

Title	The homotopy groups of a spectrum whose BP_*-homology is v^-1_2 BP_*/(2,v_1^ ∞)[t_1] $\otimes \Lambda$ (t ₂)
Author(s)	Masamoto, Keiko; Matsuhisa, Tsuyoshi; Shimomura, Katsumi
Citation	Osaka Journal of Mathematics. 1996, 33(1), p. 69-82
Version Type	VoR
URL	https://doi.org/10.18910/12343
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Masamoto, K., Matsuhisa, T., Shimomura, K. Osaka J. Math. 33 (1996), 69-82

THE HOMOTOPY GROUPS OF A SPECTRUM WHOSE *BP*_{*}-HOMOLOGY IS $v_2^{-1} BP_* / (2, v_1^{\infty}) [t_1] \otimes \Lambda (t_2)$

KEIKO MASAMOTO, TSUYOSHI MATSUHISA and KATSUMI SHIMOMURA

(Received May 12, 1994)

1. Introduction

In [5], Mahowald gave some examples of ring spectra obtained as Thom spectra. One of them is X_2 in [5], which is a Thom spectrum associated to ω : $\Omega S^2 \rightarrow BO$, where ω is a mapping corresponding to the generator of $\pi_1(BO)$. Let BP denote the Brown-Peterson spectrum at the prime 2. Then the spectrum X_2 is also characterized by the BP_* -homology $BP_*(X_2) = BP_*/(2)[t_1]$ as a subcomodule algera of $BP_*(BP)/(2) = BP_*/(2)[t_1, t_2, \cdots]$, where $BP_* = \mathbb{Z}_{(2)}[v_1, v_2, \cdots]$ over Hazewinkel's generators v_i (cf. [14]).

Relating to X_2 , consider a spectrum X constructed as follows: Let C be a cofiber of the Bousfield localization map $X_2 \rightarrow L_1 X_2$ with respect to the Johnson-Wilson spectrum E(1) with $\pi_*(E(1)) = \mathbb{Z}_{(2)}[v_1, v_1^{-1}]$. Then C is an X_2 -module spectrum since X_2 is a ring spectrum. Consider the element $h_{20} \in \pi_5(X_2)$. Now the spectrum X is a cofiber of a map $h_{20}: \Sigma^5 C \to C$. By this definition, the BP_* -homology of X is $BP_*(X) = BP/(2, v_1^{\infty})[t_1] \otimes A(t_2)$. Once we determined the homotopy groups $\pi_*(L_2X_2)$ in [17], the homotopy groups $\pi_*(L_2X)$ can be obtained from it. Here L_2 denotes the Bousfield localization functor with respect to the Johnson-Wilson spectrum E(2) with $\pi_*(E(2)) = \mathbb{Z}_{(2)}[v_1, v_2, v_2^{-1}]$ as a subalgebra of $v_2^{-1}BP_*$. But, in this paper, we compute, independently of [17], the homotopy groups $\pi_*(L_2X)$ of the $E(2)_*$ -localized spectrum of X by using the Adams-Novikov spectral sequence. The computation of the E_2 -term is done in the same manner as that of [17], using the v_1 -Bockstein spectral sequence. Different from the odd prime case, there may involve non-trivial differentials of the Adams-Novikov spectral sequence. On the other hand, different from the case for X_2 , this case may support at most one family of non-trivial differentials. In this sense, it is a little easier to determine the homotopy groups of L_2X than those of L_2X_2 . By using the results of [7], we show here that the differentials are all trivial, in a different fashion from that of [17], and have the E_{∞} -term of the spectral sequence. In order to state the result, consider the integers A_n defined by

 $A_0=1, A_{2n+1}=1+2A_{2n} \text{ and } A_{2n+2}=2A_{2n+1}$

for $n \ge 0$, and use the notations :

 $\begin{array}{l} C_{\infty}\langle x \rangle \text{ is a } \mathbb{Z}/2[v_{1}, v_{2}, v_{2}^{-1}]\text{-module isomorphic to} \\ \mathbb{Z}/2[v_{1}, v_{1}^{-1}, v_{2}, v_{2}^{-1}]/\mathbb{Z}/2[v_{1}, v_{2}, v_{2}^{-1}] \\ \text{generated by elements } \{x/v_{1}^{i}\}_{j>0} \text{ such that } v_{1}(x/v_{1}^{j}) = x/v_{1}^{j-1}. \\ C_{j}\langle x \rangle \text{ is a cyclic } \mathbb{Z}/2[v_{1}, v_{2}, v_{2}^{-1}]\text{-module isomorphic to} \\ \mathbb{Z}/2[v_{1}, v_{2}, v_{2}^{-1}]/(v_{1}^{j}) \\ \text{generated by an element } x/v_{1}^{j}. \end{array}$

Theorem. The E_{∞} -term of the Adams-Novikov spectral sequence for computing $\pi_*(L_2X)$ is a $\mathbb{Z}/2[v_1, v_2, v_2^{-1}]$ -module

 $M_* \otimes \Lambda(\rho).$

Here, the graded $\mathbb{Z}/2[v_1, v_2, v_2^{-1}]$ -module M_* is given by :

$$\begin{split} M_{0} &= C_{\infty} \langle 1 \rangle \oplus \oplus_{n,t \geq 0} C_{An} \langle v_{3}^{2(2t+1)} \rangle, \\ M_{1} &= \bigoplus_{t \geq 0} (C_{1} \langle v_{3}^{2t+1} h_{30} \rangle \oplus C_{1} \langle v_{3}^{2t+1} h_{31} \rangle \oplus C_{3} \langle v_{3}^{4t+2} h_{30} \rangle) \\ &\oplus \bigoplus_{n \geq 0, t \geq 0} C_{An} \langle v_{3}^{2^{2}(2t+1)+1} h_{21} \rangle \\ &\oplus \bigoplus_{t,k \geq 0} (C_{A_{2k+1}} \langle v_{3}^{4^{k}(4t+2)+b_{k+1}} h_{30} \rangle \oplus C_{A_{2k}} \langle x_{3}^{4^{k}(2t+1)+b_{k+1}/2} h_{31} \rangle), \\ M_{2} &= \bigoplus_{t \geq 0} C_{1} \langle v_{3}^{2^{2}t+1} h_{30} h_{31} \rangle \\ &\oplus \bigoplus_{t,k \geq 0} (C_{A_{2k+1}} \langle v_{3}^{4^{k}(4t+2)+b_{k+1}+1} h_{21} h_{30} \rangle \\ &\oplus C_{A_{2k}} \langle v_{3}^{4^{k}(2t+1)+(b_{k+1}/2)+1} h_{21} h_{31} \rangle) \text{ and } \\ M_{n} &= 0 \text{ for } n > 2. \end{split}$$

Furthermore, the generators have the following degrees :

 $|v_3|=14, |h_{20}|=5, |h_{21}|=11, |h_{30}|=13, and |h_{31}|=27.$

In the theorem, an element x has a degree r if $x \in \pi_r(L_2X)$.

