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1. Introduction. Let G be a compact Lie group and X a finite G-CW
complex. By Why(X) we denote the equivariant Whitehead group of X as
defined in [5]. The group Wh(X) is defined in a geometric way and Whe(X)
is an abelian group. If f: X— Y is a G-homotopy equivalence between finite
G-CW complexes then the (geometric) equivariant Whitehead torsion of f is an
element 7(f)& Whg(X) and f is a simple G-homotopy equivalence if and only if
7(f)=0, see Theorem I1.3.6" in [5].

Let us here first state the two main results of this paper and then describe
some earlier work on the subject, and also give a quick outline of some other
results and constructions contained in this paper which are of independent
interest. The first main result has to do with the algebraic determination of

Whe(X).

Theorem A. There exists an isomorphism
&: Whe(X) —> D Whiny WH)¥) .
¢(X) C%'_‘() (m( WH)3)

In the above formula the right hand side is a direct sum of ordinary
(algebraically) defined Whitehead groups of discrete groups z,(WH)* which will
be defined below. The direct sum is over the set C(X) of equivalence classes
of connected components X7 of arbitrary fixed point sets X#, where H is any
closed subgroup of G. The components X% and X¥ of the fixed point sets
X% and X%, respectively, are defined to be in relation, denoted

X~ XE

if there exists n& G such that nHn'=K and n(XZ)=Xf. Given a component
X of X¥ we define

(WH), = {we WH |wX* = X%} .

Here WH=NH|H, and NH denotes the normalizer of H in G. The group
(WH)% is a Lie group (not necessarily compact) which acts on the universal
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covering space XZ of X by an action which covers the action of (WH), on XZ.
There is a short exact sequence of topological groups

e— A— (WH) — (WH), —> e

where A denotes the group of deck transformations of X# and we therefore have
A=z (XE). By n(WH)¥ we denote the group of components of (WH)¥.

The isomorphism @ is constructed in an explicit way. In particular this
allows us to determine the equivariant Whitehead torsion 7(f) of a G-homotopy
equivalence f: X—Y on the algebraic side, i.e., it allows us to determine the

element ®(7(f)) € C(X}‘.{)GB Wh(z( WH)¥).

Our methods also enable us to prove that equivariant Whitehead torsion is
a combinatorial invariant, i.e., we prove the following. (See Section 12.)

Theorem B. Let X* be an equivariant subdivisoin of a finite G-CW com-
plex X. Then the identity map h: X*— X is a simple G-homotopy equivalence.

This result is important for further developments of equivariant simple
homotopy theory, and one should also in this connection recall the well-known
fact that equivarjiant Whitehead torsion is not a topological invariant.

In the case when G is a finite abelian group (in fact discrete abelian group)
and each component XZ of any fixed point set X# is simply connected we deter-
mined Whg(X) algebraically in [5], Theorem III. 1.4. Although our algebraic
determination of Whs(X) in the present paper, when G is a compact Lie group
and X is an arbitrary finite G-CW complex, is a much more complicated task
than the special case treated in [5] it is interesting to notice that the proof of
Theorem III.1.4 in [5] carries over quite well to the present general case. In
fact some parts of it carries over word by word.

The first algebraic description of Whg(X) in the general case when G is a
compact Lie group is due to H. Hauschild [3]. His method is completely
different from ours. Hauschild’s approach gives Whg(X) as a direct sum, over
the same indexing set as in Theorem A, of Whitehead groups of fundamental
groups of appropriate Borel constructions. In order to be more specific we have
that Hauschild’s result, Satz IV.1 in [3], shows that Whg(X) is isomorphic to a
direct sum of groups of the form Wh(z(EK,X x,X%)), where we have denoted
K,=(WH), and EK, is the total space of the universal principal K,-bundle
EK,—~BK,, and EK,X gz, X7 is the Borel construction applied to the K,-space
X%, 1t is easy to see that we have an isomorphism = (EK¥ X K X;{)f’“-»
m(EK X g, X53), where K% =(WH)%, and since XZ is simply connected we
also have m(EK 3 X g* XD = (BK¥)=m(K¥). Thus the groups occurring in
the direct sum in Hauschild’s result are isomorphic to the groups occurring in
the direct sum in Theorem A. But conceptually Hauschild’s approach and ours
are very different from each other. Our method has the advantage that it also
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provides the chain complexes from which the torsion invariants are to be com-
puted, and moreover it leads to a proof of the combinatorial invariance of
equivariant Whitehead torsion.

In the case when G is a finite group we also have the paper [1] by D.
Anderson, which gives a parallel treatment of equivariant Wall obstructions and
the equivariant Whitehead group Why(X). Unfortunately Theorem A in [1],
describing Whg(X) as a direct sum of ordinary (algebraically defined) Whitehead
groups, is not quite correct. In[1]a connected component XZ of a fixed point
set X7 is used to represent the whole G-component GXZ, whereas X% should
only be used to represent the NH-component (NH)XZ, where NH denotes the
normalizer of H in G. This mistake causes problems with the well-definition
of the isomorphism @ in Theorem A in [1], and also has the effect that the sum-
mation in the direct sum of ordinary Whitehead groups occurring in Theorem
A in [1] is done over the wrong indexing set. In the double direct sum occur-
ring in Theorem A in [1] the first sum is over the set of all conjugacy classes
(H) for which X#==( and for a fixed H representing (H) the second direct sum
ought to be over the set of all NH-components of XZ, i.e., over a set consisting
of one representing connected component X for each NH-component (NH)X 5
of X,

In Part I of this paper we present various constructions and results that
are used in Part IT where the main results are proved. Much of the material
in Part I is of independent interest. The contents of Part I are as follows.

3. An acyclic chain complex.

4. Equivariant CW complex structure on XZ.

5. Covering actions.

6. Lifting equivariant CW complex structure to universal coverings.

7. Induced actions on homotopy groups of equivariant spaces and
pairs.

In Part IT we give the main work that leads to a proof of Theorem A. In
section 12 we make use of Theorem A in establishing the combinatorial inva-
riance of equivariant Whitehead torsion. 'The headings for the sections in Part
IT are as follows.

8. The component structure of a G-CW complex.
9. Definition of torsion invariants.
10. Definition of the homomorphism ®.
11. & is an isomorphism.
12. Combinatorial invariance of equivariant Whitehead torsion.

2. Preliminaries and notations

Recall from [5] that the elements of Wkg(X) are equivalence classes s(V, X),
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where (V, X) is a finite G-CW pair such that i: X—1 is a G-homotopy equiva-
lence, and two such pairs (V, X) and (W, X) are in relation if there exists an
equivariant formal deformation from 7 to W rel. X. We refer the reader to
[5] for further information about Why(X) and equivariant simple homotopy
theory.

Our notations are (hopefully) the standard ones. For any closed subgroup
H of G and any G-space X we let X# denote the fixed point set of H and we
define

X>H — (xeX |G, 2H} .

Furthermore we denote X =GX# and X>®=GX>#. A G-isotropy type is
the same thing as a conjugacy class (H) of a closed subgroup H of G. We define
a partial order in the set of all G-isotropy types by

(H)>(K) <« there exists g€ G such that gHg'DK

Furthermore we define (H)>(K) to mean (H)>(K) and (H)=(K). We then
also have that X>®= {xe X |(G,)>(H)}.

Part I

3. An acyclic chain complex

In this section P denotes an arbitrary locally compact group. We shall
prove the following result.

Proposition 3.1. Let (X, A) be a P-equivariant relative CW complex such
that the inclusion i: A—X is a P-homotopy equivalence. Then the chain complex

( 1 ) > n+1((X’ A)”H’ (X’ A)”; Z) - H,,((X, A)”! (X’ A)”_l; Z) -
H, (X, Ay, (X, Ay~ Z) - -

15 acyclic.

Here H,(Y, B; Z) denotes ordinary singular homology with integer coeffi-
cients of the pair (Y, B). In the applications of Proposition 3.1 in this paper
P will be a Lie group and (X, 4) will be a P-equivariant CW pair, where X
moreover is a finite P-equivariant CW complex.

To prove Proposition 3.1 we first show that the chain complex (1) is iso-
morphic to a similarly defined chain complex using equivariant singular homo-
logy (see [6]), with a specific coefficient system &, instead of ordinary singular
homology. This much will in fact hold without the assumption that 7: 4—X
is a P-homotopy equivalence. By then invoking the assumption that i: 4—X
is a P-homotopy equivalence it follows that this other chain complex is acyclic



EquivariaNT WHITEHEAD GROUP 885

and hence also the chain complex (1). We now proceed to give the relevant
steps for the proof of Proposition 3.1.

We define a covariant coefficient system &, (see [6], Definition 1.2, we are
now taking the family & to be the family of all closed subgroups of P), over
the ring Z, as follows: For any closed subgroup Q of P we set

k(P|Q) = HyP|Q; Z)

and for any P-map a: P/Q—P/R, where Q and R are closed subgroups of P,
we define

ay = k(a): k(P|Q) — kK(P|R)

to be the induced map ay: Hy(P/Q; Z)—>Hy(P|R; Z). Here Hy ; Z)is the 0:th
ordinary singular homology group.

We shall now define a natural transformation of equivariant homology
theories (defined on the category of all P-pairs and P-maps)

(2) px: Hy( 5 Z)— HY( k).

Here Hy( ; Z) denotes ordinary singular homology. Observe that ordinary
singular homology also is an equivariant homology theory, but the equivariant
dimension axiom is not satisfied in general. Thus ordinary singular homology
gives us a generalized equivariant homology theory. 'The other functor H{( ; k)
is equivariant singular homology with ccefficients in &, see [6].

We first define a natural transformation on the chain level. Recall from
[6] that the equivariant singular homology functor H{( ; k) is defined as the
homology of a chain complex S*( ; k)= {Cf( ; k), 0,} and that S?( ;&) is a
quotient of the chain complex e ( ;R)= {Cr ( ; k), 8,}, see Section 3 in Chapter
I of [6]. For any P-space X we define

(3) @': CX; Z)— CE(X; k), n>0,
as follows. If S: A,—X is an ordinary singular z#-simplex in X we set
?'(S) = $Qc, = Z: R, k(G)CCE(X; k).

Here $: A, XP—>X is the equivariant singular n-simplex, of type {e}, in X
defined by S(z p)=pS(2), for (2, p)EA, X P, and c,k(P)=H,(P; Z) represents
the identity component of P. Extending linearly we obtain the homomorphism
@’ in (3). It follows directly from the definiticn of @’ that @’ commutes with
the boundary operators and hence gives us a chain map

@: S(X; Z)—> SP(X; k).

Composing with the natural projection p: Sr (X; k)— SP(X; k) we obtain a
chain map
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@: S(X; Z)— SP(X; k).

If (X, A) is a P-pair we have the chain map @: S(4; Z)— S¥(4; Z) and
hence also

(4) @: S(X,A; Z)—> S¥(X, A; k).
Then the induced map in homology gives us
(5) px: H(X, A; Z)—> H;(X, A; Z), forall n>0.

If f: (X, A)—(Y, B) is a P-map it follows directly from the definition that
the chain map ¢ in (4) commutes with the chain maps induced by f and hence
also @4 commutes with the homomorphisms induced by f.

The following simple lemma is a key fact for us.

Lemma 3.2. Let Q be a closed subgroup of P. Then
P« Hy(P|Q; Z) —> Hi(P|Q; k)
is an isomorphism.

