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1. Introduction

In [5], Mahowald gave some examples of ring spectra obtained as Thorn
spectra. One of them is X2 in [5], which is a Thorn spectrum associated to ω :
ΩS2^>BO, where ω is a mapping corresponding to the generator of π\(BO}. Let

BP denote the Brown-Peterson spectrum at the prime 2. Then the spectrum X2 is
also characterized by the fiP*-homology BP*(X2) = BP*/(2)[tι] as a sub-

comodule algera of BP*(BP)/(2) = BP*/(2)[h, t2, •••], where BP* = Zm[vι, v2,
"•] over HazewinkeΓs generators Vi (cf. [14]).

Relating to X2, consider a spectrum X constructed as follows : Let C be a

cofiber of the Bousfield localization map X2 — » LιX2 with respect to the Johnson-

Wilson spectrum E(l) with π*(E(ϊ)) = Z(2)[vι, vϊ1}. Then C is an Jϊz-module
spectrum since X2 is a ring spectrum. Consider the element h2o^π5(X2). Now the

spectrum X is a cofiber of a map feo : Σ5C~* C. By this definition, the

£P*-homology of X is BP*(X)=BP/(2, vT)[tι]®Λ(t2). Once we determined the
homotopy groups π*(L2X2) in [17], the hornotopy groups π*(L2X) can be

obtained from it. Here L2 denotes the Bousfield localization functor with respect
to the Johnson- Wilson spectrum E(2) with π*(E(2)) = Z(2)[vι, υ2, vϊ1] as a subalge-
bra of V2

1BP*. But, in this paper, we compute, independently of [17], the

homotopy groups π*(L2X) of the jE(2)*-localized spectrum of X by using the
Adams-Novikov spectral sequence. The computation of the E2-term is done in the
same manner as that of [17], using the z i-Bockstein spectral sequence. Different

from the odd prime case, there may involve non-trivial differentials of the Adams-
Novikov spectral sequence. On the other hand, different from the case for X2, this

case may support at most one family of non-trivial differentials. In this sense, it is

a little easier to determine the homotopy groups of L2X than those of L2X2. By

using the results of [7], we show here that the differentials are all trivial, in a

different fashion from that of [17], and have the EΌo-term of the spectral sequence.

In order to state the result, consider the integers An defined by
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A)=l, A2n+ι = l + 2A2n and A2n+2=2A2n+ι

for n>0, and use the notations :

is a Z/2[vι, V2, t^J-module isomorphic to
Z/2[vι, vϊ\ to, V21]/Z/2[vlί v2, V21]

generated by elements {x/vί}j>0 such that Vι(x/v{)=x/vί~1.
CX#> is a cyclic Z/2[vι, V2, f F^-module isomorphic to

Z/2[vι, v2, vϊl}i(vί)
generated by an element x/vi.

Theorem. The E^-term of the Adams-Novίkov spectral sequence for
computing π*(L2X) is a Z/2[vι, v2, v2

l}-module

Here, the graded Z/2[vι, v2, υ2

l}-module M* is given by :

feι» and
Mn=0 for n>2.

Furthermore, the generators have the following degrees :

N = 14, |A2o| = 5, |A2ι| = ll, |Aso| = 13, and |A3ι| = 27.

In the theorem, an element x has a degree r if χζ=πr(L2X).
This paper is organized as follows : In the next section, we recall some facts

known about the fi-Bockstein spectral sequence. In §3, we define elements xn,
which will play the main role in the computation of the Bockstein spectral
sequence. We compute E^-terms of the Adams-Novikov spectral sequence comput-
ing the homotopy groups π*(L2X) in §4, by using the tools given in the previous
sections. In section 5, we prepare some lemmas to compute the Adams-Novikov
differentials in the last section using the results of [?].

2. The Bockstein spectral sequence

Let (A, Γ) denote a Hopf algebroid with Γ A-flat. Then it is known ( c f . [14,
Ch. Al]) that the category of /^-comodules has enough injectives and so we can
define the Ext groups as a cohomology of an injective resolution. Furthermore it
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is given by a cohomology of the cobar resolution. So we can define Extr (A, M)
= HH(ΩrM] for a Γ-comodule M, where ΩfM is a cobar complex ( c f . [14]). The
cobar complex .Qr M is a deίferential graded module with

AΓ®A ®AΓ (s copies of Γ),

and the differentials dr : ΩfM^Ώf+lM denned inductively by

and dr(

for x^ΩrM and y^ΩrA. Here ψ : M —> M®AΓ denotes the comodule structure
map of M. In the following, every comodule is induced from A and so we use TJR
for ψ.