This paper is organized as follows: In the next section, we recall some facts known about the v_1 -Bockstein spectral sequence. In §3, we define elements x_n , which will play the main role in the computation of the Bockstein spectral sequence. We compute E_2 -terms of the Adams-Novikov spectral sequence computing the homotopy groups $\pi_*(L_2X)$ in §4, by using the tools given in the previous sections. In section 5, we prepare some lemmas to compute the Adams-Novikov differentials in the last section using the results of [7].

2. The Bockstein spectral sequence

Let (A, Γ) denote a Hopf algebroid with Γ A-flat. Then it is known (cf. [14, Ch. A1]) that the category of Γ -comodules has enough injectives and so we can define the Ext groups as a cohomology of an injective resolution. Furthermore it

is given by a cohomology of the cobar resolution. So we can define $\operatorname{Ext}_{\Gamma}^{n}(A, M) = H^{n}(\Omega_{\Gamma}^{*}M)$ for a Γ -comodule M, where $\Omega_{\Gamma}^{*}M$ is a cobar complex (cf. [14]). The cobar complex $\Omega_{\Gamma}^{*}M$ is a defineratial graded module with

$$\Omega^{s}_{\Gamma}M = M \otimes_{A} \Gamma \otimes_{A} \cdots \otimes_{A} \Gamma \quad (s \text{ copies of } \Gamma),$$

and the differentials $d_r: \Omega_r^r M \to \Omega_r^{r+1} M$ defined inductively by

$$d_0(m) = \psi(m) - m \otimes 1$$
 and $d_r(x \otimes y) = d_s(x) \otimes y + (-1)^s x \otimes d_t(y)$

for $x \in \Omega_r^s M$ and $y \in \Omega_r^t A$. Here $\psi : M \to M \otimes_A \Gamma$ denotes the comodule structure map of M. In the following, every comodule is induced from A and so we use η_R for ψ .

Suppose that $A = \mathbb{Z}_{(2)}[v_1, v_2, \cdots]$ and $\Gamma = A[t_1, t_2, \cdots]$. Consider a Hopf algebroid $\mathcal{P} = A[t_1] \otimes A(t_2)$ and a coalgebroid $\Sigma = \Gamma \Box \Phi A$ over A. Then $\Sigma = A[t_2^2, t_3, \cdots]$ and we have the change of rings theorem :

Lemma 2.1. For a comodule A, there is an isomorphism

$$\operatorname{Ext}_{\Gamma}^{*}(A, M \otimes_{A} \Phi) \cong \operatorname{Ext}_{\Sigma}^{*}(A, M).$$

Proof. Consider a relative injective Γ -resolution of $M \otimes_A \varphi$:

$$M \otimes_A \varPhi \longrightarrow I_0 \otimes_A \Gamma \longrightarrow I_1 \otimes_A \Gamma \longrightarrow \cdots,$$

which is split as A-modules. Then apply the cotensor product $-\Box \varphi A$ and we obtain a relative injective Σ -resolution of M:

 $M \longrightarrow I_0 \otimes_A \Sigma \longrightarrow I_1 \otimes_A \Sigma \longrightarrow \cdots,$

since $\Sigma = \Gamma \Box \phi A$. Thus the both Ext groups are obtained from the same complex $I_0 \rightarrow I_1 \rightarrow \cdots$. q.e.d.

In this paper, we will compute $\operatorname{Ext}_{F}^{*}(A, v_{2}^{-1}A/(2, v_{1}^{\infty})\otimes_{A} \boldsymbol{\Phi})$. By virtue of this lemma, we will work in the category of Σ -comodules. In order to compute the Ext groups $\operatorname{Ext}_{\Sigma}^{*}(A, v_{2}^{-1}A/(2, v_{1}^{\infty}))$, we adopt the v_{1} -Bockstein spectral sequence with E_{1} -term

Ext^{*}_{$$\Sigma$$}(A, $v_2^{-1}A/(2, v_1)$).

To compute the E_1 -term we recall [7] the structure

(2.2)
$$\operatorname{Ext}_{F}^{*}(A, v_{2}^{-1}A/(2, v_{1})[t_{1}]) = K(2)_{*}[v_{3}, h_{20}] \otimes \Lambda(h_{21}, h_{30}, h_{31}, \rho_{2}).$$

This is shown by using the change of rings theorems

$$\operatorname{Ext}_{F}^{*}(A, v_{2}^{-1}A/(2, v_{1})[t_{1}]) = \operatorname{Ext}_{K(2)*K(2)}^{*}(K(2)*, K(2)*[t_{1}])$$

=
$$\operatorname{Ext}_{S(2,2)}^{*}(\mathbb{Z}/2, \mathbb{Z}/2) \otimes_{K(2)*}K(2)*[v_{3}],$$

in which $K(2)_* = \mathbb{Z}/2[v_2, v_2^{-1}], K(2)_*K(2) = K(2)_* \otimes_A \Gamma \otimes_A K(2)_*$ and S(2,2) =

 $\mathbb{Z}/2[t_2, t_3, \cdots]/(t_i^4 - t_i: i > 1)$. Note here that the action of A on $K(2)_*$ is given by sending v_i to 0 for $i \neq 2$ and v_2 to v_2 , and $(K(2)_*, K(2)_*K(2))$ becomes a Hopf algebroid induced from (A, Γ) . The second equation follows from the $K(2)_*K(2)$ -comodule structure $K(2)_*[t_1] = K(2)_*[t_1]/(v_2t_1^4 + v_2^2t_1) \otimes_{K(2)_*}K(2)_*[v_3]$ which is obtained from Landweber's formula $\eta_R(v_3) \equiv v_3 + v_2t_1^4 + v_2^2t_1 \mod (2, v_1)$.

