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Abstract

Since molecular clouds are birthplace of stars, understanding how molecular clouds form is
crucial to determine the initial condition of star formation. One of the promising mechanisms
to produce molecular clouds is thermal instability that can be induced by shock waves
(e.g. supernova shocks). In one-dimensional model, thermal instability leads to a runaway
cooling and condensation of thin gas layer in the shock-compressed region. A cold gas
layer is generated that is precursor of molecular clouds. In order to understand the size
and shape of the cold clouds, it is important to investigate multi-dimensional behavior of
the condensing layer. Linear analyses in previous works predict that the condensing layer
splits into fragments with smaller scales than the cooling length that the sound wave travels
during the cooling. However, two-dimensional simulations show that many fragments are
larger than the cooling length. This contradicts with linear analyses in previous works. This
is because the unperturbed states in previous works were assumed to be spatially uniform
and/or their time dependences were neglected for simplicity. Therefore, they cannot describe
the dynamically condensing layer well.

In this thesis, first, we propose new self-similar solutions describing runaway cooling
gas layers as the more realistic unperturbed state. We confirm that the self-similar solutions
approximate results of hydrodynamical numerical simulations using a realistic cooling rate of
the interstellar medium very well. A net cooling rate per unit mass is assumed to be o< pT,

where p, T and « are density, temperature and an index parameter, respectively. Given «,



iv

we find a family of self-similar solutions with another free parameter n that ranges from 0
to 1. The parameter n relates with the ratio of the cooling length to the scale length of the
condensing region. For n ~ 0, the scale length of the condensing region is much larger than
the cooling length. Therefore, the temperature drops while the density does not increase
so much. This solution describes isochorically cooling layer. On the other hand, for n ~ 1,
the scale length of the condensing region is much smaller than the cooling length. Therefore
the gas condenses in pressure equilibrium with their surroundings. This solution describes
isobarically condensing layer. The discovered family of the self-similar solutions describes
the nonlinear developments of thermal instability in various scales in the one-dimensional
model.

Second, the stability of the dynamically condensing layer is investigated by linear analysis
of the self-similar solutions. We consider perturbations perpendicular, as well as parallel, to
the direction of the condensation. The linear analysis reveals that the growth rate of the
perturbation is independent of their transverse scales. Moreover, since the growth rate is
sufficiently high, it is not long before the perturbations become nonlinear during the runaway
condensation. Therefore, according to the linear analysis, the condensing layer is expected
to split into fragments with various scales. These results are quite different from those in
previous works. This linear analysis predicts the mass distribution of generated cold clouds
is correlated with the power spectrum of fluctuations of the unstable gas. These results
and predictions of the linear analysis are confirmed by two-dimensional hydrodynamical

simulation with realistic cooling rate of the interstellar medium.
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Chapter 1

Introduction

The most amount of volume of galaxies is occupied by gases and dusts that exist between
stars and they are called interstellar medium (ISM). The ISM and stars mutually affect each
other. Stars supply matters and energies to the ISM via stellar wind, planetary nebulae,
supernovae, and radiation. In contrast, a dense and cold component of the ISM is the
birthplace of stars whose formation mechanism is one of the most important unresolved issues
in astrophysics. Therefore, the ISM is a critical element to understand physical phenomena
in galaxies. In this thesis, to understand initial condition of the star formation, we investigate
the formation of cold clouds by considering basic physics of the ISM.

In this chapter, we review observational and theoretical background of this thesis, and

present purposes of this thesis.

1.1 Overview of Interstellar Medium

Thanks to development of radio, infrared, optical, and X-ray observations, it has been re-
vealed that the ISM consists of not one component but several components that are classified
by their densities, temperatures and ionization degrees that are summarized in table 1.1. Hot
ionized medium (HIM) with number density n ~ 3 x 107 cm™® and temperature T ~ 10°
K is made up of completely ionized hot gas, and is also called coronal gas. The HIM is pro-
duced by supernova shocks (McKee and Ostriker, 1977). There are two components that are
3

made up of neutral hydrogen atom. One is warm and diffuse component with n ~ 0.3 cm™

and T ~ 8000 K that is called warm neutral medium (WNM). The other is cold and dense
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component with n ~ 30 em™ and T' ~ 10% K that is called cold neutral medium (CNM).
The CNM is also called HI cloud, where “HI” denotes neutral hydrogen atom. The HIM and
WNM occupy the most volume of the ISM. Figure 1.1 shows schematic plot of components
of the ISM in (n,T) plane that was originally presented by Myers (1977). The upper and
lower solid lines correspond to P/kg = 10 and 10* K cm ™3, respectively. Figure 1.1 indi-
cates that the three “phases”, HIM, WNM and CNM are roughly in pressure equilibrium
with P/kg = nT ~ 3 x 10®> K cm™ in the solar vicinity. The term of “phase” is used to
denote that HIM, WNM and CNM can coexist in the same pressure. Molecular clouds are
mainly made up of Hy and are dense and cold enough to be gravitationally bound. Because
of its self-gravity, the pressure of the molecular cloud is much larger than that of the three
phases (see figure 1.1). The densest part of the molecular cloud, or the dense core, leads
to gravitational collapse and finally stars form. HII region is produced by ionizing photons
with hv > 13.6 eV emitted by massive stars, where “HII” denotes ionized hydrogen atom.

HII region expands because its pressure is much larger than that of surrounding medium.

Component nlem™] T [K] nT [Kcm™?] state of H

Hot Ionized Medium (HIM)
Coronal Gas ~3x107% ~10° ~3x103 ionized
Warm Neutral Medium (WNM) ~ 0.3 ~ 8000 ~2.4x10®  neutral
Cold Neutral Medium (CNM)

HI Cloud ~ 30 ~ 100 ~3.0x 103 neutral
Molecular Cloud ~ 103 =107 ~ 10 ~ 10* = 10®%  molecule
HII Region ~10—10° ~10* ~10°—10° ionized

Table 1.1: Physical properties of components in the ISM

1.2 Observations

The physical properties and structures of the ISM have been revealed though observations

with a wide range of wavelength, from radio to X-ray.
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Figure 1.1: Schematic plot of components in the ISM in (n,T) plane. The upper and lower solid lines

correspond to P/kg = 10? and 10* K cm ™3, respectively. This was originally presented by Myers (1977).

1.2.1 HI Gas (Cold Neutral and Warm Neutral Media)

The ground state of neutral atomic hydrogen has hyperfine lines arising from the interaction
between the spins of electron and proton. The corresponding wavelength is 21 cm at radio
regime. The ISM was first detected by the 21-cm line emission (Ewen and Purcell, 1951;
Muller and Oort, 1951). This observation suggests that there is a large amount of neutral
hydrogen in the Galaxy. Absorption line of HI gas was also observed by Hagen and McClain
(1954) against bright continuum sources, and was confirmed by Hagen, Lilley, and McClain
(1955). After the first detection, in 1950s, observations showed broad emission lines and
narrow absorption lines in the same part of sky (Clark, Radhakrishnan, and Wilson, 1962).
From these observations, Clark (1965) suggested that the ISM is not single component but
is made up of cold and warm components that generate the narrow absorption lines and
broad emission lines, respectively. The cold dense cloud (cold neutral medium, CNM) is
embedded within a bath of warm diffuse medium (warm neutral medium, WNM), and these
two components are in pressure equilibrium. This picture of ISM was theoretically supported

by Field, Goldsmith, and Habing (1969) as shown in section 1.4.
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Global Structure

Figure 1.2: HI emission integrated over the velocity range of —400 < v < 400 km s~!'. The Galactic center
is in the middle. The ordinate and abscissa axes denote Galactic latitude and longitude, respectively. The

figure was presented in Kalberla et al. (2005).

Oort, Kerr, and Westerhout (1958) discovered that HI clouds are distributed in several
spiral arms, suggesting that the Galaxy is a spiral galaxy (see also Kerr, 1969). They
also derived the flat rotation curve of the Galaxy. The first survey of 21 c¢m emission
has been presented by Weaver and Williams (1973) with the 85-foot telescope at the Hat
Creek Observatory. Using the data of their survey, Heiles (1984, 1979) found HI shells
and supershells in the northern sky (McClure-Griffiths et al., 2002, in the southern sky).
Recently, Kalberla et al. (2005) presented observations of 21 c¢cm emission from Galactic
neutral hydrogen over the entire sky, that is referred to Leiden/Argentine/Bonn (LAB)

1'is shown

survey. HI emission integrated over the velocity range —400 < v < +400 km s~
in figure 1.2 presented in Kalberla et al. (2005). The Galactic center is in the middle. From
figure 1.2, it is clearly seen that HI gas concentrates in the Galactic plane. The thickness of
HI gas in the solar vicinity is as high as ~ 200 pc. Moreover, figure 1.2 show that the shells,
shell-like and filamentary structures are ubiquitous in the Galaxy with a very broad range

of size (> 1 kpc ~ 1 pc). These shell structures are attributed to supernovae, the impact

of infalling high-velocity clouds on the Galaxy disc, stellar winds, and molecular outflows.
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These observations show that the ISM is frequently disturbed by energetic phenomena, such
as supernovae, and is far from quiescent (McKee and Ostriker, 1977). Recently, surprisingly
tiny and discrete HI clouds in the diffuse ISM have been discovered by Braun and Kanekar
(2005); Stanimirovi¢ and Heiles (2005). This new population of HI clouds has very small

sizes of ~ 1072 pc, and small column density of ~ 10 cm™2.

1.2.2 Coronal Gas (Hot Ionized Medium)
Soft X-ray Background

The coronal gas was first detected by observations of soft X-ray background using an Aerobee
rocket. Bowyer, Field, and Mack (1968) found an anisotropy of the soft X-ray background
at 0.25 keV, and suggested that an anisotropic component is originated in sources in the
Galaxy. This soft X-ray emission is attributed to Bremsstrahlung from rarefied and hot gas at
T ~ 10°% K. The soft X-ray background consists of different components that are extragalactic
components for high energy > 10 keV, galactic components for low energy < 0.25 keV, and
mixture of extragalactic and galactic for the intermediate energy (McCammon and Sanders,

1990).

Absorption Lines

The coronal gas is also observed as an absorption line, such as lithium-like atoms (O VI, N
V, and C IV) at ultraviolet. Jenkins and Meloy (1974); Rogerson et al. (1973) discovered
discovery of O VI absorption line toward O and B stars using Copernicus satellite, suggest-
ing a large amount of very hot (T' ~ 10° K) and tenuous component (hot ionized medium,
HIM) Recently, observation with with Far-Ultraviolet Spectroscopic Ezplorer (FUSE) satel-
lite has revealed kinematics and distribution of the HIM. Savage et al. (2000) observed O
VI absorption line against far-ultraviolet spectra of active galactic nuclei. They showed that
the scale height of the hot component is as high as ~ 3kpc that is much higher than other

components.
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1.2.3 Molecular Cloud

As a tracer of molecular clouds, the emission lines of rotational transitions of carbon monox-
ide (CO) are used because hydrogen molecule that is main component does not have the
electric dipole moment. The CO line emission was first detected by Wilson, Jefferts, and
Penzias (1970) in the Orion Nebula at a frequency of 115GHz that corresponds to the tran-
sition from J =1 to J = 0. Dame et al. (1987, 2001) performed large-scale CO surveys of
molecular clouds in the Galaxy with a 1.2 m telescope in New York City and Cerro Tololo,
Chile. The large scale structures of molecular clouds have been revealed by their survey.
Figure 1.3 shows their velocity integrated CO map of the Galaxy. The molecular clouds
concentrate in the Galactic disc and are distributed along the spiral arms like HI gas. The

scale height of molecular clouds is as high as ~ 100 pc and is lower than that of HI clouds.

lactic Latitude

Gal

Galactic Longitude

Figure 1.3: Velocity integrated CO map of the Galaxy. The Galactic center is in the middle. The ordinate
and abscissa axes denote Galactic latitude and longitude, respectively. The figure was presented in Dame

et al. (2001).

1.2.4 Supersonic Turbulence

The supersonic turbulent motion has been ubiquitously observed in the cold component of
the ISM, or HI clouds and molecular clouds. Heiles and Troland (2003) presented Arecibo
21 cm absorption-line survey against intense radio continuum sources. They found that the
mass-weighted velocity dispersion is 7.1 km s=! for CNM and 11.4 km s=! for WNM. The
mass-weighted velocity dispersion of CNM is supersonic because the sound speed of CNM

1

is ~ 1 kms™. The mass-weighted velocity dispersion of WNM is marginally supersonic

because the sound speed of WNM is ~ 8 km s~!. Combining many observations with 21-
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cm and molecular lines, Larson (1979, 1981) discovered the velocity dispersion of the ISM
increases systematically with region sizes, and derived the following empirical relation,
I\ 038
Av~1kms™! (—) , (1.1)
1 pc

where Av and L are the velocity dispersion and the region size, respectively. Since the
energy of the turbulent motion is comparable to the gravitational and magnetic energies
in molecular clouds, the supersonic turbulent motion is expected to play an important role
of star formation. However, the formation mechanism of the supersonic turbulent motion
is not understood yet. As mentioned later, thermal instability of the ISM is a possible
mechanism (Koyama and Inutsuka, 2002). Moreover, there is a problem of how to maintain
the supersonic motion. Theoretically, supersonic isothermal magnetohydrodynamical turbu-
lence decays rapidly in times of the dynamical time if there is not any continuous energy
input (Gammie and Ostriker, 1996; Mac Low et al., 1998; Padoan and Nordlund, 1999).
This decaying time scale (~ 10°7%yr) is several times smaller than the lifetime of molecu-
lar clouds (~ 107yr). Therefore, some driving forces of supersonic turbulence are required.
Many authors have suggested several driving sources, such as magnetorotational instability
in the Galactic disk (Sellwood and Balbus, 1999), stellar outflows and winds from protostars
(Franco and Cox, 1983) and thermal instability (Koyama and Inutsuka, 2002), and so on.

However, the source of the supersonic turbulence is still controversial.

1.3 Cooling and Heating Processes in the Interstellar

Medium

The density and temperature of the ISM are mainly determined by radiative cooling and
heating due to external radiation field and cosmic rays (Field et al., 1969; Wolfire et al.,
2003, 1995).
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Figure 1.4: The interstellar cooling rate for a various values of the fractional ionization, x. The labels refer

to the values of z. This figure was presented in Dalgarno and McCray (1972).
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1.3.1 Heating Processes

Photoelectric Heating from Small Dust and Polycyclic Aromatic Hydrocarbons
(PAHSs)

A main heating process is the photoelectric heating from small grain and PAHs. The gas
particles are heated by collision with photoelectrons expelled from dusts and PAHs by far-
ultraviolet photons (Bakes and Tielens, 1994). The far-ultraviolet radiation field in the
Galaxy is estimated by Habing (1968) using spectrums of O- and B-type stars and their
number density in the Galaxy for the energy range of 6 eV < hr < 13.6 eV (also see
Gondhalekar and Wilson, 1975). Conventionally, the far-ultraviolet flux is expressed by Gy
in unit of the average far-ultraviolet flux of 1.6 x 1072 erg cm ™2 s~! derived by Habing (1968).
The value of GGy depends on environments and can range from local average far-ultraviolet
flux Gy ~ 1.7 (Draine, 1978) to that near O- and B-type stars Gy 2 10°. In this thesis, we

consider the heating by the local far-ultraviolet flux (Go = 1.7).

Cosmic Rays

Low-energy cosmic-rays ionize gas particles through collision. The cosmic-ray ionization rate
is 1.8 x 1077 s per H nucleus that is typical value in the Galaxy (Wolfire et al., 1995).
Since the ejected free electrons have a larger kinetic energy than that of thermal one, the
free electron heat up surrounding gas particles through collision (Shull and van Steenberg,

1985).

Soft X-Rays

The gas particles are heated by collision with free electrons emitted due to ionization effect

(Wolfire et al., 1995) by soft X-ray background (see section 1.2.2).

1.3.2 Cooling Processes

Dalgarno and McCray (1972) calculate cooling rate of low density gas enough for radiation
to escape the system by considering the detailed atomic physics. In this situation, the
cooling rate is determined by local physical quantities, such as the density, temperature, and

ionization degrees and so on. Figure 1.4 shows the interstellar cooling rate for various values
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of the fractional ionization, = (Dalgarno and McCray, 1972). The labels refer to the values
of z. Sutherland and Dopita (1993) presented cooling rates by considering more complex

physical processes over a range of 10* — 1085 K and for a range of abundances.

e For the temperature range of 7' > 10°~7 K, the gas mainly loses their energy through

thermal Bremsstrahlung of completely ionized gas.

e For the temperature range of 10* K < 7' < 10° K, a main coolant is spontaneous
emission by collisionally excited gases though electronic transitions and recombination
lines. This cooling process is contributed by a lot of elements that contain neutral and

ionized state of H, He, O, C, S, Si, and Fe, and so on.

e For the temperature range of T' < 10* K, the cooling rate suddenly drops in figure 1.4.
This is because atoms cannot be excited to an upper electronic level via collision. In
this temperature range, collisional excitation of the fine-structure lines of CII (158um)
and OI (63pm) are dominant coolant (Hollenbach and McKee, 1989; Wolfire et al.,
1995). Additional coolings are provided by the fine-structure transitions of the ground
state electronic state of CI, Sil, Sill, SI, Fel, and Fell.

1.4 Quiescent Two-Phase Model

Field, Goldsmith, and Habing (1969) proposed a model of the ISM based on detailed calcu-
lation of radiative cooling and heating by low-energy cosmic rays. Wolfire et al. (2003, 1995)
revised and developed the results of Field, Goldsmith, and Habing (1969) by considering
new heating source of photoelectric heating from small dusts and PAHs (Bakes and Tielens,
1994) and revised cosmic-ray ionization rate that is significant lower than that used in Field
et al. (1969). Wolfire et al. (1995) plotted the thermal equilibrium curve in the (n, P) plane
that is shown by the thick solid line in figure 1.5 (also see Field, Goldsmith, and Habing,
1969), where the far-ultraviolet flux is set to the local value of Gy = 1.7. From figure 1.5, it
is clearly seen that three phases in thermal equilibrium can coexist at the same pressure of
P/kg = 3 x 10®* K cm™3 which is the value in the solar vicinity and they are shown by the

open circles in figure 1.5.
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Figure 1.5: Phase diagram of thermal properties of ISM in (n, P) plane. The thick line indicates thermal

equilibrium curve. The thin horizontal line corresponds to P/kp = 3 x 10° K cm™3.

