Theorem 1 is
proved) and Section 4 where we present the subelliptic version of a result of E. Loubeau,
[30] (cf. Theorem 2).

2. C-valued subelliptic harmonic morphisms from H1

Let �: U ! C be aC2 function, withU �H1 open. Adopting the so called Jacobi
trick (cf. C.G.J. Jacobi, [26]) we seek solutions toH� = 0 of the form v Æ � wherev : V ! C is a holomorphic function (withV � C open). The Hörmander operator
(the sublaplacian) on H1 is given by H = X2

1 + X2
2 where Xa are given by (1) i.e.

X1 =
��x

+ 2y
��t

, X2 =
��y
� 2x

��t
.

As vz = 0 in V

X(v Æ �) = X(�)vz Æ �, X2(v Æ �) = X2(�)vz Æ � + X(�)2vzzÆ �,

for any X 2 T(H1) hence

H (v Æ �) = (H�)vz Æ � +
X

a

Xa(�)2vzz Æ �.

Consequently we obtain the following

Proposition 1. Let � : U � H1! C be a harmonic of the sublaplacian onH1.
Then H(v Æ �) = 0 on ��1(V) for each holomorphic functionv : V � C! C if and
only if

(2) X1(�)2 + X2(�)2 = 0

everywhere in U. Moreover if � satisfies(2) then so doesv Æ � for any holomorphic
function v.
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Confined to the case of complex valued maps from the lowest dimensional Heisen-
berg group we may adopt the following temporary definition. AC0 map�: U �H1!
C is a subelliptic harmonic morphismif for every harmonic functionh : V � C! R
with ��1(V) 6= ; the functionh Æ � is a harmonic ofH on ��1(V). Any subelliptic
harmonic morphism� : U ! C is C1. Indeed, let� = �1 +

p�1�2 be the real and
imaginary parts of�. As Re, Im:C! R are harmonic functions it follows thatH�i = 0
in distributional sense. YetH is hypoelliptic hence�i 2 C1(U ). As a consequence of
Proposition 1

Corollary 1. Let � : U � H1! C be a continuous map. Then� is a subelliptic
harmonic morphism if and only if H� = 0 and X1(�)2 + X2(�)2 = 0.

For instance letf (z) be an entire function. Then (by Corollary 1)�(z, t) = f (z),
(z, t) 2 H1, is a subelliptic harmonic morphism.

Proof of Corollary 1. We start by proving sufficiency. Leth : V � C! R be a
harmonic function with��1(V) 6= ;. We may assume thatV is connected (otherwise
the same proof applies to any subdomain ofV) hence there is a holomorphic functionv: V ! C such that Re(v) = h. By Proposition 1 the identity (2) impliesH (v Æ�) = 0,
henceH (h Æ �) = 0 (as H is a real operator).

Viceversa, let� : U � H1 ! C be a subelliptic harmonic morphism. The very
definition (applied twice, forh = Re andh = Im) implies H� = 0. Let v : V � C! C

be a holomorphic function. ThenH (v Æ �) = 0 (as the real and imaginary parts ofv
are harmonic) and (2) follows from Proposition 1.

Note that the identity

H (�2) = 2

(
�H� +

X
a

(Xa�)2

)

yields the following

Corollary 2. A C0 map � : U � H1! C is a subelliptic harmonic morphism if
and only if both� and �2 are harmonics of the sublaplacian onH1.

We recall (cf. e.g. [16], p. 12) that� = dt + i (z dz� z dz) is a contact form onH1.
Let us consider theLevi form

G� (X, Y) = (d�)(X, JY), X, Y 2 H (H1).

Here H (H1) is the span offX1, X2g (the Levi distribution) and J : H (H1)! H (H1) its
natural complex structure i.e.J X1 = X2 and J X2 = �X1. We setkXk� = G� (X, X)1=2.
Also thehorizontal gradientof a functionu 2 C1(H1) is given byrH u =

P
a(Xau)Xa.
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If � = �1 +
p�1�2 then

P
a(Xa�)2 = 0 is equivalent to

X
a

(Xa�1)2 =
X

a

(Xa�2)2,
X

a

(Xa�1)(Xa�2) = 0,

or

(3) krH�1k� = krH�2k� , G� (rH�1, rH�2) = 0.

A C1 map� : U � H1 ! C satisfying (3) is said to besemiconformal. Note that the
identities (3) areCR-invariant i.e. invariant under a transformation̂� = f � , for any C1
function f : H1 ! R n f0g. Given a semiconformal map� : U � H1 ! C we set� =krH�1k� = krH�2k� (the �-dilation) and note that� 2 C0(U ) while �2 is smooth. We
adopt the following definitions. A pointx0 2 U is critical (respectivelyregular) if �(x0) =
0 (respectively�(x0) 6= 0). The notions of critical and regular point of� are CR-invariant
notions. We shall establish the following

Proposition 2. Let � : U � H1 ! C be a semiconformal map. For any regular
point x0 2 U of � there is an open neighborhood x0 2 � � U such that� : �! C is a
submersion.

Proof. The proof is rather elementary. Note first that the Jacobi matrix of� may be
written as

(4)

0
� X1�1� 2yT�1 X1�2� 2yT�2

X2�1 + 2xT�1 X2�2 + 2xT�2

T�1 T�2

1
A

whereT = �=�t . Let Da (a = 1, 2) be the determinant consisting of thea-th and third rows
in (4). Letv = (D1, D2). We distinguish two cases as I)v(x0) 6= 0, and then rank(dx0�) =
2, or II) v(x0) = 0. In the second case the determinant consisting of the first two rows
in (4) is (X1�1)(X2�2)�(X1�2)(X2�1) 6= 0 atx0 as (by semiconformality) (X1�a, X2�a)x0,
a = 1, 2, are orthogonal vectors inR2.

Note thatkrH�k� = �p2 hence for any semiconformal map� : U � H1! C point
x 2 U is regular if and only ifkrH�k� (x) 6= 0.

The problem whether one may produce subelliptic harmonic morphisms� : U �
H1! C by solving implicit equations, analogous to [26] or [2], p. 6, is open. It should be
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noted that both the result3 claimed in Proposition 1.2.1 in [2], p. 6–7, and its tentative
proof4 are actually wrong5. Nevertheless examples of implicit equations whose solutions
are subelliptic harmonic morphisms do exist.

Proposition 3. Let V � C be an open set and� : V ! C2 a null holomorphic
map i.e. if � = (�1, �2) then each�a is a holomorphic function and

X
a

�a(� )2 = 0,
X

a

j�a(� )j2 6= 0,

for any � 2 V. Let

G(x, � ) = �1(� )x1 + �2(� )x2, x = (x1 +
p�1x2, t) 2 H1, � 2 V .

Then any smooth solution� : U � H1! V � C to G(x, �(x)) = 0, x 2 U, is a sub-
mersive subelliptic harmonic morphism.

Proof. A calculation shows that
P

a jXaGj2 =
P

a j�a(� )j2 6= 0 and HxG(x, � ) = 0
and

P
a(XaG)2 =

P
a �a(� )2 = 0, for any (x, � ) 2 H1� V, hence Proposition 3 follows

from Proposition 2 and the following

Lemma 1. Let G: A! C be a smooth function with A� H1�C open such that
G(x, � ) is holomorphic in�. Let us assume that(X1G, X2G)(x,� ) 6= 0 and (HG)(x, � ) =
0 and

P
a(XaG)(x, � )2 = 0 for any (x, � ) 2 A. Then any smooth solution�: U � H1!

C to G(x, �(x)) = 0, x 2 U, is a subelliptic harmonic morphism.

Proof. The identity

(5) (XaG)(x, �(x)) + G� (x, �(x))(Xa�)(x) = 0, a = 1, 2,

3Proposition 1.2.1 in [2] claims that given a smooth functionG: A ! C defined on an open subset
A � R

3 � C such thatG(x1, x2, x3, z) is holomorphic inz and (Gx1(x, z), Gx2(x, z), Gx3(x, z)) 6= 0 for
any (x, z) 2 A with G(x, z) = 0 there is a smooth solution' : U ! C on an open setU � R

3 to the
equationG(x, '(x)) = 0, x 2 U, such that1' = 0 and

P3
i =1('xi )

2 = 0 if and only if (1xG)(x, '(x)) = 0

and
P3

i =1 Gxi (x, '(x))2 = 0 for any x 2 U. As a counterexample let'(x) = x2 +
p�1x3 andG(x, z) = (1 +jxj2)(z�'(x)). ThenG satisfies the assumptions in Proposition 1.2.1 (cf.op. cit., p. 6) with A = R

3�C

yet (1xG)(x, '(x)) = �4'(x) 6= 0 on U = fx 2 R3 : x2 +
p�1x3 6= 0g.