Suppose that A = Zm[vi, V2, •••] and -T=A[ii, h, •••]- Consider a Hopf
algebroid Φ=A[ίι](g)Λ(ί2) and acoalgebroid ^=Γπ ( f tA over A Then Σ=A[t2,
ts, •••] and we have the change of rings theorem :

Lemma 2.1. For # comodule A, there is an isomorphism

ExtKA M®ΛΦ) = Ext!(A M).

Proof. Consider a relative injective /^-resolution of

which is split as A-modules. Then apply the cotensor product — Π ΦA and we
obtain a relative injective J£ -resolution of M :

M - >I0®ΛΣ - >h®AΣ -

since Σ = Γϋ)φA. Thus the both Ext groups are obtained from the same complex

IQ— > /i— >• " . q.e.d.

In this paper, we will compute Ext*(Λ, V21A/(2, υΐ}®AΦ}. By virtue of this
lemma, we will work in the category of ^-comodules. In order to compute the Ext
groups Ext* (A, V 2 l A / ( 2 , υf)\ we adopt the fi-Bockstein spectral sequence with

ExtίU, V2l

To compute the £i-term we recall [7] the structure

(2.2) ExtXA vϊlA/(2, t;i)[ii])=/f(2)*[%, hm]®Λ(h2i, Aso, fei, p2).

This is shown by using the change of rings theorems

in which /f(2)* = Z/2[%, V2ll K(2)*K(2} = K(2)*®AΓ®AK(2)* and S(2,2) =
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Z/2[t2, fe, ~]/(t}-ti : z >1). Note here that the action of A on tf(2)* is given by
sending 0, to 0 for iΦ2 and ^2 to #2, and CK"(2)*, /f(2)*-K"(2)) becomes a Hopf
algebroid induced from (A, Γ). The second equation follows from the

#(2)*#(2)-comodule structure K(2^[h]=K(2^[ti]/(v2ti + v!ti)(S)K(2)M2
which is obtained from Landweber's formula VR^v-^^Vi + Viti+vlti mod (2,

Lemma 2.3. Γλe Eι-term is given by

ExtKA flί W(2, vι))=/iΓ(2)*[%](8)Λ(A2i, feo, fei, P),

= -Z/(2)[ί;2, V21] and fei, feo, fei and p are the homology classes
represented by ti, fe, tl and υ\U+tl in the cobar complex, respectively.

Proof. Let H*M for a Γ-comodule M denote the Ext group Ext*CA, M\
and E* and Z)* be .Γ-comodules

E* = υϊlAj(2, Vι)[tι]®Λ(t2) and D^ = V21A/(2t Vι)[tι].

Then the short exact sequence 0 — > D*dE* — > Σ~QD* -^ 0 of .Γ-comodules yields
the long exact sequence

with δ(x) = h2ox. By (2.2),

H*D*=K(2)*[vs,

This shows that feo : HSD*-^HS+1D* is a monomorphism and we have the lemma.
q.e.d.

3. The elements xn

In this section we will define elements xn such that

xn = vϊ mod(2, vi) and d^x^) = v\ngn,

in which gn repesents a generator of Exti (A, V21A/(2, v\)} and en to be taken as
greate as possible. These elements play a central role in the Bockstein spectral
sequence.

Hereafter we use the following abbreviation :

Ext*(Λθ=Ext$(A N) for a comodule N,

ί vί) and M=lim

Then note that

and Ext*(M)=ExtXA
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In V21BP*I(2\ we define elements xn, which will be used to define elements
of Ext*(Λf ). From here on, we compute everything with setting V2 — \ for the sake
of simplicity. We also write

x=y mod(fί)

for x, y^Ω*M if x = y in the cobar complex Ω*M(j).
We first introduce elements Ca. (/=0, 1) and ?3i in Σ = A[tϊ, fe, •••] defined

by

v!c3o=do(v! + vϊvs) + t! + fe2,
(3.1) VιC3i = do(v4) + t2 and

Lemma 3.2. The cochains €30 and Csi are cocycles of the cobar complex
Ωϊ M(j) for any j>Q. Furthermore,

C3o=k + V3t2 mod(fι) and c^^tl+ViVitl mod(fι).