1.4.1 Thermal Instability of Gas in Thermal Equilibrium State

Field (1965) investigated the stability of the gas in thermal equilibrium using linear analysis.
He considered an uniform and static gas as the unperturbed state. In this section, we briefly
review his linear analysis.

Cooling and heating rates per unit mass and time is defined as A(p,T") and I'(p,T)
(erg g1 s71), respectively, as a function of density and temperature. The net cooling rate is
defined as £ = A—T". As shown in section 1.3, for the low temperature range of T' < 10 K, a
main cooling process is spontaneous emission by collisionally excited gases. In this situation,
the cooling rate per unit mass is determined by the collision rate that is proportional to p.
The heating rate per unit mass from an external source is constant. In this thesis, we adopt

the following simplified power-law formula as the net cooling rate per unit mass and time,
L(p,T) = NopT* =Ty ergg s (1.2)

where « is a free parameter that is determined by detailed atomic physics. As an character-
istic timescale, we define cooling time by the internal energy divided by the radiative cooling

as
P Oy

teool = ('7 — 1)pA A (13)
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where C'y is the specific heat at constant volume. The characteristic length is defined as
)\cool = cstCOOb (14)

where ¢4 is the sound speed.

Criterion of thermal instability can be derived from simple physical arguments by fo-
cussing on a fluid element. The entropy of the fluid element evolves obeying the entropy
equation,

%f = —%ﬁ(p, T), S= (7_];%111 Pp™, (1.5)
where S'is the entropy and p is the mean molecular weight of the gas in the unit of hydrogen
mass, my. The operator D/Dt = 8/dt 4+ 7 - V is the Lagrangian time-derivative.

Let us perturb the fluid element. From the entropy equation (1.5), one can obtain the

following perturbation equation,

DéS L(p,T)
—=—0—=). 1.6
o =5 (%% 16
Hereafter, the subscript “0” denotes the value in the unperturbed state, and §(¢) denotes the
perturbed variable of a physical variable (). Since we consider the gas in thermal equilibrium,

or L(po, To) = 0, equation (1.6) becomes

DDif - —Tio(sc(p, 7). (1.7)
We assume that the fluid element evolves leaving a thermodynamic variable, A, fixed. We
consider a situation where the entropy of the fluid element is lower than that of the back-
ground fluid, or 05 < 0. If 6L < 0, the fluid element gains entropy and the entropy returns
to the background entropy. This indicates thermal stability. If £ > 0, the fluid element

continues to lose the entropy by the cooling. This indicates thermal instability. One can

make the similar discussion for the case with 65 > 0. Therefore, the fluid element is unstable

() < i

This criterion is called as the Field criterion.
In the above discussion, we did not specify the detailed evolution of the gas. In other
words, A is unknown. To understand the detailed evolution of the gas, we need to consider

the continuity equation and the equation of motion. However, we can roughly discuss the
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evolution of perturbation by considering some limiting behaviors. The time scale of the
thermal instability is expected to be ~ t..o that is defined in equation (1.3). The wavenumber

of the perturbation is defined as k.

Asymptotic behaviors

For small scale perturbation, k..o > 1, the element evolves in pressure equilibrium with its
surroundings because the sound wave can travel the scale of the element, 1/k, many times
during the cooling. This mode is called isobaric mode. The isobaric mode is also called
condensation mode because the density increases as the temperature decreases. The specific

heat at constant pressure is

oH
C = — 1.9
= (57) (19)
where H is the enthalpy. Using the first law of thermodynamics and equation (1.9), one can
get
oS C,
— | == 1.1
(ar), =7 119
Using equations (1.10) and (1.8), the Field criterion for the isobaric mode becomes
(5),- () 229, »
oT P oT P To 8,0 T

where the equation of state, P o< pT" is used.
For large scale perturbation, kAo < 1, the density remains constant because the sound
wave cannot travel the scale of the element within the cooling time. This mode is called

isochoric mode. The specific heat at constant volume is

ou
Cy = (ﬁ) ) (1.12)
P
where U is the internal energy. Using the first law of thermodynamics and equation (1.12),
one can get
08 Cy
— ] == 1.1
<8T) , T (1.13)

Using equations (1.13) and (1.8), the Field criterion for the isochoric mode becomes

(g—j‘é)p <0. (1.14)
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The Effect of Heat Conduction

For small scale perturbations, the heat conduction is expected to stabilize thermal instability
(Field, 1965). Therefore, there is a critical wavenumber, k., such that perturbations with
larger wavenumbers are stabilized by the heat conduction. We evaluate k. using an order
estimation. Using the characteristic time scale of the heat conduction, tg, the diffusion

equation is given by

1 ([ P ,
~ 2K (T T, 1.15
o () ~ R (1.15)

where K is the heat conduction coefficient. From equation (1.15), the diffusion timescale is

given by
Fy
v = DEK(Ty)T

From equation (1.16), one can see that the diffusion timescale is small for large wavenumber.

tai ™ ( k2. (1.16)

If taig < teool, the heat conduction is expected to stabilize thermal instability. Therefore,

kit can be derived on the condition tgig ~ teool as

kx Pycy
ket ~ (| —— where ky=——0" 1.17
’ )\cool where K (/7 - 1)KTO ( )

Field (1965) derived similar critical wavenumber to equation (1.17). The wavelength, 1/kc,

|KT

Perturbations for \p < A < Aeoor and A > Moo grow in the isobaric and isochoric modes,

is referred to the Field length,

respectively.

The Dispersion Relation

Field (1965) investigated stability of spatially uniform and static gas, and derived a dispersion
relation. Detailed derivation of the dispersion relation is shown in Appendix A. From the
linear analysis, the growth rates of the isobaric and isochoric modes are given by

1 Ty (0L
oy = ——— 0 (& 1.19
isob tcool fYAO (aT)P ( )

and

1 Ty [OL
Wisoc = _QA_O (6_T>p; (120)
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respectively. From equations (1.19) and (1.20), it is clearly seen that the isobaric and iso-
choric criterions (1.11) and (1.14) are also valid in the detailed linear analysis. Using the

power-law net cooling rate (equation (1.2)), wisop and wiso. become

1—a -«
Wisob = — and Wisoc = 7 (121)
’ytcool cool

respectively. Therefore, the isobaric and isochoric criterions are given by

a <1 for the isobaric mode
. (1.22)
a < 0 for the isochoric mode
Figures 1.6a and 1.6b show the dispersion relations of real part of w for @« = 0.5 and -
0.5, respectively, where kxA.o1 = 10. The solid and dashed lines indicate results with and
without the heat conduction, respectively. From figures 1.6a and 1.6b, it is clearly seen
that the heat conduction stabilizes thermal instability for large wavenumber. From equation
(1.17) and kg Aol = 10, the critical wavenumber is ket Aeool ~ V/10. Figures 1.6a and 1.6b
show that thermal instability is completely stabilized around ke,it Acoor ~ v/10. The behaviors
for small wavenumber of figures 1.6a and 1.6b are different. Since the isochoric mode is stable
for a = 0.5 from the Field criterion (equation (1.22)), the growth rate approaches zero for
lower wavenumber in figure 1.6a. This reduction of the growth rate comes from finiteness of

the sound speed. On the other hand, since the isochoric mode is unstable for o = —0.5, the

growth rate has the finite value of wis, for k£ ~ 0 in figure 1.6b.

1.4.2 Thermally Unstable Phase

Figure 1.5 shows there are three phases in thermal equilibrium state. However, one of
them is thermally unstable. The segment of the dashed line of the thermal equilibrium
curve in figure 1.7 shows the thermally unstable range where Field criterion for the isobaric
mode (see equation 1.11) is satisfied. The isochoric mode is stable for 107! em™ < n <
103 cm™3. Therefore, cold and warm phases are thermally stable, and the phase between
them is thermally unstable in the isobaric mode. The cold phase (n ~ 30 cm™3, T' ~ 100
K) is identified with the cold neutral medium that is detected as narrow absorption 21-cm
lines. On the other hand, the warm phase (n ~ 0.3 cm™ and T ~ 8000 K) corresponds to
the warm neutral medium that is detected as broad emission 21-cm lines. Therefore, the
two-phase model can naturally explain the cold and warm components of the ISM. However,

the two-phase model cannot address how these structures form.
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] _ = \\/ith heat conduction
] (a)G_O'S = = m \jthout heat conduction

(*)tcool

KA

cool

Figure 1.6: The dispersion relation for o =0.5(a) and -0.5(b), where kxAcoo = 0.01. The solid and dashed
lines indicate results with and without the heat conduction, respectively. The isobaric mode is unstable for
both cases of & = 0.5 and -0.5 for kA¢oo1 > 1. On the other hand, the isochoric mode is stable for o = 0.5
and is unstable for a = —0.5 for kAcoo) < 1.
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Figure 1.7: Phase diagram of thermal properties of ISM in (n, P) plane. The thick line indicates thermal
equilibrium curve where the gas is thermally stable. The segment of the dashed line indicates the thermally

unstable range according to Field criterion for the isobaric mode is satisfied.

1.5 Dynamical Three-Phase Model

Observations of soft X-ray background and O VI absorption lines have revealed that the
significant volume of the Galaxy is occupied by the HIM (see section 1.2.2). Cox and Smith
(1974) showed that the formation and maintenance of the HIM require a large energy input,
such as supernovae. Therefore, the ISM is not quiescent as is assumed in the two-phase model
but is disturbed by supernova shocks. Let us estimate how often supernova shocks sweep
up the ISM. A supernova remnant expands until the internal pressure becomes lower than
the pressure of the ambient ISM with n = 0.1 cm™3 and 7' = 10* K. The supernova remnant
reaches the maximum radius, Ryax = 10%! pc at a time, tyax = 1093yr, considering typical
supernova energy of 10°! erg. The total volume SR3 t,.. that all supernova remnants
occupy at tmax exceed the volume of the Galaxy, where S = 1072 yr~! is the supernova rate
in the Galaxy. This means that the supernova remnants overlap before they are dissipated,
and the ISM is swept up by supernova shocks per ~ 10° yr. Therefore, this estimation shows
that supernova shocks play important role in the ISM. McKee and Ostriker (1977) proposed
a model of the ISM where physical properties and structures of the ISM are regulated by
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supernova shocks. In their model, the ISM consists of three phases (hot, warm and cold

phases). The schematic picture of the three-phase model is shown in figure 1.8 that was

A CLOSE UP VIEW

Figure 1.8: Schematic plot of the three-phase model. A cross section of a representative region 30pcx40pc in
extent is shown. A supernova blast wave is expanding into the region from the upper right. The crosshatched
and dotted regions indicate the CNM and WNM, respectively. This figure was presented in McKee and
Ostriker (1977).

presented in McKee and Ostriker (1977). The crosshatched and dotted regions indicate the
CNM and WNM, respectively. The intercloud region is assumed to be occupied by HIM.
A supernova blast wave is expanding into the region from the upper right. The inside of
shock wave is filled with very hot gas that is subject to radiative cooling via Bremsstrhalung
and metal lines. The HI clouds inside the hot bubble evaporate due to heat conduction (see
figure 1.8). On the other hand, compressed gas collapses into dense cold shell via radiative
cooling. In the three-phase model, the evaporation of the HI clouds balances the formation
of the HI clouds in the swept-up shell. Moreover, the energy input by supernova shocks
balances the radiative cooling. The mass balance and energy balance provide the density
and the temperature of the HIM with (n,T) = (1072® cm ™3, 10°>7 K) that is consistent with

observations.
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However, the three-phase model does not address the detailed process of the HI cloud
formation in the postshock region. It does not contain molecular clouds that are important
for considering processes leading to formation of stars. Koyama and Inutsuka (2000) investi-
gated the shock propagation into a WNM and a CNM by one-dimensional calculations with
the detailed chemical reaction and cooling and heating processes, They showed that a large
amount of hydrogen molecules is generated inside a geometrically thin and dense layer that
is produced by radiative cooling in shock-compressed region. Hennebelle and Perault (1999)
investigated a converging flow of a WNM gas as other mechanism producing shock waves by
using one-dimensional calculation. As mentioned in section 1.2.4, since WNM has transonic
or weakly supersonic turbulence, the converging flow is possible mechanism. They derived
a condition where thermal instability occurs, and thin and dense layer forms. They showed
that the shock-induced thermal instability is effective in the converging flow of the WNM.

In the postshock region, results of linear analysis of Field (1965) cannot be used because

the gas is far from thermal equilibrium.

1.5.1 Thermal Instability of the Gas in Thermal Nonequilibrium
State

Balbus (1986) generalized the Field criterion for £y # 0 by a local argument. Unlike the
thermal equilibrium case, the background gas evolves with time. Here, we consider the
cooling dominated case, £ > 0. The characteristic timescale of the evolution of the gas is
given by the cooling time ~ t.o = CyT/L (see equation (1.3)). Therefore equation (1.6)

can be written as
DéS Otcoo
— =Cy 5 L
Dt t

cool

(1.23)

We consider a situation where the entropy of the fluid element is lower than that of the
background fluid, or 6S < 0. If §t.00 > 0, the fluid element cools slower than the background
gas. Therefore, the entropy of the fluid element tends to return to the background entropy.
This indicates thermal stability. If ..o < 0, the fluid element cools more rapidly than the
background gas. Therefore, the entropy of the fluid element continues to evolve away from

the background entropy. This indicates thermal instability. Therefore, the gas is unstable if

atcool 9, L
— | = 1.24
(5),70 = Las (7)), 124
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where we also assume that the fluid element evolves leaving some thermodynamic variable,

A, fixed. The criterion (1.24) was derived by Balbus (1986). Equation (1.24) can be written

oL Ly (0T
(55) <7 (%) - (1.25)

Balbus criterion gives weaker constraint on the cooling rate than Field criterion (1.8) because

as

the right-hand side of equation (1.25) is positive in normal gases.

The Balbus criterion for the isobaric mode is

o (L oln L oln L
o7 (7)), <0= (onr), - (ms), <1 (126
The Balbus criterion for the isochoric mode is
0 (L olnL
L’TT <T>L<O:> (8lnT>p<1' (1.27)

Using the power-law net cooling rate (1.2), the criterion becomes

a < 2 for the isobaric mode
(1.28)

a < 1 for the isochoric mode.

The Dispersion Relation

In the gas in thermal nonequilibrium, it is difficult to select unperturbed states because
they have time dependence. Therefore, in previous studies, unperturbed state is assumed
to be spatially uniform. Initially static and uniform gas cools leaving the density constant
because the velocity is zero, or isochorically. Schwarz, McCray, and Stein (1972) investigated
stability analysis of an isochorically cooling uniform gas by numerically solving perturbation
equations. They found that perturbation grows in the isobaric mode for Ap < A < Acoo1 and
that the criterion of the isobaric mode is given by equation (1.26). For the large wavelength
limit, A > Acoo1, they found that the gas cools ahead of pressure equilibrium. This indicates
the isochoric mode. Burkert and Lin (2000) obtained similar results by considering a simple
power-law cooling function. Koyama and Inutsuka (2000) investigated stability analysis of
isobarically condensing uniform gas. They introduced a contracting coordinate to express
isobarically condensing background. They also found that perturbations grow in the isobaric
and isochoric mode for Ap < A < Acoor and Ao < A, respectively. Therefore, from previous
studies, dispersion relation of a spatially uniform gas is expected to be similar to that of the

gas in thermal equilibrium.
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1.5.2 Thermal Instability in the Interstellar Medium

This thesis focus on the low temperature range of 7' < 10* K. The thermally unstable region
is shown by gray colors in figure 1.9. The light and dark gray regions indicate unstable regions
in the isobaric and isochoric modes, respectively. Figure 1.9 shows that thermal instability
occurs in the cooling dominated gas that is located above the thermal equilibrium curve in

the temperature range between CNM and WNM.

3 1 L3 aaanl 1 L3 aaanl 1 L 3ol 1 L1 i
1010-1 100 10 102 103
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Figure 1.9: Phase diagram of thermal properties of ISM in (n, P) plane. The thick line indicates thermal
equilibrium curve. The light and dark gray regions indicate unstable regions in the isobaric and isochoric

modes, respectively.

1.6 Nonlinear Evolution of the Shock-induced Forma-
tion of Interstellar Clouds in One-dimensional Model

The diffuse gases are frequently disturbed by external sources, such as supernovae shock
waves (McKee and Ostriker, 1977). Moreover, since the diffuse gases have transonic tur-
bulence that velocity dispersion is about 10 km s™' (Heiles and Troland, 2003), the diffuse

gas can be compressed by the turbulent motion (Hennebelle and Perault, 1999). These
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compression processes can put the diffuse gas into thermally unstable state, and dynami-
cal condensations take place. In this section, we investigate one-dimensional evolution of

converging flow of diffuse gases.

1.6.1 Basic Equations

One-dimensional basic equations for the radiative gas under plane-parallel geometry are the

continuity equation,

dp 0
>y = = 1.2
5 T ap (P0) =0 (1.29)
the equation of motion,
Dy  10P
—+-——=0 1.30
Dt - p Ox ’ (1.30)
the energy equation,
1 DP PDp ) aoT
— = —7—= ) =—pLp,T) — — | K— 1.31
and the equation of state,
k
= "B T, (1.32)
pwmy

where we adopt the heat conduction coefficient for neutral gas, K = 2.5 x 10° T2 erg cm ™!