4Let us setF(x, z) =
P3

i =1 Gxi (x, z)2 for simplicity. The formula (1.2.6) in [2], p. 6, claims that
Fz(x, '(x)) = 0 as a consequence ofF(x, '(x)) = 0, x 2 U.

5Though the arguments in [2], p. 6–7, show that local solutions ' to the equations(1xG)(x, '(x)) =

0 and
P3

i =1 Gxi (x, '(x))2 = 0 are certainly harmonic morphisms and nothing more is neededfor
the further development in [2] (which remains an excellent reference for the theory of har-
monic morphisms among Riemannian and semi-Riemannian manifolds). One may seehttp://
www.amsta.leeds.ac.uk/Pure/staff/wood/BWBook for posted corrections.
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yields
P

a jXaGj2 = jG� j2 Pa jXa�j2 henceG� (x, �(x)) 6= 0 for any x 2 U. SimilarlyP
a(XaG)2 = G2� Pa(Xa�)2 implies that

P
a(Xa�)2 = 0. Let us applyXa to (5) and

take the sum overa in the resulting identity. We get

G� (x, �(x))2H�(x) =
���
 X

a

(XaG)2

!
(x,�(x))

= 0.

Now Lemma 1 follows from Corollary 1.

3. Generalizations to CR geometry

Haec ornamenta mea.
—Valerius Maximus

A tentative generalization of Jacobi’s trick to CR geometryis to look atC1 maps� : U � Hn ! H1 and their composition with CR functions onH1. Let us recall that
a C1 function v : V ! C with V � H1 open is aCR functionif

(6) Lv � �v�z
�p�1z

�v�t
= 0

in V (and (6) are thetangential Cauchy-Riemann equationson H1). Let CRk(V) de-
note the space of all CR functions onV of classCk (k � 1). Let v 2 CR2(V) such that��1(V) 6= ;. If � = (F , f ) where F : U ! C and f : U ! R then for anyX 2 T(Hn)

X(v Æ �) = X(F)Lv + fX( f )�p�1 F X(F) +
p�1F X(F)gvt ,(7)

X((Lv) Æ �) = X(F)L2v + 2
p�1X(F)vt

+ fX( f )�p�1 F X(F) +
p�1F X(F)gLvt ,

(8)

as [L, T ] = 0 and [L, L] = �2
p�1T . Moreover (asLvt = (Lv)t = 0)

(9) X(vt Æ �) = X(F)Lvt + fX( f )�p�1 F X(F) +
p�1F X(F)gvt t .

Using the identities (7)–(9) one may computeX2(v Æ �) hence obtain

(10)

H (v Æ �) = (H F)Lv + fH f �p�1 F H F +
p�1F H Fgvt

+
X

a

Xa(F)2(L2v � 2
p�1 F Lvt � F

2vt t )

+
X

a

jXaF j2(2
p�1vt + 2

p�1F Lvt + 2jF j2vt t )�X
a

Xa(F)2F2vt t

+
X

a

Xa( f )Xa(F)(2Lvt � 2
p�1 Fvt t )

+
X

a

Xa( f )Xa(F)2
p�1Fvt t +

X
a

Xa( f )2vt t .
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We shall prove the following

Proposition 4. Let U � Hn be a connected open set and� : U ! H1 a contin-
uous map such that H� = 0. Then H(v Æ �) = 0 for any CR functionv : V � H1! C
of class C2 if and only if � is constant.

Proof. Let v = '(z), where' is a holomorphic function. ThenH F = 0, H f = 0
and H (v Æ �) = 0 together with (10) yield

P
a Xa(F)2 = 0. HenceH (v Æ �) = 0 if and

only if X
a

jXaF j2(2
p�1vt +

p�1F Lvt + 2jF j2vt t )

+
X

a

Xa( f )Xa(F)(2Lvt � 2
p�1 Fvt t ) +

X
a

Xa( f )2vt t

+
X

a

Xa( f )Xa(F)2
p�1Fvt t = 0.

In particular for v = jzj2 � p�1t 2 CR1(H1) it is necessary that
P

a jXaF j2 = 0
i.e. Xa(F) = 0, 1� a � 2n. Thus H (v Æ �) = 0 if and only if

X
a

Xa( f )2vt t = 0.

In particular for v = (jzj2 � i t )2 it follows that Xa( f ) = 0. Finally [X j , X j +n] = �4T
(1� j � n) yields Ft = 0 and ft = 0.

The (negative) result in Proposition 4 shows that the (tentative) direct generaliza-
tion of the situation in Proposition 1 and Corollary 1 is not fruitful. Then what is
the appropriate notion of a subelliptic harmonic morphism into a C1 manifold N (en-
dowed with a preferred sheaf of functions, to play the role ofharmonics in Corol-
lary 1)? WhenN is a Riemannian manifold andX = (X1, : : : , Xm) is a Hörmander
system on the domain� � RN the following notion is proposed in [4]. Let�: �! N
be a localizable map. Then� is a (weak) subelliptic harmonic morphismif for any
harmonic functionv : V ! R with V � N open the functionv Æ� is locally integrable
on U for any open subsetU � � such that�(U ) � V and H (v Æ �) = 0 in distribu-
tional sense, whereH is again the Hörmander operator associated to the Hörmander
systemX. The definition carries over easily to the case of maps� : M ! N defined
on a given strictly pseudoconvex CR manifoldM by merely replacing the Hörmander
operatorH by the sublaplacian1b (cf. [5], p. 36, where the resulting notion is referred
to as apseudoharmonic morphism). In both cases a subelliptic harmonic morphism is
actually smooth, due to i) the existence of local harmonic coordinates onN and ii) the
hypoellipticity of eitherH or 1b.
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Our main purpose for the remainder of this section is to proveTheorem 1. To
this end, letU � � be a connected open set. We shall show thatV = �(U ) � �̃ is
an open subset. The proof is by contradiction. Let us assume that V n V̊ 6= ; and
considerq0 2 V n V̊ . Then B(q0, 1= j ) n V 6= ; for any j � 1, whereB(x, r ) denotes
the Euclidean ball of radiusr > 0 and centerx 2 RM . Let q j 2 B(q0, 1= j ) n V, j � 1.
There is j0 � 1 such thatB(q0, 1= j ) � �̃ for any j � j0. Summarizing,q j 2 �̃ n V
for any j � j0 and q j ! q0 as j !1.

By a result of A. Sánchez-Calle, [34], there is a positive fundamental solution
GY(x, y) of HY which is C1 off the diagonal inRM �RM such that for any bounded
subsetA � RM there exist constantsC1 > 0, C2 > 0 and r0 > 0 such that for every
x 2 A and everyy 2 A n fxg with dY(x, y) � r0

(11) C1
dY(x, y)2

jBY(x, dY(x, y))j � GY(x, y) � C2
dY(x, y)2

jBY(x, dY(x, y))j .
Here dY is the Carnot-Carathéodory distance onRM associated to the Hörmander sys-
tem Y (cf. e.g. (1.9) in [13], p. 702) andBY(x, r ) is the ball of radiusr with respect
to dY. Also jAj denotes the Lebesgue measure of the setA. On the other hand by a
result of A. Nagel et al., [32], there are constantsa1 > 0 anda2 > 0 such that

(12) a1 � jBY(x, Æ)j3(x, Æ) � a2

for any x 2 A, where3(x, Æ) is a polynomial inÆ with nonnegative coefficients

3(x, Æ) =
X

I

j�I (x)jÆd(I ).

