

Title	A note on pivotal measures in majorized experiments
Author(s)	Fujii, Junji
Citation	Osaka Journal of Mathematics. 1990, 27(3), p. 739-744
Version Type	VoR
URL	https://doi.org/10.18910/12324
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

A NOTE ON PIVOTAL MEASURES IN MAJORIZED EXPERIMENTS

JUNJI FUJII

(Received July 20, 1989)

1. Introduction

An *experiment* $\mathbf{E}=(X, \mathbf{A}, P)$, i.e. a triplet with a family P of probability measures on a measurable space (X, \mathbf{A}) , is said to be majorized by a measure μ equivalent to P (called a “*majorizing*” measure) if each $p \in P$ has a density $dp/d\mu$ with respect to μ . Let \mathbf{S}_0 be the σ -ring generated by all the \mathbf{E} -supports $S(p)=\{x \in X; (dp/d\mu)(x)>0\}$, $p \in P$. Then there exists a “*maximal decomposition*” \mathbf{F} such that $\mathbf{F} \subset \mathbf{S}_0[P]$ (see [4], Lemma 2). A maximal decomposition \mathbf{F} is defined as a covering of X of almost disjoint elements each of which is included by an \mathbf{E} -support $S(p^{(F)})$ of some $p^{(F)}$ in P . For each $F \in \mathbf{F}$, we define a dominated sub-experiment $\mathbf{E}(F)=(F, \mathbf{A} \cap F, P_F)$ by setting $\mathbf{A} \cap F=\{A \cap F; A \in \mathbf{A}\}$ and $P_F=\{p_F; p \in P, p(F)>0\}$, where $p_F(A \cap F)=p(A \cap F)/p(F)$. The σ -ring generated by $\{dp/d(p+q) \cdot I_{S(p)}; p, q \in P\}$ is called the σ -ring of *pairwise likelihood ratios* and denoted by \mathbf{S} . The σ -field \mathbf{D} generated by \mathbf{S} is known to be the smallest PSS (*pairwise sufficient with supports*) subfield, and is equal to \mathbf{S} and minimal sufficient when \mathbf{E} is dominated (see [3]). A majorizing measure m on \mathbf{A} is said to be *pivotal* for \mathbf{E} if it holds that for each subfield \mathbf{B} , \mathbf{B} is PSS if and only if each p has a \mathbf{B} -measurable version of the density dp/dm . A real valued function $f: X \rightarrow \mathbf{R}$ is said to be \mathbf{S} -measurable if for each Borel subset B of \mathbf{R} , $f^{-1}(B) \cap \{x \in X; f(x) \neq 0\} \in \mathbf{S}$.

The notion of pivotal measures was devised to obtain a minimal sufficient subfield by Halmos & Savage [6] and Bahadur [1] for the dominated experiment. Ramamoorthi & Yamada [9] generalized it to the majorized experiment. Recently Luschgy, Mussmann & Yamada [8] proved the following characterization theorem of pivotal measures by the method and in the terminology of vector lattices: Every pivotal measure is represented as the sum of a maximal orthogonal system in the minimal \mathbf{L} -space.

The *minimal \mathbf{L} -space* is the closed vector sublattice generated by P , and a *maximal orthogonal system* is a family of non-zero measures on \mathbf{A} such that any two distinct elements in the family are singular with each other and a measure which is singular with all the elements of the family is zero.

In the present note, we show that every pivotal measure in a majorized experiment is expressed as the sum of pivotal measures in the dominated sub-experiments $\mathbf{E}(F)$ for some maximal decomposition $\mathbf{F}(\subset \mathbf{S}_0[P])$ and that each pivotal measure on $\mathbf{E}(F)$ has a positive \mathbf{S} -measurable density with respect to a pivotal measure. Further, pointing out that the minimal \mathbf{L} -space coincides with the totality of the signed measures which have \mathbf{S} -measurable and integrable densities with respect to a pivotal measure, we show that the present result is a measure theoretical version of the above characterization theorem.

2. Pivotal measures

We consider the relation between a pivotal measure for \mathbf{E} and a family of pivotal measures for the dominated sub-experiments $\mathbf{E}(F)$.

