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Abstract
We study a one-dimensional fluid dynamical model of semiconductors. Our goal

in this paper is to prove the uniqueness of stationary solutions.

1. Introduction

The present paper is concerned with the uniqueness of stationary solutions to the
boundary value problem for a one-dimensional fluid dynamical model of semiconductors.
The motion of electrons in semiconductors is governed by thesystem of equations

(1.1)

8>>><
>>>:
�t + jx = 0,

jt +

�
j 2

� + p(�)

�
x

= ��x � 1� j , (x, t) 2 (0, 1)� [0,1),

�xx = � � D,

where�, j and � are the electron density, the current density and the electron poten-
tial respectively. The electron velocity is defined asu = j =�. The pressurep(�) is a
function of the electron density� with the form p(�) = � = , where is a constant
satisfying � 1. A constant� is the relaxation time. For simplicity, we assume� = 1.
The doping profileD is a given function of the spatial variablex 2 � := [0, 1] and
satisfies

(1.2) D 2 C(�), min
x2� D(x) > 0.

In the present paper, for the time-dependent system (1.1), we shall investigate sta-
tionary solutions (�(x), j (x), �(x)) satisfy the system of equations

(1.3)

8>>><
>>>:

jx = 0,�
j 2

� + p(�)

�
x

= ��x � j , x 2 (0, 1),

�xx = � � D
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932 N. TSUGE

and the boundary condition

�(0) = �l > 0, �(1) = �r > 0,(1.4)

�(0) = 0, �(1) = �r > 0.(1.5)

We consider the classical solutions in the region where the subsonic condition
(i.e. the elliptic condition)

inf
x2(0,1)

(p0(�)� u2) > 0,(1.6)

and the positivity of the density

inf
x2(0,1)

�(x) > 0(1.7)

hold.
Multiply the equation (1.3)2 by 1=�, and then differentiate the resultant equation

with respect tox. Since the solutions satisfy the elliptic condition (1.6),applying the
maximum principle, we obtain

Cm � � � CM ,(1.8)

where

Cm := min

��l , �r , inf
x2� D(x)

�
, CM := max

��l , �r , sup
x2� D(x)

�
.

On the other hand, we deduce from (1.3)2�
j 2

2�2
+ h(�)

�
x

= �x � j� ,(1.9)

whereh(�) := ��1=( � 1). Then, from (1.4)–(1.5), we obtain�
1�2
r

� 1�2
l

�
j 2 + 2

Z 1

0

dx� � j � 2Cb = 0,(1.10)

whereCb := �r + h(�l )� h(�r ). This equation yields

j = 2Cb

(Z 1

0

dx� �
s�Z 1

0

dx�
�2

+ 2Cb

�
1�2
r

� 1�2
l

�)�1

.(1.11)

Now, we survey the related results for (1.1). This model was introduced by Bløtekjær
[1]. It is important for engineering to study the bounded domain with the Dirichlet bound-
ary condition (1.4)–(1.5) (see [4] and [5]). Moreover, considering the application of this
model to engineering, it suffices to consider the case where�r = �l and = 1.
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For the boundary value problem (1.3)–(1.5), Degond and Markowich [2] discussed
the uniqueness of stationary solutions for sufficiently large � . Subsequently, Nishibata
and Suzuki [3] showed the following:

Theorem 1.1 (Nishibata-Suzuki). We assume that

(Cm)+1 > 4C2
b

n
C�1

M +
q

C�2
M + 2Cb(��2

r � ��2
l )
o�2

,(1.12)

C�2
M + 2Cb(��2

r � ��2
l ) � 0 if �l < �r .

Then the boundary value problem(1.3)–(1.5) has a solution.
Moreover we assume that

(Cm)+1 > (JM )2 + 2CM (CM + �r )JM ,(1.13)

where JM := CM (C+1
M j��2

r � ��2
l j=2 + jCbj).

Then there exists at most one classical solution to the boundary value problem
(1.3)–(1.5) satisfying(1.6) and (1.7).

Comparing (1.13) with (1.12), (1.13) is the stronger condition than (1.12) in the
case where�l � �r . The purpose of the present paper is to prove the uniqueness under
the weaker condition in the case where�l � �r . Our main theorem is as follows.