The index I in the sum above ranges over a finite set depending onA. Let us set
E(x, Æ) = 3(x, Æ)=Æ2 for any x 2 A and Æ > 0. As d(I ) � M for every I (cf. [32]) ifÆ = dY(x, y) then (by (11)–(12))

C1Æ2

jBY(x, Æ)j � C

E(x, Æ) ! +1, Æ! 0 (C = C1=a2)

henceGY(x, y)! +1 as y! x. Gathering the information so far there is an open
neighborhoodW � �̃ of q0 such that for anyy 2 W the function x 7! GY(x, y) is
strictly positive andHYG( � , y) = 0 in W n fyg. Also if D = f(x, y) 2 W �W : x = yg
is the diagonal thenGY(x, y) ! +1 as (x, y) ! D. We may assume w.l.o.g. that
U � ��1(W).

Next, we consider the sequence of functionsv j : W n fq j g ! (0, +1) given byv j (q) = GY(q, q j ) for any q 2 W, q 6= q j . Then HY(v j ) = 0 in W n fq j g, for any
j � j0. Yet W n fq j g is open in V. Therefore, by hypothesis, the functionu j =
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v j Æ�: ��1(Wnfq j g)! (0, +1) satisfiesHX(u j ) = 0 in ��1(Wnfq j g), and in particular
in U. Let p0 2 U such that�(p0) = q0. Then

u j (p0) = v j (q0) = GY(q0, q j )! +1, j !1,

hence there is a compact setK � U such thatp0 2 K and the sequence supfu j (p): p 2
K g is unbounded.

To end the proof of Theorem 1 we need to recall the Harnack inequality (as es-
tablished by J.M. Bony, [11]). LetL(X) be the Lie algebra spanned by theXi ’s. The
rank of L(X) at a point p 2 � is the dimension of the linear spacefZp : Z 2 L(X)g.
Let us consider the second order differential operator

(13) Lu(x) =
NX

i , j =1

ai j (x)
�2u�xi �x j

+
NX

i =1

ai (x)
�u�xi

+ a(x)u

satisfying the following assumptions a) [ai j (x)] is positive semi-definite for anyx 2 �,
a(x) � 0 for any x 2 �, and b) there exists a system of vector fieldsfX1, : : : , Xm, Yg �
X1(�) such that

(14) Lu =
mX

a=1

X2
au + Y u+ a(x)u.

Then

Lemma 2 (J.M. Bony, [11], p. 299). Let us assume that the Lie algebraL(X1, : : : ,
Xm) has rank N at any point p2 �. Then for any compact subset K� �, any point
p 2 �, and any multi-index� 2 ZN

+ there is a constant C> 0 such that

(15) supf(D�u)(x) : x 2 K g � Cu(p)

for any positive solution u to Lu= 0.

Under the assumptions of Lemma 2 the differential operator (13) is hypoelliptic,
so one needs not specify the regularity of the solution. Let us go back to the proof of
Theorem 1. By (15) (with� = 0)

(16) supfu j (x) : x 2 K g � C inffu j (x) : x 2 K g.
As � is nonconstantK n��1(q0) 6= ;. Let then p 2 K n��1(q0) andq = �(p). We have

u j (p) = v j (q) = GY(q, q j )! GY(q, q0) <1, j !1,

which contradicts (16). Theorem 1 is proved. A slight modification of the proof also
gives
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Corollary 3. Let � : Hn ! N be a nonconstant subelliptic harmonic morphism
from the Heisenberg group into a Riemannian manifold N of dimension� � 2. Then� is an open mapping.

Indeed one may replaceGY(x, y) by a fundamental solutionG(x, y) of the Laplace
equation onN on a neighborhoodW � N of q0 (so that for anyy 2 W the function
x 7! G(x, y) is strictly positive and1NG( � , y) = 0 in W n fyg) followed by averbatim
repetition of the arguments in the proof of Theorem 1. Similarly we obtain

Corollary 4. Let � : M ! N be a pseudoharmonic morphism from a strictly
pseudoconvex CR manifold M into a Riemannian manifold N. Then � is an open
mapping. Moreover if M is compact and N connected then N is compact and� is
surjective.

To prove Corollary 4 we need to collect a few objects in CR and pseudohermitian
geometry (cf. e.g. [16]).

Proof of Corollary 4. Let (M, T1,0(M)) be a strictly pseudoconvex CR manifold,
of CR dimensionn, and H (M) = RefT1,0(M) � T0,1(M)g its Levi distribution. Let�
be a contact form onM such that the Levi formG� (X, Y) = (d�)(X, JY), X, Y 2
H (M), is positive definite. The horizontal gradient of a function u 2 C1(M) is given
by G� (rH u, X) = X(u) for any X 2 H (M). The sublaplacianis the second order dif-
ferential operator

1bu = div(rH u), u 2 C2(M),

where div is the divergence with respect to the volume form� ^ (d�)n. A pseudo-
harmonic morphismis a smooth map� : M ! N into a Riemannian manifoldN such
that1b(v Æ�) = 0 in ��1(V) for any harmonic functionv: V ! R (with V � N open).
Let r be theTanaka-Webster connectionof (M, �), cf. e.g. Theorem 1.3, [16], p. 25.
Let p0 2 M and letfXa : 1� a � 2ng be a local orthonormal (G� (Xa, Xb) = Æab) frame
of H (M) defined on a connected local coordinate neighborhood (U , x1, : : : , x2n+1) of
p0. Let 0a

bc : U ! R be theC1 functions given byrXb Xc = 0a
bcXa. Let T be the

characteristic directionof d� i.e. the vector fieldT on M determined by�(T) = 1 and
T d� = 0. By thepurity axiom (cf. (1.37) in [16], p. 25)

[Xa, Xb] = (0c
ab� 0c

ba)Xc � 2(d�)(Xa, Xb)T

henceL(X1, : : : , X2n) has rank 2n + 1. We wish to show that�(U ) is an open neigh-
borhood ofq0 = �(p0). By (2.6) in [16], p. 112

1bu =
2nX

a=1

X2
au + Y u, u 2 C2(U ),
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where Y = �Pa rXa Xa. Hence the local expression of1b satisfies J.M. Bony’s re-
quirements a)–b) and we may use the local chart (x1, : : : , x2n+1) to transplant (15) to
U. In particular for any compact subsetK � U there isC > 0 such that

(17) sup
x2K

u(x) � Cu(p0)

for any positive solutionu 2 C1(U ) to 1bu = 0. If �(U ) is not an open neighborhood
of q0 then a repetition of the arguments in the proof of Theorem 1 contradicts (17). If
M is compact then�(M) is compact, hence closed. By the first statement in Corol-
lary 4 the set�(M) is also open so that�(M) = N.

Clearly Theorem 1 holds for any smooth map� : �! N pulling back local har-
monic functions onN to solutions ofLu = 0 where L is given by (14) and satisfies
the assumptions in Lemma 2. The moral conclusion is that one may obtain a fairly
nice theory when the target manifold is Riemannian yet additional difficulties will oc-
cur for smooth maps� : �! N into a strictly pseudoconvex CR manifoldN pulling
back harmonics of the sublaplacian (associated to a fixed contact form onN) to solu-
tions of L. For instance, the proof of Theorem 3 in [5], p. 36 (that whenever � � m
a pseudoharmonic morphism is a pseudoharmonic map) requires the existence of lo-
cal harmonics with a prescribed gradient and hessian at a given point. While this fact
is well known in Riemannian geometry (cf. Lemma 4.1 in [25], p. 221) no pseudo-
hermitian analog is known as yet. Note that the proof of Ishihara’s lemma relies on
Lemma 4.2 in [25], p. 222, in elliptic theory (while1b is subelliptic). Of course the
caseN = Hk may be handled as in Theorem 1 and Corollary 4.

Corollary 5. Let M be a strictly pseudoconvex CR manifold. Let � : M ! Hk

be a smooth map into a Heisenberg groupHk. If � pulls back local harmonics of the
Hörmander operator onHk to harmonics of the sublaplacian on M then� is an open
mapping. The same result holds ifHk is replaced byRN endowed with an arbitrary
Hörmander system X= (X1, : : : , Xm).