K~ s7! (Parker, 1953). The net cooling rate is fitted by Koyama and Inutsuka (2002) as

pL =n(—T +nA) ergem > s 1, (1.33)
where
I =2x10 ergs, (1.34)
A 118400 92
= =1.0x 10" e ) + 14 x 1072VT —= 1.
T 0 x Oexp( T—|—1000>+ x 10 exp( T)’ (1.35)

where n is the number density of the gas. The heating rate in equation (1.34) is based on
the photoelectric heating from small dusts and PAHs by typical far-ultraviolet radiation in
the interstellar space in the Galaxy (Go = 1.7). The first and second terms of the cooling
rate in equation (1.35) correspond to the collisional excitations of the hydrogen Ly« line and

the fine-structure line of CII (158um), respectively.
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1.6.2 Initial Conditions and Numerical Methods

We consider a head-on collision between two identical gas flows in thermal equilibrium with
the density, pwny = 0.57my cm™ and pressure, Pyny = 3.5 x 103kp dyne ecm™2. The
two clouds collide along the z-axis at ¢t = 0 and x = 0 with velocity of 20 km s, i.e., the

corresponding mach number is 2.17. We add the following density fluctuation into the initial

A e . 2rx
P(tZO,x):PWNM{1+ . ZSID(L +9i>}> (1.36)

max T
=0

condition,

where i, = 10, A = 0.8, the phase, 6;, is given by random number between 0 and 27, and
L, = 50 pc is the calculation box size of the z-direction.

We use the one-dimensional second-order Lagrangian Godunov scheme (van Leer, 1997).

Cooling Length
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Figure 1.10: Evolutionary track of the highest density portion in the (n, P) plane that is shown the thick
solid line. The preshock gas is shown by the open circle. The dashed line corresponds to the thermal
equilibrium curve. The open box corresponds to the generated cold clouds. The contour map indicates
the cooling length. The gray region shows the thermally unstable region where the Balbus criterion for the

isobaric mode (1.26) is satisfied.
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1.6.3 Results

The colliding flow produces the shock-compressed region confined by two shock waves that
propagate outward. Figure 1.10 shows the evolutionary track of the highest density portion in
the (n, P) plane by the red solid line. The thermal equilibrium curve is plotted by the dashed
line. The open circle denotes the preshock gas. The shock wave puts the preshock gas above
the thermal equilibrium curve as is shown in figure 1.10. Since the cooling rate dominates the
heating rate, the shocked gas cools until it reaches a thermal equilibrium state shown by the
open box. During the cooling, the pressure of the gas remains almost constant of which value
is roughly determined by the ram pressure of the converging flow. The gray region in figure
1.10 is unstable region in the isobaric mode where the Balbus criterions (1.26) is satisfied.
The gas at the highest density passes the unstable region during 0.2 Myr < ¢ < 0.95 Myr.
Figure 1.11 shows snapshots of the number density, pressure, temperature, and velocity
at ¢ = 0.60, 0.70, 0.80, and 0.90 Myr. The preshock gases are heated to the temperature
of > 10* K by the shock compression. Thereafter, the gases rapidly lose their internal
energy through the radiative cooling. This is found in figure 1.11 as the spiky features in
the temperature profiles. Figure 1.11 shows that the rapid condensation breaks out around
x ~ 0.5 pc by thermal instability keeping the pressure constant. This is the isobaric mode
that is the most unstable mode (see section 1.5.1). The detailed evolutions of the density
and temperature during the condensation is shown in figure 1.12 at ¢ = 0.80, 0.90, 0.95, 0.96,
0.98, and 1.05 Myr. The abscissa axes of figure 1.12 are the distances from the position at
the density peak, Tyax(t) at each instant of time. Figure 1.12 shows that the gas around
Tmax condenses in a runaway fashion, leaving the surrounding gas behind. The more the
gas condenses, the shorter the scale of the condensing layer becomes. At ¢ = 0.98 Myr, the
gas reaches the thermal equilibrium shown by the open box in figure 1.10. The scale of the
cold cloud layer is as small as 5 x 10~ pc that is smaller than the cooling length shown
by contour in figure 1.10. This is consistent with the linear theory in section 1.5.1. The
density of the cold cloud is as large as that of the molecular cloud ~ 10® cm™3 because of
the high pressure. After that, the size of the cold gas layer increases by accretion of the
surrounding gases as shown figure 1.12 at t = 1.05 Myr. Koyama and Inutsuka (2000) shows
molecular hydrogen is generated in the cold gas layer during the phase of gaining weight by

one-dimensional calculation with chemical reactions. Therefore, the cold clouds can be seed
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of molecular clouds.

Note that that time evolution of the gas appears to be self-similar in figures 1.12. The
term of “self-similar” means that the profile of the density and temperature corresponding
to different time can be made the same by either expanding and contracting the scales of
the density, temperature, and |z — .| (Landau and Lifshitz, 1959; Zel’dovich and Raizer,
1967). The self-similarity of gas evolution is also seen in gravitational collapses of gas spheres

(Hunter, 1977; Larson, 1969; Penston, 1969; Shu, 1977).
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Figure 1.11: The evolutionary sequences for the number density, pressure, temperature, and velocity at

t = 0.60, 0.70, 0.80, and 0.90 Myr.
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Figure 1.12: The evolutionary sequences for the number density and temperature ¢ = 0.80, 0.90, 0.95, 0.96,

0.98, and 1.05 Myr. The abscissa axes indicate |z — Tmax|, Where Tpmayx is the position at the maximum

density.
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1.7 Multi-dimensional Numerical Simulations of the
Formation of Interstellar Clouds

In the one-dimensional simulation in section 1.7, the runaway condensing layer is generated
in shock-compressed region. The layer stops condensing when it reaches thermal equilibrium
state and its size increases by accretion of the surrounding gases. Recently, many authors
have investigated multi-dimensional evolutions in shock-compressed regions and have shown
that the gas evolution is very different from results by one-dimensional calculation.

Koyama (2000); Koyama and Inutsuka (2002) investigated the shock propagation into
WNM and development of the cold layer in the shocked region by using two-dimensional sim-
ulation. They found that the runaway cooling layer break up into several cold clouds whose
density is comparable to that of molecular clouds. These cold clouds have velocity dispersion
that is a fraction of the sound speed of WNM. This velocity dispersion is supersonic with
respect to the sound speed of cold clouds. They suggested that the origin of observational
“supersonic turbulence” of interstellar clouds is the motion of those cold clouds. Analogous
processes have been studied by many authors for a colliding flow of the WNM (Audit and
Hennebelle, 2005; Heitsch et al., 2005, 2006; Hennebelle and Audit, 2007; Vazquez-Semadeni
et al., 2006). In these simulations, the condensed cold clouds also have supersonic velocity
dispersion the shock-compressed region.

As shown in section 1.7, the density of these cold clouds is comparable with that of
molecular clouds because of the high ram pressure. However, the infant cold clouds are still
too less massive to be gravitationally bound. They gain their weight by accretion of the sur-
rounding unstable gas and by coalescence between the cold clouds. As their mass increases,
the self-gravity becomes important, and molecular hydrogen is generated. Finally molec-
ular clouds form. Including self-gravity, Heitsch and Hartmann (2008); Vazquez-Semadeni
et al. (2007) investigate evolution of these cold clouds in shock compressed region by three-
dimensional simulations that do not have sufficient resolutions to see the detailed clumpy
structures formed by thermal instability. They showed that rapid local gravitational collapses
of the massive cold clouds break out before the global self-gravity dominates the dynamics
completely (also see Heitsch et al., 2008). Hennebelle, Audit, and Miville-Deschénes (2007)

showed that cold clouds in two-dimensional simulations can reasonably reproduce various
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observational properties of molecular clouds, such as the mass spectrum, Larson’s law (see
section 1.2.4), and so on although the cold clouds are less massive and consist of atomic
hydrogen yet. They suggested that the fundamental properties of molecular clouds could
be determined in very early phase. Therefore, the properties of the cold clouds formed by
thermal instability important as seed of molecular clouds.

Recently, the effect of the magnetic field on the thermal instability has been investigated
by Heitsch et al. (2009); Hennebelle and Passot (2006); Hennebelle and Perault (2000);
Hennebelle et al. (2008); Inoue and Inutsuka (2008, 2009); Inoue et al. (2007).

b= 0413 Myr

v pe]

Figure 1.13: Density color maps of the shock-compressed region for ¢t = 0.413 and 1.808 Myr. Figure was
presented in Koyama (2000).

1.8 Purpose of This Thesis

In this thesis, we focus on the size distribution of infant cold clouds formed by thermal

instability. Koyama (2000) investigated the shock propagation into WNM and development
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of the cold layer in the shocked region by using two-dimensional simulation. Figure 1.13
shows the density color map of the shock-compressed region for ¢ = 0.413 Myr when the
cooling layer just reaches thermal equilibrium state. The generated cold clouds are shown
by the red color. The density discontinuities at y ~ 0.4 and —0.1 pc correspond to the
shock front and the contact discontinuity that divides shock-compressed gas with a hot gas.
The linear analysis of the gas in thermal nonequilibrium state (see section 1.5.1) predicts
that the smaller scale is more unstable (Koyama and Inutsuka, 2000). However, figure 1.13
shows that the generated cold clouds have various shapes, such as a sphere and a filament.
The sizes of these filamentary cold clouds are larger than the cooling length (see figure 1.10).
The linear analysis by Koyama and Inutsuka (2000) is based on a isobarically condensing gas
distributed uniformly. Moreover, Koyama and Inutsuka (2000) neglected the time evolution
of the unperturbed state. However, the cooling layer is far from spatially uniform as shown
in section 1.7. Moreover, it is nontrivial whether the fluctuation on the condensing layers
grows faster than collapse of the unperturbed state. If the unperturbed state reaches a
thermal equilibrium before perturbations grow sufficiently, the cooling layer does not split
into cold fragments. Therefore, a linear analysis taking account of the spatial distribution
and time evolution of the unperturbed state is required to understand evolution of condensing
layers more deeply. Understanding evolution of condensing layers relates with the size and
aspect-ratio distributions of the cold clouds that are important for understanding turbulent
structures of shocked regions.

To investigate evolution of runaway cooling layers, in this thesis, we adopt the following

three-step approach.

1. The time evolution of the condensing layer has a self-similarity from figure 1.12 in
section 1.7. Therefore, we propose new self-similar solutions describing nonlinear hy-
drodynamical evolution of runaway cooling gas layers. The obtained new self-similar
solutions describe the results of the one-dimensional calculation in section 1.7 very well
as we will show later. This shows that the self-similar solutions are expected to be a

good nonlinear one-dimensional model of a runaway cooling layer.

2. To investigate multi-dimensional evolution of cooling layers, we perform linear analysis
of the self-similar solutions against fluctuations perpendicular, as well as parallel, to

the direction of the condensation. The time evolution of the unperturbed cooling layer
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is taken into account exactly.

3. We use two-dimensional numerical simulation to check the results of the linear analysis

and to investigate two-dimensional nonlinear evolution of cooling layers.

1.9 Content of This Thesis

In chapter 2, we seek self-similar solutions describing nonlinear evolution of cooling layers.
To investigate fragmentation process of cooling layers, we perform linear analysis of obtained
self-similar solutions in chapter 3. In chapter 4, we present two-dimensional simulation of
fragmentation of cooling layers, and investigate nonlinear evolution of the cooling layer.

Summary and future prospects are presented in chapter 5



Chapter 2

Self-Similar Solution

From figure 1.12, the cooling layer evolves in a self-similar manner in one-dimensional calcu-
lation. Therefore, in this chapter, we propose new self-similar solutions as a one-dimensional
model of nonlinear evolution of cooling layers.

This chapter is mainly based on our paper, Iwasaki and Tsuribe (2008).

2.1 Formulation

2.1.1 The Net Cooling Rate

Since we consider thermal instability in a shock-compressed region where the cooling rate

dominates the heating rate, the heating rate is neglected explicitly in equation (1.2) as

P
L(p,cs) = Nopc2® erg gt s7h o =4 /v—, (2.1)
\/ p

where ¢, indicates sound speed.

2.1.2 Basic Equations

Basic equations for the radiative gas are the continuity equation,

dp =
— + V- (pt)=0 2.2
L9 (o) =0, (22)
the equation of motion,
Dy 15
— +-VP =0, 2.3
Dt (2.3)

31
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the energy equation,
2 Dlnes Dlnp

- = —yAgpc2eb 2.4
v—1 Dt Dt TRPGT (24)
and the equation of state,
k
P=—2_,T, (2.5)
pwmu

where D/Dt = 9/0t + ¥ - V indicates the Lagrangian time-derivative, and pmy is mean

weight per hydrogen nucleus.

2.1.3 Derivation of Self-similar Equations

We take the z-axis as the direction of the condensation driven by cooling and consider time
evolution of the gas only in the z-direction. The effect of viscosity and heat conduction is
neglected for simplicity. We assume that the density and temperature has a maxinum and
a minimum values at x = 0, respectively. The gas at the central region cools more rapidly
than the outer region. During the runaway cooling, the gas in the central region is expected
to lose initial memories and to converge to self-similar solutions that we seek.

In order to seek self-similar solutions, we introduce a similarity variable, £, and assume

that the each physical quantity is given by the following form:
z = xo(t)E, v(x,t) =vo(t)V(E), cs(x,t) = vo(t)X(E),

pla,t) = po()E), and Pla,t) = Py(t)II(E). (2.6)

Substituting equations (2.6) into the basic equations (2.2)-(2.4), one obtains

G0 aQ dv
g (—— ) +Q— =0, 2.7
o0 St ) aE T (27)
"[)() dVv ’Uo 1 dQX2
—V —— 2y — =0 2.8
" +( x§+ )d§ S e (28)
and
2 1')0 po Lto Vo 2 dlnX dIn 2 2(a—1) 2Aa—
— 242+ 2V — = —yA QX2 (29
v — 1w Po+( $0£+$0 )(’Y—l dg d§ TPt (29)

To omit time dependence from equations (2.7)-(2.9), the following relations must be satisfied;

vo(t) ox Zo(t) (2.10)
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and

o po(t)vo(t)2@b, (2.11)

We assume a power-law dependence of zo(t) = a(1—1t/t.)"/1=%) where w is a parameter and
t. is an epoch when the central density becomes infinity. The factor 1 — t/t. decreases with
time and becomes zero at the epoch t.. From equations (2.10) and (2.11), time dependences

of vg(t), po(t) and Py(t) are given by
vo(t) o< (1 —t/t )/ po(t) o (1 — t/t)1E2e)w=1}/(1=w) (2.12)

and

Po(t) o (1 _ t/tc){(S—Qa)w—l}/(l—w)
From equation (2.12) and equations (2.7)-(2.9), we find the following definition;

a

(0 = a1 111079, wft) = i =

(1 _ t/tc)“’/(l‘“’),

2043 _2(1—a)
po(t) = {(1_—1@%} A—O(l — /)"0 and By(t) = po(t)uo(t)?,  (2.13)

where = w(3 — 2a) — 1. Since the dimensional scale is introduced only by Ag, the time
dependence of the physical quantities cannot be fixed. Therefore, we leave w as the free

parameter. For convenience, instead of w, we can use a parameter n which is given by

2= {B—2a)w - 1}'

= 2.14
" 0 (2.14)
Using 7, the time dependences of po(t) and Py(t) are given by
po(t) o< (1 —t/te)™™ =) and Py(t) o (1 — t/t,) /0=, (2.15)
The self-similar equations are obtained as
dinQ dV
v — = 2.16
v+ g)dV n 1 dIn(QX?) v (2.17)
—_— —_— = W .
¢~ dg ’
and
2 dlnX dlnQ 2
(V +€) naam W— B — 4QXx2eD), (2.18)

y—1 d¢ ¢ | y-1
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2.1.4 Homologous Special Solutions

The similarity equations (2.16), (2.17) and (2.18) have homologous special solutions with
spatially uniform density and sound speed. Substituting 2(£) = € and X (§) = X into the
similarity equations (2.16), (2.17) and (2.18), one obtains

?TZ _ 3, (2.19)
(V + g)i—z — WV, (2.20)
and
% — B = QXY = 0. (2.21)
Equation (2.19) is integrated to give
V = B¢, (2.22)

where V(£ = 0) = 0 is assumed. Substituting equation (2.22), equation (2.20) becomes
fw(a—1) =0. (2.23)

Therefore, the homologous solutions exist for § =0 or w = 0 or a = 1. Equation (2.21) gives
the relation between €y and Xy. For f = 0, the solution is given by Q(&) = Qq, V() =0
and X (§) = Xo. The time dependence of density and sound speed are given by

p(t) = const. and ¢(t) o< (1 —t/t,)Y/ 372, (2.24)

respectively. This is the homologous isochoric mode. No homologous isochoric solution with
equations (2.6) and (2.13) exists for a > 1. This is because the sound speed increases with
time by cooling from equation (2.24). This is unphysical behaviour. The solution with w = 0
shows isothermal condensation. For o = 1, no self-similar solutions are found except for the

homologous solutions as shown in section 2.2.

2.1.5 Asymptotic Behaviours

In this subsection, asymptotic behaviours of the self-similar solutions at £ — oo and £ — 0

are investigated.
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Solutions for £ — oo

Assuming that (&) is decreasing function of &, V' (§) and X (&) are increasing functions and
dln|V|/dIn¢ =dIn X/dIn€ < 1, equations (2.16), (2.17) and (2.18) require

dlnQ dV dln X
~ -~ ~ 2.2
Tz B, Sdf wV, and & A w (2.25)

in the lowest order. Expanding to the next order, the asymptotic solutions are given by

£

Q(8) = Qoo + QP (2.26)
V(€) = Vael® + VI, (2.27)
and
X(€) = Xoo€” + XJe™ 1, (2.28)
where
o —q v T (2.29)
1 —w
1 X2
Hn__ - 2 4 TP 2 2.
vV 0 wVi+ 7(ﬁ+ w)|, (2.30)
and )
X(l) _ (’Y + 1)WvooXoo -+ ”Y(”}/ — 1)QooXooa . (231)
> 2(1 —w)
Solutions for £ — 0
We expand Q(€), V(£) and X (&) in the following forms:
0 ~ QO Q(l) vy ~V V(l) v+1
(€) = Qoo + Qo €”, VI(E) = Vool + Vo €777,
and
X (&) = Xoo + X(gcl))fy~ (2.32)

Substituting equation (2.32) into (2.16), (2.17) and (2.18), we obtain the following relations

for coefficients: Vo and VE](OI ) are given by

w8+ 1O

— d v =
Yoo = and Voo v+ 1)

(2.33)
respectively. The relation between €59 and Xy is given by

(7 = 1) Xos" " = 2w — B(y — 1). (2.34)
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The relation between Q&) and Xé(l)) is given by
o,
— +2— =0, 2.35
Q0o Xoo (2.85)
and v is given by
(2 — (1/)600
= 2.
v 311 (2.36)
where
a— 2w — -1
€00 = (7 — 1)Qpo X2V = 57(7 ) (2.37)
2.1.6 Critical Point
Equations (2.16), (2.17) and (2.18) are rewritten as
dan:é’ d_Vzé n dlIlX:£7 (2.38)
d¢ L ¢ L dé I
where
2
L=V+¢*-X? L= 2.39
1 ( + 5) ) 2 vV + gg + f7 ( )
Iy=—X’g+BL — (V+f, (2.40)
1[X?—y(V+&)? v—1
Iy =—= — 2.41
92, X) = (7= 1) { Q03" — xe-n (2.42)
and
fE&V) =BV +¢) —wV. (2.43)

The singular point exists where I; = 0 in each of the equations (2.38). This is the critical

point (§ = &). In the self-similar solutions which is smooth at this point, the numerators

(I5, I3 and I;) must vanish at £ = &. Among four conditions I} = Iy = I3 = I, = 0, there

are two independent conditions which are given by

2

(V+&?=X? and Ve

g+ f=0.

