Title: Stonian spaces and the second conjugate spaces of AM spaces

Author(s): Wada, Junzo

Citation: Osaka Mathematical Journal. 9(2) P.195-P.200

Issue Date: 1957

Text Version: publisher

URL: https://doi.org/10.18910/12339

DOI: 10.18910/12339

Osaka University Knowledge Archive: OUKA

http://ir.library.osaka-u.ac.jp/dspace/

Osaka University
Stonian Spaces and the Second Conjugate Spaces of AM Spaces

By Junzo Wada

Let X be a compact space and let $C(X)$ be the set of all real-valued continuous functions on X. If any non-void subset of $C(X)$ with an upper bound has a least upper bound in $C(X)$, such a compact space X is called a stonian space. Stone [10] has shown that a compact space X is stonian if and only if it is extremally disconnected, that is to say, if for any open set U in X its closure \bar{U} is open. While, Kelley [9] has proved that if for any Banach space F containing a Banach space E there exists a projection of F on E whose norm is 1, E is isometric to $C(X)$, where X is stonian. Also Dixmier [4] has considered a compact space X such that $C(X)$ is isomorphic to an $L^\infty(R, \mu)$ as Banach algebras, where R is a locally compact space and μ is a positive measure on R. He called such a space X a hyperstonian space. A hyperstonian space is stonian. We shall see that a compact space X is hyperstonian if and only if $C(X)$ is lattice-isomorphic and isometric to a conjugate space of an AL space.

In §1 we state some general properties of stonian spaces, and in §2 we consider an AM space $C(X)$ which is the second conjugate space of an AM space. Such a space X is hyperstonian, and if the character of X is countable, then X is the space βN_0, where N_0 is a discrete space whose cardinal number is at most countable (cf. Theorem 3, Corollary).

§ 1. Stonian spaces

For a completely regular space X, let βX denote the Čech compactification of X. (cf. Čech [2]). Dixmier [4] has shown that $\beta U = X$ for any open dense set U in a stonian space X. Therefore we obtain easily the following:

2) See Kakutani [7] and [8].
(i) If \(X \) is stonian if and only if for any open set \(U \) in \(X \), \(\beta U \subset X \).

(ii) If \(X \) is a stonian space and if \(X \) has an open dense subspace which satisfies the 1st axiom of countability, \(X \) is a space \(\beta N \), where \(N \) is a discrete space.

(iii) If \(X \) is a stonian space and if a point \(x \) of \(X \) is not isolated, then \(\{x\} \) is not a \(G_\delta \) set.

We shall prove here the following theorem.

Theorem 1. Let \(X \) be a stonian space. If \(X \) is a product \(R \times R \) of a compact space \(R \), then \(X \) is finite.

Proof. Suppose that a stonian \(X \) be of the form \(R \times R \), where \(R \) is a compact space with infinite points. Let \(U \) be a dense open set in \(R \). Then \(R \times R = \beta U \times \beta U \supset U \times U \) and \(U \times U \) is a dense open set in \(R \times R \). Since \(R \times R \) is stonian, \(\beta(U \times U) = R \times R = \beta U \times BU \).

Now if for a fully normal space \(S \) \(\beta(S \times S) = \beta S \times \beta S \), then \(S \) is compact. (Ishiwata [6]). Therefore it is sufficient to prove that there exists an open dense subset \(U \) in \(R \) which is not compact but fully normal. We shall construct such an open set \(U \). Since \(R \) is an infinite set, there exists a countable family \(\{U_i\}_{i=1}^\infty \) of mutually disjoint non void sets which are both open and closed. Let \(V = R - \sum_{i=1}^\infty U_i \) and let \(U = V \cup \sum_{i=1}^\infty U_i \). Since the set \(U \) is the union of a countable family of open and compact sets in \(R \) which are mutually disjoint, \(U \) is fully normal. Clearly, \(U \) is not compact and is dense in \(R \).

REMARK. Theorem 1 shows that there exists no stonian space \(S \) with infinite points of the form \(R \times R \). But we can find easily a totally disconnected compact space \(S \) which is a product space \(R \times R \), where \(R \) is compact and infinite.