Also Corollary 5 admits a direct proof based only on the Harnack inequality (it
doesn’t require the results in [32] and [34]). Indeed a fundamental solution of the
Hörmander operator onHk is given by G(x, y) = w(xy�1) where

w(x) = Cjxj�2k = C(kzk4 + t2)�k=2
(cf. G.B. Folland, [17]) for anyx = (z, t) 2 Hk (whereC > 0 is a constant depending
only on k). Of courseG(x, y) is strictly positive and tends to +1 when (x, y) tends
to the diagonal hence the proof of Corollary 5 is similar to that of Corollaries 3 and 4.

We close this section with a few potential theoretic remarks. Let M be a strictly
pseudoconvex CR manifold and� a fixed contact form onM, such that the Levi form
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G� is positive definite. Let1b be the sublaplacian of (M, �). A subsetV � M with�V 6= ; is said to beregular if for any f 2 C0(�V) there is a uniqueH V
f 2 C1(V)

such that i)1bH V
f = 0 in V, ii) if H̃ V

f is the extension to the boundary ofH V
f with

f then H̃ V
f 2 C0(V) and iii) if f � 0 on �V then H V

f � 0 in V.

Proposition 5. Every strictly pseudoconvex CR manifold M endowed with a con-
tact form � admits a base of regular open sets. Moreover the1b-harmonics possess
the Harnack monotone convergence property. Therefore(M, �) is a Brelot harmonic
space.

Proof. Let x0 2 M and� = (x1, : : : , x2n+1): U ! R2n+1 a local chart onM such
that 1) x0 2 U and �(x0) = 0, 2) � = �(U ) is a domain inR2n+1, and 3) there is a
local G� -orthonormal framefXa: 1� a � 2ng of H (M) defined onU. If Xa = bi

a �=�xi

then for anyu 2 C2(U )

1bu = ai j �2u�xi �x j
+ ai �u�xi

, ai j =
2nX

a=1

bi
ab j

a, ak = �ai j 0k
i j ,

where 0i
jk 2 C1(U ) are the local coefficients of the Tanaka-Webster connection of

(M, �) with respect to�. So locally the sublaplacian is a differential operator of the
form (13) (with a(x) = 0). Let us observe that1b is non totally degenerate onU (in
the sense of Definition 5.1 in [11], p. 291). Indeed ifai j (x) = 0, 1� i , j � 2n + 1,
at somex 2 � then Xa(x) = 0, 1� a � 2n, a contradiction. AlsoL(X1, : : : , X2n, Y)
has rank 2n + 1 at each point ofU hence (by Corollary 5.2 in [11], p. 294) there is
an open neighborhood of the origin! � � with �! 6= ; such that the Dirichlet prob-
lem for ��1b (the pushforward of1b by �) is uniquely and positively solvable on!.
Then ��1(!) is a regular open neighborhood ofx0.

To prove the second statement in Proposition 5 letA � M be an open connected
set andfungn�1, un 2 C1(A) be an increasing sequence of1b-harmonics. Next let
u = supn�1 un and B = fx 2 A: u(x) = +1g. We distinguish two cases as I)B = ; or
II) B 6= ;. In the first case letx0 2 A and (U ,�) a local coordinate neighborhood atx0

as above such thatU � A. Let vn = unÆ��1, n � 1, andv = supn�1vn. Thenv(0) 6=1
hence (by Theorem 8.2 in [11], p. 302)v(x) 6=1 for any x 2 � and (��1b)v = 0 in�. It follows that u is finite on U and1bu = 0 on U and in particular inx0. In the
second case we may show thatB is both open and closed inA hence B = A. Let
x0 2 B. Then, with the notations above,v(0) =1 so that (again due to the Harnack
monotone convergence property on�) v � 1 on � henceU � B i.e. B is open. To
see thatB is closed letx0 2 A n B and (U , �) a local chart as before (x0 2 U � A).
Then v(0) 6=1 hencev(x) 6=1 for any x 2 � so thatU � A n B.

It is an open question whether the points of a strictly pseudoconvex CR manifold
M are strongly polar (in the sense of [20], p. 182). As a consequence of Proposition 5
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above and Theorem 5 in [20] we may conclude that

Corollary 6. Let M and N be two strictly pseudoconvex CR manifolds endowed
with the contact forms� and �N . Let � : M ! N be a smooth map pulling back the
local harmonics of the sublaplacian on(N, �N) to local harmonics of the sublaplacian
on (M, �). If i) all points of �(M) are strongly polar, or ii) � is injective, then � is
an open mapping.

4. Further generalizations of harmonic morphisms

4.1. Heat equation morphisms. E. Loubeau, [30], has studied heat equation
morphisms (maps preserving the local solutions of the heat equation) and heat kernel
morphisms (maps preserving the heat kernel). E. Loubeau’s results on heat equation
morphisms carry over easily to CR geometry. Theheat equationon M is

(18)

� ��t
�1b

�
u(x, t) = 0, x 2 M, t > 0,

where1b is the sublaplacian associated to� . Then9: M�(0, +1)! N�(0, +1) is a
heat equation morphismif for any open setV � N and any solutionf : V�(0, +1)!
R to ft �1N f = 0 it follows that u = f Æ9 is a solution to (18).

Let us assume that9(x, t) = (�(x), h(t)) for some smooth maps� : M ! N and
h: (0, +1)! (0, +1). Let (V , yi ) be an arbitrary local coordinate system onN, such
that U = ��1(V) 6= ;. Let fXa : 1� a � 2ng be a local frame ofH (M) defined onU.
A calculation shows that

(19)

� ��t
�1b

�
( f Æ9)

= ( ft Æ9)h0 � ( fi Æ9)1b�i �X
a

( fi j Æ9)Xa(�i )Xa(� j )

for any f 2 C2(V � (0, +1)), where�i = yi Æ �, fi = � f =�yi, ft = � f =�t and fi j =�2 f =(�yi �y j ). Let us assume that9 is a heat equation morphism. In particular for
f = v(x), wherev: V ! R is a harmonic function, the identity (19) shows that1b(v Æ�) = 0 i.e.� : M ! N is a subelliptic harmonic morphism, and in particular (by The-
orem 6 in Appendix B) a subelliptic harmonic map. Thus

1b�i +
X

a

(0i
jk Æ �)Xa(� j )Xa(�k) = 0

hence (19) becomes

(20)

� ��t
�1b

�
( f Æ9) = ( ft Æ9)h0 � ( fi , j Æ9)

X
a

Xa(�i )Xa(� j )
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where fi , j = fi j �0k
i j fk is the second order covariant derivative off . Let x0 2 M and

t0 > 0 be fixed. Let us choose a normal coordinate system (V , yi ) on N centered at
y0 = �(x0). Then (by (31) in Appendix B) for anyf 2 C2

(21)

� ��t
�1b

�
( f Æ9) = ( ft Æ9)h0 � �2(1N f ) Æ9

at (x0, t0) and hence everywhere onM � (0, +1). In particular for any local solution
f to the heat equation onN one has (h0 � �2) ft Æ 9 = 0. If for instance'(y) is a
solution to the Poisson equation1N' = 1 and f (y, t) = t + '(y) then h0(t) = �(x)2 =
constant.

Let pt (x) be the fundamental solution to the heat equation on the Heisenberg group
i.e. u(x, t) = (pt � f )(x) solves

� ��t
� H

�
u(x, t) = 0, u(x, 0) = f (x), x 2 Hn,

for f 2 L1(Hn). See A. Hulanicki, [24], wherept (x) was explicitly computed

(22)

p̂t (� + i�, s) = (cosh 2ts)�n=2
� exp

��(1=2)(j�j2 + j�j2) cosh 2ts +
p�1(� � �)(sinhts)2

2s cosh 2ts

�

for any (� + i�, s) 2 Hn (a hat denotes the Fourier transform). Let us recall that a
heat kernel of a connected Riemannian manifold (N, g) is a C0 function pN : N�N�
(0, +1)! R such thatpN(x, y, t) is C2 with respect toy, C1 with respect tot , and� ��t

�1N,y

�
pN = 0,

lim
t!0+

Z
N

pN(x, y, t)'(y) d volg(y) = '(x), x 2 N,

for any boundedC0 function ' on N. A heat kernel always exists and ifN is compact
it is also unique (cf. e.g. M. Berger et al., [7]).