(2.44)
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Topological Property of the Critical Point

In this subsection, the topological property of the critical point is investigated. We introduce
a new variable s which is defined by ds = I;d¢ (Whitworth and Summers, 1985). The

dimensionless quantities at infinitesimal from the critical point, ss + ds, are given by
Qs +0s) = G, + 6, (2.45)

where Cj = (£,InQ,V,In X). The subscript “s” indicates the value at the critical point.

Substituting equation (2.45) into equations (2.38) and linearizing, one obtains

doQ;
ds

ol;
= Aijle=e.0Q;,  Aij = 20, (2.46)
J

The eigenvalues, A, of A;; provide the topological property of the critical point. The

i : i 2+bi_|_
X, X, X, ¢

b=e{(v—Da-1)+1}+w+ -2 (2.48)

eigenequation is given by

=0, (2.47)

and

c = 2y(a—1)e

+ (=fy —dwa+ 2w —2ya+2a — 3 — 20 + wy + 7)és

4 — B —2w+2
b o B W PP (2.49)
v

where ¢, = (v — 1)QSXS,2 @D The degenerate solution A = 0 is attributed to the homologous
special solutions (see subsection 2.1.4). Therefore, the topology is described by the two

eigenvalues except for A = 0.

2.1.7 Numerical Methods

In this subsection, our numerical method employed in solving the similarity equations (2.38)
is described. We adopt s as the integrating variable. Using variable s, equations (2.38) are

rewritten as

d@;
ds

which is not singular at the critical point.

=1, i=1234, (2.50)
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The critical point is specified by (&, V) because there are four unknown quantities @ and
two conditions (equations (2.44)). Moreover, the similarity equations (2.50) are invariant
under a transformation & — mé&, V. — mV, Q@ — m2@DQ, X — mX, where m is an
arbitrary constant. Therefore, the self-similar solution for (mé&, mV;) is the same as that for
(&, Vz). Since one can take m in such a way that (&, V;) satisfy a relation 2 + V2 = 1, the
critical point is specified by only &.

Given &, the velocity is obtained as V; = —\/1—7582. From equations (2.44), € and
X, are determined. Since X = Vi + & is positive, the range of & is 1/\/§ < & < 1. The
similarity equations (2.50) are integrated from & to both directions (¢ — 0 and £ — o0)
along the gradient derived from equation (2.46) using fourth-order Runge-Kutta method.
The position of the critical point & is determined iteratively by bisection method until the

solution satisfies the asymptotic solutions (see subsection 2.1.5).

2.2 Results

2.2.1 Physically Possible Range of Parameters (7, a)

In this section, we constrain the parameter space (1, «) by physical properties of the flow.

A Range of n

Using equation (2.15), the time dependence of the central density and pressure is given by
poo(t) oc (1 —t/t.)™ " and Pyy(t) o< (1 — t/te) /0= (2.51)

where the subscript “00” indicates the value at the center, x = 0. During self-similar con-
densation by cooling, the central density (pressure) must increases (decreases) monotonically

with time. Therefore, the following two conditions are obtained:

n
2 —«

<0 =n>0 (2.52)

and

1— <1 for a<l1
T = 7 (2.53)

l1-a n>1 for a>1.
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From equations (2.52) and (2.53), the range of 7 is given by

0<n<l1l for a<l
(2.54)

n>1 for a>1.

a=0.3 a=0.5
1 T T e § 1 T T 1
08 N o 08 - N g 08
(o]
0.6 o 06 p 06
n q n n
04  SD 2 0.4 | SD 04
0.2 | @ 02 0.2 |
(0]
0 | | O | | 0 | |
08 09
&s
a=1.2
1 1.5 T T
0.8 F 1.4 F kbl./
10F .
0.6 | 13 F O
n n n SP
0.4 12 F
0.2 F Tl 1.1 F
0 . ' 1 1 | —
08 0.9 1 0.8 0.9 1 08 0.9
&s &s &s

Figure 2.1: Topological property of the critical point for « =0.3, 0.5, 0.8, 0.9, 1.1 and 1.2. The ordinates
and abscissas are n and &g, respectively. The letters “N”, “SD”, and “SP” indicate a node, a saddle and a

spiral, respectively. The open circles indicate obtained self-similar solutions.

A range of «

In the similarity equations (2.50), the critical point is specified by «, n and &. The property
of the critical point is given by the two eigenvalues of the eigenequation (2.47) except for
A = 0. When the two eigenvalues are real and have the same sign, the critical point is referred
to a node. When the two eigenvalues are real and have the opposite sign, the critical point

is referred to a saddle. When the two eigenvalues are complex, the critical point is called a
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U no | =n/2-—a) | (1-n)/0-a)| & | Qo | Xoo | O Ve | Xs
0.059 || 1.923 -0.039 1.882 0.9999 | 0.873 | 0.977 | 0.882 | -0.0234 | 0.0408
0.272 | 1.818 -0.181 1.455 0.9975 | 0.768 | 0.883 | 0.782 | -0.124 | 0.201
0.500 || 1.667 -0.333 1.000 0.9907 | 0.643 | 0.766 | 0.612 | -0.244 | 0.391
0.692 || 1.538 -0.462 1.538 0.9820 | 0.528 | 0.652 | 0.420 | -0.323 | 0.555
0.761 || 1.493 -0.507 0.615 0.9792 | 0.486 | 0.609 | 0.343 | -0.333 | 0.613
0.857 || 1.429 -0.571 0.478 0.9779 | 0.426 | 0.546 | 0.234 | -0.314 | 0.697
0.945 || 1.370 -0.631 0.110 0.9853 | 0.360 | 0.472 | 0.123 | -0.223 | 0.805
0.995 || 1.337 -0.663 0.011 0.9986 | 0.237 | 0.315 | 0.0260 | -0.0576 | 0.952

Table 2.1: Relevant parameters for obtained self-similar solution (o = 0.5) are summarized.

spiral. Figure 2.1 shows the topology of the critical point in the parameter space (&, n) for
index parameter a = 0.3, 0.5, 0.8, 0.9, 1.1 and 1.2. In figure 2.1, the letters “N”, “SD”, and
“SP” indicate a node, a saddle and a spiral, respectively. The ranges of the parameters are
1/4/2 < & < 1 and equations (2.54). The open circles indicate the numerically obtained self-
similar solutions presented in section 2.2.4. Figure 2.1 shows that the topology drastically
changes at @« = 1. For a < 1, since the critical point is a node or a saddle, the self-similar
solutions is expected to exist. For a ~ 1.1, non-negligible fraction of the parameter space is
covered by a spiral. Almost all parameter region is a spiral for a > 1.2. We searched and
found the self-similar solution which connects 0 < £ < co only in N and SD for a < 1.
Relevant parameters (n, n, —n/(2 —a), (1 —n)/(1 — a), &, Qoo, Xoo, Loo, Voo, Xoo) for

obtained self-similar solution for o = 0.5 are summarized in table 2.1.

2.2.2 Fixed Normalization of Self-Similar Solutions

As mentioned in section 2.1.7, the similarity equations (2.50) are invariant under a transfor-
mation & — mé&, V = mV, Q - m 2 DQ, X — mX, where m is an arbitrary constant.
For convenience for numerical integration, we select m so that the relation, £2 + V2 =1 is
satisfied. This choice of m does not have any physical meaning. In this section, we select m

so that the length scale is scaled by the cooling length at z = 0 as

Acool(t = 0)(1 — t/to )/ =),

r = /\cool(t)& )\cool(t) = (255)
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This selection of m has physical meaning.
We determine m so that equation (2.55) is satisfied as follows; the cooling length is given

by
Poo(t)

)\coo t) = cooll . 2.56
() = conl )(’Y — 1)Aopoo(t)?con(t)* (2:56)
Using equation (2.13), equation (2.56) can be rewritten as
Qle3f2a Qle?)an
Aeool(t) = a—2""00 (1 — ¢/t )/ (7)) = 0000 (4). 2.57

Performing the following scaling transformation, & — m&, V — mV, Q — m~2@-VQ, X —

mX, equation (2.57) becomes

Q—lXS—Qa
Meool (1) = m—2"090___ 40 (t). 2.58
(1) =m0 (2.59)
Therefore, if we select

m =y(y = 1)QoXg5 >, (2.59)

xo(t) is coincident with the cooling length, or
ool (1) = xo(t). (2.60)

Using this transformation and equation (2.34), the central values of €2, IT and X become

B (7600)3—204 B (7600)5—204 B
QOO = — HOO = =0 and XOO = "}/600, (261)

yy—=1)" P(y—1)
respectively. From equations (2.61), the cooling time at z = 0 is

P()()(t) o ]_ — W
v — D) Aopoo(t)®cos  veoo

teool = ( tc(]- - t/tC> (262)

Therefore, the collapse time can be expressed using the cooling time at t = 0 as

Y€oo

te =
l1—w

teool(t = 0) (2.63)

Using this normalization, equation (2.13) can be written as

. v _ Coo(t>
To(t) = Aeool(t), vo(t) ~éon
pult) = 2 lt), and Rut) = (0 (2.64)

Hereafter, this normalization is used.
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2.2.3 Physical Meaning of Parameter 7

New self-similar solutions have one free parameter 7 that ranges from 0 to 1. In this section,
we show that the parameter n is related to the ratio of the scale length of the condensing
region to the cooling length. The scale length of the central condensing region, zp, is defined

by the condition,

plrn(t),t) Q&)
p(0,1) Q00

where £, is the similarity coordinate with respect to xy. Using equation (2.55), the ratio of

=0.8, (2.65)

the scale length of the condensing region to the cooling length is given by

XL

)\cool (t)

Equation (2.66) shows that the ratio is independent of time. Figure 2.2 indicates the de-

= &L (2.66)

10-2 I I I I I I I I
0.102030405060.70809 1

n

Figure 2.2: The dependence of the ratio of the scale of the condensing ration zp, to the cooling length Acoor

on the parameter 7 for &« = —0.5 (the open circles), 0.5 (the filled circles), and 0.8 (the open boxes).

pendence of xy,/Acoo On the parameter 7 for a = —0.5, 0.5 and 0.8. Figure 2.2 shows that
2L/ Acool => 0 for n — 0 and x,/Acoo) < 1 for n — 1 without depending on «. Therefore, we
can discuss behaviours of the self-similar solutions for n ~ 0 and 1 ~ 1 in the same way in

section 1.4.1.
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1N ~ 0 (2L > Acoo1) This self-similar solution describes the large scale condensation. In
this situation, the pressure drops while the density does not increase so much. From

equation (2.51), the time evolutions of the central density and pressure are given by
poo(t) =~ const. and Pyo(t) o< (1 — t/te)/ 1), (2.67)

respectively. Therefore, this self-similar solution corresponds to the isochorically cool-

ing layer.

N ~ 1 (xr <K Acoo1) This self-similar solution describes the small scale condensation. In
this situation, the gas is expected to condense in pressure equilibrium with their sur-
roundings. From equation (2.51), the time evolutions of the central density and pres-

sure are given by
poo(t) oc (1 —t/t.) Y@= and  Pyy(t) ~ const., (2.68)

respectively. Therefore, this self-similar solution corresponds to the isobarically con-

densing layer.

The critical value of 1 = 7 is given by the condition that the increasing rate of pgo(t) is

equal to the decreasing rate of Py(t), which is given by

_Z-a (2.69)
lea = 37794 ‘
For 1 = neq, the time dependence of pyy and Fy is given by
poo(t) oc (1 —t/t.)"YB=20 and  Py(t) o< (1 —t/t)/ B2, (2.70)

Therefore, the self-similar solutions for 0 < 1 < 7eq and 7eq < 7 < 1 are close to the
isochorically and the isobarically condensing layers, respectively. The family of the self-

similar solutions describe nonlinear evolutions of thermal instability of all length scales.

2.2.4 Self-Similar Solutions

In this section, we present the obtained self-similar solutions for the n = 0.98, 0.76 and 0.12.
The index parameter of the net cooling rate « is set to 0.5.  The self-similar solutions

for n = 0.98 and n = 0.12 are representative solutions of isobarically condensing layer and
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Figure 2.3: The distributions of the dimensionless density §2, velocity —V', and pressure II for (a)n = 0.98
(the isobarically condensing layer), (b)0.76 and (c)0.12 (the isochorically cooling layer). The open circles

indicate the critical points.

isochorically cooling layer, respectively. The self-similar solution for = 0.76 = 7, indicates
the intermediate case between the two limits (see equation (2.69)).

Figure 2.3a, 2.3b and 2.3c show the distributions of the dimensionless variables (2, II,
and —V') as a function of the dimensionless coordinate £ for n = 0.98, 0.76 and 0.12, respec-
tively. The open circles indicate the critical points (see section 2.1.6). For the isobarically
condensing layer (n = 0.98), the density has a sharply peaked distribution. On the other
hand, the pressure is spatially constant. For the isochorically cooling layer (n = 0.12), the
density and pressure profiles are opposite to those for n = 0.98. The density is spatially
constant and the pressure sharply declines towards & = 0. For n = 0.76, the profiles of the

density and pressure raises and declines towards £ = 0, respectively.
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(a)n=0.98 (b)n=0.76=n¢q (c)n=0.12
(isobarically (isochorically
condensing layer) cooling layer)

102
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Figure 2.4: Time evolution of density p and pressure P. The each line is corresponding to 1 — ¢/t. =1, 0.1,
0.01 and 0.001 in the direction of the arrows. Each column is corresponding to (a)n = 0.98 (the isobarically
condensing layer), (b)0.76 and (¢)0.12 (the isochorically cooling layer) from left to right, respectively.

Figure 2.4a, 2.4b and 2.4c¢ show the time evolutions of the density and pressure for
n = 0.98, 0.76 and 0.12, respectively. Figure 2.4a clearly shows that the self-similar solution
for n = 0.98 describes the isobarically condensing layer. The self-similar solutions for smaller
n correspond to the larger scale condensation (see section (2.2.3)). Therefore, figure 2.4b
(n = 0.76) shows that the pressure cannot be maintained constant and decreases with time.
Figure 2.4c clearly shows that the self-similar solutions for n = 0.12 describe the isochorically
cooling layer.

Finally, we mention the range of o where the self-similar solutions exist. When a = 1.0,
no self-similar solutions are found except for the homologous special solutions (see section
2.1.4). For a > 1.0, we cannot find any self-similar solutions. Fouxon et al. (2007) found
a family of exact solutions for « = 1.5 > 1. Their solutions are not self-similar because

tsouna ¢ (1 —1/t.)%? and teeo1 o (1 —t/t.) around center obey different scaling laws. During
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condensation, since ty,u,q becomes much smaller than t.,,, pressure of the central region
is expected to be constant and the isobaric approximation is locally valid. Moreover, as
mentioned in section 2.1.4, there are no homologous isochoric solutions for a > 1. Therefore,

for a > 1, condensation is not expected to become self-similar.

2.3 Discussion

2.3.1 Comparison with One-dimensional Numerical Simulation

In this section, we investigate whether the obtained self-similar solutions can describe results
of time-dependent numerical hydrodynamics for converging flows using one-dimensional La-
grangian 2nd-order Godunov method (van Leer, 1997) or not. We calculate two cases of the

power law net cooling rate and realistic cooling rate of the ISM.

Converging flow with Power-law Net Cooling Rate

First, we consider the following power-law cooling rate,

£lp.T) = —(VpP = 1), (2.71)

that corresponds to a = 0.5 in equation (1.2). We consider a convergence inflow of the gas
that is distributed uniformly and is in thermal equilibrium (p(x) = P(z) = 1). A initial

velocity field is given by
v(x) = —2tanh(z/L), (2.72)

where L is a free parameter in this calculation which specifies the finite scale of compressed
layer. The scale of perturbation in the postshock region can be changed by changing of L.
As L is larger, the scale of perturbation becomes larger. We perform numerical simulations
for L = 0.005, 0.01, 0.02, 0.2, and 0.5. The inflow creates two shock waves which propagate
outward. Runaway condensation occurs in the postshock region because the gas is thermally
unstable. The maximum density continues to increase and ultimately becomes singular.
During the runaway condensation, the gas around the center is expected to lost initial
memory and to converge to one of the self-similar solutions. Since the self-similar solution
have one parameter n that relates with the scale of the condensation, the parameter L in

the calculation is expected to determine which 7 is chosen.
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Figure 2.5: The time evolution of pgo (the thick lines) and Py (the dashed lines) as the function of 1—t/t, for
(a)A =0.01, (b)0.02, (¢)0.2 and (d)0.2. The thin solid lines indicate the corresponding self-similar solutions.
The direction of the time is from the right to the left.

To determine 7, we investigate the time evolution of pyy and Fyy that are shown in
figure 2.5 as the function of 1 — t/t., where t. is an epoch when pgy becomes singular
estimated from the numerical results. Using equation (2.51), the time evolution of pyo(t)
and Pyo(t) in each simulation provides the corresponding 7. Each panel indicates the case
with (a)L = 0.01, (b)0.02, (¢)0.2 and (d)0.5. As a result, the corresponding 7 are given by
(2)0.99, (b)0.98, (¢)0.76 and (d)0.50, respectively. The thin solid lines in figure 2.5 indicate
the corresponding self-similar solutions. From the value of n and figure 2.5, the cases with
(a) and (b) correspond to the nearly isobaric mode, the case with (c) corresponds to the
intermediate mode (7 ~ 1) and the case with (d) corresponds to the isochoric mode.