Theorem 1. *Let $\mathbf{E}=(X, \mathbf{A}, P)$ be a majorized experiment. If $\mathbf{F}(\subset \mathbf{S}_0[P])$ is a maximal decomposition and a measure m_F on $\mathbf{A} \cap F$ is pivotal for each $F \in \mathbf{F}$, then $m(A) = \sum_{F \in \mathbf{F}} m_F(A \cap F)$ is pivotal for \mathbf{E} .*

Proof. It is enough to show that each $p \in P$ has an \mathbf{S} -measurable version of dp/dm . Fix $p \in P$. There exists a countable subfamily $\{F_n; n \geq 1\}$ of \mathbf{F} such that $S(p) \subset \bigcup_{n \geq 1} F_n[P]$ and $S(p) \cap F_n \neq \emptyset$ for all n . We may assume that $\{F_n; n \geq 1\}$ is a disjoint family. As each m_{F_n} is pivotal for $\mathbf{E}(F_n)$, there exists an $\mathbf{S} \cap F_n$ -measurable version g_n of dp_{F_n}/dm_{F_n} . For each $n \geq 1$, put $f_n(x) = p(F_n) \cdot g_n(x)$ if $x \in F_n$, and $=0$ if $x \in F_n^c$. As each F_n is in \mathbf{S}_0 , f_n is \mathbf{S} -measurable. It is immediate that $\sum_{n \geq 1} f_n$ is an \mathbf{S} -measurable version of dp/dm .

Theorem 2. *Let $\mathbf{E}=(X, \mathbf{A}, P)$ be a majorized experiment. A measure m on \mathbf{A} is pivotal for \mathbf{E} if and only if for each maximal decomposition $\mathbf{F}(\subset \mathbf{S}_0[P])$, there exists a family of pivotal measures $\{m_F; F \in \mathbf{F}\}$ for the sub-experiments $\mathbf{E}(F)$ such that $m(A) = \sum_{F \in \mathbf{F}} m_F(A \cap F)$.*

Proof. “If” part is Theorem 1 itself, and so we prove “only if” part. Let m be a pivotal measure for \mathbf{E} and take a maximal decomposition $\mathbf{F}(\subset \mathbf{S}_0[P])$. Fix $F \in \mathbf{F}$. We define a measure m_F on $\mathbf{E}(F)$ by $m_F(A \cap F) = m(A \cap F)$. It is clear that $m_F \equiv P_F$ and $m(A) = \sum_{F \in \mathbf{F}} m_F(A \cap F)$. Take $p \in P$ with $p(F) > 0$. Let f_p be an \mathbf{S} -measurable version of dp/dm . Then it is easily checked that $f_p \cdot I_F/p(F)$ is an \mathbf{S} -measurable version of dp_F/dm_F . This implies that m_F is a pivotal measure for $\mathbf{E}(F)$ for each $F \in \mathbf{F}$.

Next we consider pivotal measures on each dominated sub-experiment.

Let $\mathbf{F}(\subset \mathbf{S}_0[P])$ be a maximal decomposition and n a pivotal measure for \mathbf{E} . Each F is included by a support $S(p^{(F)})$, and so $p^{(F)} \equiv P$. Fix $F \in \mathbf{F}$. Then the restriction n_F of n to $\mathbf{A} \cap F$ is pivotal for $\mathbf{E}(F)$ as in the proof of Theorem 2. Let u be a pivotal measure for $\mathbf{E}(F)$. Notice that $du/dn_F = (dp_F^{(F)}/du)^{-1}$.

$(dp_F^{(F)}/dn_F)^{-1}[P_F]$ as $p_F^{(F)} \equiv n_F \equiv u$. Two densities in the right side have \mathbf{S} -measurable versions as u and n_F are pivotal. That is, $u(A \cap F) = \int_{F \cap F} f \, dn$ for some $\mathbf{S} \cap F$ -measurable function $f: F \rightarrow \mathbf{R}$, with $f > 0[P_F]$.

Conversely a measure u of this form is pivotal for $\mathbf{E}(F)$. Because, n_F is pivotal and $dp_F/dn_F = (dp_F/dn_F)/f[P_F]$ for all $p_F \in P_F$.

Thus we have proved the following

Theorem 3. *Let $\mathbf{E} = (X, \mathbf{A}, P)$ be a majorized experiment and n a pivotal measure for \mathbf{E} . Then, a measure m on \mathbf{A} is pivotal for \mathbf{E} if and only if it is expressed as $m(A) = \sum_{F \in \mathbf{F}} \int_{A \cap F} f_F \, dn$ for some maximal decomposition $\mathbf{F} (\subset \mathbf{S}_0[P])$ and some family $\{f_F: F \in \mathbf{F}\}$ of \mathbf{S} -measurable functions such that $f_F > 0[P]$ on F and $f_F = 0[P]$ on F^c .*

In case \mathbf{E} is weakly dominated, we have the following simpler expression.