We adopt the following definition. Aheat kernel morphismis a C1 map8: Hn�
Hn � (0, +1)! N � N � (0, +1) such thatp = pN Æ8 where p(x, y, t) = pt (xy�1).
Analogous to [30], p. 491–492, we show that

Proposition 6. Let 8 : Hn � Hn � (0, +1)! N � N � (0, +1) be a heat ker-
nel morphism of the form8(x, y, t) = (�(x), �(y), h(t)) for some surjective C1 map� : Hn ! N and some C1 function h(t) > 0 for t > 0. Then9(x, t) = (�(x), h(t)) is
a heat equation morphism.
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In particular�: Hn! N is a subelliptic harmonic morphism of constant�0-dilation
and h(t) may be explicitly determined (as in Theorem 2). To prove Proposition 6 letv 2 C2(N � R) be a solution to the heat equation onN. As � is surjective it admits
a Borel measurable one sided inverse : N ! Hn i.e. �( (y)) = y. Moreover

v(x, t) =
Z

N
pN(x, y, t)v(y, 0) d volg(y)

hence� ��t
� H

�
(v Æ9)(x, t) =

Z
N

� ��t
� Hx

�
[ pN(�(x), �( (y)), h(t))]v(y, 0) d volg(y)

=
Z

N

� ��t
� Hx

�
[ p(x,  (y), t)]v(y, 0) d volg(y) = 0.

Proposition 6 is proved. WhenN is compact and the domainM of � is a compact
m-dimensional Riemannian manifold E. Loubeau, [30], showedthat � is a covering
map and the cardinality each fibre��1(y) is �m, cf. Theorem 3,op. cit., p. 494. The
proof makes use of the Minakshisundaram-Pleijel asymptoticdevelopment of the heat
kernel on a Riemannian manifold (cf. e.g. M. Berger et al., [7]). When M is a CR
manifold equidimensionality is of course ruled out by Theorem 6 in Appendix B. It
is an open problem whether one may exploit the asymptotic development for the heat
kernel on a compact strictly pseudoconvex CR manifold (cf. R. Beals et al., [6]) or
the explicit form (22) of pt (when M = Hn) to obtain a pseudohermitian analog to
Theorem 3 in [30], p. 494.

4.2. �b-harmonic morphisms. Let M be a nondegenerate CR manifold of CR
dimensionn, � a contact form onM, andT the characteristic direction ofd� . A (0, q)-
form on M is a complex valued differentialq-form ! such thatCT�T1,0(M) ! = 0. LetV0,q(M)! M be the bundle of all (0,q)-forms and�0,q(M) = 01�V0,q(M)

�
the space

of all globally defined smooth sections in
V0,q(M). Let

(23) �b : �0,q(M)! �0,q+1(M), q � 0,

be thetangential Cauchy-Riemann operatori.e. the first order differential operator de-
fined as follows. If! 2�0,q(M) then�b! is the unique (0,q+1)-form on M coinciding
with d! on T0,1(M)
 � � � 
 T0,1(M) (q + 1 terms). Of course�b : �0,0(M)! �0,1(M)
is given by (�b f )Z = Z( f ) for any f 2 �0,0(M) and Z 2 T1,0(M). Note that the defi-
nition of �b f makes sense for anyf 2 C1(M)
 C. Then

C1(M)
 C
�b�! �0,1(M)

�b�! � � � �b�! �0,n(M)
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is a cochain complex (thetangential Cauchy-Riemann complexof M). Let

H0,q(M) = Hq(�0,�(M), �b) = Kerf�b : �0,q(M)! � gÆ�b�0,q�1(M), q � 1,

be the cohomology of the tangential Cauchy-Riemann complex(the Kohn-Rossi co-

homologyof M). Let M be a compact nondegenerate CR manifold and let��b be the
formal adjoint of (23) that is

(� �b , ') = ( , �b'), ' 2 �0,q(M),  2 �0,q+1(M),

where

(�, �) =
Z

M
G�� (�, �)� ^ (d�)n, �, � 2 �0,q(M),

is a theL2 scalar product on (0,q)-forms. We set

�b' =

�� �b �b + �b� �b
�', ' 2 �0,q(M),

(the Kohn-Rossi laplacian) and H0,q(M) = Kerf�b : �0,q(M) ! � g (the space of all�b-harmonic (0,q)-forms on M).
Given two CR manifoldsM and N endowed with the contact forms� and �N a

pseudohermitianmap is a smooth CR map�: M! N (i.e. (dx�)T1,0(M)x � T1,0(N)�(x)

for any x 2 M) such that���N = c� for somec 2 R n f0g. Given a pseudohermitian
map � : M ! N of nondegenerate CR manifolds, by the axiomatic description of the
tangential Cauchy-Riemann operator

(24) ���N
b ' = �b(��'), ' 2 �0,q(N),

hence there is a naturally induced linear map at the level of the Kohn-Rossi cohomology�� : H0,q(N)! H0,q(M), q � 1.
A smooth map� : M ! N is said to be a�b-harmonic morphismif the pullback

by � of any local�N
b -harmonic function onN is a local�b-harmonic function onM.

We shall prove the following

Theorem 3. Let � : M ! N be a pseudohermitian map of a compact strictly
pseudoconvex CR manifold M into a compact strictly pseudoconvex real hypersurface
N � CM . Let �� : H0,1(N)! H0,1(M) the induced map on Kohn-Rossi cohomology.
If � is a submersive�b-harmonic morphism then�� is injective.

Theorem 3 is a pseudohermitian analog to Proposition 4.3.11in [2]. p. 113. Here
by a submersivemap we mean a surjective smooth map� : M ! N which is a sub-
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mersion at each pointx 2 M nC� , whereC� = fx 2 M : dx� = 0g. It is an open prob-
lem whether this assumption might be dropped i.e. whether ananalog to the Fuglede-
Ishihara theorem holds for�b-harmonic morphisms. To prove Theorem 3 we shall
need

Lemma 3. Let � : M ! N be a pseudohermitian map of a nondegenerate CR
manifold M and a nondegenerate real hypersurface N� Cm+1 whose Levi form has at
least p0 = 2 positive eigenvalues. Then� is a �b-harmonic morphism if and only if� pulls back the�N

b -harmonic (0, 1)-forms on N to�b-harmonic (0, 1)-forms on M
i.e. ��H0,1(N) � H0,1(M).

Proof. Let ' 2 H0,1(N) be a�N
b -harmonic form onN. We wish to show that��' is �b-harmonic. The well known identity

��N
b ', '� =



�N
b '

2

+


��N

b

��'

2

implies that' is �N
b -closed. For anyx0 2 N we set

H0,q(N, x0) = lim�!
x02V�Cm+1

V open

H0,q(N \ V).

By a result of M. Nacinovich, [31],H0,q(N, x0) = 0 for any 1� q < p0 (the Poincaré

lemmafor the �N
b -complex, cf. Proposition 11 in [31], p. 468). Letx0 2 N. Under the

assumptions in Lemma 3 one hasH0,1(N, x0) = 0. Let thenv : V ! C a smooth func-

tion defined on an open neighborhoodV � N of x0 such that' = �N
b v on V. As ' is

also
��N

b

��
-closed it follows thatv is a�N

b -harmonic function. Yet� is a�b-harmonic
morphism hencev Æ � is �b-harmonic in��1(V). Then (by (24))

�b(��') = �2
b(v Æ �) = 0,

� �b(��') = � �b �b(v Æ �) = �b(v Æ �) = 0,

i.e.�b(��') = 0. Viceversa letv : V ! C be a local�N
b -harmonic function onN. We

wish to show thatv Æ � is �b-harmonic inU = ��1(V). Let us set' = �N
b v. Then

�N
b ' = �N

b

��N
b

���N
b v = �N

b �N
b v = 0

i.e. ' 2 H0,1(V). Yet ��H0,1(V) � H0,1(U ) hence��' is ��b-closed so that (by (24))

0 = � �b��' = � �b �b(v Æ �) = �b(v Æ �)

hence� is a�b-harmonic morphism.
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Proof of Theorem 3. LetC 2 H0,1(N) such that��C = 0. By a result of J.J. Kohn,
[28], C has a�N

b -harmonic representative' 2 H0,1(N). Yet � is a�b-harmonic mor-
phism hence��' is a�b-harmonic representative of��C 2 H0,1(M). By the unique-
ness statement in Corollary 7.8 in [28], p. 93,��C = 0 yields��' = 0. As�: M nC�!
N is a submersion'�(x) = 0 for any x 2 M nC� . That is to say the (0, 1)-form' van-
ishes at each point ofN which is a regular value of�. As � is surjective the set of
its regular values is dense inN (by Sard’s theorem, cf. e.g. Theorem 3.8 in [12], p. 29)
hence by continuity' vanishes everywhere onN.

