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Abstract
We study a one-dimensional fluid dynamical model of semicetats. Our goal
in this paper is to prove the uniqueness of stationary swoisti

1. Introduction

The present paper is concerned with the uniqueness of riagicsolutions to the
boundary value problem for a one-dimensional fluid dynahmuadel of semiconductors.
The motion of electrons in semiconductors is governed bysilstem of equations

IOt+jX:0!

2
(1.2) jt+<%+p(p)) = pd =TI, (%0 €0, 1)x [0, 00),
¢xx:,0_D.

wherep, j and¢ are the electron density, the current density and the elegioten-
tial respectively. The electron velocity is defined as j/p. The pressurep(p) is a

function of the electron density with the form p(p) = p?”/y, wherey is a constant
satisfyingy > 1. A constantr is the relaxation time. For simplicity, we assume 1.

The doping profileD is a given function of the spatial variablee © := [0, 1] and
satisfies

(1.2) D € C(), minD(x) > 0.

In the present paper, for the time-dependent system (1.4)shall investigate sta-
tionary solutions £(x), j(x), ¢(x)) satisfy the system of equations

jx =0,
2

(1.3) <JT'°(p’> = pba— ], xe(0,1)
(bxx:p_Dx
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and the boundary condition
(1.4) p)=pm >0, p(1)=p >0,
(1.5) ¢(0)=0, ¢(1)=¢ >0.

We consider the classical solutions in the region where thiesa@nic condition
(i.e. the elliptic condition)

(1.6) i P'(p) —u?) > 0,

and the positivity of the density

1.7) Xél(’(])]fl)p(x) >0

hold.

Multiply the equation (1.3) by 1/p, and then differentiate the resultant equation
with respect tox. Since the solutions satisfy the elliptic condition (1.@pplying the
maximum principle, we obtain

(1.8) Cn=<p=Cwm,
where

Cm = min{m, pr inf D(X)}, Cw = maX{m, Or s squD(X)}-
Xe

On the other hand, we deduce from (3.3)

j? i
1 = +h =y — =
1.9 (32 +10)) =01,
whereh(p) := p*~1/(y —1). Then, from (1.4)—(1.5), we obtain
1
(1.10) (%—%>j2+2/ %-j—ZCbzo,
e o P

whereCy, := ¢ + h() — h(pr). This equation yields

T { /OlgiJ( [(&) (L _>}

Now, we survey the related results for (1.1). This model wa®duced by Blgtekjeer
[1]. It is important for engineering to study the bounded @imwith the Dirichlet bound-
ary condition (1.4)—(1.5) (see [4] and [5]). Moreover, calesing the application of this
model to engineering, it suffices to consider the case wherep, andy = 1.
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For the boundary value problem (1.3)—(1.5), Degond and Meidto [2] discussed
the uniqueness of stationary solutions for sufficienthgéar. Subsequently, Nishibata
and Suzuki [3] showed the following:

Theorem 1.1 (Nishibata-Suzuki). We assume that

-2
(112) (Coy* > 4CE[Cit+ i + 20 2 — )]

C+2Co(07 2 —p D) =0 if o <py.

Then the boundary value problet.3)<1.5) has a solution
Moreover we assume that

(1.13) (Cm)"** > (Iu)? +2Cw(Cwm + ¢r) Iu,
where 3y := Cu(Cl, ™ 072 — p21/2 +1Co)).

Then there exists at most one classical solution to the bamynsgalue problem
(1.3)H1.5) satisfying(1.6) and (1.7).

Comparing (1.13) with (1.12), (1.13) is the stronger cadoditthan (1.12) in the
case wherey, > p;,. The purpose of the present paper is to prove the uniquemeks u

the weaker condition in the case whese> p,. Our main theorem is as follows.

Theorem 1.2. We assume thapt, > p;. Then there exists at most one classical
solution to the boundary value problefh.3)-(1.5) satisfying(1.6), (1.7),

s ersaer|- [ ([ w33

and

(1.15) (Cm)™ > j2

REMARK 1. We mention the conditions (1.14) and (1.15) in the aboe®rm.