Corollary. *Let $\mathbf{E} = (X, \mathbf{A}, P)$ be a weakly dominated experiment and n a pivotal measure for \mathbf{E} . A measure m on \mathbf{A} is pivotal for \mathbf{E} if and only if $m(A) = \int_A f \, dn$ for some \mathbf{B} -measurable function f with $f > 0[P]$, where \mathbf{B} is a minimal sufficient subfield.*

Proof. Let \mathbf{B} be a minimal sufficient subfield. It follows from Theorem 1.1 in [7] that $(X, \mathbf{B}, P|\mathbf{B})$ is weakly dominated. Hence for the family of \mathbf{S} -measurable functions $\{f_F: F \in \mathbf{F}\}$ in Theorem 3, there exists a \mathbf{B} -measurable function f such that $f \cdot I_F = f_F[P]$ for all $F \in \mathbf{F}$.

REMARK. In Theorem 3, “if” part remains true with “any” maximal decomposition and “any” family $\{f_F: F \in \mathbf{F}\}$. “Only if” part also holds true with “any” maximal decomposition and some family $\{f_F: F \in \mathbf{F}\}$. Gooßen [5] attained to a similar characterization by making use of a pivotal measure $\sum_{F \in \mathbf{F}} p^{(F)}(A \cap F)$, which was obtained by Diepenbrock.

In the following Examples 1 to 4, we observe that the totality of pivotal measures is fairly large.

EXAMPLE 1 (N -th product normal family with a location parameter). $X = \mathbf{R}^N$, \mathbf{A} = the Borel σ -field on X . $P = \{p_\xi; \xi \in \mathbf{R}\}$. $(dp_\xi/d\mu)(x) = (2\pi)^{-N/2} \exp \{(-1/2) \sum_{i=1}^N (x_i - \xi)^2\}$, where μ is the Lebesgue measure on X . The statistic $t(x) = \sum_{i=1}^N x_i$ is minimal sufficient and the σ -ring \mathbf{S} is a minimal sufficient subfield, which is induced by t . Each p_ξ is pivotal for \mathbf{E} as $p_\xi \equiv P$ and \mathbf{E} is dominated. According to Corollary, a measure m on \mathbf{A} is pivotal for \mathbf{E} if and only if $m(A) = \int_A f \, dp_0$ for some \mathbf{S} -measurable function f with $f > 0[P]$. Thus the totality of pivotal measures coincides with all the measures whose density with respect to μ are of the form $\exp \{(-1/2) \cdot \sum_{i=1}^N x_i^2 \cdot f(\sum_{i=1}^N x_i)\}$ for some

$f > 0[\mu]$. In case $N=1$, all the measures which are equivalent to μ are pivotal, and in particular so is μ . In case $N \geq 2$, μ is not pivotal.

EXAMPLE 2. $X=\mathbf{R}^3$, \mathbf{F} =all the planes parallel to a coordinate plane. $\mathbf{A}=\{A \subset X; A \cap F \in \mathbf{B}_{\mathbf{R}^2} \text{ for all } F \in \mathbf{F}\}$, where $\mathbf{B}_{\mathbf{R}^2}$ denotes the Borel σ -field on \mathbf{R}^2 . On each plane $F \in \mathbf{F}$, consider the same normal family as in Example 1 and extend each element of the family to \mathbf{A} in an obvious way that it vanishes outside F . P =the union of such families. Define a measure μ by $\mu(A)=\sum_{F \in \mathbf{F}} \nu(A \cap F)$, where ν is the Lebesgue measure on \mathbf{R}^2 .

The experiment $\mathbf{E}=(X, \mathbf{A}, P)$ is majorized by μ , and \mathbf{F} is a maximal decomposition such that $\mathbf{F} \subset \mathbf{S}_0[P]$. In each sub-experiment, the totality of pivotal measures is described in Example 1. By Theorem 2, a pivotal measure on \mathbf{E} is expressed as the sum of pivotal measures on $\mathbf{E}(F)$. The measure μ is not pivotal for \mathbf{E} as it is pointed out in Example 1 that ν is not pivotal on $\mathbf{E}(F)$.