Proof. Recall that equivariant singular homology Hi( ; k) satisfies the
equivariant dimension axiom, i.e., the P-space P/Q has non-trivial equivariant
singular homology only in dimension zero, and in this dimension the homology
is isomorphic to k(P/Q). The explicit isomorphism

a: HE(P|Q; k) —> k(P|Q)

is given as follows, (see [6], Section 7 in Chapter I, p. 3940). If T: Ay X P|R=
P/R— P/Q is an equivariant singular O-simplex in P/Q and a< k(P/R) then
TQacCl (P/Q; k) and by {T®a} we denote the corresponding class in
Cs(P/Q; k)y=H¢§(P/Q; k). Then

a({TQa}) = Ty(a)Ek(P|Q).

Direct verification now shows that the composite
@ a
(6) Hy(P|Q; Z)—> H{(P|Q; k)—> k(P|Q) = Hy(P|Q; Z)

is the identity map. Thus @y is an isomorphism. [
Corollary 3.3. For all n>0 the map
@x: H(D*XP|Q, S" X P|Q; Z)— Hy(D*XP|Q, S*”"' X P|Q; k)

is an isomorphism.
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Proof. For both ordinary singular homology and equivariant singular

homology we have natural isomorphisms
H,(D"x P|Q, S**x P|Q; Z)-=> H|(P|Q; Z)
and
HE(D"x P|Q, S**x P|Q; k) —> HE(P|Q; ¥)
If we use the same procedure in defining both of these isomorphisms we obtain
a strictly commutative diagram (not only commutative up to sign, which in fact
would be sufficient here)
H,(D"x P|Q, "' P|Q; Z)—=> H|(P|Q; Z)
Px =P
HI(D"x P|Q, S*'x P|Q; k) —> H{(P|Q; k). [J
Coorollary 3.4. Let (X, A) be a P-equivariant relative CW complex. Then
oy H (X" 4), (X, A Z)— HI (X, A), (X, A)*"; k)

is an isomorphism for all n>0.

Proof. We have

H((X, A, (X, A" Z)=XBH,(c}, ¢t; Z)
=DH,(D*X P|Q;, S*'XP|Q;; Z)
and
HI(X, 4), (X, A5 k)=3QH(c}, ¢7; k)
=>PH; (D" X P|Q;, S* X P|Q;; k)

where in both cases the direct sum is over all equivariant z-cells of (X, 4). The
isomorphisms above commute with @, and hence Corollary 3.4 follows from

Corollary 3.3. [J

The isomorphisms @, given by Corollary 3.4 form an isomorphism from
the chain complex (1) to the chain complex

0
(6) o = HE((X, A, (X, Ay; B)—> HI(X, Ay, (X, AP~ B) —
H} (X, A" (X, A" % k) — -+
The above chain complex (6) is the cellular chain complex with coefficients in

k of (X, A) and the n: th homology group of this chain complex is isomorphic
to Hf (X, A; k). See [4], Theorem 2.7.
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We can now complete the proof of Prcposition 3.1 by observing that if the
P-equivariant relative CW pair (X, 4) is such that 7: A—X is a G-homotopy
equivalence then Hy (X, A; k)=0 for all #>0, and thus the chain complex (6)
is acyclic and hence so is the chain complex (1). [J

4. Equivariant CW complex structure on X#

In this section G denotes an arbitrary compact Lie group. The purpose
of this section is to establish the following two results.

Theorem 4.1. Let G be a compact Lie group and X a G-equivariant CW
complex. Then X7 is locally contractible for every closed subgroup H of G.

Theorem 4.2. Let G be a compact Lie group and H a closed subgroup of
G, and let (X, A) be a G-equivariant relative CW complex such that all equivariant
cells in X-A have type (H). Then (X%, A®)is a WH-equivariant relative CW
complex and the WH-action is free in X% —A¥.

Although the results in Theorem 4.1 and 4.2, respectively are of quite
different nature their proofs have a lot in common. A main part of the proof
of Theorem 4.1 consists of showing that X# is a WH-equivariant CW complex.
Theorem 4.2 is just the relative version of a special case of the result that the
fixed point set X# is a WH-equivariant CW complex.

The basic fact that we need is given by the following lemma.

Lemma 4.3. Let G be a compact Lie group and let H be a closed subgroup
of G. Assume that the G-space X is obtained from the G-space A by adjoining
one equivariant n-cell. Then the NH-space X¥ is obtained from the NH-space A%
by adjoining a finite number of NH-equivariant n-cells.

Proof. We have X=A4 Uc¢, where ¢ is a G-equivariant n-cell. Let
f: (D"XGIK, S*'XG|K)— (¢, ¢) = (X, 4)

be a characteristic G-map for c. Here ¢=cN A4 and f(D* x G/K)=c and f:| D" x
G/K —=,¢, is a G-homeomorphism, where é=c—¢. Restricting to the fixed
point set of H we obtain an NH-equivariant map

f2: (D*X(GIK)E, S*'x (G|K)H) — (X*®, A¥).

We have (¢)#=¢, and hence also X#=A4¥, unless (K)>(H). Thus itisenough
to consider the case (K)>(H). Furthermore we may assume that we have
chosen the subgroup K so that HcC K. The group NH acts on (G/K)# by
multiplication on the left. By Corollary II. 5.7. in [9] the orbit space of this
NH-action on (G/K)# is finite. 'Thus the NH-space (G/K ) consists of a finite
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number of disjoint NH-orbits NHa,, ---, NHa,, i.e., we have
(G/K)® = NHa,U --- U NHa,

where ¢;€(G/K)#, 1<i<t, as NH-spaces. Let P; denote the isotropy sub-
group of NH at a;, i.e.,

P;=(NH),,, 1<i<t.
Using the canonical NH-homeomorphism
a: NH|P;~=> NHa,
to identify NH|P; with NHa;, we can write
(G/K)? = NH/P,U - UNH|P, .
Thus the map f# gives us an NH-map
£H. ,_L;JI(D" x NH|P;, S*"'x NH|P;) — (X, AX).
Denote f#(D"* x NH|P,)=b;, 1<i<t and let b;—=b;N A%. Then
fE|: D*x NH|P; — b; = b;—b;
is an NH-homeomorphism. Furthermore we have
(@)% = b,U--Ub;.
Thus we have that
X* = A"UbU---Ub,
and that
f#|: (D*x NH|P;, S*'x NH|P;) — (b;, b;) = (X, A¥)
is a characteristic NH-map for b;, 1<¢<t. This completes the proof. []

ReMARK. Since the subgroup H acts trivially on the pair (X#, 4¥) we may
as well consider (X*#, A%) as a WH=NH|H-pair, and the conclusion of Lemma
4.3 is then that X is obtained from A by adjoining a finite number of WH-
equivariant n-cells.

Theorem 4.4. Let (X, A) be a G-equivariant relative CW complex. Then
(X*H, A®) is a WH-equivariant relative CW complex and the equivariant n-skeleton
(XH, A®)" of (X*H, AF) is given by

(X, A)" = (X, A7 .

Furthermore we have that if (X, A) has a finite number of G-equivariant cells in
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each dimension then (X¥, A") also has a finite number of WH-equivariant cells in
each dimension.

Proof. This follows directly from Lemma 4.3 and the above remark. []
Let X be a component of X# and define
(WH), = {weWH |wX] = X1}

We denote AZ=A¥NXZ. Then (X% AZ) is a (WH),-pair and it now
follows easily that we have:

Corollary 4.5. (X%, A%) is a (WH),-equivariant relative CW complex. []
We will also need the following fact about G-equivariant CW complexes.
Proposition 4.6. A G-equivariant CW complex is locally contractible.

Proot. This is proved in a similar way as the same result for ordinary CW
complexes, see for example [10], Theorem 11.6.6. We leave the details to the
reader. [

Now observe that Theorem 4.1 is an immediate consequence of Theorem
4.4 and Proposition 4.6.

5. Covering actions

In this section K denotes an arbitrary Lie group. Let X be a K-space,
where X is a connected, locally path-connected and semilocally 1-connected
space. We are mot assuming that the action of K on X is effective. Let
p: X— X be a universal covering of X. Then there exists a Lie group K*
and a continuous surjective homomorphism z: K*—K, such that K* acts on
X by an action which covers the action of K on X, via #: K*—K. The pur-
pose of this section is to give the construction of the group K* and its action
on X, and to establish some properties of this construction that will be used
later on in this paper.

First we consider the case of an effective action. Suppose that [ is a Lie
group acting effectively on X. Let J* denote the subgroup of Homeo(X) de-
fined as follows,

J*={h: X->X\hisa homeomorphism which covers some
j: X=X, wherej€ J}.

The group J* is topologized as described on a page 65 in [9], see also the
appendix to this section. Then J* is a Lie group and we have a continuous
effective action of J* on X. Moreover there is a well defined continuous
homomorphism z: J*— ], given by z(h)=j if and only if #: X—X covers
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j: X—X. Clearly = is surjective and the kernel of 7 is the discrete group A of
all deck transformations, i.e., we have a short exact sequence

(1) e—>A—>]*l-)J-—>€

of topological groups.

We shall now consider the general case, where the given action on X need
not be effective. Let K be a Lie group acting on X and let N denote the kernel
of this action. Then N is a normal closed subgroup of K and J=K/N is a
Lie group which acts effectively on X. Let p: K— J be the natural projection
and consider the pull-back diagram

P P

P "k
=7
Thus P is defined by

(2) P = {(h, k)& J*X K |z(h) = p(k)}

and the homomorphisms p’ and =’ are given by p’(k, k)=Fh and =’(h, k)=k, for
all (h, k)eP. Then P is a Lie group and the homomorphisms p’ and 7’ are
continuous.

We now define an action of P on X

(3) 6*%: PxX - X

by 6*((k, k), Z)=hX. It is then immediately verified that the diagram
o*

(4) PxX—X

7’ X pl p l b
KxX — X
commutes, i.e., the action of P on X covers the action of K on X, via z’: P—K.

The kernel of the action of P on X equals {¢} x N=N, and we have a com-
mutative diagram

' !
Ji\/'—ld—>N
Voo
(5) e A > P > K——e
AL
e A J* - J e
i ¥
e e
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of short exact sequences.

Now suppose that we have an inclusion i: X—7V of K-spaces, where V is
also assumed to be connected, locally path-connected and semilocally 1-con-
nected. Furthermore assume that X is a K-equivariant strong deformation
retract of V, and that the action of K on 1V is effective but the action of K on
X need not be effective. In this paper we will naturally encounter such situa-
tions, but it should also be observed that starting with the given K-space X
one can easily construct a K-space V containing X such that the action of K
on V is effective and X is a K-equivariant strong deformation retract of V.
For this one simply adds to X an equivariant free 1-cell I X K.

Let p: V—V be a universal covering of V. Then p|: X=p}(X)—>Xisa
universal covering of X. Since the action of K on I is effective we have the
group K* acting effectively on V. This action of K* on V restricts to an action
of K* on X which need not be effective. On the other hand the action of K
on X induces an effective action of J=K/N on X, where N denotes the kernel
of the action of K on X. We then obtain an effective action of J* on X and
a corresponding non-effective action of the Lie group P, defined in (2), on X.
We shall now prove that K* is isomorphic to P and that the two corresponding
non-effective actions on X agree.

Proposition 5.1. Let (V, X) be a K-pair as above. Then there exists a
natural isomorphism o: K*=,p of Lie groups, such that the action of K* on
X corresponds via the isomorphism o to the action of P on X.