Figure 2.6 shows the time evolution of the rescaled density p(1—t/t.)"(?=®) and pressure
P(1 — t/t.)~(=m/(0=9) a5 a function of the rescaled coordinate x(1 — t/t.)~'/(=<) The
parameters L and 7 in each panel in figure 2.6 are the same as that in figure 2.5. The

thick gray lines in figure 2.6 indicate the corresponding self-similar solutions. In all the cases



2.3. Discussion 48

(a)L=0.01 (n=0.99) (b)L=0.02 (n=0.98)

1-t/te= 1-t/te=

Rescaled density and pressure

Rescaled density and pressure

L 0.00074 L 0.00079
101 | 0.00043 10t £ 0.00048 .
I 0.00012 r 0.00018 —
2 [ 2 [ i
107 ¢ ] \ ] \ ] \ ] \ 10 ¢ ] \ ] \ ] \ ] \ ] % ]
10% 10?2 10° 102 10* 10° 10* 102 10° 10®° 10* 10°
Rescaled Coordinate Rescaled Coordinate
% 102 e A | — %’ 102 T T 1
2 " (c)L=0.2 (n=0.76) 2 © (d)L=0.5 (n=0.50)
o 1 g 1
a 10 s 10
© ©
] @
2 10° > 10°
@ 1-t/tc= 2] 1-t/tc=
o) L 0.00068 —— [0} L 0.00060 —
S 10t 000041 —— S 10! 000036 ——
% 0.00013 % 0.00012
? 102k ] 2 102k ]
o N T R R SR i ) N R R T R i
4 o
10* 10? 10° 10® 10* 10* 102 10° 10® 10
Rescaled Coordinate Rescaled Coordinate

Figure 2.6: The distribution of the rescaled density p(1 — t/t.)"/(?=®) and pressure P(1 — t/t.)~(1—1/(2=)

1-w)

as the function of scaled coordinate x(1 — t/t.)~/( In each panel, L and 7 are the same as that in

figure 2.5. The lines are labeled by 1 — ¢/t.. The rescaled density and pressure at the center set 10 and 0.1,

respectively. The thick gray lines indicate the corresponding self-similar solutions.

(a-d), profiles of the density and pressure in the central region are well approximated by the
corresponding self-similar solution. Moreover, it is seen that the region well approximated
by the self-similar solution spreads with time in each panel. However, there is difference of
the convergence speed to the corresponding self-similar solution. Figure 2.5 shows that the
convergences of (a) and (b) are faster than that of (c¢) and (d). This is because the scale
lengths of the condensed regions of (a) and (b) are smaller and sound wave can travel the
cooling length many times.

From the above discussion, the nonlinear evolution of the perturbation is well approx-
imated by the self-similar solution in large density limit. Which self-similar solution (0 <
n < 1) is more likely to realise in actual environments where various-scale perturbations
exist? To answer the question, the dependence of t. on L is investigated. Figure 2.7 shows

the dependence of 1/t. on 1/L. Here, 1/L and 1/t. correspond to the wavenumber and the
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Figure 2.7: The dependence of the growth rate 1/¢. on the wavenumber 1/L.

growth rate of thermal instability, respectively. Therefore, figure 2.7 can be interpreted as
an approximate dispersion relation for the nonlinear evolution of thermal instability. As 1/L
is larger, 1/t. becomes larger and it seems that 1/t. approach a certain value asymptotically.
The similar behaviour is also found in the dispersion relation of Field (1965) without heat
conduction. This behaviour also can be seen from equation (2.63) that can be rewritten as

B 1 _1—(7—1)(1—&) _
A a0

(2.73)

Since @ < 1 and v < 2, equation (2.73) is the decreasing function of 7. Therefore, if initial
cooling time t.o01(t = 0) is given, the collapse time t. is shorter in the self-similar solutions
for larger . Therefore, from figure 2.7 and equation (2.73), the isobaric condensation is
expected to realize in actual astrophysical environments. In this environment, nonlinear

interaction between the isobaric and the isochoric modes will also be important.

Converging Flow with the Cooling Rate of the Interstellar Medium

The one-dimensional calculation has already done in section 1.7. In this section, we investi-
gate whether the runaway condensing layer can be described by the self-similar solution or

not. The self-similar solutions are specified by a and 7. First, We evaluate the power index
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of the highest density portion of the gas, ay., that is defined as

at each instant of time, where x,.,(t) indicates the coordinate of the density peak. Figure

(2.74)

T=Tmax
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Figure 2.8: The time evolution of agu, at the highest density portion. The region below the horizontal
thin solid line (apum = 2) is thermally unstable where the Balbus criterion for the isobaric mode (1.28) is

satisfied.

2.8 shows the time evolution of ay,y,. It is seen that ayu, ~ 0.61 is approximately constant
during 0.4 Myr < t < 0.95 Myr. In this phase, the power-law cooling rate with a = 0.61
in equation (1.2) describes the real cooling rate well. Next, we determine 1 from the time
evolution of the maximum density pyay that is shown in figure 2.9 as a function of 1 — ¢/,
where t. = 0.958 Myr. This evolution of pp,., is well described by the self-similar solution
with (a,n) = (0.61,0.98) that is shown by thin solid line.

The density and temperature profiles in figure 1.12 are compared to those of the self-
similar solution with («,n) = (0.61,0.98). Figure 2.10 show the snapshots of (a) the rescaled
number density, n(1—t/t.)”?=® and (b) the temperature, T'(1 —t/t. )"~ (2=} {2-a)(0-a)}
as a function of the rescaled coordinate, z(1 — t/t.)~/(1=%) at t = 0.80, 0.90, and 0.95. The
thick gray lines indicate the corresponding self-similar solution. From figure 2.10, one can

see that the self-similar solution describes the results of the one-dimensional simulation very
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Figure 2.9: The time evolution of py.x as a function of 1 — ¢/t.. The thin solid line corresponds to the

increasing rate of pgg with (a,n) = (0.61,0.98). The direction of the time is from the right to the left.

well. We also confirm the isobaric self-similar solutions can describe results of simulations

for the case with different initial density fluctuation (see equation 1.36).

2.3.2 Effects of Dissipation

In the actual gas, the effect of viscosity and heat conduction becomes important in small
scale. The importance of dissipation can be evaluated by the ratio between the advection

and the dissipation terms, or Raynolds number which is given by

Cypvd, T CvpooUy,
R = ~ , 9,75
L (KT)5T) ~ K (To) (2.75)

where Cy, K(T') and U are the specific heat at constant volume, the heat conduction coef-
ficient and typical velocity, respectively, and zy, is the scale length of the condensing region
that is defined in equation (2.66). Plandtl number is implicitly assumed to be order unity.
If the flow converges to one of the self-similar solutions, the ratio ( between the scale length

of the condensing region xr, and the cooling length A.,o is constant. Therefore ( is defined
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by
TL (t) 20—3
¢= = z1(t)7(y — 1) Aopoocpo s (2.76)
/\cool<t>
where ¢y is the sound velocity at the center. Using (, xp, is written as
o= —— b (2.77)
(v = DAg

Substituting this equation into equation (2.75), one obtains

CvaC 4—-2a—0

R~ VIS ac2acs,
(v = 1) AgKy *

(2.78)

where U = vaOO(fv < 1) and K(Tgo) = K()C'go.
For the low temperature case, we adopt K = 2.5 x 103/T ergs cm™' K~ s~ (Parker,

1953) and the following cooling function (Koyama and Inutsuka, 2002);
AT) ~ 1.0 x 102°0°VT ergem™> s71. (2.79)
The Raynolds number is given by

mest () () (). o

We consider the self-similar solution describing isobaric condensation because the effect of

the heat conduction is important for small scale. In the isobaric self-similar solution, the
ratio ¢ = 21,/ Acool 18 less than 1 from figure 2.2. Here, we adopt ( ~ 0.1 as the representative
value. From equation (2.80), since the Raynolds number is much larger than 1, dynamical
condensation of the postshock region is expected to be well described by the self-similar
solution. In previous section, the time evolution of the shocked gas can be described by the
self-similar solution despite the heat conduction is taken account.
For the high temperature case, the cooling rate of metal lines (10°K < T < 107K) is
given by
AT) ~ 2.2 x 102p*T %% ergs em 2 57 (2.81)

We adopt K = 1.24 x 107972 ergs cm™ K~! s7! (Parker, 1953). Using this formula, the

Raynolds number is given by

R ~ 85 (Ofl) (0%) (107611{)0.1' (2.82)

Because of R > 1, in the high temperature case, the self-similar solution is expected to well

describe dynamical condensation.
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As temperature decreases, R decreases and becomes < 1 at a certain epoch. Thereafter,
our self-similar solutions are invalid and the effect of heat conduction becomes important

during condensation.

2.4 Summary

In this chapter, we have presented new self-similar solutions describing dynamical conden-
sation of cooling gas layers with the net cooling rate per unit mass, £ o« p7“, where « is the

index parameter. The results of our investigation are summarized as follows:

1. Our new self-similar solutions have one parameter n that ranges from 0 to 1 in addition
to the index parameter o. The parameter, n relates with the ratio of the scale length of
the condensing region zy, to the cooling length A.oo1. The scale length of cooling layer of
the self-similar solution for n ~ 0 is much larger than the cooling length, or xp, > Acoor-
In this solution, the density remains constant because xp, is too long for sound wave
to travel during cooling. Therefore, the self-similar solution for n ~ 0 describes the
isochorically cooling layer. The self-similar solutions for larger n have smaller scale
length of the condensing region zp. Therefore, the gases interact more strongly each
other within zy, for larger 7. In the self-similar solution for n ~ 1, x, is much smaller
than Ao The fluid element evolves in pressure equilibrium with its surroundings
because the sound wave can travel x;, many times during the cooling. The self-similar
solution for n ~ 1 describes the isobarically condensing layer. Therefore, the family of
the self-similar solutions describes nonlinear development of thermal instability of all

length scales in one-dimensional model.

2. The self-similar solutions exist only for the range of @ < 1 where the gas is unstable

in the isochoric and isobaric modes.

3. Derived self-similar solutions are compared with the results of numerical simulations
for generic initial condition which is convergence flow in section 2.3.1. In any wavenum-
ber of perturbation, our self-similar solutions well approximate the results of numerical
simulations in high density limit. In the postshock region, smaller scale perturbation

grows faster and asymptotically approaches to self-similar solutions for n ~ 1. There-



2.4. Summary 55

fore, in actual situations, the isobarically condensing self-similar solution (n ~ 1) is

expected to be realized.

4. We investigate whether obtained self-similar solutions can describe the nonlinear devel-
opment of the runaway condensation of the gas layer induced by the colliding WNM
that is calculated in section 1.7 by the one-dimensional numerical simulation. It is
found that this condensation is well described by the self-similar solution for n ~ 1

that describes the isobarically condensing layer.



Chapter 3

Linear Analysis of Self-Similar

Solutions

In chapter 2, we have discovered new self-similar solutions that describe nonlinear time
evolution of cooling layers in one-dimensional simulations well. However, in order to examine
the size and shape distributions of condensed cold clouds, it is important to investigate multi-
dimensional evolution of the condensing layer. In this chapter, we investigate linear stability
of the obtained self-similar solutions against fluctuations in the direction perpendicular, as
well as parallel, to the condensation. This analysis provides some insight about the size of
the cold clouds.

This chapter is mainly based on our paper, Iwasaki and Tsuribe (2009).

3.1 Formulation

We take the z-axis as the direction of the condensation driven by the cooling and y-axis as
the transverse direction. Since the self-similar solutions are time-dependent, it is difficult to
perform linear analysis in the ordinary Cartesian coordinate, (¢,z,y). Bouquet et al. (1985)
introduced a zooming coordinate where self-similar solutions appear to be stationary (also

see Hanawa and Matsumoto, 1999). We introduce the similar zooming coordinate since this

o6
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transformation makes stability analysis easier as follows:

In(1 —t/t.)
t T _—
l—w "
v = 5 - x/Acool(ﬁ ’ ACOOI@) = )\COOI(t = 0)(1 o t/tC> /" 7W)7 (31)
) Y Y

where w is the free parameter and ¢, is an epoch when the central density becomes infinity.
In the zooming coordinate, density €2, velocity 17, pressure II, and sound speed X are given

by
Q7. & y) = plt,z,y)/po(t),  V(r.&y) = (t,z,y)/v(t),

H(T7§7 y) - P(t7x7 y)/PO(t)7 X<T7§7 y) - Cs(ta xhy)/v()(t)? (32)

respectively, where definitions of po(t), vo(t), and Py(t) are given in equation (2.64). In the

zooming coordinate, the basic equations (2.2)-(2.4) are rewritten as

Dn®2 = -
Vo= 3.3
otV B, (3:3)
DV 1. -
Dr + §VH =wV, (3.4)
and
1 D 2w
——— (InIIQ7") = —— — g —y*Q* 1! :
S ip, W) = = F - : (35)
respectively, where the operators of time and spatial derivative are defined by
D 0 - - - 0 0
_— = — Ee) - d — =y )\coo a | :
Dr = 57 +(V+&€)-V, and V ((’9{’ I(T)ay) (3.6)

respectively, where € indicates the unit vector parallel to the {-direction. The derivation
of equations (3.3)-(3.5) is presented in Appendix C. Stationary solutions, /01 = 0, are
identical to self-similar solutions obtained in chapter 2.

We apply the zooming transformation only in the x-direction but not in the y-direction in
equation (3.1). This is because the gas contracts along the z-axis but not along the y-axis in
the unperturbed state. In the ordinary coordinate, the transverse scale of the perturbation is
expected to be constant with time. However, if the zooming transformation is also applied in
the y-direction, the transverse scale of the perturbation decreases with time in the ordinary
coordinate, although the unperturbed gas does not contract along the y-axis. Therefore, we

apply the zooming transformation only in the z-direction.
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3.1.1 Perturbation Equations

Perturbation on the self-similar solutions is considered. Perturbed variables are defined by

Q = Q{1+ 02(,& )}
VCE = Vb(g) + 5%(7—757 y)>
Vy = Vy(1,&y),

where subscript “0” indicates the unperturbed state. We consider the following Fourier mode

with respect to y,
6Q(7,€,y) = 6Q(r.€) exp(iky), where 6Q = (59, 6V,51L), (3.8)

and k indicates the wavenumber of the plane wave that propagates along the y-direction.
Substituting equations (3.7) and (3.8) into equations (3.3)-(3.5) and linearizing, we get the

following perturbation equations:

DOQ 98V, , .
B+ ge = ~m)0Ve = Faa(r)idV,, (3.9)
DSV,  XZ2osll X3
D0 = (w— VOV, — 22 (InTL,) (811 — 69 1
Dr T (w—V()oVa ,y(n o) (611 — 092), (3.10)
D6V, X3
DTy = widV, + k)\cool(r)TO(SH, (3.11)
and
DSl Do oy
D T = (22— a)1ed — (0~ Dyepdll - (InlloQ5")'oVe,  (3.12)
where D/D7 = 0/01 + V,0/0¢,
€0 ="y — DTS, and kdeool(T) = kdeool (7). (3.13)

The time-dependent factors remain in the form of kAo (7) in (3.9)-(3.12) because the
transverse scale is not zoomed (see equation (3.1)) as mentioned above. This leads to a
problem that the perturbed variables cannot be expanded in the Fourier mode with respect

to 7 in general.
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3.2 Perturbation with £ =0

In this section, we consider the perturbation parallel to the condensation, or for the case
with k£ = 0. In this case, since the time-dependent factor, kAcoo1(7), vanishes, the perturbed

variables can be expanded in the Fourier mode with respect to 7 as
5Q(r,€,y) = 0Q(E) exp {(1 — w)Sr + iky} (3.14)
By equation (3.14), the time evolution of the perturbations is given by
6Q oc (1 —t/t)™>. (3.15)

If ¥ is positive value, the perturbation is unstable. Substituting equation (3.14) into the

perturbation equations (3.9)-(3.12), one obtains the following ordinary differential equations:

doQ;
dg

where the detailed expression of A;; is shown in Appendix D. Equations (3.16) are solved as

3
1 -
B EST )~ Aij0Q;, 0Q = (5Q,0V;,610), (3.16)
j=1

a boundary- and eigen-value problem.

3.2.1 Boundary Conditions

We impose the boundary conditions at £ = 0 and at the critical point, & = &, where V; = Xj.
The boundary conditions at & = 0 are obtained by the asymptotic limit of the perturbed
variables. From the regularity of the perturbed variables at & = 0, we find that perturbed

variables should have the following asymptotic forms:

lim 6Q(&) ~ 6Qy, élir(l) V(&) ~ —(1 —w)36QE, (3.17)

£—0

and

) N (1 —w)X + (o — 2)eno
%12% OL(E) = 7(1 —w)X + (o — 1)yen

where €gg = {2w — B(y — 1)} /v

The boundary conditions at the critical point, £ = &, are obtained from the equations

590, (3.18)

(3.16). At & = &, the denominator of the righthand side becomes zero. To obtain a regular
solution from £ = 0 to £ = 0o, the numerator of the righthand side should vanish. Therefore,
the boundary conditions are given by the following three equations,

3
> A6Q; =0, i=1,23 (3.19)
j=1 5255
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The above three equations give only one independent condition.

3.2.2 Numerical Method

Solutions of equations (3.16) have three integration constants. Therefore, if we set two
constants (62, ) and impose the boundary condition at £ = &, the solution is completely
fixed. In this section, our numerical method for solving equations (3.16) is described.

We can set 6¢)y = 1 without loss of generality. For a given Y, we integrate equations
(3.16) from & = 0 to the critical point, £ = &, using a fourth-order Runge-Kutta method.
Eigenvalue, >, is modified until the perturbed variables satisfy the boundary condition at
¢ = & using the Newton-Raphson method. After that, we integrate equations (3.16) up to
& =10%

Figure 3.1: Growth rate, 3, as a function of 7 for (a) & = —1.0 and (b) 0.5 for the case with the perturbation
parallel to the condensation. For comparison, the increasing rate of the unperturbed central density, X,
and the decreasing rate of the unperturbed central pressure, ¥ p, are shown by the dashed and dotted lines,

respectively.