Proof. Since dιdo=Q, ύ?ι(fe) = 0 and do(vι)=Q, the first part of the lemma
follows immediately from the definition, since the multiplication by v\ on ΩzMd)
is monomorphic. The latter half is shown by the direct computation using

7iR(vl) = vl, ηR(v^ = υι + V2t2 + vιt3 + vιV3t2 mod(t ι),
(3.3) ηR^l^υl + vltl + vltϊ + vlti + viυlt} modίt Γ), and

in Σ, noticing that dv(x)=ηR(x) — χ. In fact, d^
-\-ViV3t2 mod(vι), by setting t>2=l, which gives c3o. For Csi, follows from ηκ(υ^).

q.e.d.

Lemma 3.4. Put φ\ = Vιυl(v*+V4\ and we have

in V2lΣ = V2lA[tl ί3, •••].

Proof. Since do(x) = ηR(x) — χ and ηR is a map of algebras, this is verified by
Lemma 3.2 and the following facts on ηs :

t2 + VιC3i and ηR(v±) = vi+t2&+t2 mod(^ί)

in V21Σ. In fact, by Lemma 3.2, we see that

C30+ C31 =

On the other hand, we compute
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q.e.d.

Note that vϊlΣ is not a Hopf algebroid and so (3.1) does not imply the above

lemma. In fact, do(v2) = do(v4)2+t2. This with (3.1) yields the following

Lemma 3.5. In vΐlΣ,

Lemma 3.6. There exist elements Xi of vϊlA with Xi = v$ mod(2, Vi) such

that

dθ(Xl)=VΪC31,

") and

for n>0. Here the integers an and bn are given by

a0=l and an=kan-ι + 2 (n>ϋ)

bo=Q, bι = 0 and 6n=4i«_ι+4 (n>l\

Proof. Define the elements Xi inductively as follows :

(3.7) X2=
inV3nv5 and

Then the lemma will be proved by induction. The first equation follows immedi-

ately from the Landweber formula: ηκ(v3) = V3 + Vιt2. The second and the third

are verified by (3.1). The others are inductively shown by Lemmas 3.4 and 3.5.

q.e.d.

4. The E2-term

Put L=v2~
1BP*/(2, vι) and M-z;2"

1SP*/(2, vT). Then we have the short

exact sequence

0 - >L-t-*M-^M - > 0 ,

which yields the long exact sequence

0 - > Ext°(L) ̂ ^ Ext °(

( U - ̂
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Here / is a i'-comodule map given by f(x)=x/Vι,

t%W)=Ext5(A N)

for a ^-comodule N9 and note that the Ext group Ext*(L) is determined in
Lemma 2.3.

We here introduce some notations :

K(2)*=Z/2[v2, V2ll K=K(2}M=Zl2[v,, v2,

For an element

denotes a cyclic ίί-module isomorphic to K/(vί)
generated by {x/Vι+z/Vι~l}^Ext*(M) for some

denotes a ίί-module isomorphic to vϊlK/K with
basis {x/vi+z/vi~l}j>oC:Ext*(M) for some z^

Note that these C*<#> are sub-^-module of Ext*(M).

We compute Ext*(M)=Extί(A % W(2, Vι}} from Ext*(L)=Ext$(A,
V21A/(2f Vi)) by using the following

Lemma 4.2. ([8, Remark 3.1l]) Let [x^λ^A be a set of generators of
K(2}*-module Extl(L), and {ξλ}λ<=Λ0 and {ξλj}λ<=Λι subsets of Extz(Af) such that
Λ=Λ0]1Λ1,

1) there exists a positive integer a(λ) for each λ^Λo such that

and

2) ξλ.ι=f*(xι\ vιξλj = ξu-ι and δi(ξλJ) = Q for

Suppose that the set {di(ξλ)}λ^ΛQ is linearly independent over K(2}*. Then

In this section, we will use Lemma 4.2 to compute Ext*(M), which is the
of the Adams-Novikov spectral sequence for computing ττ*(L2^0. Let p

denote the homology class of ExtXL) given in Lemma 2.3.

Lemma 4.3. There exist elements pi^QzV2lAl(2] such that

Pi = p mod(2, vi)

up to homology and

dι(pi)=0 mod(2, υΐ\
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Proof. In [9], Moreira constructed an element u^ΩzL such that

in the cobar complex ΩlL. Here ζ is represented by a cochain t2 + tl in ΩrLy and

p denotes a cocycle which represents the cohomology class p. Since t2 is

homologous to 0, so is p to ρ2. Hence define Pi= p21 and we have the lemma.

q.e.d.