Lemma 2.3. The E_1 -term is given by

Ext^{*}₂(A, $v_2^{-1}A/(2, v_1)) = K(2)_*[v_3] \otimes \Lambda(h_{21}, h_{30}, h_{31}, \rho),$

where $K(2)_* = \mathbb{Z}/(2)[v_2, v_2^{-1}]$ and h_{21} , h_{30} , h_{31} and ρ are the homology classes represented by t_2^2 , t_3 , t_3^2 and $v_2^5 t_4 + t_4^2$ in the cobar complex, respectively.

Proof. Let H^*M for a Γ -comodule M denote the Ext group $\operatorname{Ext}_{\Gamma}^*(A, M)$, and E_* and D_* be Γ -comodules

$$E_* = v_2^{-1} A/(2, v_1)[t_1] \otimes A(t_2)$$
 and $D_* = v_2^{-1} A/(2, v_1)[t_1].$

Then the short exact sequence $0 \to D_* \subset E_* \to \Sigma^{-6}D_* \to 0$ of Γ -comodules yields the long exact sequence

$$\cdots \longrightarrow H^{s,t}D_* \longrightarrow H^{s,t}E_* \longrightarrow H^{s,t-6}D_* \stackrel{\delta}{\longrightarrow} H^{s+1,t}D_* \longrightarrow \cdots$$

with $\delta(x) = h_{20}x$. By (2.2),

$$H^*D_* = K(2)_*[v_3, h_{20}] \otimes \Lambda(h_{21}, h_{30}, h_{31}, \rho_2).$$

This shows that $h_{20}: H^s D_* \rightarrow H^{s+1} D_*$ is a monomorphism and we have the lemma. q.e.d.

3. The elements x_n

In this section we will define elements x_n such that

$$x_n \equiv v_3^{2^n} \mod(2, v_1) \text{ and } d_0(x_n) \equiv v_1^{e_n} g_n,$$

in which g_n repesents a generator of $\operatorname{Ext}_{\Sigma}^{1}(A, v_2^{-1}A/(2, v_1))$ and e_n to be taken as greate as possible. These elements play a central role in the Bockstein spectral sequence.

Hereafter we use the following abbreviation :

Ext*(N)=Ext
$$\sharp(A, N)$$
 for a comodule N,
 $M(j)=v_2^{-1}A/(2, v_1^j)$ and $M=\lim_{i \to j} M(j)=v_2^{-1}A/(2, v_1^\infty).$

Then note that

$$BP_*(L_2X) = M \bigotimes_A \Phi$$
 and $Ext^*(M) = Ext^*_{\Gamma}(A, BP_*(L_2X)).$

In $v_2^{-1}BP_*/(2)$, we define elements x_n , which will be used to define elements of Ext*(*M*). From here on, we compute everything with setting $v_2=1$ for the sake of simplicity. We also write

$$x \equiv y \mod(v_1^j)$$

for x, $y \in \Omega_{\Sigma}^* M$ if x = y in the cobar complex $\Omega_{\Sigma}^* M(j)$.

We first introduce elements c_{3i} (i=0, 1) and \tilde{c}_{31} in $\Sigma = A[t_2^2, t_3, \cdots]$ defined by

(3.1)
$$v_{1}^{2}c_{30} = d_{0}(v_{4}^{2} + v_{1}^{2}v_{5}) + t_{2}^{8} + t_{2}^{2}, v_{1}c_{31} = d_{0}(v_{4}) + t_{4}^{4} \text{ and} \widetilde{c}_{31} = c_{31} + v_{1}(v_{3}^{2}c_{31} + v_{3}t_{2}^{2}).$$

Lemma 3.2. The cochains c_{30} and c_{31} are cocycles of the cobar complex $\Omega_{\Sigma}^{1}M(j)$ for any j > 0. Furthermore,

$$c_{30} \equiv t_3 + v_3 t_2^8 \mod(v_1) \text{ and } c_{31} \equiv t_3^2 + v_1 v_3 t_2^2 \mod(v_1^4).$$

Proof. Since $d_1d_0=0$, $d_1(t_2)=0$ and $d_0(v_1)=0$, the first part of the lemma follows immediately from the definition, since the multiplication by v_1 on $\Omega_z^1 M(j)$ is monomorphic. The latter half is shown by the direct computation using

(3.3)
$$\begin{aligned} \eta_R(v_1^2) &= v_1^2, \ \eta_R(v_4) \equiv v_4 + v_2 t_2^4 + v_1 t_3^2 + v_1^2 v_3 t_2^2 \mod(v_1^5), \\ \eta_R(v_4^2) \equiv v_4^2 + v_2^2 t_2^8 + v_2^8 t_2^2 + v_1^2 t_3^4 + v_1^4 v_3^2 t_2^4 \mod(v_1^{10}), \text{ and} \\ \eta_R(v_5) \equiv v_5 + v_3 t_2^8 + v_2 t_3^4 + v_2^8 t_3 \mod(v_1) \end{aligned}$$

in Σ , noticing that $d_0(x) = \eta_R(x) - x$. In fact, $d_0(v_4^2 + v_1^2 v_5) \equiv t_2^8 + t_2^2 + v_1^2 t_3 + v_1^2 v_3 t_2^8 \mod(v_1^3)$, by setting $v_2 = 1$, which gives c_{30} . For c_{31} , follows from $\eta_R(v_4)$. q.e.d.

Lemma 3.4. Put $\varphi_1 = v_1 v_3^2 (v_4 + v_4^4)$, and we have

$$d_0(\varphi_1) \equiv v_1(c_{30}^2 + \tilde{c}_{31}) \mod(v_1^3)$$

in $v_2^{-1}\Sigma = v_2^{-1}A[t_2^2, t_3, \cdots].$

Proof. Since $d_0(x) = \eta_R(x) - x$ and η_R is a map of algebras, this is verified by Lemma 3.2 and the following facts on η_R :

$$\eta_R(v_1) = v_1, \ \eta_R(v_2) = v_2, \\ \eta_R(v_3^2) \equiv v_3^2 \ \operatorname{mod}(v_1^2), \\ \eta_R(v_4) = v_4 + t_2^4 + v_1 c_{31} \ \operatorname{and} \ \eta_R(v_4^4) \equiv v_4^4 + t_2^{16} + t_2^4 \ \operatorname{mod}(v_1^4)$$

in $v_2^{-1}\Sigma$. In fact, by Lemma 3.2, we see that

$$c_{30}^2 + \tilde{c}_{31} \equiv v_3^2 t_2^{16} + v_1 v_3^2 c_{31}.$$

On the other hand, we compute

$$d_0(\varphi_1) \equiv v_1 v_3^2 d_0(v_4 + v_4^4) \equiv v_1 v_3^2(v_1 c_{31} + t_2^{16}).$$
 q.e.d.