Proof. Let k*€K*. Then k*: X—X is a homeomorphism which covers
the homeomorphism pz*(k*): X —X, where z*: K*¥*—K and p: K>K/N=]
denote the projections. Thus &*: X— X gives us a unique element in J* and
we denote this element by p*(k*) J*. Then p*: K*— J* is a homomorphism
and by Lemma 5.3 in the appendix to this section p* is continuous. Therefore
the map a: K*— P defined by a(k*)=(p*(k*), z*(k*)), for all k*=K*, is a
continuous homomorphism. Since it is easily seen that & is both surjective and

injective it follows that ¢ is an isomorphism of Lie groups. Moreover we have
k*X=p*(k¥*)Z=(p*(k*), n*(k*))X=a(k*)%, for any k*€K* and X X. [

Observe that the group P is defined in terms of data coming only from
the K-space X. In particular Proposition 5.1 shows that the group K* does
not depend cn I but only on X i.e., if (V, X) and (V’, X) are two K-pairs as
above with the action of K on 7 and V' being effective, then the extension K*
of K obtained by considering the action of K on V is the same as the extension
K*' obtained by considering the action of K on V.

Since we have established Proposition 5.1 we will in the sequel use K* to
also denote the group acting possibly non-effectively on X covering the possibly
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non-effective action of K on X.

Proposition 5.2. Let (V, X) be as in Proposition 1. Then X is a K*-
equivariant strong deformation retract of V.

Proof. Let 7: V—X be a K-retraction of V to X, and let H: VXI—V
be a K-homotopy rel X from idy to Zor, where : X—T denotes the inclusion.
Choose some x,EX and %X, such that p(Z)=x,. Let #: V—X be the lifting
of » which satisfies #(%,)=Z%,. Then 7 is a retraction of ¥V to X. Let F*cK*
be an arbitrary element in K*. We claim that

7(k*0) = k*#(), forall peV.
This holds since the two maps
Fok* k¥op: VX
both cover the same map rok=kor: V— X, where k=n(k*), and moreover
(Pok*)(Xo)=k*Zy=(k*o7)(%,). 'This shows that 7 is a K*-map.
Let H: VxXI—V be the lifting of H which satisfies H(Z%,, 0)=%,. In the

same way as above it then follows that H is a K*-homotopy rel X from idy to
ior, where 7 : X—V denotes the inclusion. []

Appendix to section 5.

The purpose of this appendix is to prove the following fact, which was used
in the proof of Proposition 5.1.

Lemma 5.3. p*: K*— J* is continuous.
)

Recall that the situation here is the following. We are given a K-pair
(V, X), where X is a strong K-deformation retract of V" and both V" and X are
connected, locally path-connected and semilocally 1-connected spaces. The
action of K on V is effective but the restricted action of K on X need not be
effective and J/=K/N denotes the corresponding group acting effectively on X.
The group K* is the extension of K that acts (effectively) on V, and J* is the
extension of J that acts (effectively) on X. By restricting the action of K* on
V to X we obtain an induced homomorphism p*: K*— J*,

In order to show that p*: K*— J* is continuous we need to recall how the
groups K* and J* are topologized, see [9] p. 65. Let K,CK be the identity
component of K. Let #,: KK, be the universal covering of K;. The action
of K, on V lifts to an action of K, on V. Let Qc K, be the kernel of this action
and define I%ozlgo/Q. Then I/<\o acts effectively on V and #%, induces a homo-
morphism 7,: 120—>K0 such that the action of 12'0 on V covers the action of K,
on V via #, Now we have IE'(,CK *and K* is topologized by making K, into
the identity component of K*. The corresponding construction for J topolo-
gizes J*.
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Now the continuous homomorphism p: K— K/N =] induces p,: Ky— J,
and p, lifts to a continuous homomorphism gy: Ky— J, that covers p,. Let
r: V—X be a K-retraction. Then 7 can also be considered as a p-map when
we consider X to be a J-space. Considering V as a Ky-space and X as a J, space
we then have that 7: VX is a p,-map. Let #: V—X be the retraction of ¥V
onto X that covers7. We claim that 7 is a py-map. This is seen as follows.
The diagram

7y
poxrl 17‘
JxX —— %

covers the commutative diagram

0
KXV —— ¥V

poxrl o lr
JoxX — X

i.e., the maps #of and §”o(p,x #) cover the same map. Since 7#o8(¢&,, 9,)=7(?,)
and 8”0(, X 7)(&,, ,)=7(,), where 3,V it follows by the uniqueness of lift-
ings that

7ol = §'o(py X 7) .
Thus 7: V—-Xisa pr-map. Let g€Q, where QCK, is the kernel of the K-
action on V. Then

7(qd) = py(q)7(®), forall PEV .

Hence py(q) belongs to the kernel of the Jy-action on X. Thus we have an
induced continuous homomorphism py: I,(\'o—> fo such that 7: V—X is a p,-map.
We have ]:,C J* so we may also consider p, as a continuous homomorphism
Pot K,—J*. Now let us return to our original homomorphism p¥: K*— J*.
In order to prove that p* is continuous it is enough to show that p*|: R,— J*
is continuous. We do this by proving that

(x) p¥*l=po: Ky— J*.

We first show that #: V—X is a p*|-map. The following diagram (1) covers
diagram (2)

1y v-7'>x (2) v ——x
el e )| |4
vV > X V— X.
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Since
p*
K* —— J*
z* ln
K L7

commutes we have
7z(p*(k*)) = pa*(k¥), forall k*eK*

Since r: V—>X is a p-map we see that the diagram (2) commutes. Thus the
maps p*(k*)o# and 7ok* cover the same map. Since moreover

(p*(R*)o7)(%) = p*(k*)(%)
and

(Pok*)(X) = #(k*X) = k*X = p*(k*X)
for any X, it follows by the uniqueness of liftings that p*(k*)oF=7ok*,
This shows that (1) commutes i.e., 7 is a p*: K*— J* map, and hence of course
in particular a p*|: R~ J* map.

Now let #*eK,cK*. For any € V we have
P(k*D) = (k)7 (2)
and
7(R*D) = p*(R*)7(D) .
Thus we have
po(k*)X = p*(k*)X, forall XeX*.

Since py(k*), p*(k*)€ J* and the action of J* on X is effective we have py(k*)=
p*(k*). 'This proves that (*) holds and thus p*|: K,—J* is continuous and
hence p*: K*— J* is continuous. []

6. Lifting equivariant CW complex structures to universal coverings

In this section K denotes an arbitrary Lie group. We prove that if X is a
connected K-CW complex then X is in a natural way a K*-CW complex, where
X is a universal covering of X and K* is as in §5. We are mot assuming
that the action of K on X is effective.

In the Lemmas and Corollaries below X denotes an arbitrary K-space,
where X is connected, locally path-connected and semilocally 1-connected.
Furthermore p: X —X is a universal covering of X, and the group K* and the
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projection z: K*—K are as in §5.

Lemma 6.1. For any y € X the homomorphism =: K*—K induces an
isomorphism

| K¥ =5 K, .

Proof. Let yeX and denote p(y)=x. For every [€K¥ we have ly=y
and hence also z()x=x. Thus z(K¥)CK,, and hence we have an induced
homomorphism

(1) z|: K¥—>K,.

We shall first show that the homomorphism (1) is surjective. Let k€K,
and choose /EK* such that z(l)=*k. Then I: X—X is a homeomorphism
which covers k: X—X. Since kx=ux it follows that p(ly)=p(y). Let yEA be
the deck transformation for which (ly)=y. Then y/€K* and (yl)y=y, and
hence y/K¥. Furthermore z(yl)=n(l)=k. This shows that (1) is surjective.

We now show that the homomorphism (1) is injective. Let /, ,&K¥ such
that z(l,)=n(l,)=k. Then there exists a deck transformation y& A such that
L=«l,. Since y=y=Ly we have yy=y. Since 7 is a deck transformation
this implies y=id and hence =4 []

Lemma 6.2. Let CCX be a path-connected subset of X such that p(C)C
F(X; K,), for some x< p(C). Then we have C CF(X; K¥), for any yeC with

p(y)=x.

Proof. Let y=C be such that p(y)=x and let 2&C be an arbitrary point
in C. Choose a path & from y to 2 in C. For any /&K ¥ we have that I& is a
path in X starting at y and covering the path z(/)w, where o=po&. Since w lies
in p(C)CF(X; K,) and z(l)EK, it follows that z(/)o=w. By the unique path
lifting property of covering projections it follows that /[=@&. In particular we
have I&(1)=a(1), i.e., Is==2. This shows that C CF(X; K¥). [

Corollary 6.3. Let D be a path-connected space and f: D— X a map such
that f(D)C F(X; K ;), for some dED. Then, for any lifting f: D—X of f we
have f(D)C F(X; K%, O

Lemma 6.4. Let C be a path-connected subset of X such that the isotropy

subgroups of K at all points of p(C) are the same. Then we have K¥=KF¥ for
any y, 3€C.

Proof. Let y,2&C. The argument given in the proof of Lemma 6.2
shows that K¥CK¥. Since the situation here is completely symmetric in y
and 2 we also get K¥CK¥, and hence K¥=K¥. [
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Corollary 6.5. Let B be a path-connected space and let f: B—>X be a map
such that f(B)CI(X; K ;4), for some bEB. Then, for any lifting f: B—>X of

f we have f(B)cI(X; K%,

Theorem 6.6. Let X be a connected K-CW complex and p: X—X a uni-
versal covering of X. Then X is a K*-CW complex.

Proof. First of all observe that by Proposition 4.6 every K-CW complex is
locally contractible and thus semilocally 1-connected and hence the existence of
a universal covering p: XX of X is guaranteed.

Let X°cX'c...cX"™C-- be the equivariant skeletons of the K-CW com-
plex X. We claim that X is a K-CW complex with equivariant m-skeleton
equal to

PX™ =X", m>0.

Let X="X""'U Uc}, where J is the set of all equivariant m-cells of X, and
denote =

pe)=a7, jE].

By Lemma 6.7 in the appendix to this section the topology of X is coherent
with the family {X"},s,, and the topology of X" is coherent with the family
{X‘m—l’ d;'n}jel'

Thus it only remains to exhibit a K*-equivariant characteristic map for
each d7. Let c=c7 be an equivariant m-cell of X, and let

f: (D" X K[H, S™*x K|H) = (c, ¢)

be a characteristic K-map for c. Here ¢=cNX™"'. We shall construct a charac-
teristic K *-map for d=p~(c)CX. Let

f:D">X

be defined by f,(2)=f(2, eH). Denote f,(0)=x,. Then we have K, =H and
f(D")C X, Let

fooD"—-X

be a lifting of f,, We denote f,(0)=y, and K¥=L. By Corollary 6.3. We
have f(D™ cX*. Thus we get a well defined K *-map.

f:D"xK*|L—-X

by defining f(2, k*L)=k*f(=).
Moreover the diagram
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D" x K*|L ——i—> d
idXﬂ'l 7 lp
D"XK/H ——¢

commutes. It is easy to see that f(D"x K*/L)=d and that the above diagram
in fact is a pull-back diagram. Now Lemma 6.8 in the appendix to this section
implies that f: D" x K*/L—d is a quotient map.

Furthermore we have f(S™'x K*/L)Cd=p1(¢) and f(D" xK*/L)=d,
where d=d—d. We claim that

(1) FD"xK*|L-—>d

is a K*-homeomorphism. We already know that this map is a surjective K *-
map. To see that f in (1) is injective one uses the fact that f: D™ x K/H—>¢
is injective and that by Corollary 6.5 we have f,(D™)cX,. By Lemma 6.9 in
the appendix tc this section f: D™x K*/L—>d is an open map. Thus f in (1)
is a K*-homeomorphism. We have shown that

F: (D" K*|L, S™'x K*|L) — (d, d)
is a characteristic K*-map for d, and this completes the proof. [J

A somewhat sketchy description of the lifting of a finite K-CW complex
structure of X to a finite K*-CW complex structure on the universal covering
X of X is given in Lemma 2.2 in [2]. In [2] K is taken to be a compact Lie
group and it is also implicitely assumed that the action of K on X is effective.