For each /, there is an integer i such that Pi/vί is a cocycle. In this case, we

write

xp/vί=xpi/vί.

Such an abbreviation would not cause any confusion.

The main lemma of the last section implies

Lemma 4.4. For the connecting homomorphίsm δo in (4.1),

l ) and

for t>0, n>0.

Here vj/vί denotes a cocycle of the cobar complex whose leading term is vί/vi.

Therefore, we obtain the lemma by setting v$slvi=Xnlvi from Lemma 3.6. Now

apply Lemma 4.2 to obtain

Proposition 4.5. The Ext group Ext°(Λf) is a direct sum of CΌo<l> and

CAn<vln(2t+1)> for n>0 and t>0. Here A2n = an and A2n+ι = l + 2an.

These give us the cokernel of δo :

Corollary 4.6. The cokernel of δ0: Ext°(Af ) -> Ext^L) is a K(2)*-free

module generated by

V2t+1h2ι, vs'hso, vghsi and υlp

for t>0, u^T and uf^.2T. Here T is a subset of the natural numbers N:

T = {n: 4\n or 4i+1\(n~2bi-2} for some i>Q},

for έz =4(4z'-1-l)/3.
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Lemma 4.7. The complement U=N—T is given as

U={n: 2Xn or ^-2
for some &>0 and t>ύ}

For the computation of δi, we introduce other elements :

Lemma 4.8. Consider an element <p = v$+v$vl. Then there exist elements
z\ and H& in Σ such that

H2\ = t2 and fls2=fe4 mod(t ι)

in the cobar complex ΩΣV21

Proof. For an element φ = υl + v\Vz, we compute do(ψ) — Vιt2 by
it2 + vit2 in BP*[t2, fe, •••]. Now put

Then, the formula Δ(/34)=-^4^l + l^ tϊ+vttϊ® tϊ yields

fi?ι(//32) = 0 and H32=t£ mod(fι).

Furthermore, we compute

do(<p} = t3 + t3 + Vzt2 mod(t ι),

and so

Put, then,

H2ι = do(φ) + H*2+ ts

and we have

dι(H2i) = Q and H2i = Vzt2 mod(fι).

q.e.d.

Lemma 4.9. For the connecting homomorphism S\ : Ext^Λf ) - » Ext2(L),
we have

2ilvl+2a*) = vFlt+2^^
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/^/^^
vlt+1hslM = vlth2ιhs1 and

I/^/^

Proof. The first four equations follow immediately from Lemmas 4.4 and 4.8
with replacing v$h2\ by H2\. The fifth, sixth and eighth equations follow immedi-
ately from Lemmas 3.2 and 3.6. For the other equations, just put

ι/2Asl/ί;?*=^^

and we have the result by Lemma 3.6. q.e.d.

Now use Lemma 4.2, and we obtain

Proposition 4.10. Extl(M) is a direct sum of pExt°(M) and

^

Corollary 4.11. The cokernel of δi : Ext^Af ) — > Ext2(L) is a direct sum of
pCoker δo and a K(2) ^-module generated by

vlt+1h3Qh3i, vlu+lh2ιhsι and vlu'+lh2ιh™

for />0, 2u£T and uf£2T.

Lemma 4.12. For the connecting homomorphism δ2 : Ext^Λf ) — > Ext2(L),

we have

+1hMvl+2^

+1^

Proof. Note that &(^3ί+1feofeιM) = 5o(flί+1M)feoA3i since fe —ca/s are
cocycles by Lemma 3.2. Now the first equation follows from Lemmas 4.4 and 4.9.
For the other equations, use Lemmas 4.8 and 4.9 since d2(vlt+lh2\hzίlv\) =
δι(v3* hsi/v{)v3h2i if we use the representative H2\ for the cohomology class Vzh2\.

Again by Lemma 4.2, we obtain q.e.d.

Proposition 4.13. Ext2(Aί) is a direct sum of pe\M) and

θα,o(Cι

θ Cαft<
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Corollary 4.14. The cokernel of δ2: Ext2(M) -* Ext3(L) is a K(2)*-

module pCoker δi.

Now the following proposition follows immediately, by the same argument as

above.