4.3. L-harmonic morphisms. In this section we adopt the point of view in [8],
pp. 113–114 (cf. also G.B. Folland, [18]). Precisely a second order partial differential
operatorL =

Pp
j =1 X2

j is said to be a realsublaplacianon Rn if it satisfies the following
two axioms 1) there is a group structureÆ on Rn making G = (Rn, Æ ) into a Lie
group such that eachX j is a first order differential operator with smooth real valued
coefficients andX j is left invariant, 2) the Lie algebrag of G is stratified and nilpotent
i.e. there is an integerr � 1 and there are linear subspacesVj � g, 1 � i � r , such
that g admits the decompositiong = V1�� � ��Vr and i) [V1, Vj ] = Vj +1, 1� j � r �1,
ii) [ Vj , Vr ] = 0, 1� j � r , and fX1, : : : , Xpg is a basis ofV1 (as a real linear space).
Then G is a Carnot groupand the smallest integerr � 1 as above is itsstep.

By a result of L. Gallardo, [21], there is a homogeneous normj � j on G and a
constantcQ > 0 such that

0(x, y) = cQjx�1 Æ yj2�Q, x, y 2 G,

is a fundamental solution forL, where Q =
Pr

j =1 jm j is the homogeneous dimension
of G (herem j = dimR Vj ).

We adopt the following definition. LetN be a Riemannian manifold. We say that
N has theLiouville property if any harmonic function f : N ! [0, +1) is constant.
For instance any closed (i.e. compact, without boundary) Riemannian manifold has the
Liouville property (as an elementary consequence of the Hopf maximum principle).
Also, if N is a complete Riemannian manifold of nonnegative Ricci curvature then any
bounded harmonic function onN is a constant (cf. S.-T. Yau, [38]). An extension of
the Liouville property to the case of the Hörmander operatoron the Heisenberg group
was proved by A. Korányi and N.K. Stanton, [29].

Let L be a real sublaplacian as above. Recently A. Bonfiglioli et al., [8], have
shown that for anyp 2 (Q=2, +1] there exist constantsC > 0 and� > 0 (depending
only on L and p) such that

(25) supjxj�r
u(x) � C

�
infjxj�r

u(x) + r 2�Q=pkLukL p(D(0,�r ))

�

for any C2 function u : Rn! [0, +1) and anyr > 0. Here D(x, r ) = fy 2 Rn : jx�1 Æ
yj � r g. The (Harnack type) inequality (25) is easily seen to imply an extension of
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the Liouville property toG, relative toL-harmonics (cf. [8], p. 112). It is a natural
question whether the Liouville property pushes forward viaa harmonic morphism.

A continuous map� : G! N of a Carnot groupG as above into a Riemannian
manifold N is said to be aL-harmonic morphismif for any local harmonic functionv : V � N ! R with ��1(V) 6= ; one hasL(v Æ �) = 0 in ��1(V) (in distributional
sense). Asj � j 2 C1(Rn n f0g) \ C0(Rn) it follows that 0(x, y) is C1 away from the
diagonal, henceL is hypoelliptic. This fact together with the existence of harmonic
local coordinates onN implies that anyL-harmonic morphism is actually smooth. We
shall show that

Theorem 4. Let L be a real sublaplacian onRn and N a Riemannian manifold.
Let � : G! N be a nonconstantL-harmonic morphism. Then its image A= �(Rn) is
an open set and any harmonic functionv : A! [0, +1) is a constant.

Proof. Let x0 2 G and y0 = �(x0). We shall show thaty0 2 Å. The proof is
by contradiction. If y0 2 A n Å there is a sequenceyk 2 N n A such thatyk ! y0

as k ! 1. Let G be a positive Green function on a neighborhoodV of y0 in N.
Thus for eachy 2 V the functionx 7! G(x, y) is strictly positive and1N-harmonic in
V n fyg. Also G(x, y)!1 as (x, y) goes to the diagonal. Let� � Rn be a domain
such thatx0 2 � � ��1(V). The functions fk(x) = G(x, yk) are strictly positive and1N-harmonic inV n fykg. Note that�(�) � V n fykg for any k 2 f1, 2,: : : g. As � is a
L-harmonic morphism the functionsHk(x) = fk Æ� are strictly positive andL-harmonic
in ��1(V n fykg) and in particular in�. Moreover

Hk(x0) = fk(y0) = G(y0, yk)!1, k!1.

Note that 0�1 = 02G as a consequence of the existence of dilationsÆa: G!G (a> 0)
cf. [8], p. 114. ThenLx(D(0,r )) = D(x, r ) whereLx is the left translationLx(y) = xÆy,
for any x, y 2 G. Let us apply the estimate (25) foru = v Æ L�1

x0
so that to get (by the

left invariance ofL and a change of variable under the integral sign)

(26) sup
y2D(x0,r )

v(y) � C

�
inf

y2D(x0,r )
v(y) + r 2�Q=p

�Z
D(x0,�r )

jLv(z)jp jJx0(z)j dz

�1=p�

where Jx is the determinant of the Jacobian ofL�1
x . In particular letv = Hk and letr >

0 such thatD(x0, R) � � where R = maxfr , �r g (so that the integral in (26) vanishes).
Let K be a compact set such thatx0 2 K � D(x0, r ) and K̊ 6= ;. As � is nonconstant
there isa 2 K n ��1(y0) so that

Hk(a) = fk(�(a)) = G(�(a), yk)! G(�(a), y0) <1
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as k!1. Finally

supfHk(x) : x 2 K g � sup
x2D(x0,r )

Hk(x)

� C inf
x2D(x0,r )

Hk(x) � C inffHk(x) : x 2 K g
� C Hk(a) <1

a contradiction. ThusA is an open set. Letf 2 C1(A) such that f � 0 and1N f = 0
in A. We setv = f � infy2A f (y) so thatu = v Æ � is nonnegative andL-harmonic in
Rn. Then supA v = supRn u � C infRn u = C inf A v = 0 hence f is constant onA. As a
consequence of Theorem 4

Corollary 7. Let N be a Riemannian manifold. If there is a surjectiveL-harmonic
morphism from a Carnot group into N then N has the Liouville property.

4.4. CR-pluriharmonic morphisms. Let M be a CR manifold. AC1 func-
tion u : M ! R is CR-pluriharmonic if for any x 2 M there is an open neighbor-
hood U of x in M and aC1 function v : U ! R such that�b(u +

p�1v) = 0 in U
i.e. u +

p�1v is a CR function. As CR functions may be thought of as boundaryval-
ues of holomorphic functions, it is natural to think of CR-pluriharmonic functions as
boundary values of pluriharmonic functions. The former arealso several complex vari-
ables analogs of harmonic functions. This prompts the following natural generalization
of harmonic morphisms. LetN be a CR manifold. LetPM(N) be the class of allC0

maps� : U � Hn! N (U open) such thatuÆ� is a weak CR-pluriharmonic function,
for any CR-pluriharmonic functionu : V ! R with V � N open and��1(V) 6= ;. A
function f 2 L1

loc(Hn) is a weak solution to the tangential Cauchy-Riemann equations�b f = 0 (a weak CR function) ifZ
Hn

f (x)(L�')(x) dx = 0, 1� � � n,

for any ' 2 C1
0 (Hn). A weak CR-pluriharmonic function is locally the real part of a

weak CR function. The properties of the classPM(N) are unknown as yet. Of course
one may replaceHn in the above definition by just any CR manifold.