Appendix to section 6

Lemma 6.7. Let p: Y—X be a local homeomorphism and let {X} ;c; be a
family of subsets of X such that the topology of X is coherent with {X;} ;c;. Then
the topology of Y is coherent with {p~'(X:);} jes.

Proof. We denote Y;=p (X)), j€]J. Let VCY such that V' NY; is
open in Y; for all j& J. We shall prove that V' is open in Y.

For each v €V let W(v) be an open neighqorhood of v in Y such that p(W(v))
is open in X and p|: W(v)— p(W(v)) is a homeomorphism. Since p: Y—X is
an open map it follows that p|: ¥Y;— X is open. The set W(v)N V' N Y is open
in Y; and hence p(W(v)NV N Y))=p(W(v)N V)N X, is open in X, for every
jeJ. It follows that p(W(v)N V) is open in X. Therefore W(v)NV is open
in W(v), and hence also in Y. SincelV= U (W(v) N V) it follows that V is open
mnY. O

Lemma 6.8. Let
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f

—>Y

Al

A—> X

be a commutative diagram of maps and spaces such that the natural map from B
to the pull-back,

(%) @:B—> P = {(a, y)€AXY| f(a) = p(y)}

defined by @(b)=(p'(b), f(b)), is surjective. Assume that p is a local homeomor-
phism and that p’ is an open map and that f is a quotient map. Then f is a quotient
map.

Proof. Let VY such that f~%(7)is open in B. We claim that I is open
in Y. For each v €V let W(v) be an open neighborhood of v in ¥ such that
p(W(v)) is open in X and p|: W—p(WW(v)) is a homeomorphism. Then
FAWo)NV)=FW()NFf (V) is open in B. Since the map @ in (*) is
surjective it follows that

PIHWRNTY) = p(W(2)N V).

Thus f~'p(W(v)N V) is open in A and hence p(W(v)NV') is cpenin X. It
follows that W(v) NV is open in W(v) and hence also in Y. Since V= U (W(v)
N7V) it follows that Visopenin Y. []

Lemma 6.9. Let

R

B——Y
P'l 4
A———f——>X

be a commutative diagram of maps and spaces, where p is a local homeomorphism
and p' and f are open maps. Then f is an open map.

Proof. 'The proof is obvious. []

7. Induced actions on homotopy groups of equivariant spaces and
pairs

In this section K denotes an arbitrary Lie group. Assume that K acts on a
space X which is connected, locally path-connected and semilocally 1-connected.
We shall then define an action of z,(K*) on z,(X, x,), where x€X is an
arbitrary point in X and #>2 and K* is as in §5. This action of z,(K*) on
7a(X, %) makes 7,(X, x,) into a module over the group ring Z[z,(K*)].
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Let (X, A) be a K-pair, where both X and A4 are connected, locally path-
connected and semilocally 1-connected spaces and the inclusion 7: A—X induces
an isomorphism

iy m(A, ) (X, @), <4,

between the fundmaental groups. We then also define an action action of
7o(K*) on z,(X, 4, a,), for n>2, which makes 7,(X, 4, a,) into a Z[z(K™*)]-
module. (Observe that z,(X, 4, a,) is abelian under the above assumptions.)

The simply connected case

We shall first treat the special case of a K-pair (Y, B), where both Y and B
are simply connected. Let by, b ;=B and let w: /—B be a path in B from b, to
b,. Then we have the isomorphism #kg: 7,(Y, B, bl)in‘”(Y, B, by), n=>2.
Since B is simply connected the isomorphism /g, is independent of the choice
of the path o from &, to b;, and hence gives us a canonical isomorphism which
we shall denote by

I(bo, b): (Y, B, b) = (Y, B, b)), n>2.

Similarly we have for any two points y,, », €Y a uniquely determined natural
isomorphism I(yy, 3,): 7, (Y, ) — 7Y, o), n=>2.

Each element kK gives us a homeomorphism k&: (Y, B, by)—(Y, B, kb,)
and hence an induced isomorphism

ky: (Y, B, b)) —> =,(Y, B, kb,) .
We define

ky: m (Y, B, by) = z,(Y, B, b,) .
to be the composite

ks = I(by, Rbo)oky .

For the identity element e K we have e,=id and for any &, 'K it is easily
seen that kioky=(k'k)x. Thus we have defined an action of the (discrete)
group K on #,(Y, B, b)), n==2. We shall often use the notation kz instead of
ky(2), i.e., we set kz=ky(2) for any ke K and z€x,(Y, B, b,).

For later use we note here that since the diagram
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”n( Y: B) bo) ——_k—‘_> ”n( Y) B) kbo)

16, 8)| |16, 79
7Y, B, E;) ——> z,(Y, B, b)

commutes we also have ky=FkzoI(k™b,, b,).

The same procedure as above gives an action of K on the absolute groups
(Y, ¥o) and 7z, (B, b,), n>2.

Now assume that &£ and &’ are two elements of K that belong to the same
component of K. We claim that

(1) k*zk:k: ”n(YJ B: bo)_>7l'n(Y: B, bO)

This is seen as follows. Let 7: I—-K be a path in K from % to . Then
w: I—B, defined by «w()=17(t)b,, is a path in B from &b, to £'s,. 'The homotopy
F: Ix(Y,B)—~(Y, B) given by ‘F(¢,y)=7(f)y is a w-homotopy from the map
k: (Y, B, by)— (Y, B, kb,) to the map k': (Y, B, b))— (Y, B, k'b,). Thus the
diagram

kl
7.(Y, B, b) ——> #,(Y, B, ¥'b,)

N lh[w]zl(kbo, kb))

7[:1( Y: B) kbo)

commutes. Since I(by, k'by) = I(by, kby)oI(kb,, k'h,) it follows that k{ =k, i.e.,
we have showed that (1) is valid.

Thus every element k€K, where K, denotes the identity component of
K, acts trivially on =,(Y, B, b,). Hence the action of K on z,(Y, B, b,) induces
an action

0: FO(K)X”n(Y: B) bo) - ”u( Y; B) bo)

of zy(K)=K|K,, the group of components of K, on =,(Y, B, b,) given by
O(kK,, z)=kz. In the same way it is seen that the action of K on #,(Y, y,),
where y,€ Y and #n>2, induces an action of 7y(K) on 7z,(Y, y,).

The exact homotopy sequence

1 ] 0
o> ma(B; b) % (V3 b) 22 7,(V, B b)) —> (B3 b) =+ (Y, B; b))

is a sequence of Z[z,(K)]-modules and homomorphisms of Z[zy(K)]-modules.
Also observe that the Hurewicz homomorphisms

¢: (Y, ) > H(Y), n>2,

and
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¢: 7 (Y, B, b)) - H,(Y, B), n>2,
are homomorphism between Z[z,(K )]-medules.
The general case

Let us now consider the case of a K-pair (X, 4), where X and 4 are con-
nected, locally-connected and semilocally 1-connected, and we assume that

(%) iy w4, @) —> m(X, @), a4,

is an isomorphism. Let p: X=X be a universal covering of X. Since (%)
holds we have that p|: A=p~'(4)—A4 is a universal covering of 4.

Let K* be the extension of K by Ay acting on the pair (X, 4) as in §5.
For any ay A and n>2 we shall define an action of zy(K*) on =,(X, 4, a).
Choose b, 4 such that p(b)=a,. As we saw above the group K* acts on
zo(X, 4, by), and in fact this action induces an action of zy(K*) on 7,(X, 4, b,).
Since we have the isomorphism

(3) P wa(X, A, b)) —> (X, 4, @), n>2.

we also obtain an action of K* on =,(X, 4, a,) and a corresponding induced
action of zo(K*) on =,(X, 4, a;). That is, for any /€ K* and z€x,(X, 4, a,)
we have

(4) Iz = pyIp'(2)) »

where p, is as in (3), and similarly with / replaced by an element I Ezy(K*).

Observe that the above definition of an action of 7(K*) on 7,(X, 4, a,)
involved a choice of a point 4,4 such that p(b)=a,. In order to be able to
be very specific let us denote the action obtained above, by choosing the point
b, 4, by

0[b]: mo(K*) X mo(X, A, ay) = 7 (X, 4, a) .
For any /€ K* and z€x,(X, 4, a,) we then rewrite (4) in the more precise form

(4") ([ba])z = pallpi'(2)) -

and similarly with / replaced by an element I €7y(K*).

Let b4 A be another point such that p(bj)=a,, We claim that the action
0[b,] is weakly equivalent to §[b;] by an inner automorphism of zo(K*). This is
seen as follows.

Let T: X—X be the covering transformation for which T'(b§)=bh, We
have T €K*. The commutative diagram
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I

/,’————» X, 4; 16))

. 1(bs, b o ! I 1(by, Ib - 165, b I
e O TR LLONNS ) SIS O AR LGS 3 HSELLL s 2 %

1(bs, Ib,)

s = =\ Py A P#lﬁ 2| Py
Tb '
”n(Xy A; ao) 4'—[—0']_ zil(X) A’ ‘70) : ”:x(X) A: ‘70) M ”t:(X: A’ UO)

shows that
1[66] = T '[bo]ol[bolo T [bo] "*=(TIT ~*)[b,)

Here the left- and righthand squares commute since the following diagram com-
mutes

T, 35, by)
Ty (X’ A; bo) ——‘_) ”n(X’ A; b(’)) {(_2’——0)) Ty (X’ g; bo)
Py| = =|ps =|ps

id TIb,
o X s ) s (X, Ay ag) s (X A a)

Thus we have
I[6] = (TIT)[b,]

for every IE€my(K*), where T & n(K*) is the component of T& AzCK*,
T(h§)=b,.

The choice of ,&X such that p(b;)=a, will not concern us anymore so we
will from now on drop the &, from the notation.

The exact homotopy sequence

. . ;
s (A ) —> 7 (X 1) L m(X, A ) — ms( A @) —> v —> (X, A3 a0)

is a sequence of Z[z,(K *)]-modules and homomorphisms of Z [zy(K *)]-modules.
Consider the commutative diagram

(%, A3 b) —2— H(X, 4)
Pcl = & ll’*

”n(Xa A; al)) E— Hﬂ(X’ A)

where the maps ¢ and ¢’ are Hurewicz homomorphisms. We already know
that ¢ is a homomorphism of Z[zy(K*)]-modules. The isomorphism py: (X,
A; b)—5m,(X, A;a0) is a Z[m(K*)]-isomorphism, and py: H,(X, 4)—
H,(X, A) is a my(z)-homomorphism, where zy(z): z(K*)—=>z(K) is the homo-
morphism induced by the natural projection z: K*— K. It follows that
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¢: (X, A; ag)—>H,(X, A) is a zy(z)-homomorphism.
We conclude this section by pointing out the following fact, which we shall
use later on in the paper in the absolute case. Let

fr @ 17 =X, A, a)
be a map representing the element [f]le#,(X, 4; a)). Let /e K™* and let
h: (I, 1", J* ) — (X, A4, a)

be such that [[f]=[klEn,(X, 4;a). Let k==(l), where z: K*¥*—>K. Then
the maps

Ef, h: (17, I"™Y) — (X, A)

are homotopic, where (kf)(2)=kf(2), for all z&I”". This is seen directly from
the way the action K* on z,(X, 4; a,) is defined.