Proposition 4.15. For n>3, Extn(Af) = 0, and

5. On the map /* : E2(X) -> E2(C)

As is stated in the introduction, C denotes the cofiber of X2 — > 1^2X2. Then

it is an ^-module spectrum and feo^flsCXi) induces a map feo : C— » C. In fact,
it is the composition

C,

in which v denotes the Xz-module structure. Then we have a cofiber sequence

Let Er(Y] denote the £r-term of the Adams-Novikov spectral sequence converg-
ing to τr*(L2 Y) for a spectrum F, and dfN

9 its differentials. Then this gives rise

to the exact sequence

Here E2ft(X)=Exts>ί(Af), whose structure is given in the previous section. We
further consider a cofiber E of feo: C —•> C. Then we have a commutative diagram

C — C -̂ -> X -̂ -> £C
4 vi I vi 4 ϋi 4 vi

(5.1) C ^̂  C ^̂  X ^̂  ΣC ,
I Λ I Λ 1 Λ I Λψ o 4 - 0 φ o φ o

ΣD -^ ΣD -!-+ ΣE -!-+ Σ2D

in which rows and columns are cofibrations.

Lemma 5.2. Let v\lv\ denote a generator of E2(X) as a
Z/2[vι, v2, vϊ1}-module. Then

Proof. If t = 2n(2s + ϊ) for some n, 5>0, then vljv\ is a homology class

represented by Xns+1/Vιn. For n — 0, the lemma is trivial. Now suppose that
j*(x%s+1/Vιn) = Q for even n = 2m. Then squaring this, we obtain
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for some w>0. Consider the diagram

induced from (5.1). Since δ(xns++ι1 /Vιn+1) is in the image of z* by Lemma 4.4,
3(υ%Ίvι} = ΰ in El(D) by the above diagram, and so 2\w since δ(v3/Vι) = wv3V~lh2ι

by Landweber's formula do(va) = Vιt2 + vίt2 in SP*[fe, fe, •••]. Thus we have

Square this, and we have

Notice that j*(x)= y if do(x)=yt2, where do(x) = ηR(x) — χ. A direct computation
shows us do(v3UXι/Vι) = V3Ut2/vΐ in the cobar complex ΩzM. Thus we have shown
inductively that j*(vϊ(2s+l}/vΛn) equals to 0 if n is even, and to υl* lvι for some u if
n is odd. q.e.d.

6. The Adams-Novikov differential

Consider the cofiber E of feo : Σ5D^D. Then by [7, Th. 7.1], we immediate-
ly obtain the following

Proposition 6.1. The Adams-Novikov spectral sequence for computing

) collapses from the E2-term.

Note that the E^-term for our X is

Lemma 6.2. For the Adams-Novikov differential d*N

d*N(v3/Vi) is a sum of the elements of the form vlu+lh2\h^plυί for i = Q, I and
k>\. Here vί/Vi is a generator of the Z/2[vι, v2, V2l}-module Mo.

Proof. Consider the diagram (5.1). The third column induces the long exact
sequence

---- > Ext3(M) — Ext3(M) — Ext4(L) - > -

of the £2-terms. If the 50 image of vϊ/vf is xΦQ, then d3(d3

AN(v$/vf)) = d3ANW =
0 by Proposition 6.1. Thus dAN(v3/Vι) is divisible by v\. Furthermore it implies
that Vst+1h3oh3ip/Vi cannot be a target of dAN . In fact, it is not divisible by v\ by
Proposition 4.15. Now the lemma follows from Lemma 4.15. q.e.d.
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Theorem 6.3. The Adams-Novikov spectral sequence for computing
π*(L2X} collapses from the E2-term.

Proof. By proposition 4.15, the Adams-Novikov differentials are all trivial
except for d3

ΛN : Eξ(X) -> El(X). So it is sufficient to show that dsΛN(vl/v{) = Q for
each v£/vi^Eξ(X). By Lemma 6.2,

(6.4) d3
U,

for some &>0, where λu,i^Z/2. Since

ds(i£u+lh2ih*ip/v$ = v$tt

in the cobar complex ΩrBP*(C\ we see that

(6.5) ;*(Σ ^.ί%2M+1feι WM2) =
U,ί u,

Now send (6.4) by /* and we have a contradiction to Lemma 5.2, which says
;*(«ίΛ>ί~*)=0 if &>0. If k=0 and j*(υS/v?)ΦQ, then

for some w^O as is seen in the proof of Lemma 5.2. Therefore, (6.4) and (6.5) yield

in E*(C) for some λu,t^Z/2. Now pull this back to E*(D} under the map z* :
> E*(C) to obtain the non-trivial differential

in E*(D), which again contradicts to a result of [7] which says d*N(v£k) = Q and

d3AN(vlk+2) = vlkhlo for ^>0. q.e.d.
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