The quadratic equation (1.10) ¢fhas two solutions. Consequently the uniqueness
does not hold. To overcome this problem, we assume (1.14mKd.14) and (1.15),
the quadratic equation (1.10) has at most one solution

o e[ (2=

in this case. If|o — pr| is small enough, (1.14) holds. By the way, the other solution
of (1.10) tends to-oo, as|o — pr| — O.
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On the other hand, (1.15) is weaker than (1.13). In additionyiew of (1.8)
and (1.16), (1.15) is weaker than (1.12), which is necestamrove the existence of
solution.

2. Proof of Theorem 1.2

Proof. Before proving Theorem 1.2, we consider the curramsidy j. From
(1.3), j is a constant. Moreover, singg > pr, in view of (1.16), we findj > 0.

Now let (o1, j1, ¢1) and (o2, j2, ¢2) be classical solutions to the boundary value
problem (1.3)—(1.5) satisfying (1.6), (1.7) and (1.15).sTproof consists of four steps.
In the first three steps, we provie = j, by contradiction. To do this, we assume that
j2 > j1 without loss of generality.

STeP 1. We first prove the following inequality

Coy [ {12\ 1o
2.1) - 1{<J—j> —1}>m{(12)2—(m2}.

We setr = j,/j1 and consider

_ Gt (2 (1
f(r)= ﬁ(r -1+ 2C)? <r_2 — 1).

Then we find f (1) = 0 and deduce from (1.8) and (1.1%5)(r) > 0 (r > 1). Since our
assumption means that> 1, we conclude (2.1).
STep 2. From (1.9) and the boundary conditions, we have

AT i — (21 1 _ .
2.2) /()(i—ﬁ) dxzw<?—p> = ie{(j2)? - (j0)?)-
| r

Then there exists an intervdl= [x_, x,] C [0, 1] satisfying the following condi-
tions. The proof is discussed in Appendix A.
(C1)

2 _ I -
@3) /l(ﬁz p1> =0

(C2) On the intervall, p, > p; holds;
(C3) At x_ and x4, py = p1 holds.
We denote the value; (= p2) at x_ and x; by p_ and p. respectively. On the other
hand, from (C3),j2/p02 — j1/p1 > 0 holds atx_ and x.. Therefore, from (C1), there
exists a set of points oh such thatj,/p, = j1/p1 at each point in the set. Lét be
the first point on the left (i.e. the smallest point) in the. set

Finally, we observe the following.
(P1) From (1.3) and (C2), ¢, — ¢1) is convex onl.
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(P2) From the choice of the poirit, we have

5”( . .
(2.4) / (E _ £) dx = 0.
x_ \ P2 P1

Step 3. We integrate (1.9) fromx_ to x. Then, from (P1),

(i2)? (i1)? (2 I
(2 10 )00 = (e ho0 oo [ (52 = 2 ) o

is a convex function ok. Therefor we obtain

G2 =G (2 = (1) “(l2 i1
@ e (Pz pl>dx

. V_l % . .
() o [(G-2) o
J1 x_ \P2  p1
wheret (0 < t < 1) is a constant satisfying = (1— 7)x_ + tx; and g is the valuep;
at X.
Then, from (2.3) and (2.4), we have

(22— G, (22 =GP _ (i) ]
9 a-olgt e TR L {(E) - afne),

However, from (1.8), this inequality contradicts (2.1).€eféfore we concludg; = j,.

STEP 4. We consider the case wheje= j; = j,. The following argument is the
almost same as Lemma 2.3 in [3].

We show 61 — ¢2)x < 0 by contradiction. We assume thas; (— ¢2)x attains the
positive maximum at a pointy on |.