Part 11

8. The component structure of a G-CW complex

Let G be a compact Lie group and X a finite G-CW complex. For any
closed subgroup H of G the fixed point set X# is an NH-space and since H
acts trivially on X# we may as well consider X# as a WH-space, where WH=
NH|H is the Weyl group of H. Observe that the action of WH on X# need
not be effective. By Theorem 4.4 we know that X# is a finite WH-CW com-
plex.

Now let H' be another closed subgroup of G which is conjugate to H in
G. We denote

(1) NH', H) = {geG |gHg™ = H'}

Even in the case when H' is not conjugate to H in G we may define N(H', H)
by (1), and we then have that N(H’, H)=¢ as soon as H and H' are two closed
subgroups of G that are not conjugate to each other in G. It is easily seen that
we have

NH, H) = NH

NH', H) = N(H, H')
and

N(H”, H"YeN(H', H) = N(H"” H)

for any three closed subgroup H, H' and H” of G.
For any ge N(H', H) we get a homeomorphism

(2) g: X¥ - X%
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Moreover we have that X# is a WH-space and X% is a WH'-space and the
homeomorphism (2) is a y(g)-map. Here

(3) v(g): WH— WH'
is the isomorphism given by
v(g)(nH) = (gng™)H',  forany nHeWH.

For another choice of an element g, N(H’, H) we get another homeomor-
phism

(4) L XX #
and this homeomorphism is a (g;)-map, where

v(g): WH — WH'

is given by v(g,)(nH)=(gng7")H', for all nH € WH.
What should be observed here is that the composite gilog: X#— X% is
a v(gr'g): WH—WH map, where gi'geNH and we have

v(gr'g)(nH) = gr'gn(gr'g) ' H = (g1 gH)(nH )((g7)'8)'H) ,

ie., v(gr'g): WH—WH is an inner automorphism of WH.

Furthermore observe that for any g N(H’, H) the homeomorphism
g: X% X" is a y(g)-isomorphism from the WH-CW complex XZ to the
WH'-CW complex X&',

Now let XZ be a connected component of X#. Recall that we denote

(NH), = {neNH |nXI = X1}

and

(WH), = fwe WH |wX¥ = X2} .

Both (NH), and (WH),, are compact Lie groups and moreover we have (WH),=
(NH),/H. The group (WH), acts on X and by Corollary 4.5 we know that
X% is a finite (WH),-CW complex. The set (WH)XZ=(NH)XZ is called a
WH-component (or NH-component) of X%,

Let X7 be a component of X7 and let X¥ be a component of X%, where
H and H’ are two arbitrary closed subgroups of G. We then define

/s

}

Thus in case H and H’ are not conjugate in G we have N(X¥, X¥)=¢. Of
course we may have N(X%, X#)=¢ even when H and H' are conjugate in G.

NX¥, X¥) = {neNH', H)|nX¥ = X¥
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In the case when H=H" we have that N(X%, XZ)+ ¢ if and only if X and X
belong to the same NH-component of X,
It is easy to verify that we have

N(XZ, X%) = (NH),
NXF, X807 = NXE XE)
and

N&XY", XT)eNXE, X3) = NX7", X))

for any three components X%, X¥ and X#” of X#, X# and X#", respectively.
For any ne N(X ¥, XZ) we have the homeomorphism

(5) n: X% - X%

We have that X is a (WH),-space and X¥ is a (WH')g-space and the map (5)
is a y(n)-map, where (n) is the isomorphism

v(n): (WH), — (WH')g .
defined by
y(n)(n,H) = (nn,n)H , for all » He<(WH), .

For another choice of an element 7, N(X¥, X¥) we get another homeomor-
phism

(6) m: X% X¥

and this map is a y(n,): (WH),—(WH')s map, where v(n)(n H)=(mnn")H',
for every n,H (WH),.

The composite niton: X#— X# is a o(ni'n)-map, where ni'ne N(X¥',
Xf)_ION(Xg’, Xg)w:(NH)w and

y(ni'n)(nH) = (07 myny(ni'n) " H = [(ni* m)H]|[n H] [(n' n)H]™

ie., y(ni'n): (WH),—~(WH), is an inner automorphism.

Moreover observe that for any n€ N(X¥, X¥) the map n: X7— X is a
v(n): (WH),—(WH')g isomorphism from the (WH),-CW complex X7 to the
(WH')s-CW complex X%

We define a relation ~ in the set of all components X% of all possible fixed
point set X%, all closed subgroups of G, by defining

XE~X{ oNXY, XD*4.

We denote the set of equivalence class of this relation by C(X).
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Lemma 8.1. Let (V, X) be a finite G-CW pair such that i: X—V is a
G-homotopy equivalence. Then we have
a) The inclusion i induces a one-to-one correspondence between the components of
XH and V2, for any closed subgroup H of G.
b) The Weyl group of the component V5 corresponding to the component X Z equals
the Weyl group (WH),, of XZ.
¢) The induced inclusion i: XZ—V? is a (WH),-homotopy equivalence.

Proof. The proof is obvious. []J

Let (V, X) be as above and denote V3 #=V>2NVE We shall show in
Corollary 8.5 below that the inlcusion

Ju: XEUVZESTVE

is a (WH),-homotopy equivalence. It then follows, see Corollary 8.6, that the
inclusion —

Jut XGUVH >V
. . ~ — .
is a (WH)%-homotopy cquivalence. Here V¥ and X# U V># denote universal
coverings of V# and XZUV ¥, respectively, and (WH)¥ is the extension of

(WH), which acts on VZ and X7 U V>#, as in §5.

The main lemma for the proof of these results is Lemma 8.2 below, which
is identical with Lemma IIL.1.1 in [5], except that in [5] we only stated it for
G a finite group. We also used Lemma III.1.1 in [5] in exactly the same way as
we will use Lemma 8.2 in this paper.

Lemma 8.2. Let (Y, B) be a G-CW pair and let {Y,, -, Y,} be a finite
collection closed under intersection of equivariant subcomplexes of Y. If the inclu-
sions i: B—Y and i,: BN Y,—Y,, k=1, ---, m, are G-homotopy equivalences then

so is the inclusion j: BU (kL"J Y,)—Y.
=1
Proof. We shall prove by induction in m that : B—>BU(G Y,) isa G-
k=1

homotopy equivalence, and since i: B—Y is a G-homotopy equivalence the
claim follows from this. Let m=1. Since 7: BN Y,—Y; is a G-homotopy
equivalence it follows that BN Y, is a strong G-deformation retract of Y; and
hence B is a strong G-deformation retract of BUY;. This shows that z: B—
BUY, is a G-homotopy equivalence.

Now let m>2 and assume that our claim is true in the case when the finite
collection has at most m—1 elements. Let {Y}, .-+, Y,} be a collection of m
equivariant subcomplexes of Y which is closed under intersection, and assume
that each inclusion 7,: BN Y,—Y,, k=1, -, m, is a G-homotopy equivalence.
Furthermore we may assume that the enumeration Y}, --+, Y,, is chosen such that
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Y;,cY;=j<i First of all we claim that the collection {Y3, :++, ¥,,_;} is closed
under intersection. If

y,nY,=Y,, where 1<k<m—1 and 1ZI<m—1,

we would have Y,,C Y, and Y,C Y, and hence m<k and m</, both of which
are contradictions. Since {Yj, --+,Y,} is closed under intersection this shows
that {Y3, -, Y,_} is closed under intersection. Thus by the inductive
assumption we have that the inclusion

m—

(1) t: B—>BU(UY,) = BUY%,
is a G-homotopy equivalence. Here we have denoted
Ya'm‘—l - mL_Jl Yk .
k=1

Since {Y}, -, Y,_;} is closed under intersection it follows that also the
family {Y,NY,, -+, Y,,_.1N Y,} is closed under intersection. Moreover we have
Y.NY,=Y,w, where 1<m(k)<m—1, for k=1, .-, m—1, and hence the
inclusions

it: BN(Y,NY,)—> Y,NY,, 1<k<m—1,

are G-homotopy equivalences. Thus by the inductive assumption the inclusion
) h: B—BU(U(Y;N Y,) = BU(YE.N Y,)

is a G-homotopy equivalence. Since (1) and (2) are G-homotopy equivalences
it follows that the inclusion

(3) i: BU(Y%.,.NY,)— BUYE,

is a G-homotopy equivalence. Since the inclusion 7: B-BUY,, is a G-homo-
topy equivalence (by the case m=1 established at the very beginning of the
proof) and (2) is a G-homotopy equivalence it follows that the inclusion

(4) i BU(Y¥.,NY,)—> BUY,

is 2 G-homotopy equivlaence. By (3) and (4) we have that BU(Y%_.NY,)isa
strong G-deformation retract of both BU Y5%_; and of BUY,,. Since (BU Y5%_,)
N(BNY,)=BU(Y%_.1NY,) it now follows that BU(Y%_,N Y,,) is a strong G-

deformation retract of (BU Y3_,)U(BUY,)=BU( U Y,). This fact combined
k=1
with the fact that (2) is a G-homotopy equivalence gives us the result that

i: B>BU ( U Y,) is a G-homotopy equivalence. []
k=1
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Let (V, X) be a finite G-CW pair such that the inclusion
(1) . X->V
is a G-homotopy equivalence. Let
2) (Hy), -, (H))
be all the G-isotropy types occurring in V, ordered in such a way that
3) (H)y>Hj)=>1i<j.

Lemma 8.3. Let (V, X) be as above and let (H,,)), -+, (H; ) be r distinct G-
isotropy types occurring in V. Then the inclusion

r r
i UX¥ip) - UV
i=1 j=1

is a G-homotopy equivalence.

Proof. Assume inductively that we have proved our claim in case ;<s—1,
for all j=1, «++, 7, where 2<s5,<ls. In case {;=1 the inclusion 7|: X#)— &
is a G-homotopy equivalence, so this fact starts the induction.

Now let (H;), -+, (H;,) be r distinct G-isotropy types such that ;<s, for
j=1, -+, r. We shall prove that

) i]: DX - Yy

is a G-homotopy equivalence. This fact we shall establish by induction in 7.
If =1 the inclusion (4) is a G-homotopy equivalence. Let r>2 and assume
that the inclusion (4) is a G-homotopy equivalence when the two unions are
unions of at most r—1 sets X&), Then

) i UX®) - UV and  (6) 42 X)) — V@)
ji=1 j=1

are G-homotopy equivalences. Moreover we claim that
) i (UX#) N X — (Uren)n v
=1 ji=1

is a G-homotopy equivalence. Each intersection Vi) N V@), where 1<5<
r—1, has a presentation of the form

(8) V(H,'j) n V(H,") = U V&)
where the union is over the set of all G-isotropy types (K) occurring in V' such

that (K)>(H;;) and (K)>(H;). Since we here have (H;;)=(H;,) it follows
that (K)>(H;;) and (K)>(H;). We have 7;<s, and 7,<s, and hence it now
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follows that each (K) occurring in (8) is a G-isotropy type that appears in (2)
among the s,—1 first ones. By intersecting both sides of the formula (8) with
X we see that (8) also holds with V" replaced by X. It now follows by the first
inductive assumption that (7) is a G-homotopy equivalence.