Note that $v_2^{-1}\Sigma$ is not a Hopf algebroid and so (3.1) does not imply the above lemma. In fact, $d_0(v_4^2) = d_0(v_4)^2 + t_2^2$. This with (3.1) yields the following

Lemma 3.5. In $v_2^{-1}\Sigma$,

$$d_0(v_1^6v_5) = v_1^6(c_{31}^2 + c_{30}).$$

Lemma 3.6. There exist elements x_i of $v_2^{-1}A$ with $x_i \equiv v_3^{2i} \mod(2, v_1)$ such that

$$d_{0}(x_{0}) = v_{1}t_{2}^{2},$$

$$d_{0}(x_{1}) = v_{1}^{3}c_{31},$$

$$d_{0}(x_{2}) = v_{1}^{6}c_{30},$$

$$d_{0}(x_{2n+1}) \equiv v_{1}^{1+2a_{n}}v_{3}^{2b_{n}}(v_{3}^{2}c_{31}+v_{3}t_{2}^{2}) \mod(v_{1}^{2+2a_{n}}) \text{ and }$$

$$d_{0}(x_{2n+2}) \equiv v_{1}^{a_{n+1}}v_{3}^{b_{n+1}}c_{30} \mod(v_{1}^{1+a_{n+1}})$$

for n > 0. Here the integers a_n and b_n are given by

$$a_0=1$$
 and $a_n=4a_{n-1}+2$ $(n>0)$
 $b_0=0, b_1=0$ and $b_n=4b_{n-1}+4$ $(n>1)$.

Proof. Define the elements x_i inductively as follows :

(3.7)

$$\begin{array}{rcl}
x_{0} = v_{3}, \\
x_{1} = v_{3}^{2} + v_{1}^{2} v_{4}, \\
x_{2} = x_{1}^{2} + v_{1}^{6} v_{5}, \\
x_{2n} = x_{2n-1}^{2} + v_{1}^{an} v_{3}^{bn} v_{5} \text{ and} \\
x_{2n+1} = x_{2n}^{2} + v_{1}^{2an-1} v_{3}^{2bn} \varphi_{1} + v_{1}^{2an-3} v_{3}^{2bn} x_{1}.
\end{array}$$

Then the lemma will be proved by induction. The first equation follows immediately from the Landweber formula: $\eta_R(v_3) = v_3 + v_1 t_2^2$. The second and the third are verified by (3.1). The others are inductively shown by Lemmas 3.4 and 3.5.

q.e.d.

4. The E_2 -term

Put $L = v_2^{-1}BP_*/(2, v_1)$ and $M = v_2^{-1}BP_*/(2, v_1^{\infty})$. Then we have the short exact sequence

$$0 \longrightarrow L \xrightarrow{f} M \xrightarrow{v_1} M \longrightarrow 0,$$

which yields the long exact sequence

(4.1)
$$0 \longrightarrow \operatorname{Ext}^{0}(\underline{L}) \xrightarrow{f_{*}} \operatorname{Ext}^{0}(\underline{M}) \xrightarrow{v_{1}} \operatorname{Ext}^{0}(\underline{M}) \xrightarrow{\delta_{0}} \cdots \cdots \xrightarrow{\delta_{n-1}} \operatorname{Ext}^{n}(\underline{L}) \xrightarrow{f_{*}} \operatorname{Ext}^{n}(\underline{M}) \xrightarrow{v_{1}} \operatorname{Ext}^{n}(\underline{M}) \longrightarrow \cdots$$

Here f is a Σ -comodule map given by $f(x) = x/v_1$,

$$\operatorname{Ext}^{n}(N) = \operatorname{Ext}^{n}_{\Sigma}(A, N)$$

for a Σ -comodule N, and note that the Ext group $\text{Ext}^*(L)$ is determined in Lemma 2.3.

We here introduce some notations :

$$K(2)_* = \mathbb{Z}/2[v_2, v_2^{-1}], K = K(2)_*[v_1] = \mathbb{Z}/2[v_1, v_2, v_2^{-1}].$$

For an element $x \in Ext^*(L)$,

- $C_n\langle x \rangle$ denotes a cyclic K-module isomorphic to $K/(v_1^n)$ generated by $\{x/v_1^n + z/v_1^{n-1}\} \in \operatorname{Ext}^*(M)$ for some $z \in \mathcal{Q}_x^* v_2^{-1} BP_*/(2).$
- $C_{\infty}\langle x \rangle$ denotes a K-module isomorphic to $v_1^{-1}K/K$ with basis $\{x/v_1^i + z/v_1^{j-1}\}_{j>0} \subset \operatorname{Ext}^*(M)$ for some $z \in \Omega_{\Sigma}^{\infty} v_2^{-1}BP_*/(2)$.

Note that these $C_*\langle x \rangle$ are sub-K-module of $\text{Ext}^*(M)$.

We compute $\operatorname{Ext}^*(M) = \operatorname{Ext}^*_{\Sigma}(A, v_2^{-1}A/(2, v_1^{\infty}))$ from $\operatorname{Ext}^*(L) = \operatorname{Ext}^*_{\Sigma}(A, v_2^{-1}A/(2, v_1))$ by using the following

Lemma 4.2. ([8, Remark 3.11]) Let $\{x_{\lambda}\}_{\lambda \in \Lambda}$ be a set of generators of $K(2)_*$ -module $\operatorname{Ext}^i(L)$, and $\{\xi_{\lambda}\}_{\lambda \in \Lambda_0}$ and $\{\xi_{\lambda,j}\}_{\lambda \in \Lambda_1}$ subsets of $\operatorname{Ext}^i(M)$ such that $\Lambda = \Lambda_0 \prod \Lambda_1$,

1) there exists a positive integer $a(\lambda)$ for each $\lambda \in \Lambda_0$ such that

$$v_1^{a(\lambda)-1}\xi_{\lambda} = f_*(x_{\lambda})$$
 and
 $\delta_i(\xi_{\lambda}) \neq 0,$

2) $\xi_{\lambda,1} = f_*(x_\lambda)$, $v_1 \xi_{\lambda,j} = \xi_{\lambda,j-1}$ and $\delta_i(\xi_{\lambda,j}) = 0$ for $\lambda \in \Lambda_1$.