§ 2. **Second conjugate spaces of \(AM \) spaces.**

Let \(X \) be a stonian space and let \(M(X) \) be the set of all measures on \(X \). A positive measure \(\mu \) on \(X \) is called a *normal measure* if for any nowhere dense set \(A \), \(\mu(A) = 0 \). A real measure \(\mu \) on \(X \) is called *normal* if its positive part and its negative part are both normal. Let \(M'(X) \)

3) Henrikson and Isbell announced the following theorem (Bull. Amer. Soc. Vol. 63. 1957 Abstract): if \(X \) and \(Y \) are infinite completely regular spaces such that \(\beta(X \times Y) = \beta X \times \beta Y \), then \(X \times Y \) is pseudo-compact, that is, any continuous function on \(X \times Y \) is always bounded. If we make use of this theorem, we obtain moreover that if a stonian space \(X \) is a product \(R \times S \) of compact spaces \(R \) and \(S \), then either \(R \) or \(S \) is finite.

denote the set of all normal measures on X. A stonian space X is called \textit{hyperstonian} if it has positive normal measures, the union of whose carriers is dense in X. We shall see that a compact space X is hyperstonian if and only if $C(X)$ is lattice-isomorphic and isometric to the conjugate space of an AL space. Let E be an AM space. Then the second conjugate space of E is lattice-isomorphic and isometric to $C(X)$, where X is hyperstonian, and the conjugate space of E is lattice-isomorphic and isometric to $M'(X)$. $M'(X)$ is also lattice-isomorphic and isometric to an $L'(\Omega, \mu)$, where Ω is an open dense set in X and μ is a suitable positive measure on Ω. (cf. [4]). We consider now an AM space $C(X)$ which is the second conjugate space of an AM space. Let E be a Banach space and E^*, E^{**} denote the conjugate space of E and the second conjugate space of E respectively. For any closed linear subspace V in E^* we define its \textit{characteristic} r by $r = \inf \sup_{f \in E^*, x \in S} \frac{|f(x)|}{\|x\|}$, where S is a unit sphere in E^*. A closed linear subspace V in E^* is called \textit{minimally weakly dense} if it is weakly dense in E^* and if any other closed subspace in V is not weakly dense in E^*.

The following lemma was proved by Dixmier [3].

\textbf{Lemma.} (i) Let E be a Banach space. Then E is a minimally weakly dense subspace in E^{**} which is characteristic one.

(ii) If V is a minimally weakly dense subspace in E^* which is characteristic one, then $E^{**} = E \oplus V^*$ and $\|x\| \leq \|x + z\|$ for $x \in E$, $z \in V^*$, where V^* denotes the set $\{z \mid z \in E^{**}, z(f) = 0 \text{ for any } f \in V\}$.

Let K be an open set in a hyperstonian space. Then the \textit{character} of K is said to be countable if any family of non-void open and closed sets in K which are mutually disjoint is at most countable.

We can prove the following theorem. Hereafter X denotes a hyperstonian space.

\textbf{Theorem 2.} $C(X)$ is lattice-isomorphic and isometric to the second conjugate space of an AM space with a unit if and only if there exists a lattice-closed and (topologically) closed linear subspace V in $C(X)$ which has constant functions such that

(I) for any $f \in C(X)$ and for any open and closed set K (in X) whose character is countable, there exists a sequence $\{f_n\}$ in V such that f_n pointwise converges to f on K except a nowhere dense set.

(II) V is a minimal closed linear space which has the property (I): any other closed subspace in V does not satisfy (I).

Proof. (a) Let $C(X)$ be lattice-isomorphic and isometric to E^{**}
and let E be an AM space with a unit. Then, by Lemma, there exists a minimally weakly dense subspace V in $C(X)$ which is lattice-closed. We see here that E and E^* are lattice-isomorphic and isometric to V and $M'(X)$ respectively. Since E has a unit, we can assume that V has constant functions in $C(X)$. In order to prove (I) and (II), we are only to prove the equivalence of (I) and that V is weakly dense. Now if the property (I) is satisfied, then we see easily that V is weakly dense. Conversely, if V is weakly dense, then we see easily that for any $f \in C(X)$ and for any open and closed set K (in X) whose character is countable, there exist $f_n \in V$ such that

$$\int_{K \cap \Omega} |f(x) - f_n(x)| \, d\mu(x) < \frac{1}{n} \quad (n = 1, 2, \ldots),$$

where Ω is an open dense set in X and μ is a suitable positive measure on Ω. Therefore, as is well known, a subsequence f_{n_j} of $\{f_n\}$ pointwise converges to f almost everywhere on $K \cap \Omega$. Since any set of measure null on $K \cap \Omega$ is nowhere dense, f_{n_j} pointwise converges to f on K except a nowhere dense set.