Since (5), (6) and (7) are G-homotopy equivalences it follows that (4) is a
G-homotopy equivalence. 'This completes the second induction and hence also
the first induction and the proof of the lemma. []

Proposition 8.4. Let (V, X) be a finite G-CW pair such that the inclusion
i: X—V is a G-homotopye equivalence. Let H be an arbitrary closed subgroup of
G. Then the inclusion

i X@ e sy
is a G-homotopy equivalence.

Proof. First of all observe that if the G-isotropy type (H) does not occur
in V& we have V># =V @ and the claim in the proposition is trivially true.
Thus we may assume that the G-isotropy type (H) occurs in V'@,

Let (K)), *++, (K,) be all the G-isotropy types, except (H), that occur in V&,
Then

e — s
r=1

Let & be the finite family consisting of all the G-equivariant sub-complexes
V& §=1, -+, 7, of V' and all finite intersections of these subcomplexes. We

have
VEIN - ONVE) = | VE

where the union is over all G-isotropy types occurring in V® such that (K)>
(K;)) for j=1, -, t. The same formula holds with V" replaced by X. Thus
by Lemma 8.3 we have that

i: X(K,‘l) N e ﬂX(Ki;) —_— V(K,-!) N-N V(K,")

is a G-homotopy equivalence. Thus by applying Lemma 8.2 to the finite G-
CW pair (V& X@) and the family &F we have that the inclusion

jr Xy JV®) -
i=1
is a G-homotopy equivalence, i.e., the inclusion
jr X ypyr@

is a G-homotopy equivalence. []
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Corollary 8.5. Let (V, X) be a finite G-CW pair such that the inclusion i:
X—V is a G-homotopy equivalence. Let H be an arbitrary closed subgroup of G,
and let V¥ be a component of V¥ then :

(@) ji: XEUV>2—=TVH s a WH-homotopy equivalence
(b) Jo: XZUVZESVE is a (WH),-homotopy equivalence.

Proof. By Proposition 8.4 i: X® | V> @ jg a G-homotopy equiva-
lence so by taking the H-fixed point set of this inclusion we obtain (a).

Since (a) is a homotopy equivalence it induces a one-to-one correspondence
between the components of X# U V># and V#. Let(X# U V>#), be the compo-
nent of X# U IV># that corresponds to the component V7 of V%, Then in fact

(XEUV>H), = (XEUV>HNTVE = XEUV3H

where X denotes the component of X# that corresponds to V'Z under the
homotopy equivalence ¢: X#—V#, and V¥ is the part of V># that lies in VZ.

Since (a) is a (WH)-homotopy equivlaence it now follows that it induces a
(WH),-homotopy equivalence

Jo: XEUVZESTVE. O
Corollary 8.6. Let (V, X) be as in Corollary 8.5. Then
~ ——— ~
Ju: XEUVE TV
is a (WH)%-homotopy equivalence.
Proof. This follows from Corollary 8.5 and Proposition 5.2. []

9. Definition of torsion invariants

In this section we describe how to associate with any finite G-CW pair
(V, X), such that i: X—TV is a G-homotopy equivalence, and any component X7
of a fixed point set an element in Wh(zo(WH)Y). We also show that this is
independent of the choice of representative X7 for an equivalence class [X?] of
components of fixed point sets.

Let (V, X) be a finite G-CW pair such that ¢: X— T is a G-homotopy equi-
valence. Let H be a closed subgroup of G. The inclusion 7: X¥—V# is a
WH-homotopy equivalence, and it induces a one-to-one correspondence between
the components of X# and V#. Let X be a component of X# and let VZ be
the correpsonding component of V#. As before we let (WH), denote the Weyl
group of the component X7 and we know by Lemma 8.1 that the Weyl group
of VI also equals (WH),. Moreover the inclusion i: Xf—V¥ is a (WH),-
homotopy equivalence.
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By Corollary 8.5.b we have that the inclusion j: XZ U V;# -V is a (WH),-

homotopy equivalence, and by Corollary 8.6 j: Xmﬁ”—» VI is a (WH)*-

homotopy equivalence. For simplicity let us denote Y=V} and B=XZ U V;*.

Then (Y, B) is a finite (WH),-CW pair such that j: B>Y is a (WH), homotopy

equivalence, and (Y, B) is a finite (WH)*¥-CW pair such that j: B—>Y 1s a

(WH)¥-homotopy equivalence. Moreover (WH)¥ acts freely on Y—B

def Now filter the finite (IWH)%*-CW pair (¥, B) by equivariant skeletons and
efine

o = O ~
C(7, B): v C(Y, B)—> C,(Y, B)—
to be the chain complex with
C(¥, B)—= H(V*UB, #*'UB; 2)

where H,( , ;Z) denotes ordinary singular homology with integer coefficients,
and 0 is the boundary homomorphism in the exact homology sequence of the
corresponding triple.

Since (WH)¥ acts freely on ¥— B it follows that we have
CA¥, B)y=3 @H,(Dix (WH)F, Si™ x (WH)3)
=H(WH)3)D - ©H(WH)3)
=Z [z WH)3]D -+ D Z[m( WH);]

where ] is the set of equivariant n-cells of (¥, B) and (D%, S%7%)=(D", S*) for
i=1, --+, | J|, and both the last two direct sums have r=|J| summands. Thus
each C,(Y, B) is a finitely generated free Z[x,(WH)%]-module. Moreover a
basis a,, -+, a, for the Z [z WH)¥]-module C,(Y, B) can be obtained as follows.
For each equivariant z-cell d; of (¥, B) let

fi: (D*x(WH)¥, S 'x(WH)¥) — (d;, d}), i=1, -7,

be a characteristic (WH)%-map for d;. Consider the composite

(D, 57) 25 (D" (WHE, 5 x (WH)E) L (4, dy (P UB, 71U B)

where j, denotes the inclusion given by j(2)=(z, €) for all z&D" and e is the
identity element of (WH)¥. Let
a; = (fi o j)x(g) EH(Y"UB, Y»'UB), i=1, .7,

where g,€H(D", S*")=Z is a generator. Then a,, +:-, a, is a basis for the
Z[ny WH)¥]-module C,(Y, B), and any two bases obtained in this way differ
from each other only in the order of the basis elements and by multiplication of
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the bases elements by 4 elements from the group zo( WH)%. Thus it follows
than any two bases obtained in the above way generate the same family of pre-
ferred bases. Thus each C,(¥, B) becomes a finitely generated free and based

Z[z(WH)}]-module in this way. By Proposition 3.1 the chain complex C( ¥, B)
is acyclic and hence we have the torsion of the chain complex C(¥, B)=C(VZ,
T —

X7 UV;H), which we denote by

(1) 7(C(V, X)a) € Wh(m WH)S) -

Compare with Proposition III. 1.2 in [5] and the definition following Proposition
III. 1.2 in [5]

Now let X% be component of a fixed point set X# such that XZ is in
relation with XZ. Recall that this means that there exists n&N(H', H) such
that n XZ7=X%'. Moreover the map n: X7 X%’ is a (n)-isomorphism from the
(WH),-CW complex X7 to the (WH')s-CW complex X;'. Here y(n): (WH),—~
(WH')g is the isomorphism defined by () (n,H)=(nnn"") H'.

Furthermore v(z) induces the canonical isomorphism

I(H', g; H, a): Wh(zmi WH)3) — Wh(zl WH')§)
which is independent of the choices involved. Since
n: (V3, XJUveh — (Vi XF'uvzr)

is a y(n): (WH),—~(WH'); isomorphism we get a y(n)*: (WH)*—(WH)F
isomorphism of based chain complexes
- A —— ~ /',\—//
fig: C(VIL XEUVH) - C(VEE, X UVRT)
and from this it follows that
IH', 83 H, &) («(C(V, X)I) = 7(C(V, X)),
i.e., the elements 7(C(V, X)%) & Wh(zo( WH)*) and +(C(V, X)§') € Wh(z( WH')¥)

correspond to each other under the canonical isomorphism between the groups
Wh(ny WH)Y) and Wh(z( WH')¥). This shows that the torsion defined in (1)
is independent of the choice of representing component X from an equivalence
class of components.

10. Definition of the homomorphism &

In this section we first prove that if s(V, X)=s(W, X)& Whg(X) then the
torsion invariants, defined in §9, of (V, X) and of (W, X) are the same. This
allows us to define the homomorphism &: Why(X)— XD Wh(r(WH)Y).

C(X)

Proposition 10.1 below corresponds to Proposition III1.1.3 in [5].
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Proposition 10.1 Lez (V, X) and (W, X) be finite G-CW pairs such that
the inclusions ©: X—V and i: X—W are G-homotopy equivalences. Assume that
Vs Wrel. X. Then we have

T(C(V, X)q) = 7(C(W, X)3) € Whizf WH)7)

for every closed subgroup H of G and any component X2 of X*.

Proof. It is enough to prove this in the case when W is an equivariant
elementary expansion of V. 'Thus assume that this is the case and denote W=
VUb*'Ub". Assume that the type of this equivariant expansion is (K) and
let o: I"X G/K—W be a characteristic simple G-map for (5%, b"~*). That is
o: I"XG|K—W is a characteristic G-map for b" and o|: I*'XG/K—>W is
a characteristic G-map for 5! and o(J* !X G/K)C V"™,

Since the set o(J*'X {eK}) is connected it lies in one component, say

¢, of VX. Let X be the corresponding component of X¥ and W¢ the cor-
responding component of WX,

In case (K)2>(H) we have WH=V#_ and the claim is obvious. Thus we
need only consider the case (K)>(H).

First assume that (K)>(H). In this case we have

G2 = (b*)>% and (b")7 = (") .
Thus
WE = VEY (b* ) U (b")F
and
W>E = V>E (Y2 U (b")#

and hence the inclusion i: (VZ, X#U V>#)—(W#, X2 W>¥) is an excision.
Similarly, for any component X7 of X# and corresponding components V.
and WX of V¥ and W¥, respectively, we have that the inclusion i: (V, XJ U
V3H)—(WE, XZUW3")is an excision. Hence the inclusion 1 (V%, X7 U V57)
7 H /H\._>/H M far . 4 o
—(Wy, XJUWZH) is an excision, and therefore the induced map 7,: C(VZ,

/—f[\/ ~ S ————— .

XJUVzH—-CW;, XZUW;H) is an isomorphism of chain complexes which
in each degree is an isomorphism of based Z [z WH)¥]-modules, and hence
the desired conclusion follows.

It remains to consider the case (K)=(H). We may as well assume that
K=H. First assume that the components X§' and X/ are not in relation,

ie.,

X§ o XI
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which means that X and X7 do not belong to the same WH-component of
X2, Thus we have

(WHYWin(WH) W, = ¢ .
Since b*~'a<[*"'x G/H and b*=I"x G/H we have
() = WH(E)¥ and (b")F = WH(B"¥ .
Hence @ MN=¢ and (BNI=¢,
and therefore
WEi=VE.

Thus our claim is trivially true in this case.

Now assume that H=K and that the components X{ and X7 belong to
the same WH-component of X#, We may then as well assume that X7=X¢.
Thenwe have WI=VZU )5 U (b")i. Leto: I"X G/H—W be a characteristic
simple G-map for (5%, *~'). Then the restriction o|: I*X(NH),/H->WZ is a
characteristic simple (WH),-map for ((6")Z, (" ")%). Let &|: I"X(WH)*—
W be a lifting of o|. Then &| is a (WH)*-map. We have

WE = VEyartydr

where d*~! and d* are (WH)¥-equivariant cells of free type and &| is a charac-
teristic simple (WH)%-map for (d*, d*™%).