Suppose that the set $\{\delta_i(\xi_\lambda)\}_{\lambda \in \Lambda_0}$ is linearly independent over $K(2)_*$. Then Extⁱ $(M) = \bigoplus_{\lambda \in \Lambda_0} C_{a(\lambda)}\langle x_\lambda \rangle \oplus \bigoplus_{\lambda \in \Lambda_1} C_{\infty}\langle x_\lambda \rangle$.

In this section, we will use Lemma 4.2 to compute $\text{Ext}^*(M)$, which is the E_2 -term of the Adams-Novikov spectral sequence for computing $\pi_*(L_2X)$. Let ρ denote the homology class of $\text{Ext}^1(L)$ given in Lemma 2.3.

Lemma 4.3. There exist elements $\rho_i \in \Omega_{\Sigma}^1 v_2^{-1} A/(2)$ such that

 $\rho_i \equiv \rho \mod(2, v_1)$

up to homology and

$$d_1(\rho_i) \equiv 0 \mod(2, v_1^{2^i}).$$

Proof. In [9], Moreira constructed an element $u \in \Omega_{\Sigma}^{1}L$ such that

$$d_0(u) \!=\! (\, \widetilde{
ho} \!+\! \zeta) \!+\! (\, \widetilde{
ho} \!+\! \zeta)^2 \ =\! (\, \widetilde{
ho} \!+\! t_2^2) \!+\! \widetilde{
ho}^2 \!+\! t_2^2 \!+\! t_2^4$$

in the cobar complex $\Omega_{\Sigma}^{2}L$. Here ζ is represented by a cochain $t_{2} + t_{2}^{2}$ in $\Omega_{\Gamma}^{1}L$, and $\tilde{\rho}$ denotes a cocycle which represents the cohomology class ρ . Since t_{2}^{4} is homologous to 0, so is $\tilde{\rho}$ to $\tilde{\rho}^{2}$. Hence define $\rho_{i} = \tilde{\rho}^{2i}$ and we have the lemma. q.e.d.

For each j, there is an integer i such that ρ_i/v_1^j is a cocycle. In this case, we write

 $x\rho/v_1^j = x\rho_i/v_1^j$.

Such an abbreviation would not cause any confusion.

The main lemma of the last section implies

Lemma 4.4. For the connecting homomorphism δ_0 in (4.1),

$$\begin{array}{c} \delta_0(v_3^{2t+1}/v_1) = v_3^{2t}h_{21},\\ \delta_0(v_3^{4t+2}/v_1^3) = v_3^{4t}h_{31},\\ \delta_0(v_3^{8t+4}/v_1^6) = v_3^{8t}h_{30},\\ \delta_0(v_3^{4n(4t+2)}/v_1^{1+2a_n}) = v_3^{4n+1t+2bn}(v_3^2h_{31}+v_3h_{21}) \text{ and }\\ \delta_0(v_3^{4n+1(2t+1)}/v_1^{an+1}) = v_3^{2\cdot4^{n+1}t+bn+1}h_{30} \end{array}$$

for $t \ge 0, n > 0$.

Here v_3^s/v_1^j denotes a cocycle of the cobar complex whose leading term is v_3^s/v_1^j . Therefore, we obtain the lemma by setting $v_3^{2^*s}/v_1^j = x_n^s/v_1^j$ from Lemma 3.6. Now apply Lemma 4.2 to obtain

Proposition 4.5. The Ext group $\text{Ext}^{0}(M)$ is a direct sum of $C_{\infty}\langle 1 \rangle$ and $C_{An}\langle v_{3}^{2^{n}(2t+1)} \rangle$ for $n \geq 0$ and $t \geq 0$. Here $A_{2n} = a_{n}$ and $A_{2n+1} = 1 + 2a_{n}$.

These give us the cokernel of δ_0 :

Corollary 4.6. The cokernel of δ_0 : Ext⁰(M) \rightarrow Ext¹(L) is a $K(2)_*$ -free module generated by

$$v_3^{2t+1}h_{21}, v_3^{u'}h_{30}, v_3^{u}h_{31} and v_3^{t}\rho$$

for $t \ge 0$, $u \notin T$ and $u' \notin 2T$. Here T is a subset of the natural numbers N:

$$T = \{n: 4 | n \text{ or } 4^{i+1} | (n-2b_i-2) \text{ for some } i > 0\},\$$

for $b_i = 4(4^{i-1}-1)/3$.

76

Lemma 4.7. The complement U=N-T is given as

$$U = \{n: 2 \nmid n \text{ or } n = 2 \cdot 4^{k} t + 6 \cdot 4^{k-1} + 2(4^{k-1} - 1)/3$$

for some $k > 0$ and $t \ge 0\}$

For the computation of δ_1 , we introduce other elements :

Lemma 4.8. Consider an element $\varphi = v_5 + v_3 v_4^2$. Then there exist elements H_{21} and H_{32} in Σ such that

$$d_0(\varphi) = H_{32} + t_3 + H_{21}, \ d_1(H_{21}) = 0 = d_1(H_{32}), H_{21} \equiv t_2^2 \quad and \quad H_{32} \equiv t_3^4 \mod(v_1)$$

in the cobar complex $\Omega_{\Sigma}^1 v_2^{-1} A/(2)$.

Proof. For an element $\psi = v_3^2 + v_1^7 v_3$, we compute $d_0(\psi) = v_1^2 t_2^4$ by $\eta_R(v_3) = v_3 + v_1 t_2^2 + v_1^4 t_2$ in $BP_*[t_2, t_3, \cdots]$. Now put

$$H_{32} = t_3^4 + v_1^2 \psi t_2^4$$

Then, the formula $\Delta(t_3^4) = t_3^4 \otimes 1 + 1 \otimes t_3^4 + v_1^4 t_2^4 \otimes t_2^4$ yields

$$d_1(H_{32}) = 0$$
 and $H_{32} \equiv t_3^4 \mod(v_1)$

Furthermore, we compute

$$d_0(\varphi) \equiv t_3^4 + t_3 + v_3 t_2^2 \mod(v_1),$$

and so

$$d_0(\varphi) \equiv H_{32} + t_3 + v_3 t_2^2 \mod(v_1).$$

Put, then,

$$H_{21} = d_0(\varphi) + H_{32} + t_3$$

and we have

$$d_1(H_{21})=0$$
 and $H_{21}\equiv v_3t_2^2 \mod(v_1)$.

q.e.d.