(b) If properties (I) and (II) are satisfied, we see easily that V is a minimally weakly dense subspace in $C(X)$. (cf. (a)). We shall prove that V is of characteristic one. For any $u \in M'(X)$, let A and B be carriers of the positive part u^+ of u and of the negative part u^- of u respectively and let the function f take the value 1 on A and the value -1 on B. Then, by (I), there exists a sequence $\{f_n\}$ in V such that f_n pointwise converges to f on $A \cup B$ except a nowhere dense set. We may assume here that for any n, $\|f_n\| \leq 1$, since V has constant functions.\(^5\)

Since $u(f_n)$ converges to $\|u\|$, V is of characteristic one. By Lemma, $M(X) = M'(X) \oplus V^+$ and $\|u\| \leq \|u + z\|$ for $u \in M'(X)$, $z \in V^+$. Therefore if F is a linear functional on V, then there exists $u \in M'(X)$ such that $F(f) = u(f)$ for any $f \in V$ and $\|F\| = \|u\|$, that is, $M'(X)$ is lattice-isomorphic and isometric to V^*, and $C(X)$ is lattice-isomorphic and isometric to V^{**}. This concludes the proof.

We consider next an AL space with an F-unit. Let l' be the set of all sequences $\{\xi_i\}$ of real numbers with convergent $\sum_{i=1}^{\infty} |\xi_i|$. l' is a Banach space where the norm of $x = \{\xi_i\} \in l'$ is $\sum_{i=1}^{\infty} |\xi_i|$. (cf. Banach [1]).

Theorem 3. If an AL space E with an F-unit\(^5\) is lattice-isomorphic
and isometric to a conjugate space of an AM space, E is lattice-isomorphic and isometric to l'.

Proof. Let E be of the form $L'(\Omega, \mu)$, where is an open set in a hyperstonian space. Since E has an F-unit, the character of Ω is countable. If $L'(\Omega, \mu)$ is the conjugate space of an AM space F and if F is of the form of $C(Y, y', \lambda, \lambda) = \{f | f \in C(Y), f(y') = \lambda f'(y_a), 0 < \lambda_a < 1, a \in \mathbb{N}\}$, then function g_{α} in $L'(\Omega, \mu)$ which correspond to $\mu_{y_a}' \in F^*$ are mutually distinct, where μ_{y_a}' is a dirac measure, that is to say $\mu_{y_a}'(f) = f(y_a)$ for any $f \in F$. We see easily that the carrier of function g_{α} is a one-point set x_{α}, and therefore, x_{α} is an isolated point in Ω. Since the character of Ω is countable, the cardinal number of $Z_0 = \{y_a\}_{a \in \mathbb{N}}$ is at most countable. Since $C(Y, y') \supset F$, any linear functional ξ on F can be extended to a linear functional ξ' on $C(Y)$. ξ' is a measure on Y and for any $f \in F$, $\xi(f) = \xi'(f) = \int_Y f(x) d\xi'(x)$. Since the cardinal number of Y_0 is countable, we can put $Z_0 = \{z_1, z_2, \ldots\}$. For any n, let Y_n denote the set of y_{β} with $Y_\beta = z_n$. Then we have $\xi(f) = \sum_{n=1}^{\infty} \int_{Y_n} f(y) d\xi'(y) = \sum_{n=1}^{\infty} (\int_{Y_n \supset Y_\beta} \lambda_{\beta} d\xi'(y_{\beta}) f(z_n)).$ If we put $p_n = \int_{Y_n \supset Y_\beta} \lambda_{\beta} d\xi'(y_{\beta})$, we obtain that $\xi(f) = \sum_{n=1}^{\infty} p_n f(z_n)$. We see easily that if ξ is positive, any p_n is non-negative and $\|\xi\| = \sum_{n=1}^{\infty} p_n$.

Corollary. If $C(X)$ is lattice-isomorphic and isometric to the second conjugate space of an AM space and if the character of X is countable, then X is the space βN_0, where N_0 is a discrete space whose cardinal number is at most countable.

(Received October 10, 1957)

Bibliography

7) See Kakutani [8], Theorem 1.
8) We may assume that g_{α} is a continuous function on Ω. See [4].