- T — ~ T ———
Denote C'=C(V}, XJUV;%) and C=C(WZ, XZUW.¥#) and C"=
C(W?Z, V¥). Then we have a short exact sequence of chain complexes

*) 0->C'->C—-»C’'—-0.
Moreover C”’ has the form

0
(6 0—>Cy = CiLi—0

and both C;’ and C;., are based Z[z WH)¥]-modules of rank 1, correspond-
ing to the free (WH)%-equivariant cells d, and d,_;, respectively. Moreover
the existence of a characteristic simple (WH)*-map &| for (d*, d*~') shows that
9 in (¥) takes a preferred basis element of C}’ to a preferred basis element of
C;~., and hence 7(9)=0. Since the short exact sequence of chain complexes
(*), in each dimension splits as a sequence of based Z [z WH)}¥]-modules we
have
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#(C) = 1(C)+r(C") = 7(C)+(—1) 7(3) = =(C"),
which is exactly what we wanted to prove. []
Thus we have a well-defined map

D: Why(X) — E%?? Wh(z WH)¥)

by defining
O(s(V, X)) = {=(C(V, X)g}C(X) .

Here the direct sum is over the set C(X) of equivalence classes of non-empty
components of arbitrary fixed point sets, and the above definition says that
for each [X]€C(X) the [XZ]-factor of ®(s(V, X)) is defined to be the ele-
ment 7(C(V, X)%) & Wh(z(WH)¥), where the component XZ is any re-
presentative for the equivalence class [X[]€C(X). Moreover for any (V, X)
we have 7(C(V, X)¥)=0 for only a finite number of [XZ]e((X).

The above direct sum can also be expressed in the form
2P Whin WH)Z) = 33 20 Wh(zf WH);)
CX) H) «
X"+
where the first direct sum on the right hand side is over each G-isotropy type
(H), i.e., conjugacy class (H), such that X#==¢ and for a fixed H the second
direct sum is over the set of WH-components of X#, i.e., over a indexing
set consisting of one connected component XZ for each WH-component
(WH)X?=(NH)XT of X1.
It follows from the appropriate short exact sequence of chain complexes
that

(C(V Ux W, X)z) = 7(C(V, X);)+7(C(W, X)g)
for any component XZ. Thus
O(s(V Ux W, X)) = (s (V, X))+2(s(W, X)),
that is, ® is a homomorphism.

11. & is an isomorphism

In this section we prove the result.

Theorem 11.1.  The homomorphism ®: Whe(X)— 3B Wh(my( WH)Y) is an
, CX)

isomorphism.

Proof. Let s(W, X)& Whg(X) be such that ®(s(W, X))=0. By Corollary
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I1.4.4 in [5] (and the fact that & is well-defined, i.e. Proposition 10.1) we can
assume that (W, X) is in simplified form. Thus we have

W=XUUb'UUbd:, where n—1>2.

We denote Y=X U Ub?™.

Let H be a closed subgroup of G such that the G-isotropy type (H) occurs
as the type of some of the equivariant cells 47. Let X7 be a component of X#
and let YZ and W be the corresponding components of Y% and W#, respec-
tively. By the second part of Corollary I1.4.4 in [5] the number of equivariant
n-cells 47 in GWZ which have type (H) equals the number of equivariant (n—1)-
cells 577! in GWY (and hence in GYZ) which have type (H). Let us denote
these by % and 527, s=1, ---, m. Thus we have

GW! = G(YFPUWz") U Uk, GY!=GXEUYz7)u Uk,
. ~ —
Now consider the (WH)% -CW pair (WX, X?U W2¥). We have the com-
mutative diagram

0
~ o — P ———m S ——
0—H, (W, Y;UWZ")—H, (Y;UWZ", XJUWZ#) =0

~ T — 5 P T ——
wl(Wa, YSUWZH) = 7, (Y UWZH, XJUWZH)

"—""lps ;"*ll’#

G}
2l (Wa, YSUWZH) = 7, (YSUWZH, XSUWZH)
where ¢ denotes the Hurewicz homomerphism. First of all observe that

~. sy
the upper row equals the chain complex C(W¥, XZUW_;#). Thus we have
(—1)"1 7(0) = (C(W, X)) = 0 Wh(z(( WH)¥) .
In the above diagram all four vertical maps are isomorphisms. 'The homol-

~ r— N ~—— T ——
ogy groups H, (WY, YXUW2H#) and H, (YXUW#, XZUW2H) are based
Z [ny WH)¥]-modules, i.e., finitely generated free Z [z WH)X*]-modules together

. ~ o ——
with a preferred basis. The homotopy groups =, (W72, YZUW;#) and

e e
r(YEUWE, XTI U W) are also Z[z(WH)¥]-modules, and the Hurewicz iso-
morphisms in the above diagram are Z[z(WH)}*]-homomorphisms. (See
section 7.) Likewise the two maps p,, induced by the projection p, are iso-
morphisms of Z [z WH)¥]-modules. Thus all the homotopy groups in the
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above diagram are finitely generated free Z[z(WH)X]-modules, and they have
preferred bases given as follows. Let

f.: "X GH, 81" x G/H) — (B:, b?) — (GWE, G(YH U W2H))
he: (I"* X GIH, 81" x G|H) — (b1, bt™") — (G(YZ U W2H), G(XZU W3H))

be characteristic G-maps for 5 and %7, s=1, -, m, as in Corollary 11.4.4 in
[5], and moreover chosen such that

fI"% {eH}) cWE
h(I* X {eH})C YA YEU W3 .

s=1, e, m.

Define

foo (01" — (WX, YEU WZH)

Be: (1", 817 — (YU WRHE, XTUWZY)
by fi=f.|I*x {eH} and h,=h,|1*"* X {eH}, s=1, ---, m. We may assume that
FUJ"H=1{x,}, h(0I*")= {x,}, where x,€ X7 is any (chosen) basepoint.
Thus we have
1) lemWS, YIUWY), [h]€m, (Y UWS", XSUWRE),
for s=1, -+, m.

Let
ﬁ:I”eW:’ s:1’°."m’

be liftings of f,: I" — WZ. Then f,(J"")={%,}, for s=1, :--, m, where X,&
X¥and p(%,)==x,. Then we know by Theorem 6.6 that the (WH)}-equivariant
extension of fz gives rise to a characteristic (WH)%-map for the (WH)%-equi-

variant cell (87)7, lying over the (WH),-equivariant cell (%)Z. The elements
~ ~ s jnd A ——n A —
) [flem (WS, YIUWY), [hl€m, (Y UWZY, XJUWZH)

correspond under the Hurewicz isomorphisms to a preferred basis of the ho-
mology groups, and under the isomorphisms p, the elements in (2) are mapped
to the elements in (1). Thus all put together we have that the elements in
(1) form a preferred basis for z,(WZ, YZUW2#) and =, (YEUW#, XJU
W2 ¥), respectively.

Now let

3] = S aulhl, a,EZ[n(WH):]
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and denote A=(a,). Thus we have
7(4) = 0 Wh(z(WH)?)

and hence the matrix 4 can be transformed into an identity matrix by a finite
sequence of operations of the following four types. (We denote T'=n(WH)¥.)

(1) Multiply a row by (—1)
(2) Multiply a row by an element of T'.
(3) Change a row by adding to it some other row.

(4) Expand to (f g)GGL(n-H, Z[T)).

1. To realize geometrically the operation that multiplies the 7:th row of 4

by (—1) we simply change the characteristic G-map f, for b} by using a map

t: (I, I Y)—(I", I"7Y) of degree —1.

2. Let 1<r<m and let yEx,(WH)%. We shall show how to geometrically

realize the operation that multiplies the r-th row of 4 by the element 7.
Consider the element [f,]Ex, (W2, YEUWH; x,)

where
For (% 177, ) = (W, YSUWRH, %)
We have
B[f] = 3 aull] € mai( VI UWZT, XIUWE; 2,)
and

0
7 Wa's YEUWSH; x,) = my ((YEUWZE, XEUWSH; x,)

9’ I
7rn-—l(Y5U W:H; xu)

The map 74 in the above diagram is a homomorphism of Z [z WH)*]-modules.
Consider the element

o'[f ] = [ ]1€m(YIUWZH; x,)
and let

o|: (I" 8I* ) > (YEUWZE, x,)
be such that

[01] = n[f |1€m,-(YSUWZH; x,) .
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Extend ©| to a map
0: 01" > YIUWZE
by defining 9(J*')=x,. Now define
W' = (W—b2) U (I"X G/H) = (W—b?) U b

where v: 01" X G/H—-G(YYUW;#)C W—b; is the G-equivariant extension of
9. Let H=(WH)¥ represent nEx,(WH)}, and denote x(9)=E< (WH),, where
=: (WH)¥—(WH), is the natural projection. Then

[21] = [/ 1] =21/ 1]€m. (YU WZH; x,)
and we know from section 7 (see the concluding remark) that the maps
§F,0): (I, oI > (YU W3E, £x,)
and
o (I, ") > (Y U WH; x,)
are w-homotopic for some path « from éx, to x,, i.e., the maps
EF D), 0: 01" — YEUW2H

are homotopic.
Thus the corresponding G-maps

fil=(£.])° (dx &) GI”xG/HM—X:’QaI”xG/HA G(YEU W3H)

and
v: 0["XG/H— G(YZUW?3H)
are G-homotopic. Thus, by Lemma II.4.1 in [5], we have
W's (W=b})U y(I" X G|H)) rel. (W—b7)
But
W= (W—b;)U s(I"| X G|H)

since adjoining I"X G/H by f/| is just adjoining the equivariant cell b} back
again by a different choice of characteristic map.
For W’ we have that

8161 = A1) = 7 33 aulh] = 3 m afh]

3. Letl1<r<mand 1<p<m, where r&p. Let
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o: (I", 81", J* ) — (WE, YeUWZE, {x})
be such that

[0] = [F1+f]lEm(We, YoUWSH; ).
Since the map

Flzol" > Youwru @)
is null-homotopic it follows that the maps
Fl 080" > YEUWZEU (Bh)
are homotopic. Let
v|:0["XGH— G(YEUW;®)Ub;

be the G-equivariant extension of 9|. Then v| is G-homotopic to f,|: 8" x
G/H-G(YZUWZ#)Ub,. Now define

W' = (W=b)U . (I" x G/H)

(where v| is considered as a G-map into W—b5}). By Lemma II.4.1 in [5]
we have W’ s W rel. (W—b;) and hence in particular rel. X. Observe that
(W';#=W2Z". Moreover the matrix of the boundary homomorphism

0: m (W, YEUWZE) - 7, (YEUWHE, XEUWE)

is the one obtained from 4 by changing the 7: th row by adding to it the p: th
row.

4. An expansion of the matrix 4 to (‘g (1)) is realized geometrically by per-

forming an equivariant elementary expansion of type (H), that is, by adjoining
I"x G/H to W by a G-map

oy J"'XGH— GXZcW

defined by o.(y, gH)=gx,, for all (y, gH)e J""' X G/H.