If 0 <xm <1, it holds that ¢1—¢2)x(Xm) > 0 and (1 —02)(Xm) = (¢1—$2)xx(Xm) =
0. Then, from (1.3), the following inequality holds aky.

j 2
(p1)?
However, since g1 — 02)x(Xm) = (01 — ¢2)xxx(Xm) < 0, this is a contradiction.

If xm =0, since p; — p2)(0) = 0, the similar observation yields (2.6). It follows
from (2.6) that ¢1 — ¢2)xxx(0) = (01 — p2)x(0) > 0. From the continuity of solutions,
there existss > 0 such that ¢; — ¢2)xx(X) = (o1 — p2)(X) > 0 for 0 < X < §. Then
(p1— D2)x(X) > (1 — 92)x(0) for 0 < x < §, which also contradicts the assumption that
(p1 — d2)x(X) attains the positive maximum &k, = 0. We can handle the case where
Xm = 1 in the similar manner.

Consequently, we obtairp{ — ¢2)x < 0. Since $1 — ¢2)(0) = (1 — ¢2)(1) =0, we
have ¢, = ¢,. Moreover it follows from (1.3) that p; = po. This completes the proof.
0

(2.6) (p’(pl) - )(,01 — p2)x = p1(p1 — $2)x > 0.
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Appendix A. Existence of the interval |

In this section, we prove the existence of the intetval [0, 1] satisfying (C1)—(C3).

Proof. At 0 and 1, sincep, = p;, we first find j2/p2 — ji/p1 > 0. Then, from
k <0 and (2.2), there exists a set of points such th#p, = j1/p1 holds at each point
of the set. Let this set b& }ea. At Xy, 02 = (j2/j1)p1 > p1 holds.

Next, for each poink;, we setx; _ =inf{a; p> > p1, X € [a,X,]}, X+ =SuUpga; po >
1, X € [X;, a]}. Then, in view of the boundary condition, we find<Ox; , x;+ < 1.
Moreover, from the continuity ofo, and p;, p2 = p; holds atx;_ and x;+. Then,
for x;,_ and x;,+, we setl; := (X,_, X;+). We notice thatl, satisfies the following. If
Xv €y, =1y If X € 1;, 1,N1y =@. We then define an equivalence relation- A’
by I, = 1,,. ThenA/~ is a countable set. We denote the set of open intervals with
the index setA/~ by Iy, k=1,2,....

Now, if there exists & such thatflk(jg/pz — ji/p1) dx < 0, I« is the desired
interval. Therefore, for ank, we assume thaflk(jz/pz — j1i/p1) dx > 0 holds and
shall deduce a contradiction.

Set > 2y [, (i2/p2 — i1/p1) dx = 8. From our assumption, we findl > 0. Then
there exists ag such thatd 2, [, (i2/p2 = j1/p1) dx > §/2.

SetJ = [0, 1] — U k. We then havef;(j2/p2 — j1/p1) dX < —8/2 +k{(j2)* —
(in% < =8/2.

Moreover we setl = g2, Ik. Since Y 42 .1 [, (i2/p2 = j1/p1) dx < §/2, there
exists a pointx, on [0, 1]— | such thatj,/p2 < j1/p1 holds atx,. Notice thatp, > p;
holds atx,.

From the constructionJ is a finite set which consists of points and closed in-
tervals. Moreover,p, = p; holds at the points and the extremal points of the closed
intervals. Therefore, is the interior point of a closed interval,.

On the other hand, we sef,_ = inf{a; p2 > p1, X € [a, X,]}, X+ = SUPQA; P2 >
p1, X € [X, a]}. The pointsx,_ and x,.+ satisfy the following:

(Q1) Xiey Xur € s
(Q2) At x,_ and X.+, p2 = p1 holds. Therefore, from, > j1, j2/p2 > j1/p1 holds at
Xe aNd Xy

Since jo/p2 < j1/p1 at x,, from (Q2), there exists a point o[, X,+] such that
j2/p2 = j1/p1 at the point. This means that, € (X,_, X.+) C |. However this contra-
dicts the fact thak, € [0, 1] —I. O
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