Appendix A. Subelliptic harmonic maps

Let � � RN be a domain andX = (X1, : : : , Xm) a Hörmander system defined on
an open neighborhood of�. A subelliptic harmonic mapis a smooth solution�: �!
N to

(27) HX�i +
mX

a=1

(0i
jk Æ �)Xa(� j )Xa(�k) = 0, 1� i � �.
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Here N is a �-dimensional Riemannian manifold. Also if (V , yi ) is a local coordinate
system onN (such that��1(V) 6= ;) then�i = yi Æ� and0i

jk are the local coefficients
of the Levi-Civita connection onN. The system (27) (thesubelliptic harmonic map
system, written briefly HN� = 0) is a nonlinear subelliptic system of variational origin.
Indeed (27) are the Euler-Lagrange equations of the variational principleÆEX(�) = 0
where

EX(�) =
1

2

Z
�

mX
a=1

(gi j Æ �)Xa(�i )Xa(� j ) dx

and dx is the Lebesgue measure onRN. Also gi j are the local components of the
Riemannian metricg on N. Although the equations (27) are nonlinear an appropri-
ate notion of weak solution is available. The relevant function spaces for subelliptic
variational problems areW1,2(�, X) = fu 2 L2(�) : Xau 2 L2(�), 1 � a � mg (the
derivatives Xau are meant in distributional sense) with the normkukW1,2 =

�kuk2L2 +P2n
a=1kXauk2L2

�1=2
, cf. e.g. C.-J. Xu, [36]. LetW1,2

0 (�, X) be the completion ofC1
0 (�)

with respect tok �kW1,2. Let us assume thatN may be covered by one coordinate chart� = (y1, : : : , y�): N! R� . ThenW1,2
X (�, N) consists of all maps�: �! N such that�i 2 W1,2(�, X) for any 1� i � �. A weak solutionto (27) is a map� 2 W1,2

X (�, N)
such that

mX
a=1

Z
�fXa(�i )Xa(') + (0i

jk Æ �)Xa(� j )Xa(�k)'g dx = 0

forany ' 2 C1
0 (�). Given a domain! � RN such that! � � J. Jost and C.-J. Xu,

[27], considered the Dirichlet problem

(28) HN� = 0 in !, � = f on �!,

with f 2 C0(!, N) \ W1,2
X (!, N), such that f (!) � B(p, �) for some regular ball

B(p, �) � N, and exploited the variational origin of the system (27) in order to prove
the existence of weak solutions to (28) i.e. weak solutions� to HN� = 0 such that

� � f 2 W1,2
X,0(!, N), �(!) � B(p, �).

Moreover any bounded weak solution� to HN� = 0 such that�(!) � B(p, �) (for
some regular ballB(p, �) � N) may be shown (again cf. [27]) to be continuous in!. On the other hand, by a result of C.-J. Xu and C. Zuily, [37], interior continu-
ity � 2 C0(!) of weak solutions to a class of quasi-linear subelliptic systems (includ-
ing (27)) implies smoothness� 2 C1(!), thus settling the problem of the existence
of subelliptic harmonic maps. See also Z.-R. Zhou, [39], P. Hájlasz and P. Strzelecki,
[22]. Subelliptic harmonic maps turn out to be local manifestations ofpseudoharmonic
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maps i.e. smooth critical points� : M ! N of the functional

E(�) =
1

2

Z
M

traceG� (��g)� ^ (d�)n

where M is a compact strictly pseudoconvex CR manifold of CR dimension n and �
is a contact form onM, cf. E. Barletta et al., [3]. To simplify terminology these are
referred to as subelliptic harmonic maps, as well.

We end Appendix A with a remark on the unique continuation principle for har-
monic maps, due to J.H. Sampson, [33], that two harmonic mapscoinciding on an open
subset must coincide everywhere. We conjecture that given two subelliptic harmonic
maps�,  : M ! N, from a strictly pseudoconvex CR manifoldM into a Riemannian
manifold N, if there is a nonempty open subsetA � M such that�(x) =  (x) for any
x 2 A then�(x) =  (x) for any x 2 M. The proof of J.H. Sampson’s result (cf.op. cit.)
relies on a result of N. Aronszajn, [1], that solutions to an elliptic inequality

(29) jAu(x)j2 � M

(
nX

i =1

���� �u�xi
(x)

����
2

+ ju(x)j2
)

in a domain� � Rn vanish identically provided they have a zerox0 2 � of infinite
order in the 1-mean. Let� � Rn be a domain andA an elliptic operator of the form

Au =
1p
a

��xi

�p
aai j �u�x j

�
,

with a = det[ai j ] and [ai j ] = [ai j ]�1. Here ai j 2 C2,1(�) i.e. the coefficientsai j are
of class C2 with second derivatives Lipschitzian, and [ai j (x)] is positive definite at
each x 2 �. Let r (x) be the geodesic distance from a pointx0 2 � associated to
the Riemannian metricg = ai j dxi � dx j on �. A crucial ingredient in the proof of
N. Aronszajn’s result (cf. [1], p. 237) is to consider the conformally equivalent metric
g̃ = e�2�r 2

g and relate the new geodesic distance functionr̃ (x) to r (x). By classical
results in Riemannian geometry (cf. e.g. G. de Rham, [15], p.134) there is a continu-
ous function� : �! (0, +1) such that the exponential mapping expx0

: B(�(x0))! �
(associated tog) is a diffeomorphism ofB(�(x0)) onto its imageUx0. Here B(�) =fw 2 Tx0(�): kwk < �g, kwk2 = gx0(w,w). Let x 2 Ux0 and let
 : [0, 1]! Ux0 be the
unique geodesic ofg of initial conditions
 (0) = x0 and 
̇ (0) = v where expx0

v = x. If
 where a geodesic of̃g as well then

r̃ (x) =
Z 1

0
g̃
 (t)(
̇ (t), 
̇ (t))1=2 dt =

Z 1

0
e��r (
 (t))2kvk dt =

Z r (x)

0
e��� 2

d�
which is the identity (2.3) in [1], p. 237. Indeed it is claimed there thatg and g̃ have
the same geodesics issuing atx0. However the claim turns out to be false, as easily
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shown by the following simple example. Letn = 2 andai j = Æi j the Euclidean metric.

Let us consider the conformally equivalent metricãi j = e�(x2+y2)Æi j . The equations of
geodesics of the new metric are

(30)
d2z

dt2
� z(t)

�
dz

dt

�2

= 0

wherez = x + iy 2 C and z(t) = � t is a solution to (30) if and only if� = 0. In general
we may show

Theorem 5. Let 
 : [0, 1]! Ux0 be a geodesic of g issuing at x0. Then
 is a

geodesic ofg̃ = e�2�r 2
g if and only if 
 is constant.

Proof. That isg and g̃ have no common geodesics issuing atx0 except for points.
To prove Theorem 5 let (x1, : : : , xn) be the Cartesian coordinates on� and yi : T(�)!
R the induced fibre coordinates i.e.v = yi (v)(�=�xi )x0 for any v 2 Tx0(�). The geodesic
distance fromx0 to x 2 Ux0 is given by

r (x) = (ai j (x0)yi (v)y j (v))1=2, v = exp�1
x0

(x).

Let ' = (u1, : : : , un) : Ux0 ! Rn be normal coordinates atx0 i.e. '(x) = yi (exp�1
x0

(x))ei

where fe1, : : : , eng is the canonical linear basis inRn. Then the local expression ofr
with respect to' is (r Æ '�1)(� ) = (gi j (x0)� i � j )1=2 for any � 2 '(Ux0). The Christoffel
symbols ofg and g̃ are related by

0̃i
jk = 0i

jk � 2�r (Æi
j rk + Æi

kr j � g jkr i )

wherer i = �r =�ui and r i = gi j r j . If 
 (t) is a geodesic ofg of initial conditions (x0, v)
then 
 i (t) = yi (v)t in normal coordinates. Thenr i (
 (t)) = kvk�1ai j (x0)y j (v) so that

d2
 i

dt2
+ 0̃i

jk(
 (t))
d
 j

dt

d
 k

dt
= �2�r (
 (t))

�
2

d
 i

dt
r j (
 (t))

d
 j

dt
� k
̇ (t)k2r i (
 (t))

�
= �2�r (
 (t))kvky j (v)f2Æi

j � gik(
 (t))a jk(x0)g
wheregi j = g(�i , � j ) and �i = �=�ui . Let us assume that
 is a geodesic of̃g as well.
Then y j (v)f2Æi

j �gik(
 (t))a jk(x0)g = 0 and contraction withgi l (
 (t))yl (v) giveskvk = 0.