Theorem 1.2. We assume that�l � �r . Then there exists at most one classical
solution to the boundary value problem(1.3)–(1.5) satisfying(1.6), (1.7),

(Cm)+1 � 4(Cb)2

(
� Z 1

0

dx� +

s�Z 1

0

dx�
�2

+ 2Cb

�
1�2
r

� 1�2
l

�)�2

(1.14)

and

(Cm)+1 > j 2.(1.15)

REMARK 1. We mention the conditions (1.14) and (1.15) in the above theorem.
The quadratic equation (1.10) ofj has two solutions. Consequently the uniqueness

does not hold. To overcome this problem, we assume (1.14). From (1.14) and (1.15),
the quadratic equation (1.10) has at most one solution

j = 2Cb

(Z 1

0

dx� +

s�Z 1

0

dx�
�2

+ 2Cb

�
1�2
r

� 1�2
l

�)�1

(1.16)

in this case. Ifj�l � �r j is small enough, (1.14) holds. By the way, the other solution
of (1.10) tends to�1, as j�l � �r j ! 0.
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On the other hand, (1.15) is weaker than (1.13). In addition,in view of (1.8)
and (1.16), (1.15) is weaker than (1.12), which is necessaryto prove the existence of
solution.

2. Proof of Theorem 1.2

Proof. Before proving Theorem 1.2, we consider the current density j . From
(1.3)1, j is a constant. Moreover, since�l � �r , in view of (1.16), we find j > 0.

Now let (�1, j1, �1) and (�2, j2, �2) be classical solutions to the boundary value
problem (1.3)–(1.5) satisfying (1.6), (1.7) and (1.15). This proof consists of four steps.
In the first three steps, we provej1 = j2 by contradiction. To do this, we assume that
j2 > j1 without loss of generality.

STEP 1. We first prove the following inequality

(Cm)�1

 � 1

(�
j2
j1

��1� 1

)
> 1

2(Cm)2
f( j2)2� ( j1)2g.(2.1)

We setr = j2= j1 and consider

f (r ) =
(Cm)�1

 � 1
(r �1� 1) +

( j2)2

2(Cm)2

�
1

r 2
� 1

�
.

Then we find f (1) = 0 and deduce from (1.8) and (1.15)f 0(r ) > 0 (r > 1). Since our
assumption means thatr > 1, we conclude (2.1).

STEP 2. From (1.9) and the boundary conditions, we haveZ 1

0

�
j2�2
� j1�1

�
dx =

( j2)2� ( j1)2

2

�
1�2
l

� 1�2
r

�
:= �f( j2)2� ( j1)2g.(2.2)

Then there exists an intervalI = [x�, x+] � [0, 1] satisfying the following condi-
tions. The proof is discussed in Appendix A.
(C1) Z

I

�
j2�2
� j1�1

�
dx � 0;(2.3)

(C2) On the intervalI , �2 � �1 holds;
(C3) At x� and x+, �2 = �1 holds.
We denote the value�1 (= �2) at x� and x+ by �� and �+ respectively. On the other
hand, from (C3), j2=�2 � j1=�1 > 0 holds atx� and x+. Therefore, from (C1), there
exists a set of points onI such that j2=�2 = j1=�1 at each point in the set. Let̃x be
the first point on the left (i.e. the smallest point) in the set.

Finally, we observe the following.
(P1) From (1.3)3 and (C2), (�2� �1) is convex onI .
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(P2) From the choice of the point̃x, we haveZ x̃

x�
�

j2�2
� j1�1

�
dx � 0.(2.4)

STEP 3. We integrate (1.9) fromx� to x. Then, from (P1),�
( j2)2

2(�2)2
+ h(�2)

�
(x)� � ( j1)2

2(�1)2
+ h(�1)

�
(x) +

Z x

x�
�

j2�2
� j1�1

�
dy

is a convex function ofx. Therefor we obtain

(1� � )
( j2)2� ( j1)2

2(��)2
+ � ( j2)2� ( j1)2

2(�+)2
+ � Z x+

x�
�

j2�2
� j1�1

�
dx

� �� j2
j1

��1� 1

�
h(�̃) +

Z x̃

x�
�

j2�2
� j1�1

�
dx,

where� (0< � < 1) is a constant satisfying̃x = (1� � )x� + �x+ and �̃ is the value�1

at x̃.
Then, from (2.3) and (2.4), we have

(1� � )
( j2)2� ( j1)2

2(��)2
+ � ( j2)2� ( j1)2

2(�+)2
� �� j2

j1

��1� 1

�
h(�̃).(2.5)