3.2.3 Results

Figure 3.1 shows the dependence of the growth rate, 3, on the parameter n for (a)a = —1.0
and (b)0.5. From Figure 3.1, it is seen that 3 > 0 for a wide range of o and 7. Therefore,

the perturbation is unstable. We compare the growth rate ¥ with the evolutionary rates of



3.2. Perturbation with £k =0 61

0... ................................................... 'y -

-------------
---------------------------
........
......

1 MY B B B B B

0.001 0.01 01 1 10 100 1000

Figure 3.2: Eigenfunctions of the dimensionless density perturbation §€2(the solid line), pressure perturbation
0II(the long-dashed line), velocity perturbation 0V, (the dotted line) for the parameter n = 0.917. The index
parameter of the net cooling rate « is set to 0.5. The filled circles denote the values at the critical point.

The corresponding growth rate is ¥ = 7.76 x 1072,

the central density and pressure that are defined by

0 1In pog n 4y 01n Py 1—n
—= —= an = =
lom(l —t/t)l  2—a’ Plom(1 —t/t)l T 1—a’

(3.20)

respectively (see equation (2.51)). Figure 3.1 shows that X is smaller than ¥, and Xp
for all . Therefore, the growth rate is too low to grow sufficiently during the runaway
condensation. This is consistent with the results of the one-dimensional numerical simulation
shown in section 2.3. Figure 3.2 shows eigenfunctions of (€2, dII,5V,) for « = 0.5 and
n = 0.917. The filled circles denote the values at the critical point. The corresponding
growth rate is ¥ = 7.76 x 1072, In normal thermal instability presented in Field (1965);
Koyama and Inutsuka (2000), the pressure perturbation has opposite sign of the density
perturbation. Therefore, as the gas condenses, the pressure drops. Therefore, the pressure
gradient promotes the condensation. However, in this case, the sign of Il is the same as
that of 6€2. Moreover, figure 3.2 shows that the density perturbation is smaller than the
pressure perturbation. As the gas condenses, the pressure gradient tends to prevent the

condensation. This is one possible reason that the growth rate is very small.
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3.3 Perturbation with k& # 0

3.3.1 Static Approximation

Before we present the fully time-dependent numerical calculation in section 3.3.2, we at
first consider a special case in which the time evolutions of the unperturbed self-similar
solutions are slower than the growth of perturbation. In this situation, the time evolution
of the unperturbed state is negligible during the growth of the perturbations. Therefore, we
set Acool(t) to be a constant in equations (3.9)-(3.12). This approximation is also valid for
k < 1/Xco01 Where the term, kAcool, is negligibly small in equations (3.9)-(3.12). We use the

Fourier mode as
0Q(&,y,7) = 6Q(&) exp {iky + (1 —w)S7}, G = (6Q,6V,, 011, i8V}). (3.21)

The condition under which the static approximation is valid is given by

’ dInéQ v ‘ d1n kool (2—a)(3—=2a)—n
dIn(1 —t/t.) dln(1 —t/t.) 22—a)(1—a) ’
5 — 2«
m for n= 1
m for n= 0

where the definition of ¥ is the same as that in equation (3.15). Substituting equation (3.21)
into the perturbation equations (3.9)-(3.12), we get

—

d5Q; 1 .
b= ) A0Q;, 0@ = (59,0V;, 011,40V, (3.23)
_ Xo —

¢ Vg

where the detailed expression of A;; is shown in Appendix D.
We impose the boundary conditions at £ = 0 and & = &. Since we are interested in the
fragmentation of the cooling layer, only the even mode is investigated. For the even mode,

the perturbed variable should have the following asymptotic forms in £ < 1:

?nfém(g) ~  §Q,
lim 6V, (§) ~ Vi,
£—0
lim 6V, (&) =~ 9Vip,
and
lim 6TI(¢) =~ OTly + 6101, &2 (3.24)

£—0
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Substituting equations (3.24) into equations (3.23), we obtain the following relations:

(1 —w)XQ + Va0 + EAXcoo1idVyo = 0, (3.25)
(1= )% — wh sV = P X0 5y (3.26)
{(1 —w)X + (o= 2)eon} 702 — {(1 —w)X + (a — 1)7yego} 611 = 0, (3.27)
and
{2641 —w+ (1 —w)X} Vo + QXTgO(SHOl = 20w(l — a)(61Ly — 6€). (3.28)

The boundary condition at & = & is derived in the same way in section 3.2.1, and we obtain
two independent conditions. Numerical method for solving equations (3.23) is the same as

that in section 3.2.2.

(a)n=0.1 (b)n=0.75 (c)n=0.95
(isochorically (isobarically
o il cooling layer) oo oo o GONdeNSing layer)

z (@OF: : z
L o _—e w|
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Figure 3.3: Approximate dispersion relations for (a) n = 0.1, (b) 0.75, and (c) 0.95, where kAcoo is the
nondimensional wavenumber, and ¥ is the growth rate. The labels of number represent the branches of

modes. The red lines indicates the most unstable branches.

Figures 3.3 shows approximate dispersion relations for (a)n = 0.1, (b) 0.75, and (c) 0.95.
The index parameter of the net cooling rate « is set to 0.5. The self-similar solutions for
n = 0.10 and n = 0.95 describe the isochorically cooling layer and the isobarically condensing

layer, respectively. In Figure 3.3, one can see several branches labelled by numbers. The
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most unstable branch is labelled by (1) for large kAcoo limit, and (2) for small kAo limit
that is shown by the red line. Each branch is explained below.

(1) The isobaric mode
The branch (1) corresponds to the most unstable mode for kAo > 1. Since 1/k <
Acool, the sound wave can travel the wavelength of the perturbation many times during the
runaway cooling of the unperturbed state. Therefore, the perturbation is expected to grow in
pressure equilibrium with its surroundings, and the mode corresponds to the isobaric mode.
Eigenfunctions of (62, 011, 6V, 6V},) for the branch (1) are shown in figure 3.4a for (n = 0.97,
kXcool = 4.0) and figure 3.5a for (n = 0.22, kAeoor = 6.0). In both figures 3.4a and 3.5a, it is
clearly seen that |dII| < |0€2|. This also implies the isobaric mode.

The growth rate in the isobaric mode can also be derived analytically by considering the
evolution of a fluid element at the center. The fluid element is assumed to have an isobaric
fluctuation, p = poo(t) + dpoo and P = Py(t). Linearizing equation (2.4), we obtain the

following perturbation equation,

0 [ dpoo -1 2— _19p00
—|— =2 @ — DA “Py —. 3.29
2 (22) = 2 @ity - DAwgle P 2 (3.20
From equations (2.13) and (2.64), we have
Uy = DAop Py = —— 3.30
7y )Nopoo “ Foo 1—w)(t.— 1) ( )
Using equation (3.30), equation (3.29) is rewritten as
2 (5/)00) _ (2 - OZ)G()() 5/)00 (3 31)
ot £00 (1 - (,U) (tc — t) £0o0
Equation (3.31) can be integrated to give
—(2—a)epo/(1—w)
L <1 - i) . (3.32)
Poo te

Therefore, the growth rate in isobaric mode is given by

Eisobaric = m
1—w
1.72  for n=0.10
2 —« 2 -«
— {1 — —] n+——= 1.20  for n=0.75 . (3.33)
ot ) ot

(1—« (1—a)
1.04  for n=0.95
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Isobarically condensing layer (n=0.97)
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Figure 3.4: Results of the linear analysis of the isobarically condensing layer (n = 0.97) for the wavenumbers
(a)kAcool = 4.0 and (b)0.1. The red, blue, green and magenta lines indicate eigenfunctions of the dimension-
less density perturbation €2, pressure perturbation dII, velocity perturbation in the z direction §V,, and
velocity perturbation in the y-direction 0V}, respectively. The filled circles indicate the values at the critical

point.
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iIsochorically cooling layer (n=0.22)
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Figure 3.5: Results of the linear analysis of the isochorically cooling layer (n = 0.22) for the wavenumbers

(a)kAcool = 6.0 and (b)0.1. The definition of the lines and symbols are the same as figure 3.4.
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Figure 3.6: Growth rate as a function of 7 for (a)a = 0.5 and (b)0.8 for the case with k # 0. The thick
solid lines correspond to the growth rate of the isobaric mode, Yisoparic- For comparison, the evolutionary
rate of the unperturbed central density, ,, and pressure, Xp are shown by the dashed and dotted lines,
respectively. The thin solid lines pointed by arrows correspond to the growth rate in the noninteractive

mode, Enon—int .

For the isochorically cooling layer (n ~ 0), the growth rate of the isobaric mode becomes

2 -«
2iso aric - - . 34

For the isobarically condensing layer (n ~ 1), the growth rate of the isobaric mode becomes
Eisobaric(T] - 1) =1. (335)

From figure 3.3, it is clearly seen that the growth rate approaches the corresponding Yisoparic
in the large kA.oo limit. Since the analytic growth rate is derived by the local argument, the
growth rate is expected to be independent of a global structure of the system. Burkert and
Lin (2000) performed a linear analysis on a spatially uniform and isochorically cooling gas.
Their growth rate in the isobaric mode is the same as equation (3.34), although the spatial
structure of the unperturbed state is quite different.

In order for the density perturbation to grow sufficiently during the runaway cooling, it
must grow faster than the condensation of the cooling layer. This condition can be expressed
by Yisobaric > 2p. Figure 3.6 shows Migoparic, 2, and Xp as a function of n for (a)a = 0.5 and

b)0.8. From figure 3.6, it is found that Yigparic iS greater than X, for all n. For other o, we
g g P n
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can investigate analytically as follows: subtracting X, from Yisparic, one obtains

2 —« 1 2—«
Eisoaric_E = 1— -
baric = Zp Wi-a) 2-a]" 3 =a)
> 1- >0 for a < 1. (3.36)

2—«

Therefore, for o < 1, Migoparic 1S larger than 3 ,, and the isobaric mode can grow in the layer.

(2) The noninteractive mode

Branch (2) corresponds to the most unstable mode for kM., < 1. Because the wave-
length is larger than the cooling length, each part evolves independently according to the
self-similar solutions. We call this branch the noninteractive mode. Figure 3.7 shows the
schematic picture of the noninteractive mode. In figure 3.7, similarity variables have an
initial fluctuation. For example, we consider two different regions, “A” and “B”, where
pa = p+Ap and pg = p. Due to the difference of the density, the regions “A” and “B” have
different collapse times, t. — At and t., respectively. Omitting any terms that do not grow,

we find the time evolution of difference, Ap, to be

. — At

p+Ap|---- L.
p L& te .,

non-interactive

Figure 3.7: Schematic picture of the noninteractive mode.

Ap 1 dIny 1
—— = (&AL |2 :
po(t) (&) o l—w dln& | t.—t

Therefore, in the zooming coordinate, the density perturbation grows as d2 oc (. —t)~ '

(3.37)

Other perturbed variables also grow in the same power law. Therefore, comparing with
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equation (3.15), the growth rate is given by
Znon—int = ]-, (338)

which is independent of the parameters o and 7. Figures 3.4b and 3.5b show eigenfunctions
of (6€2, 011,60V, 6V,,) for the noninteractive mode for (n = 0.97, koo = 0.1) and (n = 0.22,
kEAcoot = 0.1), respectively. Figure 3.4b shows that |0§2] > [01I| for n = 0.97. Therefore,
the noninteractive mode in the isobarically condensing layers grows like the isobaric mode.
On the other hand, figure 3.5b shows that [6€Q2| < |11 for n = 0.22. Therefore, the non-
interactive mode in the isochorically cooling layers grows like the isochoric mode. This can
be understood as follows: the noninteractive mode arises from the fluctuation of the col-
lapse time, t., due to the density and pressure perturbations. Therfore, from the physical
mechanism, the perturbation grows in the same way as the unperturbed state. In other
words, the perturbation of the isobarically (isochorically) cooling layer grows isobarically
(isochorically).

We investigate whether the noninteractive mode grows sufficiently during the runaway
cooling or not. First, we consider the case with 1 > 7. Since the perturbation grows
isobarically, ¥,on_int is compared to ¥, = n/(2 — «). From figure 3.6, it is seen that the
growth rate, Xpon_int, is higher than ¥, for all > 1,y = 0.75 and 0.86 for o = 0.5 and 0.8,
respectively. Therefore, the noninteractive mode can grow sufficiently. Next, we consider the
cooling layer with 1 < neq. In this layer, since the perturbation grows isochorically, >on—int
is compared to ¥p = (1—n)/(1 —«). Analytically, it is found that the pressure perturbation
can only grow for n > a.

Koyama and Inutsuka (2000) performed a linear analysis of a spatially uniform and
isobarically cooling gas in their appendix. However, they did not find the noninteractive
mode. This is because they fixed the collapse time to be spatially constant, and it was
assumed not to be influenced by perturbation. Burkert and Lin (2000) performed linear
analysis of a spatially uniform and isochorically cooling gas by taking account of the time
evolution of the unperturbed state. They showed that a perturbation cannot grow in the

condition for long wavelength limit. Our result is consistent with theirs.

(3) The shear mode

For kAo < 0, there is a solution where physical variables are very small except for
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0V, which is spatially constant, and the eigenvalue is ¥ = w/(1 — w). The similar mode
was found by McNamara (1993), who investigated thermal instability of a uniform granular

medium. McNamara (1993) called this mode the shear mode. The growth rate is given by

0.93 for n=0.10
w 22— a)(1—a)

Es ear — = = . = 0. . 3.39
h —w (2-a)B-2a)—1 0.50 for n=0.75 ( )
0.37 for n=0.95

In figure 3.3, it is seen that each growth rate in branch (3) has the corresponding value of
Yshear fOT kAol € 1. The physical meaning of this mode can be understood as follows:
for kXcool < 1, since the effect of the pressure gradient with respect to y is very weak,
the gas can freely stream with almost constant velocity, v,, in the y direction. On the
other hand, the central sound speed, cyo(t), decreases as o< (t. — t)*/1=%)_ Therefore, the
ratio of the dynamical velocity to the thermal velocity, v,/coo(t), grows with time as oc
(t. — t)~</(=) indicating that the growth rate is given by equation (3.39). For the case
with larger wavenumber, the effect of the pressure gradient becomes important. Therefore,

the fluid element cannot stream freely, and the growth rate is lower as shown in figure 3.3.

(4) The free-streaming mode
For large kMA.oo, there is another mode in which the velocity perturbation in the x-
direction is much greater than that in the y-direction, |§V,o| > [6V,0|. We call this mode

the free-streaming mode. From equation (3.28) with 6Qy = 0Ily = 6Ily; = 0, we obtain

—0.87 for n=10.10
2
Ygee=—1———=—-14—-n= , =0.75 . 4
f T b 0.00  for n=0.75 (3.40)
027  for n=10.95
In the free-streaming mode, the growth of the velocity perturbation in the z-direction is
hampered by the pressure gradient of the unperturbed state. Therefore, the growth rate is

less than the shear mode.

(5) k =0 mode
The growth rate in this branch for k.., < 1 coincides with the case with k& = 0, which is

obtained in section 3.2.
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3.3.2 Linear Analysis Considering the Time Evolution of kAcoo1(t)

The static approximation is valid only if ¥ is much larger than |dIn(kAeoo)/dIn(1 — t/t.)].
However, from figure 3.3, it is found that the growth rate of the most unstable mode for
each kAcoo is smaller than |d1lnkAee/dIn(1 — t/t.)| whose values are 1.93, 1.5, and 1.37
for n = 0.1, 0.75, and 0.95 with a = 0.5, respectively (see equation (3.22)). Therefore,
in this section, we perform linear analysis considering the time evolution of kAc.o(7) using
direct numerical integration. The upwind difference method is used as the numerical method
to solve the perturbation equations that are conservation forms. We impose the boundary
conditions at ¢ = 0 and ¢ = 100. The even mode is set as the boundary condition at & = 0.
The free boundary condition is set at & = 100, but it does not influence the inner region

since the gas flows out supersonically from the outer boundary of the zooming coordinate.

5 P I SRR R AR NS R R SR
O n=0.7

4 O n=0.917

3, -

Figure 3.8: Time evolution of 6Q(¢ = 0) for n = 0.7(the open circles) and 0.917(the open boxes). The solid

lines correspond to results from linear analysis.

First, we investigate for the case with k = 0 as a test of our finite difference code. We
calculate two cases, n = 0.7 and 0.917. As an initial condition, we adopt the eigenfunction
obtained in section 3.2 in each case. By solving equations (3.9)-(3.12), a time evolution of
8@ is obtained. Figure 3.8 shows time evolution of 6Q(¢ = 0) for = 0.7(the open circles)
and 0.917(the open boxes). The initial value of 6€2(¢ = 0,7 = 0) is set to unity. From linear
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analysis in section 3.2, the growth rates for n = 0.7 and 0.917 are ¥ = 0.1076 and 0.056,
respectively, that are shown by the solid lines in figure 3.8. The results by using our finite
difference code agree with those of linear analysis very well.

Next, we calculate for the case with finite wavenumber. As an initial state, we adopt the
eigenfunction of the isobaric mode for k\.,, = 30 which is obtained in section 3.3.1. During

the calculation, the growth rate at 7 is evaluated by

1 d
Znum - EE {h’l 69(5 - 077—)} (341)

at each instant of time. For comparison with the result of the static approximation, we focus
on a relation between kAo01(f) and the growth rate of the density perturbation at the center,
Yum- Figure 3.9 shows the growth rate ¥, as a function of kAo (7) at each instant of
time for @ = 0.5 with (a)n = 0.1 and (b)0.75. The nondimensional wavenumber, kMool
decreases with time. Therefore, in figure 3.9, the direction of time is from the right to the
left. For comparison, the approximate dispersion relations of branches (1)-(2) in figure 3.3
are superimposed by the dashed lines. In both of Figs. 3.9a and 3.9b, the behavior of the
growth rate, ¥, moderately agrees with that of the approximated dispersion relations.
For kXe.oo > 1, or initial phase, the growth rate agrees with Yisparic. This is because the
growth rate does not depend on kA in the short wavelength limit. As A.,o decreases and
reaches about 1, X, begins to decrease. For A.oo < 1, Xum approaches asymptotically
Ynon—int, Where the effect of Ao is negligible. The effect of time-depending k..o is notable
only for 0.1 < kAeoor < 10. Smoother dependence of the growth rate on k.o is obtained

than the approximate dispersion relation.