Thus we see by 1-4 above that there exists a G-CW complex V" such that

VsW rel. W—(Ub)
s=1

and (V, X) is in simplified form and there are m-|¢, where ¢=>0, equivariant
n-cells e, ++, en., and ¢ equivariant (n—1)-cells e}3h, -+, €hay in V—(W—
(Cjb's‘)), and characteristic G-maps u,: I* X G/H—>¢%, s=1, -+, m-+q, and h;: I"™
s=1
X G/H—e;™", such that
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o[m]=1[h], s=1, -, mtq.
Here
8: m(Va, UsUW3H) — m (UG UWSH, XGUWSH)
where we have denoted U=Y Uei; U Ueli,. Observe that W E=V72.
The maps #, and k,, s=1, -+, m-+q, are maps
gz (I% ' J*7) = (V) U, %)
and
hy: (I", 0I*") — (UE, x,)

It follows from Lemma 8.1.c and Corollary 8.5.b that the inclusion
i: X2 XE U W?3¥ is a homotopy equivalence. Thus
ix: ma(UEUWSE, XD sp, (UZUWZE, XEUW,®) is an isomorphism and
hence we in fact have

5[11,] = [Es] in ”n—l(UgU W:H) X:I)
Thus the maps

|, h,: (1", 81" — (UF U W2H, XJ)
are homotopic. The homotopy between the maps #,|, &,: 3["'—>XZ can,
by the homotopy extension theorem, be extended to a homotopy from 7%,|:
Jr'=XY to a map w,: J*'>XZ. Thus w,|8]*'=h,|0[*"", and we can ex-
tend @, to a map

w,: 81" — UXU W3E

by setting w,|I"'=h,, We now have that @, is homotopic to #|: 3["—->UZ
UW3ZE and w,|["'=h, and w,(J*)CXZ. Furthermore since w,(0I*!)=
h(0I*"")= {x,} we can by applying the skeletal approximation theorem to the
map w,: (J*?, 8" )—(X], x,) homotop w,: J*'—>XZ rel. 3I*! to a skeletal
map, i.e., we may as well assume that w, in fact satisfies w,(J*™!)C(XZ)*™.

The corresponding G-map w,: 8I* X G/H->G(UZ, UW;#) is G-homotopic
to u,|0I"X G/H. Now form the G-CW complex V' by attaching equivariant

n-cells I* X G[H to V—('"L_jqe’;) by the attaching G-maps w,, s=1, -, m+q.
It follows from Lemma I1.4.1 in [5] that

V'sV rel V—(ijqe's’).
s=1

Moreover it follows directly from the properties of the attaching G-maps w,
that 7’ collapses equivariantly to
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17/__(@1 b:—lu "'Q:e:,-l U "'Qj e';) — W_( "'L_Jl bn—lU ’91 bn) .
We have shown that

Ws(W—(U U O b)) rel. W—(U 50 U 8Y).
s=1 s=1 s=1 s=1

That is, all equivariant cells in W—X which have type (H) and belong to the
component WJ have been ‘“removed”. Applying this procedure for every
G-isotropy type (K) that occurs as the type of some equivariant cell in W—X
and to one representative Xj for each equivalence class [X{] i.e., one repre-
sentative X5 from each WK-component (WK)X§ of XX, we get

Ws Xrel. X.

That is s(W, X)=0& Wh(X) and we have proved that & is injective.

The surjectivity of @ is proved as follows. Let (H) be a G-isotropy type
such that X#=¢, and let X7 be a component of X#. Let (WH), be the group
of the component X and let (WH)k be the extension of (WH), by =,(XZ%)
that actson XZ7. Let A=(a,;) be any non-singular m X m matrix over Z [z WH¥)].
Let x,&(X})° and define

h|:0I*}XGH— X
by (k]) (=, gH)=gx,, for all (2, gH)€0I?X G/H. Let
GY[ =GXJUbU---UbL
be the G-CW complex obtained by adjoining m different equivariant 2-cells

I’x G/H to GX{ by the attaching G-map %/, and let %, denote the correspond-
ing characteristic G-map for b7, t=1, ---, m. We have

HyP7 X0 L oy wm, 20 B (e, x)

where both the Hurewicz homomorphism ¢ and the induced homomorphism
ps are isomorphisms of Z[z(WH)¥]-modules. Since Hy(YZ, X¥) is a free
Z [y WH)}]-module on m generators, the same holds for z,( Y, XZ). Moreover
a bases for the free Z [z WH)%]-module z,(YZ, X%) is given by [h]E=(YE,
X where hy: (I, 01%)—~(Y7, X).

Now let v,: (I% 9I%)~>(Y%, X¥) be such that [v,]=3) a,[#;]. Since we in

t=1
fact have [h,]En,( Y, x,) and the map zy(YZ, %)=z (Y7, XZ) is a map of Z
[z WH)¥]-modules we can form the element i aylh)Ex(YE, x,) and we then,
t=1

in fact, let v,: (1%, 81%)—(YZ, x,) be such that [fv,]———i ay[hEn (Y5, x).
t=1
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Now let f,|: 9I*>YZ be the extension of v, defined by (f.|) (J?)= {xs,
and let f,| : 0I°X G/H—->GY] be the corresponding G-map. Let GWE=GYZ
Ub3U --- Ub3 be obtained by adjoining equivariant 3-cells 13X G/H to GY¥ by
fsl, s=1, -+, m, and let f; denote the corresponding characteristic G-maps.
Now the boundary homomorphism

5: 7l'3(W§, Yg) - ”Z(Y;I’ Xg)
js given by ﬁ[ﬂ]zﬁ ay[h,), ie., 3 has matrix A in these bases. Thus 3 is an

isomorphism and it follows easily that 7, (WZ, X¥)=0 for all n. Hence the
inclusion 7: XJ7—W/ induces isomorphisms between homotopy groups in all
degrees. Thus, by Lemma 11.1 below the inclusion i: GXJ—>GW/[ is a G-
homotopy equivalence. Thus X is a strong G-deformation retract of GWZ U X
and hence s(GWZUX, X)eWhy(X). We now have ®(s(GWYUX, X))=
7(C(GWEU X, X))=1(4)= Wh(z(WH)}). Since @ is a homomorphism this
shows that @ is surjective. []

Lemma 11.1. Let (Y, B) be a G-CW pair such that each point in Y-B
has G-isotropy type equal to (H). Assume that the map i¥: BE— Y# induces iso-
morphisms in homotopy in all degrees. Then i: B—Y is a G-homotopy equivalence.

Proof. The map ##: B#—Y# is map between WH-CW complexes and
the WH-action is free on Y#—RH#. If QCWH is a closed subgroup of W we
have (Y#)?=(B¥)? unless Q= {e} CWH, and the inclusion z: (B#)@—(Y#)
induces isomorphisms in homotopy. Thus, by the equivariant Whitehead
theorem, (see [7] Theorem 5.3, or [4] Proposition 2.5), i: B¥—Y# is a (WH)-
homotopy equivalence. Hence B is a strong WH-equivariant deformation
retract of Y#. Letr: Y#—>B? be a WH-retraction. Now define

?2Y—>R

as follows. We set #| Y=id;. Let ye Y—B, then y=gx where x& Y#—B¥
and we define ?(y)=gr(x). If y=gx=g, x,, where x, x,& Y#—B¥ we have (g,)*
gENH and hence r(x)=r(gr'gx)=gi'gr(x) and therefore gy (x)=gr(x).
Which shows that # is a well-defined G-retraction. It is also immediately seen
that 70 # is G-homotopic to idy. [

12. Combinatorial invariance of equivariant Whitehead torsion

DeriniTION 12.1. Let X be a G-CW complex. We say that a G-CW
complex X* is an equivariant subdivision of X if X and X* as G-spaces are ident-
ical and the following two conditions hold:

1. For each open equivariant n-cell 5" of X* there exists an open equivariant
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n-cell & of X such that " é&".

2. Let ¢" be an equivariant n-cell of X and let 4}, -+, b} be all the equivariant
n-cells of X* such that ?)’}Cé”, 1<i<k. Then there is an equivariant char-
acteristic map

f: D"X G/H—c"
and equivariant characteristic maps
fi: D"XGIH—b?, i=1, -, k
such that f(D"x {eH})Cf(D" X {eH}).

Theorem 12.2. Let X* be an equivariant subdivision of the finite G-CW
complex X. Then the identity map h: X*—X is a simple G-homotopy equivalence.

Proof. The identity map f: X—X* is a skeletal G-map and f is the in-

" verse of k. By Corollary I1.3.9 in [5] we have 7(k)=—f7(f) € Whe(X*). We

shall show that +(f)=0& Why(X), then 7(k)=0 and hence % is a simple G-
homotopy equivalence by Theorem I1.3.6". in [5].

Let ¢, +:+, ¢,, be all the equivariant cells of X ordered such that dim ¢;<
dim¢;y;. We denote X;=¢, U -+ Uc;, where 1<j<m. Consider the map
fl: X;—f(X,), and let M; be the mapping cylinder of this map. Then X is a
strong G-deformation retract of M;UX, for j=1, ---, m, and hence we also
have that M;_;UX is a strong G-deformation retract of M;UX. By Lemma
I1.2.2 in [5] we therefore have

(1)  s(M;UX, X)=ry s(M;UX, M;_,UX)+s(M;_,UX, X)EWh(X),

where 7: M;_;UX—X is a skeletal G-retraction. We shall prove that
s(M;uX, M;_,UX)=0€Whe(M,;_,UX), 0<j<m, and then we have by (1)
and induction that ~(f)=s(M,,, X)=s(M,, X)=s(X, X)=0.

We shall now prove that s(M;UX, M;_,UX)=0. By Theorem 11.1 we
may as well show that

2) O (s(M;UX, M;_,UX))=0.

Assume that the equivariant cell ¢; is of type (H) and that it belongs to the
component XZ. That is there is a characteristic G-map k: D" X G/H—c; such
that k(D" x {eH})C X,

In order to prove that (2) is valid we must prove that for any G-isotropy
type (K), such that X¥=¢, and any component X5 of XX, representing the
WK-component (WK)X}5, we have

T(C(M;UX, M;_,UX)5) = 0 Wh(zo WK)F)
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Exactly as in the proof of Proposition 10.1 we see that it is enough to consider
the case K=H and Xf=XZ. Now observe that

(M;UX)—(M;-,UX)=c¢; X (0, 1]=(D"X G/H)x (0, 1] .
Let us denote k(D" X {eH})=(c;), and k(b"x {eH})=(¢;).. Then we have
(#))ex (0, 1 ((M;U X)—(M;, U X))g -
The equivariant cells of (M;UX, M;_;UX) consist of the equivariant cell
¢; %[0, 1] and all the equivariant cells 4; (of various dimensions) of X* whose
interiors are contained in ¢;. Each of these equivariant cells has a character-
istic G-map with open e-section lying in (¢;), X (0, 1].

~— T ~—— .
Let M;UX and M;_,UX be the universal coverings of M;UX and M;_,
UX respectively. Since the subset C=(¢;),x (0, 1] of M;UX is simply con-

nected there js a lifting C of it in ]\ZU\)E The different liftings of C are pair-
wise disjoint from each other. It follows that all the (WH)¥-equivariant

~— I~ . .
cells of (M;UX, M;_;UX) have (WH)#¥-equivariant characteristic maps with
open e-sections lying in C, see section 6. Hence in the chain complex
A~ —~—— 0 o~ o~
3) —-C(M;UX, M; ,UX)— C,_(M;UX, M; UX) -

the boundary homomorphisms are of the form
‘o
016l = 33 7. fef ]

with 7, EZ C Z[zy(WH)E]. (Here [ef], -+, [ef] and [ef™'], -+, [¢f"] are the

S~ o~ S~ o~
preferred bases of C(M;UX, M;_,UX) and C,_(M;UX, M;_;UX), respec-
tively, coming from the (WH)k-equivariant characteristic maps described
above.) Thus the torsion of the chain complex (3) comes from Wh(Z)=0.
Thus

1(C(M;UX, M;_,UX)?) = 0= Whizo WH)Y)

We have proved that (2) is valid and, as we already observed above, this com-
pletes the proof. [J
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