Appendix B. A theorem of E. Barletta

The scope of this appendix is to restate a result by E. Barletta, [5], and add a few
elementary consequences.
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Theorem 6. Let M be a connected strictly pseudoconvex CR manifold, of CR
dimension n, endowed with a contact form� such that the Levi form G� is positive
definite. Let N be a�-dimensional Riemannian manifold. i) Any pseudoharmonic mor-
phism is a subelliptic harmonic map and there is a C0 function6 �: M! [0, +1) such
that �2 is C1 and

(31) G� (rH�i , rH� j )x = �(x)2Æi j , 1� i , j � �,

for any x2 M and any local system of normal coordinates(V , yi ) on N at x (here�i = yi Æ �). ii) Viceversa, any subelliptic harmonic map� : M ! N satisfying(31)
is a pseudoharmonic morphism. iii) As a consequence of(31) if � > 2n then there
are no nonconstant pseudoharmonic morphisms from M into N while if � � 2n then
for any x 2 M such that�(x) 6= 0 there is an open neighborhood U� M such that� : U ! N is a submersion. iv) For any pseudoharmonic morphism� : M ! N and
any f 2 C2(N)

(32) 1b( f Æ �) = �2(1N f ) Æ �
where1N is the Laplace-Beltrami operator on N.

We take the opportunity to correct a missprint7 in [5]. Also the fact that the con-
verse holds (cf. the second statement in Theorem 6 above) is not emphasized (in The-
orem 1 of [5], p. 36). We may state

Lemma 4. Let � : M ! N be a smooth map and(V , yi ) a local coordinate sys-
tem on N such that��1(V) 6= ;. Then

(33)

1b(v Æ �) = (vi Æ �)

(
1b�i +

X
a

(0i
jk Æ �)Xa(� j )Xa(�k)

)

+
X

a

(vi , j Æ �)Xa(�i )Xa(� j )

for any C2 function v : V ! R and any local orthonormal(G� (Xa, Xb) = Æab) framefXa: 1� a � 2ng of H(M) on ��1(V). Here 0i
jk are the local coefficients of the Levi-

Civita connection of N. Also vi = �v=�yi, vi , j = vi j � 0k
i j vk and vi j = �2v=�yi �y j.

Lemma 5. Let Ci , Ci j 2 R, 1� i , j � �, such that Ci j = C j i and
P�

i =1 Ci i = 0.
Let y0 2 N and let (V , yi ) be a local system of normal coordinates on N at y0 such

6In the notations of [5], p. 36 and p. 46, the�-dilation of � is
p�.

7In [5], p. 36, the dimension� is compared to the CR dimensionn rather than the rank2n of the
Levi distribution.
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that yi (y0) = 0. Then there is a harmonic functionv : V ! R such that

vi (y0) = Ci , vi j (y0) = Ci j , 1� i , j � �.

The proof of Lemma 4 is a straightforward calculation. Lemma5 is due to T. Ishi-
hara, [25]. Let us prove Theorem 6. Leti0 2 f1, : : : , �g be a fixed index. Let us fix a
point x0 2 M, choose a normal coordinate system onN at y0 = �(x0) and the constants
Ci = Æi i 0 and Ci j = 0, and apply Lemma 5 to produce a harmonic functionv : V ! R

such thatvi (y0) = Æi i 0 andvi j (y0) = 0. As the Levi-Civita connection is torsion free one
has0i

jk(x0) = 0 hence (31) in Lemma 4 together with1b(v Æ �)x0 = 0 gives

 
1b�i0 +

X
a

(0i0
jk Æ �)Xa(� j )Xa(�k)

!
x0

= 0

i.e. � is a subelliptic harmonic map. To prove (31) we need the following

Lemma 6. Let us consider the C1 functions Xi j : V ! R given by Xi j =P2n
a=1 Xa(�i )Xa(� j ) for 1� i , j � �. Then

(34) Xi j (x0) = X11(x0)Æi j .

Moreover there is a C0 function � : M ! [0, +1) such that�2jV = X11.

The function � furnished by Lemma 6 is called the�-dilation of the pseudo-
harmopnic morphism�.

Proof of Lemma 6. Let us choose the constantsCi j 2 R such thatCi j = C j i andP
i Ci i = 0 and apply Lemma 5 to produce a harmonic functionv : V ! R such thatvi (y0) = 0 andvi j (y0) = Ci j . Then (by (33))

X
a

Ci j Xa(�i )x0 Xa(� j )x0 = 0

which may be written as

(35)
X
i 6= j

Ci j Xi j (x0) +
X

i

Ci i fXi i (x0)� X11(x0)g = 0.

Let i0 2 f2, : : : , �g be a fixed index and choose the constantsCi j 2 R as

i 6= j ) Ci j = 0, Ci i =

8<
:

1, i = i0,�1, i = 1,
0, otherwise.
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Then (by (35))

Xi0i0(x0)� X11(x0) = 0

i.e. X11(x0) = � � � = X��(x0) and (35) may be written

X
i 6= j

Ci j Xi j (x0) = 0.

At this point we fix two indicesi0, j0 2 f1, : : : , �g, i0 6= j0, and choose the constants

Ci j =

�
1, i = i0 and j = j0,
0, otherwise,

so that to obtainXi0 j0(x0) = 0. Summing up, we proved thatXi j (x0) = X11(x0)Æi j . Next
let us set�2

V = X11 =
P

a Xa(�1)2. Then �V 2 C0(V) and �2
V 2 C1(V). Contraction

of i and j in (34) leads to

��V =
X
a,i

Xa(�i )2.

If (V 0, y0i ) is another normal coordinate system centered aty0 = �(x0) then the local
coordinate transformation is an orthogonal transformation

y0i = ai
j y

j , 1� i � �, ([ai
j ] 2 O(�))

hence
P

a Xa,i (�0i )2 =
P

a,i Xa(�i )2 on V\V 0 i.e. the functions�V glue up to a (global-
ly defined) continuous function� : M ! [0, +1) such that�jV = �V . Lemma 6 is
proved.

Clearly (34) may be written as (31). Letx0 2 M be an arbitrary point and let (V , yi )
be a normal coordinate neighborhood onN, centered aty0 = �(x0). Let fXa: 1� a� 2ng
be a local orthonormal framme ofH (M) on ��1(V). Let us consider the vectors

� i = (X1(�i )x0, : : : , X2n(�i )x0) 2 R2n, 1� i � �.

Then (by Lemma 6)

� i � � j = �(x0)2Æi j

where the dot denotes the Euclidean inner product onR2n i.e. the vectors� i , 1� i ��, are mutually orthogonal. To complete the proof of Theorem 6let us assume that� > 2n. It follows that � i0 = 0 for somei0 2 f1, : : : , �g hence�(x0) = 0. This yields
(by (31)) (rH�i )(x0) = 0 and in particular each�i is a real valued CR function on��1(V) hence�i = constant (asM is nondegenerate).
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Let us assume that� � 2n and let x0 2 M such that�(x0) 6= 0. Then the vectorsf� i : 1� i � �g are linearly independent hence rank((�1)t , : : : , (� �)t ) = � and in particular
rank(dx0�) = � i.e. � is a submersion on some neighborhood ofx0.

Let � : M ! N be a a subelliptic harmonic map (a pseudoharmonic map, accord-
ing to the terminology in [3]) satisfying (31). Then (by (33))

1b(v Æ �)x0 =
X

a

vi j (y0)Xa(�i )x0 Xa(� j )x0 = �(x0)2
X

i

vi i (y0)

for any v 2 C2(V). Also 1Nv = hi j (vi j � 0k
i j vk) (where hi j are the local coefficients

of the metric tensor onN) hence
P

i vi i (y0) = (1Nv)(y0). This proves (32). Finally ifv : V ! R is a harmonic function then1b(v Æ �)x0 = 0 i.e.� is a subelliptic harmonic
morphism.
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