Lemma 4.9. For the connecting homomorphism $\delta_1 : \operatorname{Ext}^1(M) \longrightarrow \operatorname{Ext}^2(L)$, we have

$$\begin{split} \delta_1(v_3^{4^{t+3}}h_{21}/v_1^3) &= v_3^{4^{t+1}}h_{21}h_{31},\\ \delta_1(v_3^{8^{t+5}}h_{21}/v_1^6) &= v_3^{8^{t+1}}h_{21}h_{30},\\ \delta_1(v_3^{4^{n(4t+2)+1}}h_{21}/v_1^{1+2a_n}) &= v_3^{4^{n+1}t+2b_n+1}h_{21}(v_3^2h_{31}+v_3h_{21}),\\ \delta_1(v_3^{4^{n+1}(2t+1)+1}h_{21}/v_1^{a_{n+1}}) &= v_3^{2\cdot 4^{n+1}t+b_{n+1}+1}h_{21}h_{30}\\ \delta_1(v_3^{2^{t+1}}h_{30}/v_1) &= v_3^{2^{t}}h_{21}h_{30}, \end{split}$$

$$\begin{split} \delta_1(v_3^{4^{t+2}}h_{30}/v_1^3) &= v_3^{4^t}h_{30}h_{31},\\ \delta_1(v_3^{4^{k}(4t+2)+b_{k+1}}h_{30}/v_1^{1+2a_k}) &= v_3^{4^{k}(4t+2)-2}h_{30}(h_{31}+v_3^{-1}h_{21}),\\ \delta_1(v_3^{2^{t+1}}h_{31}/v_1) &= v_3^{2^t}h_{21}h_{31} \quad and\\ \delta_1(v_3^{4^{k}(2t+1)+b_{k+1}/2}h_{31}/v_1^{a_k}) &= v_3^{4^{k}(2t+1)-2}h_{30}(h_{31}+v_3^{-1}h_{21}). \end{split}$$

Proof. The first four equations follow immediately from Lemmas 4.4 and 4.8 with replacing v_3h_{21} by H_{21} . The fifth, sixth and eighth equations follow immediately from Lemmas 3.2 and 3.6. For the other equations, just put

$$v_{3}^{4^{k}(4t+2)+b_{k+1}}h_{30}/v_{1}^{1+2a_{k}} = v_{3}^{4^{k}(4t+2)}d_{0}(x_{2k+2})/v_{1}^{1+2a_{k}+a_{k+1}} \text{ and } \\ v_{3}^{4^{k}(2t+1)+b_{k+1}/2}h_{31}/v_{1}^{a_{k}} = v_{3}^{4^{k}(2t+1)}d_{0}(x_{2k+1})/v_{1}^{a_{k}+1+2a_{k}},$$

and we have the result by Lemma 3.6.

Now use Lemma 4.2, and we obtain

Proposition 4.10. Ext¹(M) is a direct sum of
$$\rho$$
Ext⁰(M) and

$$e^{1}(M) = \bigoplus_{t \ge 0} (C_{1} \langle v_{3}^{2t+1} h_{30} \rangle \oplus C_{1} \langle v_{3}^{2t+1} h_{31} \rangle \oplus C_{3} \langle v_{3}^{4t+2} h_{30} \rangle) \\ \oplus \bigoplus_{n > 0, t \ge 0} C_{A_{n}} \langle v_{3}^{2^{n}(2t+1)+1} h_{21} \rangle \\ \oplus \bigoplus_{t,k \ge 0} (C_{1+2a_{k}} \langle v_{3}^{4^{k}(4t+2)+b_{k+1}} h_{30} \rangle \oplus C_{a_{k}} \langle v_{3}^{4^{k}(2t+1)+b_{k+1}/2} h_{31} \rangle).$$

Corollary 4.11. The cokernel of δ_1 : $\operatorname{Ext}^1(M) \to \operatorname{Ext}^2(L)$ is a direct sum of ρ Coker δ_0 and a $K(2)_*$ -module generated by

$$v_3^{2t+1}h_{30}h_{31}, v_3^{2u+1}h_{21}h_{31} and v_3^{2u'+1}h_{21}h_{30}$$

for $t \ge 0$, $2u \notin T$ and $u' \notin 2T$.

Lemma 4.12. For the connecting homomorphism $\delta_2 : \operatorname{Ext}^1(M) \to \operatorname{Ext}^2(L)$, we have

$$\begin{split} \delta_2(v_3^{2t+1}h_{30}h_{31}/v_1) &= v_3^{2t}h_{21}h_{30}h_{31}, \\ \delta_2(v_3^{4t+3}h_{21}h_{30}/v_1^3) &= v_3^{4t+1}h_{21}h_{30}h_{31}, \\ \delta_2(v_3^{4k(4t+2)+b_{k+1}+1}h_{21}h_{30}/v_1^{1+2a_k}) &= v_3^{4k(4t+2)-1}h_{21}h_{30}h_{31}, \\ \delta_2(v_3^{4k(2t+1)+(b_{k+1}/2)+1}h_{21}h_{31}/v_1^{a_k}) &= v_3^{4k(2t+1)-1}h_{21}h_{30}h_{31}. \end{split}$$

Proof. Note that $\delta_2(v_3^{2t+1}h_{30}h_{31}/v_1) = \delta_0(v_3^{2t+1}/v_1)h_{30}h_{31}$ since $h_{3i} = c_{3i}$'s are cocycles by Lemma 3.2. Now the first equation follows from Lemmas 4.4 and 4.9. For the other equations, use Lemmas 4.8 and 4.9 since $\delta_2(v_3^{2t+1}h_{21}h_{3i}/v_1^i) = \delta_1(v_3^{2t}h_{3i}/v_1^i)v_3h_{21}$ if we use the representative H_{21} for the cohomology class v_3h_{21} .