3.4 Discussion

3.4.1 The Growth Rate for 1 < a < 2

Although the linear analysis on the self-similar cooling layer is limited for av < 1, the thermal
stability of the gas for a > 1 is also roughly understood from Balbus’s criterion. For
1 < a < 2, the gas is isobarically unstable, but it is isochorically stable. For o > 2, the
gas is thermally stable. In this section, we investigate the stability of the gas for 1 < a < 2

during cooling within the large and small scale limits.
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Figure 3.9: Growth rate obtained by results of numerical linear analysis for (a)n = 0.1 and (b)0.75. The thick

and dashed lines indicate the results of numerical linear analysis and those of approximate linear analysis.
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The Isobaric Mode

For the case with small wavelength, perturbation is expected to grow isobarically. By com-
parison of our results with previous studies in the literature, it is found that the growth rate
in the isobaric mode is independent of the global structure of the unperturbed state. There-
fore, from local arguments, the growth rate in the isobaric mode of the gas with 1 < a < 2
can also be estimated.

As an unperturbed state, we adopt a cooling gas element whose scale is assumed to be
much smaller than the cooling length. In this case, the element cools isobarically. From

equation (2.4), the time evolution of the unperturbed gas is given by

+ —-1/(2—a) 1 . -
o(t) = (1 - ) = Qe - DPE (342)
cool

where p; and P; represent the initial density and pressure, respectively. In the above unper-

turbed state, we consider the following isobaric perturbation:

p = po(t) +9p(t), (3.43)

and

P =P, (3.44)

where subscript “0” indicates the unperturbed state, and dp is the density perturbation.

Linearizing equation (2.4), one obtains

d [(dp 1 9o 10P
_ _r _ 2 o o aPa - 4
dt <p0> = ( a)yy Po 0 20 (3.45)

Using equation (3.42), equation (3.45) is rewritten as

d [(dp 1 t _15p
— () = 1— -, 4
dt <p0) tlcool( t,COOI) Po (3 6)

Equation (3.46) is easily integrated to give

% <1 _ t/t )_1_ (3.47)

Po cool

Comparing equation (3.47) with equation (3.42), one can see that the perturbation grows
more slowly than the unperturbed state for 1 < o < 2. Therefore, the gas is expected to
be difficult to fragment during runaway cooling if 1 < a < 2 otherwise initial fluctuation is

sufficiently large.
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The Noninteractive Mode

A cooling layer that evolves isobarically is considered. The time evolution of the central
density is the same as equation (3.42). When the scale of perturbation perpendicular to the
condensation is too large to interact with other regions, each region evolves independently.
Here, we focus on the time evolution of density perturbation at the center (z = 0). Initial
fluctuation of the central density, dp;, creates the fluctuation of the cooling time, At. The

relative amplitude of density perturbation at x = 0 is given by

5p 1 < + ) -1/(2-a)
o) (1 — ~1. 3.48
Po Po <p p) tizool_At ( )
Linearizing equation (3.48) with omitting terms that do not grow, we have
5 1 At t\7!
L = (1-- . (3.49)
Po 2—a tcool tcool

Comparing equation (3.49) with equation (3.42), we can see that the perturbation grows
more slowly than the unperturbed state for 1 < o < 2. Therefore, the gas is expected to be
difficult to fragment for 1 < a < 2 for the large-scale perturbation, as well as the small scale

otherwise initial fluctuation is sufficiently large.

3.4.2 Effects of Heat Conduction

In this paper, the heat conduction is neglected for simplicity. However, for large wavenumber,
the heat conduction is expected to stabilize thermal instability in the cooling layer (Field,
1965). In section 1.4.1, we evaluate ke in equation (1.17) using an order estimation. This
estimation is expected to be valid in cooling layers. Since the unperturbed state is time
dependent, k. also evolves with time. Detailed evolution of k. depends on K. In T <
6000, we adopt K = 2.5 x 103\/T ergs em~' K~ s=' (Parker, 1953). In this case, from

equation (1.17), the time evolution of k. can be derived analytically as

dIn ke  2a—-1)n—-(2-a)3—2a)
din(l —t/t.) 42— a)(1 — )
_ 42 =) . (3.50)
_m <0 forn=0

For n =1 and n = 0, it is found that equation (3.50) is negative for o < 1. Since equation

(3.50) is the linear function for n, dIn ke /dIn(1 — ¢/t.) is negative for all . Therefore,
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ket increases with time. This means that an initially stable perturbation with wavenumber

(k > keris) becomes unstable at a certain epoch when kg catches up with k.

3.5 Summary

We have investigated the stability of self-similar solutions describing the runaway cooling of a
radiative gas by linear analysis to understand multi-dimensional evolution of the dynamically

cooling gas layer. The results of our investigation are summarized as follows;

1. For the case with perturbation only parallel to the flow (k = 0), the self-similar solu-
tions are unstable. However, the growth rate is too low to become nonlinear during
the runaway cooling. Actually, the self-similar solutions are realized in one-dimensional

hydrodynamical calculations.

2. For the case with transverse perturbation (k # 0), there are several unstable modes
in the self-similar solutions. The most unstable modes are the isobaric mode for
kXcool > 1 and the noninteractive mode for kA.,o < 1. In the isobaric mode, the
perturbation grows in pressure equilibrium with its surroundings. On the other hand,
the noninteractive mode is originated from each region in the layer condensing indepen-
dently. Under a static approximation, we derive the approximated dispersion relation.
The results of direct numerical integration of the time evolution agree with those using

the static approximation.

3. The isobarically cooling layer n ~ 0 is unstable for any wavenumbers. The most un-
stable mode is the isobaric mode for large wavenumber, k..o => 1. The perturbation

for kXcool < 1 grows like in the isochoric mode.

4. The isobarically condensing layer n ~ 1 is unstable for any wavenumers. The re-
markable result is that the perturbations grow as o (1 — ¢/t.)~! without depending
on wavenumbers and the index parameter, a. Moreover, the perturbations for all
wavenumbers grows in the isobaric mode. Therefore, there is not a characteristic scale
in thermal instability of the condensing gas layer. The linear analysis predicts that
the condensing gas layer split into fragments with various scales and shapes, such as

spherical and filamentary clouds.



Chapter 4

Two-dimensional Numerical

Simulations of Cooling Gas Layers

In chapter 3, we investigated linear stability of the self-similar solutions describing the dy-
namically cooling layers. In this chapter, we check results of the linear analysis and investi-

gate nonlinear evolutions of the cooling layers using two-dimensional numerical simulation.

4.1 Numerical Method

We use two-dimensional smoothed particle hydrodynamics (SPH) that is a Lagrangian parti-
cle method. SPH has priority in problems where high density contrast appears. The detailed

description of SPH and test calculations are presented in Appendix E.

4.2 Isobarically Condensing Layer with Power-Law Net
Cooling Rate

In chapter 2, we have showed the isobarically condensing layer is well described by the self-
similar solution for n ~ 1. As the initial condition, we adopt the self-similar solution for
n = 0.917 at t = 0. The index parameter in equation (2.1) is set to 0.5. We assume that
Aeool(t = 0) =1 and Ag = 1. The initial profiles of the physical variables are given by

p(t=0,z,y) = Qz), v(t=0,z,y) =V(zx), P(t=0,z,y)=1(x). (4.1)

7
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The epoch when the central density becomes infinity is t. = 1/(1 —w) = 1.389. This
simulation must resolve the scale of the density peak that is defined as (Acool(t), where
parameter, (, is smaller than 1 for the isobarically condensing layer. The resolution criterion
is given by

T P00 (t) {C)\cool(t)}2 > Nneibmi7 (42)

where N, is the number of neighbor particle, m; is the particle mass, and pg is the central
density. The left-hand side of equation (4.2) indicates the mass within the circle whose radius
is CAeool. Using Aeoor(t) = (1 — /t)"/=) and poo(t) = Qoo(1 — t/t.)~"/ =) the constraint

on the particle mass is

- —2a-n)/(1-a)
_ C 2 Nneib ! 1— t/tc (8-2a—n

;<854 x 1077 | = —neb . 4.3

" 8 (0.5 28 0.01 (4:3)

In this calculation, m; is set to be 1.058 x 1075. Therefore, this calculation is valid for
1 —t/t. > 0.01, or t < 0.99¢.
The simulation region in the z-direction is —1.5&(t = 0) < o < 1.5&(t = 0). The

boundary condition of the z-direction does not influence in the inner region of —& < x < &
since the gas flows out supersonically from & in the zooming coordinate (see section 3.2.2).
The size of the simulation box in the y-direction is given by L,, and the periodic boundary

condition is imposed.

4.2.1 Case Without Initial Fluctuations

First, we present results without initial fluctuation. We set L, to 0.17. Figures 4.1a and
4.1b show the snapshots of the density and pressure as a function of x, respectively, at
1—t/t. =0.96, 0.4, 0.2, and 0.05. The red dots indicate the results of SPH calculation. The
solid lines denote the self-similar solution at each corresponding time. Figures 4.1a and 4.1b

show that the two-dimensional SPH calculation can reproduce the self-similar solution well.

4.2.2 Case With Initial Fluctuations

We add the following sinusoidal density perturbations in the y-direction into the initial
condition,

p(t=0,z,y) = Q(x) {1+ Asin(ky)}, (4.4)
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Figure 4.1: Time evolution of (a)the density and (b)the pressure profiles for 1 — t/t. = 0.96, 0.4, 0.2, and
0.05. The red dots denote the results of SPH calculation. The solid lines denote the self-similar solution at

each corresponding time.
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where A is set to 0.1. We investigate for the case with a large wavenumber case (k =
36.87) and with a small wavenumber case (k = 1.8435). We set L, so that the simulation
box contains single wavelength. From the linear analysis in chapter 3, the growth of the
perturbation is determined by kAcoo1(t). The perturbations grow in the isobaric mode for
kEXcoor(t) > 1 and in the noninteractive mode for kAcoo1(t) < 1. In both modes, the amplitude
of the density perturbation is larger than that of the pressure perturbation. The isobaric
mode grows as (1 —t/t.)~1% and the noninteractive mode grows as (1 —t/t.)~!, where ¢, is
the epoch when the central density becomes infinity. Since the nondimensional wavenumber
decreases with time as kleoor(t) = k(1 — t/t.)/(17%)  the growing mode changes from the
isobaric mode to the noninteractive mode at the epoch, tians, when kAeoo(t) becomes unity.
These transition epochs are (1 — tipans/te) = 0.07 and 0.64 for kA0 (0) = 36.87 and 1.8435,
respectively.

To evaluate the growth of the perturbations, we focus on the density at © = 0. The
simulation box in the y-direction is divided by equal-size meshes whose total number is V.
The width of the meshes is set to the minimum smoothing length in all particles at each

time. We define the average density,

|
Pave = N Zpu (45)
i=1
the density dispersion,
| N

Ap = T i — Pave 27 4.6
P=\|% ; {pi = pave} (4.6)

and the maximum density,
Pmax = H{_ValX Pis (47)

where p; is the density at the i-th mesh.

Figures 4.2a and 4.2b show the time evolution of density perturbations for £ = 36.87 and
1.8435, respectively. The open triangles and open circles indicate pmax/pave and Ap/paye,
respectively. The direction of time is from the right to the left. The dotted vertical lines
denote the transition epochs, (1 —tyans/te). Perturbations grow in the isobaric and noninter-
active modes in the right and left sides of the line, respectively. For the large wavenumber
case, k = 36.87, the perturbation grows in the isobaric mode since (1 — tians/tc) is small.

Figure 4.2a shows that the growths of ppax/pave and Ap/pave agree with that of the isobaric
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Figure 4.2: Time evolution of density perturbations for (a)kAcooi(t = 0) = 36.87 and (b)1.8435. The
open triangles and open circles indicate ppax/pPave a0d Ap/paye, respectively. The solid lines correspond to
the growth rates of (a)the isobaric mode and (b)the noninteractive mode. The dashed lines indicate the

increasing rate the unperturbed density. The direction of the time is from the right to the left.
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mode that is plotted by the solid line. For k = 1.8435, as soon as the calculation starts,
the perturbation enters the noninteractive mode. Figure 4.2b shows that the growths of
Prax/ Pave and Ap/paye agree with that of the noninteractive mode that is plotted by the
solid line. After perturbations become nonlinear, or puax/pave €xceeds unity, pmax/Pave SLOWS
much faster than the prediction of the linear theory. This is because the highest density
becomes infinity before the unperturbed collapse time, t.. Therefore, the growth of pertur-

bation does not saturate in the nonlinear phase and perturbations continue to grow until
the highest density becomes infinity.

The density profiles in the y-direction at x = 0 for £ = 36.87 and 1.8435 are shown in
figures 4.3a and 4.3b, respectively, at 1 — t/t. = 0.96, 0.52, and 0.13. In figure 4.3b, the
profile at 1 —¢/t. = 0.96 has fluctuations with larger wavenumbers than k£ = 1.8435. In SPH
calculation, some amount of fluctuations based on distributions of particles always exists.

These small fluctuations can grow since the growth rate of the perturbation with £ > 1.8435
is comparable to that with k£ = 1.8435.
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Figure 4.3: The density profiles normalized by the average densities for (a)kAcoo1(t = 0) =36.87 and (b)1.8435
at x =0at 1 —t/t. = 0.96, 0.52, and 0.13.
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4.3 Isochorically Cooling Layer with Power-Law Net
Cooling Rate

We consider isochorically cooling uniform gas that corresponds to self-similar homologous
solutions for n = 0 (see 2.1.4). In Appendix B, we perform linear analysis of homologous
solutions for 7 = 0. From the linear analysis, perturbations grow in the isobaric mode for
kAcool => 1 and in the noninteractive mode for k..o < 1. Contrary to isobaric self-similar
solutions, in the noninteractive mode, the amplitude of the density perturbation is smaller
than that of the pressure perturbation. From linear analysis, the isobaric mode grows as
o (1 —t/t.)2=/17(1=a)} “and the noninteractive mode grows as oc (1 —¢/t.)~".

Since the unperturbed state is uniform, the minimum dimension for investigating growth
of thermal instability is one dimension. Therefore, we use the 2nd-order one-dimensional
Godunov code (van Leer, 1997). The initial density, pressure and velocity profiles in the
unperturbed state are given by

po(r) = 7(71_ 1) (3 _22a)32a’ Ble) = 72(71— 1) (3 —220)52&’ i) :(Z’S)

where we determine A\,01(0) = 1, Ag = 1, and ¢, = 1/(1 — w) in equation (2.64). We set

the index parameter o to 0.5. A perturbation with k& = 10 is considered. The computation
domain is —7/k < x < w/k, and the periodic boundary condition is imposed. As the initial
condition, we add eigenfunction obtained in Appendix B.

Figure 4.4 shows time evolution of Ap/paye and AP/ P,.. The thin solid and dotted lines
indicate growth rate of the isobaric and the noninteractive mode. Initially, since kt.o(t) > 1,
the density perturbation grows as the isobaric mode. An epoch when ktq,0(t) becomes unity
is 1 — t/t. = 0.18 that is shown by the vertical dotted line. Figure 4.4 shows that around
this epoch, the growth of the density perturbation slows down. On the other hand, the
pressure perturbation begins to grow faster than the density perturbation. Figure 4.4 shows
that the time evolution of AP/P,. agree with the growth of the noninteractive mode for

1 —t/t. > 0.18.
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Figure 4.4: Time evolution of Ap/payve (thick solid lines) and AP/ P,y (thick dashed lines) for kAcool(t =
0) = 10. The thin solid and dashed lines indicate growth rates of the isobaric and noninteractive mode. The

vertical dotted line indicates the transition epoch from the isobaric mode to the noninteractive mode.
4.4 Two-dimensional Simulation of the Formation of

Interstellar Clouds

In this section, we investigate two-dimensional simulation of the formation of interstellar
clouds. We consider head-on collision between spatially uniform WNM gas with the den-

sity of pwam = 0.57my cm™3 and the pressure of Pyny = 3.5 x 103k dyne cm™2.

Two
identical gases collide along the z-axis at t = 0 and x = 0 with velocity 20 km s7!, i.e., the
corresponding mach number is 2.17. This situation is the same as that in section 2.3.1. The
calculation domain is —25 pc < x < 25 pc and —0.1 pc < y < 0.1 pc. The physical variables
in the boundaries of the z-direction are fixed by the initial values. The periodic boundary
condition is imposed in the y-direction. Koyama and Inutsuka (2004) suggests that numeri-
cal codes must contain the heat conduction and must resolve A\ to obtain converging results.
In this calculation, we take into account of the heat conduction, and set the particle mass
m; so that the smoothing length at p = 10®my is as small as 10~*pc. The total number of

the SPH particles is as large as 6.5 x 105,
We calculate the converging flow of the WNM without fluctuation until the highest
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density gas becomes unstable at ¢ ~ 0.4 Myr. At t = 0.4 Myr, we add the following density

ﬁuctuation: )
5/)( t——04My)——lEaX | —y +0 (49)
A . T S1n i | .
) y7 k - Z ax [yy

where 6 is the random number of [0, 27], iymay and A are set to 5 and 0.1, respectively.

4.4.1 Results

In shock-compressed region, the runaway condensation breaks out. As shown in section
2.3.1, the one-dimensional evolution of the runaway condensing layer is well described by
the self-similar solution for 7 ~ 1. The linear analysis shows that perturbations grow as
o (1 —t/t.)~! without depending on their scales. In order to compare with result of the
linear analysis, we evaluate Ap/pave and pax/pave at = 0 (see equations (4.5)-(4.7)). Figure
4.5 shows time evolution of Ap/pave and pmax/pPave at @ = 0. The thin solid line indicates
o (1—1t/t.)! that corresponds to the linear growth rate. The result of the two-dimensional

simulation agrees with that of the linear analysis well.
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Figure 4.5: Time evolution of pmax/pave (thick solid lines) and Ap/payve (thick dashed lines). The thin solid

line indicates oc (1 —#/t.)~ L.