However, from (1.8), this inequality contradicts (2.1). Therefore we concludej1 = j2.
STEP 4. We consider the case wherej := j1 = j2. The following argument is the

almost same as Lemma 2.3 in [3].
We show (�1 � �2)x � 0 by contradiction. We assume that (�1 � �2)x attains the

positive maximum at a pointxM on I .
If 0 < xM < 1, it holds that (�1��2)x(xM )> 0 and (�1��2)(xM ) = (�1��2)xx(xM ) =

0. Then, from (1.3)2, the following inequality holds atxM .�
p0(�1)� j 2

(�1)2

�
(�1� �2)x = �1(�1� �2)x > 0.(2.6)

However, since (�1� �2)x(xM ) = (�1� �2)xxx(xM ) � 0, this is a contradiction.
If xM = 0, since (�1 � �2)(0) = 0, the similar observation yields (2.6). It follows

from (2.6) that (�1 � �2)xxx(0) = (�1 � �2)x(0) > 0. From the continuity of solutions,
there existsÆ > 0 such that (�1 � �2)xx(x) = (�1 � �2)(x) > 0 for 0< x < Æ. Then
(�1��2)x(x) > (�1��2)x(0) for 0< x < Æ, which also contradicts the assumption that
(�1 � �2)x(x) attains the positive maximum atxM = 0. We can handle the case where
xM = 1 in the similar manner.

Consequently, we obtain (�1� �2)x � 0. Since (�1� �2)(0) = (�1� �2)(1) = 0, we
have�1 � �2. Moreover it follows from (1.3)3 that �1 � �2. This completes the proof.
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Appendix A. Existence of the interval I

In this section, we prove the existence of the intervalI � [0, 1] satisfying (C1)–(C3).

Proof. At 0 and 1, since�2 = �1, we first find j2=�2 � j1=�1 > 0. Then, from� � 0 and (2.2), there exists a set of points such thatj2=�2 = j1=�1 holds at each point
of the set. Let this set befx�g�23. At x�, �2 = ( j2= j1)�1 > �1 holds.

Next, for each pointx�, we setx�� = inffa; �2 > �1, x 2 [a, x�]g, x�+ = supfa; �2 >�1, x 2 [x�, a]g. Then, in view of the boundary condition, we find 0� x��, x�+ � 1.
Moreover, from the continuity of�2 and �1, �2 = �1 holds at x�� and x�+. Then,
for x�� and x�+, we set I� := (x��, x�+). We notice thatI� satisfies the following. If
x�0 2 I�, I� = I�0 ; If x�0 =2 I�, I�\ I�0 = ;. We then define an equivalence relation� � �0
by I� = I�0 . Then3=� is a countable set. We denote the set of open intervals with
the index set3=� by Ik, k = 1, 2,: : : .

Now, if there exists ak such that
R

Ik
( j2=�2 � j1=�1) dx � 0, Ī k is the desired

interval. Therefore, for anyk, we assume that
R

Ik
( j2=�2 � j1=�1) dx > 0 holds and

shall deduce a contradiction.
Set

P1
k=1

R
Ik

( j2=�2 � j1=�1) dx = Æ. From our assumption, we findÆ > 0. Then

there exists an0 such that
Pn0

k=1

R
Ik

( j2=�2� j1=�1) dx > Æ=2.

Set J = [0, 1]�Sn0
k=1 Ik. We then have

R
J( j2=�2 � j1=�1) dx < �Æ=2 + �f( j2)2 �

( j1)2g � �Æ=2.
Moreover we setI =

S1
k=1 Ik. Since

P1
k=n0+1

R
Ik

( j2=�2 � j1=�1) dx < Æ=2, there
exists a pointx� on [0, 1]� I such that j2=�2 < j1=�1 holds atx�. Notice that�2 > �1

holds atx�.
From the construction,J is a finite set which consists of points and closed in-

tervals. Moreover,�2 = �1 holds at the points and the extremal points of the closed
intervals. Thereforex� is the interior point of a closed intervalJ�.

On the other hand, we setx�� = inffa; �2 > �1, x 2 [a, x�]g, x�+ = supfa; �2 >�1, x 2 [x�, a]g. The pointsx�� and x�+ satisfy the following:
(Q1) x��, x�+ 2 J�;
(Q2) At x�� and x�+, �2 = �1 holds. Therefore, fromj2 > j1, j2=�2 > j1=�1 holds at
x�� and x�+.

Since j2=�2 < j1=�1 at x�, from (Q2), there exists a point on [x��, x�+] such that
j2=�2 = j1=�1 at the point. This means thatx� 2 (x��, x�+) � I . However this contra-
dicts the fact thatx� 2 [0, 1]� I .
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