Again by Lemma 4.2, we obtain

q.e.d.

Proposition 4.13. Ext²(M) is a direct sum of $\rho e^{1}(M)$ and

$$e^{2}(M) = \bigoplus_{t,k\geq 0} (C_{1+2a_{k}} \langle v_{3}^{4^{k}(4t+2)+b_{k+1}+1}h_{21}h_{30} \rangle \\ \oplus C_{a_{k}} \langle v_{3}^{4^{k}(2t+1)+(b_{k+1}/2)+1}h_{21}h_{31} \rangle) \oplus C_{1} \langle v_{3}^{2t+1}h_{30}h_{31} \rangle)$$

q.e.d.

Corollary 4.14. The cokernel of $\delta_2 : \operatorname{Ext}^2(M) \to \operatorname{Ext}^3(L)$ is a $K(2)_*$ -module ρ Coker δ_1 .

Now the following proposition follows immediately, by the same argument as above.

Proposition 4.15. For n > 3, $Ext^n(M) = 0$, and

$$\operatorname{Ext}^{3}(M) = \rho e^{2}(M).$$

5. On the map $j_*: E_2(X) \rightarrow E_2(C)$

As is stated in the introduction, C denotes the cofiber of $X_2 \rightarrow L_2 X_2$. Then it is an X_2 -module spectrum and $h_{20} \in \pi_5(X_2)$ induces a map $h_{20}: C \rightarrow C$. In fact, it is the composition

$$C = S^0 \wedge C \xrightarrow{h_{20} \wedge C} X_2 \wedge C \xrightarrow{\nu} C,$$

in which ν denotes the X₂-module structure. Then we have a cofiber sequence

$$\Sigma^5 C \xrightarrow{h_{20}} C \xrightarrow{i} X \xrightarrow{j} \Sigma^6 C.$$

Let $E_r^*(Y)$ denote the E_r -term of the Adams-Novikov spectral sequence converging to $\pi_*(L_2Y)$ for a spectrum Y, and d_r^{AN} , its differentials. Then this gives rise to the exact sequence

$$0 \longrightarrow E_2^{0,t}(C) \xrightarrow{i_*} E_2^{0,t}(X) \xrightarrow{j_*} E_2^{0,t-6}(C) \xrightarrow{\delta} E_2^{1,t}(C) \longrightarrow \cdots.$$

Here $E_2^{s,t}(X) = \operatorname{Ext}^{s,t}(M)$, whose structure is given in the previous section. We further consider a cofiber E of $h_{20}: C \to C$. Then we have a commutative diagram

in which rows and columns are cofibrations.

Lemma 5.2. Let v_3^t/v_1^A denote a generator of $E_2(X)$ as a $\mathbb{Z}/2[v_1, v_2, v_2^{-1}]$ -module. Then

$$j_*(v_3^t/v_1^{A-1})=0.$$

Proof. If $t=2^n(2s+1)$ for some $n, s\geq 0$, then v_3^t/v_1^A is a homology class represented by x_n^{2s+1}/v_1^{An} . For n=0, the lemma is trivial. Now suppose that $j_*(x_n^{2s+1}/v_1^{An})=0$ for even n=2m. Then squaring this, we obtain

$$j_*(x_{n+1}^{2s+1}/v_1^{A_{n+1}})=v_3^w/v_1$$

for some $w \ge 0$. Consider the diagram

$$\begin{array}{cccc} E_2^0(X) & \stackrel{j_*}{\longrightarrow} & E_2^0(C) \\ & \downarrow \delta & & \downarrow \delta \\ E_2^1(D) & \stackrel{i_*}{\longrightarrow} & E_2^1(E) & \stackrel{j_*}{\longrightarrow} & E_2^1(D) \end{array}$$

induced from (5.1). Since $\delta(x_{n+1}^{2s+1}/v_1^{4n+1})$ is in the image of i_* by Lemma 4.4, $\delta(v_3^w/v_1)=0$ in $E_2^1(D)$ by the above diagram, and so 2|w since $\delta(v_3^w/v_1)=wv_3^{w-1}h_{21}$ by Landweber's formula $d_0(v_3)=v_1t_2^2+v_1^4t_2$ in $BP_*[t_2, t_3, \cdots]$. Thus we have

$$j_*(x_{n+1}^{2s+1}/v_1^{A_{n+1}}) = v_3^{2u}/v_1.$$

Square this, and we have

$$j_*(x_{n+2}^{2s+1}/v_1^{A_{n+2}}) = v_3^{4u}/v_1^2$$

Notice that $j_*(x) = y$ if $d_0(x) = yt_2$, where $d_0(x) = \eta_R(x) - x$. A direct computation shows us $d_0(v_3^{4u}x_1/v_1^4) = v_3^{4u}t_2/v_1^2$ in the cobar complex $\Omega_2^2 M$. Thus we have shown inductively that $j_*(v_3^{2^{n}(2s+1)}/v_1^{4n})$ equals to 0 if *n* is even, and to $v_3^{2^s}/v_1$ for some *u* if *n* is odd. q.e.d.

6. The Adams-Novikov differential

Consider the cofiber E of h_{20} : $\Sigma^5 D \rightarrow D$. Then by [7, Th. 7.1], we immediately obtain the following

Proposition 6.1. The Adams-Novikov spectral sequence for computing $\pi_*(L_2E)$ collapses from the E_2 -term.

Note that the E_2 -term for our X is

$$E_2^*(X) = \operatorname{Ext}_{\Gamma}^*(A, v_2^{-1}BP_*(X)) = \operatorname{Ext}^*(M).$$

Lemma 6.2. For the Adams-Novikov differential $d_3^{AN}: E_2^0(X) \rightarrow E_2^3(X)$, $d_3^{AN}(v_3^t/v_1^A)$ is a sum of the elements of the form $v_3^{2u+1}h_{21}h_{3i}\rho/v_1^k$ for i=0, 1 and k>1. Here v_3^t/v_1^A is a generator of the $Z/2[v_1, v_2, v_2^{-1}]$ -module M_0 .