EXAMPLE 3. $X=\mathbf{R}^2$, \mathbf{F} =all horizontal and vertical lines in X . $\mathbf{A}=\{A \subset X; A \cap F \in \mathbf{B}_{\mathbf{R}} \text{ for all } F \in \mathbf{F}\}$, where $\mathbf{B}_{\mathbf{R}}$ denotes the Borel σ -field on \mathbf{R} . On each $F \in \mathbf{F}$, consider the same normal family as in Example 1 and extend each element of the family to \mathbf{A} as in Example 2. P =the union of such families. Define a measure μ by $\mu(A)=\sum_{F \in \mathbf{F}} \nu(A \cap F)$, where ν is the Lebesgue measure on \mathbf{R} .

The experiment $\mathbf{E}=(X, \mathbf{A}, P)$ is majorized by μ , and \mathbf{F} is a maximal decomposition such that $\mathbf{F} \subset \mathbf{S}_0[P]$. As in Example 1, every measure on F which is equivalent to ν is pivotal for $\mathbf{E}(F)$. By Theorem 2, all the measures which are the sums of those measures are pivotal. In particular, μ is pivotal unlike in Example 2.

EXAMPLE 4. $X=\mathbf{R}_+^N$, \mathbf{A} =the Borel σ -field of X . For each $\theta > 0$, p_θ denotes the N -th product probability measure of the uniform distribution on $(0, \theta]$, i.e. $(dp_\theta/d\mu)(x)=\theta^{-N} \cdot \prod_{i=1}^N I_{(0, \theta]}(x_i)$, where μ is the Lebesgue measure on X . The statistic $t(x)=\max_{1 \leq i \leq N} x_i$ is minimal sufficient, and the σ -ring \mathbf{S} is induced by t . We construct a pivotal measure. Take $p_k(k \geq 1)$ from P and put $F_1=S(p_1)=(0, 1]^N$ and $F_k=S(p_k)-\bigcup_{j=1}^{k-1} F_j=(0, k]^N-(0, k-1]^N$ for $k \geq 2$. Then it is easily seen that $\mathbf{F}=\{F_k; k \geq 1\}$ is a maximal decomposition with $\mathbf{F} \subset \mathbf{S}_0[P]$. For each $k \geq 1$, $p_k(A \cap F_k)$ is pivotal for $\mathbf{E}(F_k)$ as it is equivalent to P_{F_k} . By Theorem 1, the measure n defined by $n(A)=\sum_{k \geq 1} p_k(A \cap F_k)$ is pivotal for \mathbf{E} . This is the same pivotal measure as that obtained by Diepenbrock (see Remark). A pivotal measure m is of the form $m(A)=\int_A f \, dn$ for some \mathbf{S} -measurable function f with $f > 0[P]$. Hence $m(A)=\int_A f \sum_{k \geq 1} dp_k | F_k = \sum_{k \geq 1} \int_{A \cap F_k} f \cdot (dp_k/d\mu) \cdot d\mu$, and so $dm/d\mu=k^{-N} \cdot f(\max_{1 \leq i \leq N} x_i)$ on each F_k , $k \geq 1$. Therefore the totality of pivotal measures coincides with all the measures whose densities with respect to μ are functions through t .

3. Relationship between Theorem 3 and the Luschgy, Mussmann & Yamada-characterization theorem

In this section, we show that the characterization theorem in [8] can be derived from Theorem 3.

We first describe the minimal \mathbf{L} -space through the σ -ring \mathbf{S} . Let $\mathbf{E} = (X, \mathbf{A}, P)$ be a majorized experiment. The minimal \mathbf{L} -space is the closed vector sublattice (of the vector lattice of all bounded signed measures on \mathbf{A}) generated by P , where the topology of the vector lattice is induced by the total variation norm. Let \mathbf{n} be a pivotal measure and $\mathbf{L}^1(\mathbf{S}, \mathbf{n})$ be the set of all \mathbf{S} -measurable functions which are integrable with respect to \mathbf{n} . For each $f \in \mathbf{L}^1(\mathbf{S}, \mathbf{n})$, $u_f(A) = \int_A f d\mathbf{n}$ is a signed measure. Notice that the total variation norm of u_f coincides with the usual \mathbf{L}^1 -norm of f with respect to \mathbf{n} . As \mathbf{n} is a pivotal measure, for each $p \in P$, there is an \mathbf{S} -measurable density f_p , i.e. $p(A) = \int_A f_p d\mathbf{n}$. This correspondence between p and f_p implies that the minimal \mathbf{L} -space is isomorphic to $\mathbf{L}^1(\mathbf{S}, \mathbf{n})$ as an \mathbf{L} -space. Hence the minimal \mathbf{L} -space coincides with the totality of all the signed measures whose densities with respect to \mathbf{n} belong to $\mathbf{L}^1(\mathbf{S}, \mathbf{n})$.

Next we show that Theorem 3 implies the characterization theorem in [8]. Let \mathbf{m} be a pivotal measure. Then \mathbf{m} is expressed as in Theorem 3. The \mathbf{S} -measurable function f_F in Theorem 3 is not necessarily integrable with respect to \mathbf{n} for every $F \in \mathbf{F} (\subset \mathbf{S}_0[P])$. However for each $F \in \mathbf{F}$, there exists a countable partition of F consisting of \mathbf{S} -measurable sets such that the restriction of f_F to each element of the partition is integrable with respect to \mathbf{n} (see [2], Lemma 3.1), and hence f_F is the sum of such integrable functions. As the union of all such partitions forms a maximal decomposition consisting of \mathbf{S} -measurable sets, we can replace \mathbf{F} by this maximal decomposition and denote the latter by \mathbf{F} again. Consequently, \mathbf{m} is expressed as $\mathbf{m}(A) = \sum_{F \in \mathbf{F}} \int_{A \cap F} f_F d\mathbf{n}$ for a family $\{f_F; F \in \mathbf{F}\}$ of \mathbf{S} -measurable functions such that each f_F is integrable with respect to \mathbf{n} . Put $m_F(A) = \int_{A \cap F} f_F d\mathbf{n}$. Then it follows that $f_F \geq 0[P]$ and $f_F \neq 0[P]$ for all $F \in \mathbf{F}$, $\min(f_F, f_G) = 0[P]$ for all $F \neq G \in \mathbf{F}$ and for each $f \in \mathbf{L}^1(\mathbf{S}, \mathbf{n})$, $\min(f, f_F) = 0[P]$ for all $F \in \mathbf{F}$ implies $f = 0[P]$. This implies that $\{m_F; F \in \mathbf{F}\}$ is a maximal orthogonal system, and hence \mathbf{m} is the sum of the maximal orthogonal system $\{m_F; F \in \mathbf{F}\}$.

Conversely, suppose that a measure \mathbf{m} is the sum of a maximal orthogonal system. Take a maximal decomposition $\mathbf{F} (\subset \mathbf{S}_0[P])$ and fix $F \in \mathbf{F}$. Adding up the densities of the maximal orthogonal system which are positive [P] on F , we have the function f_F required in Theorem 3. Hence Theorem 3 implies that \mathbf{m} is a pivotal measure.

Acknowledgement.

The author thanks the referee for his valuable comments.

References

- [1] R.R. Bahadur: *Sufficiency and statistical decision functions*, Ann. Math. Statist. **25** (1954), 423–462.
- [2] F.R. Diepenbrock: *Charakterisierung einer allgemeinen Bedingung als Dominiertheit mit Hilfe von localisierbaren Massen*, Thesis, University of Munster, 1971.
- [3] J. Fujii: *On the smallest pairwise sufficient subfield in the majorized statistical experiment*, Osaka J. Math., **26** (1989), 429–446.
- [4] J. Fujii and H. Morimoto: *Sufficiency and pairwise sufficiency in majorized experiments*, Sankhya (Ser. A) **48** (1986), 315–330.
- [5] K. Goosßen: *Partitions and pivotal measures in experiments*, Statistics & Decisions **6** (1988), 283–291.
- [6] P.R. Halmos and L.J. Savage: *Applications of the Radon-Nikodym theorem to the theory of sufficient statistics*, Ann. Math. Statist. **20** (1949), 225–241.
- [7] T. Kusama and S. Yamada: *On compactness of the statistical structure and sufficiency*, Osaka J. Math., **9** (1972), 11–18.
- [8] H. Luschgy, D. Mussmann and S. Yamada: *Minimal L -space and Halmos-Savage criterion for majorized experiments*, Osaka J. Math., **25** (1988), 795–803.
- [9] R.V. Ramamoorthi and S. Yamada: *Neyman factorization for experiments admitting densities*, Sankhya (Series A) **45** (1983), 168–180.

Department of Mathematics
 Osaka City University
 Sugimoto, Sumiyoshi-ku
 Osaka 558, Japan