Proof. Consider the diagram (5.1). The third column induces the long exact sequence

$$\cdots \longrightarrow \operatorname{Ext}^{3}(M) \xrightarrow{\nu_{1}} \operatorname{Ext}^{3}(M) \xrightarrow{\delta_{3}} \operatorname{Ext}^{4}(L) \longrightarrow \cdots$$

of the E_2 -terms. If the δ_0 image of v_3^t/v_1^A is $x \neq 0$, then $\delta_3(d_3^{AN}(v_3^t/v_1^A)) = d_3^{AN}(x) = 0$ by Proposition 6.1. Thus $d_3^{AN}(v_3^t/v_1^A)$ is divisible by v_1 . Furthermore it implies that $v_3^{2t+1}h_{30}h_{31}\rho/v_1$ cannot be a target of d_3^{AN} . In fact, it is not divisible by v_1 by Proposition 4.15. Now the lemma follows from Lemma 4.15. q.e.d.

Theorem 6.3. The Adams-Novikov spectral sequence for computing $\pi_*(L_2X)$ collapses from the E_2 -term.

Proof. By proposition 4.15, the Adams-Novikov differentials are all trivial except for d_3^{AN} : $E_2^0(X) \to E_2^3(X)$. So it is sufficient to show that $d_3^{AN}(v_3^t/v_1^i) = 0$ for each $v_3^t/v_1^i \in E_2^0(X)$. By Lemma 6.2,

(6.4)
$$d_3^{AN}(v_3^t/v_1^{A-k}) = \sum_{u,i} \lambda_{u,i} v_3^{2u+1} h_{21} h_{3i} \rho/v_1^2$$

for some $k \ge 0$, where $\lambda_{u,i} \in \mathbb{Z}/2$. Since

$$d_3(v_3^{2u+1}h_{21}h_{3i}\rho/v_1^2) = v_3^{2u}h_{20}^2h_{3i}\rho/v_1 \neq 0$$

in the cobar complex $\Omega^4_{\Gamma}BP_*(C)$, we see that

(6.5)
$$j_*(\sum_{u,i} \lambda_{u,i} v_3^{2u+1} h_{21} h_{3i} \rho / v_1^2) = \sum_{u,i} \lambda_{u,i} v_3^{2u} h_{20} h_{3i} \rho / v_1 \neq 0.$$

Now send (6.4) by j_* and we have a contradiction to Lemma 5.2, which says $j_*(v_3^t/v_1^{A-k})=0$ if k>0. If k=0 and $j_*(v_3^t/v_1^A)\neq 0$, then

$$j_*(v_3^t/v_1^A) = v_3^{2u}/v_1$$

for some $u \ge 0$ as is seen in the proof of Lemma 5.2. Therefore, (6.4) and (6.5) yield

$$d_3^{AN}(v_3^{2u}/v_1) = \sum_{u,i} \lambda_{u,i} v_3^{2u} h_{20} h_{3i} \rho/v_1 \neq 0$$

in $E_2^*(C)$ for some $\lambda_{u,i} \in \mathbb{Z}/2$. Now pull this back to $E_2^*(D)$ under the map i_* : $E_2^*(D) \to E_2^*(C)$ to obtain the non-trivial differential

$$d_3^{AN}(v_3^{2u}) = \sum_{u,i} \lambda_{u,i} v_3^{2u} h_{20} h_{3i} \rho \neq 0$$

in $E_2^*(D)$, which again contradicts to a result of [7] which says $d_3^{AN}(v_3^{4k})=0$ and $d_3^{AN}(v_3^{4k+2})=v_3^{4k}h_{20}^3$ for k>0. q.e.d.

References

- [1] J.F. Adams : Stable homotopy and generalised homology, University of Chicago Press, Chicago, 1974.
- [2] A.K. Bousfield: The localization of spectra with respect to homology, Topology 18 (1979), 257-281.
- [3] M. Hikida and K. Shimomura: An exact sequence related to Adams-Novikov E_2 -terms of a cofibering, J. Math. Soc. Japan **46** (1994), 645–661.
- P.S. Landweber: Homological properties of comodules over MU_{*}(MU) and BP_{*}(BP), Amer. J. Math. 98 (1976), 591-610.
- [5] M. Mahowald: Ring spectra which are Thom complexes, Duke Math. J. 46 (1979), 549-559.
- [6] H.R. Miller and D.C. Ravenel: Morava Stabilizer Algebras and the localization of Novikov's E₂-term. Duke Math. J. 44 (1977), 433-447.

- M. Mahowald and K. Shimomura: The Adams-Novikov spectral sequence for the L₂-localization of a v₂-spectrum, the Proceedings of the International Congress in Algebraic Topology, Edited by M. Tangora, 1991, Contemporary. Math. 146, A.M.S. (1993), 237-250.
- [8] H.R. Miller, D.C. Ravenel, and W.S. Wilson: Periodic phenomena in Adams-Novikov spectral sequence, Ann. of Math. 106 (1977), 469-516.
- [9] M.R.F. Moreira: Primitives of BP*BP modulo an invariant prime ideal, Amer. J. Math. 100 (1978), 1247-1273.
- [10] D.G. Quillen: On the formal group laws of unoriented and complex cobordism theory, Bull. A. M.S. 75 (1969), 1293-1298.
- [11] D.C. Ravenel: The structure of BP*BP modulo an invariant prime ideal, Topology 15 (1976), 149-153.
- [12] D.C. Ravenel: The cohomology of the Morava stabilizer algebras, Math. Z. 152 (1977), 287-297.
- [13] D.C. Ravenel: Localization with respect to certain periodic homology theories, Amer. J. Math. 106 (1984), 351-414.
- [14] D.C. Ravenel : Complex cobordism and stable homotopy groups of spheres, Academic Press, 1986.
- [15] D.C. Ravenel: The geometric realization of the chromatic resolution, In W. Browder, editor, Algebraic topology and algebraic K-theory, 1987, 168-179.
- [16] D.C. Ravenel : Nilpotence and periodicity in stable homotopy theory, Ann. of Math. Studies 128, Princeton Univ. Press, 1992.
- [17] K. Shimomura: The homotopy groups of the L₂-localized Mahowald spectrum X(1), Forum Math. 7 (1995), 685-707.
- [18] D-Y. Yan: Brown-Peterson homology of Mahowald's X_k spectra, Trans. Amer. Math. Soc. 344 (1994), 261–289.

Department of Mathematics, Faculty of Science, Okayama University, Okayama, 700, Japan

Faculty of Education, Tottori University, Tottori, 680, Japan