Figure 4.6 shows time evolution of py.x(y) that indicates the maximum density at y over

the range of —L,/2 < x < L,/2 as a function of (1 —t/t.), where we set t. to 0.985 Myr.
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Initially, perturbation grows obeying the linear analysis as o (1 — ¢/t.)"'. The gas at the
highest density portion at y ~ —0.02 pc reaches the thermal equilibrium phase and stops
condensing at t ~ 0.97 Myr. After that, as the large scale perturbation continues to cool
and condenses, the plateaus of CNM broaden. In the low density region of the large scale
perturbation at y ~ —0.08 and y ~ 0.04, small scale fluctuations grow. In this thesis, cold
clouds formation is defined by the formation of the sharp contact discontinuities that divide
cold clouds and warm gases. At t ~ 1.1 Myr, filamentray and spherical clouds are generated.
Figure 4.7 shows the number density color maps at 0.97, 1.00, 1.03, 1.06, and 1.10 Myr. One
can see that the filamentary and spherical clouds are generated.

The linear analysis in chapter 3 predicts that any scale perturbations grow in the same
way. In the nonlinear calculation, we confirm various scale clouds are generated. The mass

distribution of cold clouds depends on initial condition, and there is not characteristic scale.

103,
T
£
>
c;_g 102
[ ————
101 T T T T
-0.10 -0.05 0.00 0.05 0.10

ylpc]

Figure 4.6: Time evolution of pynax(y). Each Line corresponds to ¢ = 0.82, 0.93, 0.96, 0.97, 0.99, 1.00, 1.02,
1.1 Myr from bottom to up.

4.5 Summary

We investigate two-dimensional nonlinear evolution of the cooling layer. The results of our

investigation are summarized as follows,

e We investigate nonlinear evolution of the isobarically condensing self-similar solution

by using the two-dimensional simulation. We can confirm that perturbations grows as
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o (1 —t/t.)~! for all scale fluctuations. After the perturbations becomes nonlinear,

they continues to condense until the maximum density becomes infinity.

e We investigate nonlinear evolution of the isochorically cooling uniform gas by the one-
dimensional calculation. The perturbation for A < Acoo(t = 0) initially grows in the
isobaric mode. This growth rate agrees with the prediction from the linear analysis
well. As the gas cools, the cooling length decreases. After an epoch when \ > A.oq1,
the perturbation grows in the noninteractive mode where the density perturbation
does not grow. We confirm that the growth rate of the pressure agrees with the linear

analysis.

e The nonlinear evolution of a condensing layer arising from converging WNM flows is
investigated by using the two-dimensional simulation. In the linear phase, the per-
turbation grows obeying prediction from the linear analysis, After the highest density
gas gets thermal equilibrium, the surrounding gas continues to cool and condense. As
large scale perturbations grow, filamentary structures form. In the low density region
in large scale perturbations, smaller scale perturbation begins to grow and spherical
clouds form. As a result, cold clouds that have various shapes and masses are gener-
ated in the shock-compressed region. There is not the characteristic size and mass of

the cold clouds.
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Figure 4.7: Number density color maps at 0.97, 1.00, 1.03, 1.06, 1.10 Myr.



Chapter 5

Summary and Future Prospects

5.1 Summary

In this thesis, we have investigated the formation process of cold clouds by thermal insta-
bility in shock-compressed regions. One-dimensional simulation of the formation of cold
clouds shows that a isobarically condensing layer breaks out in the shock-compressed region.
The condensing layer becomes cold clouds when it reaches a thermal equilibrium state. In
order to understand the size and shape of the cold clouds, it is important to investigate
multi-dimensional evolution of the isobarically condensing layer. In previous works of linear
analysis of thermal instability, the unperturbed states are assumed to be spatially uniform
and/or their time-dependences are neglected. These linear analyses cannot be applied to
the stability of the isobarically condensing layer because it is far from spatially uniform and
depends on time.

We proposed new self-similar solutions describing nonlinear evolution of dynamically
cooling gas layers as the more realistic one-dimensional model. The self-similar solutions
have one parameter 7 that ranges 0 from 1. The parameter 1 shows how the gas layer cools.
In the self-similar solution for n ~ 0, the gas cools remaining density constant. This is
because the scale length of the cooling layer is much larger than the cooling length that the
sound wave travels within a characteristic timescale of cooling. The self-similar solutions for
larger 1 correspond to the cooling layers with longer scale length. For n ~ 1, the scale of
the cooling layer is much shorter the cooling length. Therefore, the self-similar solution for

1 ~ 1 describes the isobarically condensing layer because the gas cools maintaining pressure

89
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equilibrium with its surroundings. We showed that the self-similar solution for n ~ 1 well
describes the one-dimensional nonlinear evolution of the runaway condensing layer in the
astrophysical environment.

In order to investigate multi-dimensional evolution of the runaway cooling layer, we
investigated linear stability of the self-similar solutions. The most interesting result is that
the isobarically condensing layer is unstable and the perturbation grows as (1 — t/t.)~!
without depending on its scale, where t. is the epoch when the unperturbed peak density
becomes infinity. In the previous works, the scale of the most unstable mode is shorter than
the cooling length. The linear analysis predicts the condensing layer splits into fragments
with various scales. We investigated two-dimensional nonlinear evolution of the runaway
condensing layer that is generated by the colliding flow of warm neutral medium using two-
dimensional smoothed particle hydrodynamics. This simulation showed that the condensing
layer splits into spherical clouds whose size is about < 0.01 pc and filamentary clouds whose
aspect ratio can be smaller than 0.2. The size of the small spherical clouds is similar to the
tiny HI clouds that have been discovered recently (Braun and Kanekar, 2005; Stanimirovi¢
and Heiles, 2005). In previous studies using two-dimensional simulation, these filamentary
clouds also are observed.

Our analysis predicts the mass distribution of the infant cold clouds directly reflects
the power spectrum of the fluctuation of the unstable gas. Observationally, the warm gas
intrinsically has a turbulence (see section 1.2.4). Moreover, even if there is not turbulence
in the warm gas, recent two-dimensional simulations show that the turbulent motion is
generated in the shocked unstable gas by hydrodynamical instabilities, such as thin shell
instability (Vishniac, 1994), Kelvin-Helmholtz instability (Chandrasekhar, 1961), and so
on. Therefore, the mass distribution of the infant cold clouds is expected not to have a

characteristic scale and to be power-law.

5.2 Future Prospects

The calculation domain of the two-dimensional simulation in this thesis is too small to
investigate relation between the power spectrum of the fluctuation of the unstable gas and

the mass spectrum of the formed cold clouds. Moreover, the thesis cannot address the
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problem of the time evolution of the mass spectrum of the cold clouds that is important for
that of molecular clouds. We will address this problem for future work.

Koyama and Inutsuka (2002) found that generated CNM clouds gets supersonic velocity
dispersion. The detailed mechanism of this process remains unknown. Since there is high
density contrast between CNM clouds and unstable gases and WNM gases, it is possible
to occur various instabilities, such as Rayleigh-Taylor instability, corrugation instability of
transition front between CNM and WNM (Inoue, Inutsuka, and Koyama, 2006), and Kelvin-
Helmholtz instability, and so on. We will tackle this problem for future work.

In this thesis, we do not take into account of magnetic field that is important elements
in interstellar physics. Inoue and Inutsuka (2009) suggested that the magnetic field is ex-
pected to strongly affect the formation of interstellar clouds, depending on the orientation
of magnetic field with respect to the shock front. If the magnetic field is perpendicular to
the converging flow, the magnetic field suppresses molecular cloud formation. On the other
hand, if the magnetic field is parallel to the converging flow, molecular cloud can be formed.
This is because one dimensional evolution of the cooling layer is not affected by the magnetic
pressure. However, the magnetic field can affect fragmentation of the cooling layer through
the magnetic tension and pressure (Inoue, 2009 private communication). This process possi-
bly modifies the size distribution of generated CNM clouds. We will perform linear analysis

including magnetic field for future work.



Appendix A

Thermal Instability of (Gas in

Thermal Equilibrium

In this appendix, we perform linear analysis of a spatially uniform gas in thermal equilibrium,

or A =T (Field, 1965).

A.1 Perturbation Equations
The unperturbed state is
p(f, t) = Po, P(f, t) = P(), T(f, t) = To, and v = 0. (Al)

We consider the following perturbed quantities,

p(E, 1) = po+opesttie

P(Zt) = Py+§Pett*e

T(Z,t) = Ty+ 6T Tk (A.2)
U(Z,t) = Oovettike,

Substituting equation (A.3) into basic equations (2.2)-(2.5) and linearizing, one can obtain
as

wdp + ipok - 07 = 0, (A.3)

wpodT + ik6P = 0, (A.4)
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;1 (W5P —7&0%510) = —Po < OLo ) 5_p — Po ( OLo ) 6—T - |E|2K05T7 (A.5)

v - Po dlnpy ) 1 po olnTy ), To
and
oP 6 oT
L (A.6)
PR po  To
Here, we define the characteristic wave number, ki, that is related to the heat conduction
as
POCS
kg = ———, A7
" (v — 1) KoTy (A7)

which is the reciprocal number of the mean free path of the gas.

A.2 Dispersion Relation

From equations (A.3)-(A.6), one can obtains the following dispersion relation,

1 oL k2 1 oL
2 272 0 — v 2k (1 — 0 = 0.
(,yw * % ) {w * tcoolAO (8111 T())p e kK } “ {( 7)("} * tcoolAO (81I1 £o T 0

(A.8)

If we use the simplified power-law cooling function (equation (1.2)), the dispersion relation

becomes
2

k
(yw? + 2k?) {w + al + CSE} — k2 {(1 — ¥)w +

} =0, (A.9)

cool

A21 Kkl >1

For kAcoo > 1, the dispersion relation (A.9) becomes

1 oL, cs k? a—1 ¢ k?
- = Al
’ytcoolAO <a In TO ) Py ( 0)

W~ —

_;E__/ytcool '7]{31(
The second term of the right-hand side in equation (A.10) indicates the stabilization effect
due to the heat conduction. Without the heat conduction, the growth rate approaches the

constant value. The gas is unstable if

0Ly

This mode is called isobaric mode where the gas grows maintaining pressure equilibrium
with its surroundings since the scale of the perturbation, ~ 1/k, is smaller than A, . The

heat conduction completely stabilizes the thermal instability for

1 1 Ly kx
k> ko =4k ~ ) A.12
- ‘ \/ K )\cool P)/AO ((9 In TO ) Py )\cool ( )
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For the smaller wave number, the growth rate of the isobaric mode is smaller because of

finiteness of the sound speed. Therefore, the dispersion relation peaks at the wave number

that is order of a fraction of ~ /kk/Acool-

A2.2 Ekloo K1

For kAcool < 1, The dispersion relation (A.9) becomes

1 oL
2 0
=0. Al
w {w—i—tCOOlAO (amn)p} 0 (A.13)
Therefore, there are three solutions,
1 0Ly
- _ = 0. A.14
w1 teool Mo (Eﬂn To)p o =0 ( )
The solution, w; is unstable if
0Ly
— | =a<0 A.15
( 0Ty ) 0 “ ’ ( )

the gas is unstable with the finite growth rate for k& < 1. This is the isochoric mode. On
the other hand, if the gas is stable in the isochoric mode, the growth rate declines to zero
for kAcool < 1. The solutions wy 3 = 0 can be expanded in the power of £k as

( 0Ly )
22\ 0In T, —1
w§,3 = Gk /e @ k2. (A.16)

~y 0Ly ary
Oln TO p




Appendix B

Thermal Instability of Isochorically
Cooling (Gas

We consider initially spatially uniform static gas. From the continuity equation and equation
of motion, the gas remains at rest and the density remains constant. Therefore, the gas cools
isochorically. Since the gas distributes uniform, instead of equation (3.1), we use the following

zooming coordinate,

Int,
t T —
=\ . |= l-—w |. (B.1)
z § Z/xo(t)
Basic equations are
olnQ) o -
-(QV)=0 B.2
or + VS ( ) ) ( )
@w AT R (B.3)
or ¢ Qye T '
and
1 0 - = 2w
v . InIIO™") = _ aQQ—aHa—l B.4
;jj(&ﬂW”VO(H )=——"" : (B.4)

where 8 = 0 from equation (2.13). The time evolution of the gas obeys the homologous

solution with § = 0 that is derived in section 2.1.4,

— — —

Q) = Qo, T1(§) =T, V(&) = 0. (B.5)

From equations (2.61) and (2.34) with 5 = 0, the homologous solution becomes

() = 7(71— 1) (3 _22&)320" To(€) = 72(71— 1) (3—22a)52a’ ad V)

— 0.
(B.6)
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Perturbed variables are expressed as

O(r,€) = Q (1+5Q(T)ei’9f)
V(r,§) = oV(r)ek® (B.7)
I(r,&) = Il (1 + 51_[(7)6['5)

Substituting equation (B.8) into basic equations (B.2)-(B.4), the perturbation equations can

be written as

0 -

DR | sV =0, (B:)

or

¥ 2
OV A ryioTl = wiV, (B.9)
or v
and
1
OO0 (5 ) 1egd — (o — 1) 7egdll, (B.10)
or or

where we use K(7) = kAeool(7). If time evolution of the unperturbed state is slower than
the growth of perturbation, time evolution of the unperturbed state is neglibible. In the
situation, since we can set k to be constant with time, the perturbed variables can be
expanded with respect to time, §Q o e™%)7 (§Q = §Q, I, 5‘7) The condition under

which the static approximation is valid is given by

3 — 2«
Y>> —. B.11
> 2(1 —«) ( )
From equations (B.8)-(B.10), the dispersion relation is given by
2 8(2 — )
oty —— 11— 2%V 0 — —— k% =0, B.12
7 G gap a2 e T e (B12)

Figure B.1 shows the dispersion relation for a = 0.5. Figure B.1 is very similar to figure 3.3
for n =0.1.

For k > 1, the dispersion relation becomes
9 _
go_ ¢ _(@2-a) (B.13)
l-w ~(1l—-a)

This corresponds to the isobaric mode that growth rate is the same as equation (3.33) with

n = 0. The same growth rate was derived by Burkert and Lin (2000). Since the unperturbed
density is constant with time, the isobaric mode can grow.

For k < 1, the dispersion relation becomes

N =0, and 1, (B.14)

1
2(1 —a)’

that correspond to &k = 0, shear and non-interactive modes.
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Figure B.1: Dispersion relation for a = 0.5.



Appendix C

Derivation of Basic Equations in the

Zooming Coordinate

Here, we present preparation for derivation of basic equations (2.16)-(2.18) in the zooming
coordinate given by Eq. (3.1). In the zooming coordinate, the physical variables, Q(¢, z,y),

are given by the following unified form:

Q(t,z,y) = Qu()O(7,&,y), Qolt) oc t,79/07), (C.1)

where Q(t,z,y) corresponds to [p, vy, vy, P| (see Eq. 3.2), and © = [Q,V,,V,,1I] are the
physical variables in the zooming coordinate. From Egs. (2.6)-(2.64), a parameter, ¢, is

given by
-8 for Q= p
g=4q —w for Q =v,, v, - (C.2)
—2w—p for Q=P
The temporal and spatial derivatives of Q(t, z,y) in the ordinary coordinate can be expressed

in the zooming coordinate as

(a_cg)w Qg o 420 QO(>(a§) 00

ot dt dt ot 85
(>Qo(t) q 5 § (C.3)
0Q\  Qult) 9O 0Q\ . 00
<%) O (a_y) @0, e
respectively, where we use
Uo(t) Zlio(t) 1

o)~ m) - 0w (C.5)
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from Eq. (2.6). Using Egs. (C.3) and (C.4), the Lagrangian time derivative of @) is given by

(2 + vo(t)‘/}c2 + Uo(t)vy%) Q(t, z,y)

ot ox
— zzig Qo(t) [q + 827- + (Ve +§) % + %xg(t)% o(r,&,y). (C.6)
Using Eqgs. (C.3)-(C.6),
Uo(t) a—1 2—a a—1 _ po(t)vo(t)2
() = 7" Aopo(t) T Py(H)*7, and Py(t) = — (C.7)

basic equations (2.16)-(2.18) are derived in the zooming coordinate.



Appendix D

Detailed Expression of A,

In this appendix, we provide the detailed expression of A;; as

V2 _ X2 X2 X2

Ap=— 2 )1-w)—2n) + Z2(a—2 D.1
w=- () - vz - Dy + a2 (D.1)

X2
A12 = —‘/O(hl Qo), + (1 — (,U)Z —w + VE)/ — —‘?(ln H()Qav)/, (DQ)

TVo

2 _ _
A= |y - B e=tha), (D.3)
Y Vo
A14 = —kxo(t)%7 (D4)
X3 ,
Ay = 7 (Vo(InIlp)" — (o — 2)veo) (D.5)
2 / / Xg —Y\/

A22:X0<IDQ()) —‘/0{(1—(,0)2—(4}—"‘/0}—}‘7(111]:[090 ) s (D6)
Ay = VoA, (D.7)
A24 == kaio(t)Xg, (DS)
A31 = —Xg(hl H())l + (Oé — 2)‘/0’}/60, (Dg)

\%
Agy =7 {—vo(m Q) +(1-—w)E —w+ V] — 70(1n HOQ(}”)} : (D.10)
Ass = X3(InTl) — Vo{(1 — w)X + (a — 1)yeo}, (D.11)
A34 = —"yk’l’o(t)‘/o, (D12)
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and

A41 = 07
A42 = 07
%2 . X2

Ay = — {1 -w)D —w},

Vo

X2
An = kao(t) (Vg — XOQ)TO'

(D.13)
(D.14)

(D.15)

(D.16)



Appendix E

Smoothed Particle Hydrodynamics

Smoothed particle hydrodynamics (SPH) is fully Lagrangian particle method (Gingold and
Monaghan, 1977; Lucy, 1977), and widely used in astrophyics and many other fields. Since
resolution of a high density region automatically increases, SPH is especially suited to prob-
lems which have a large density contrast. In this appendix, we review SPH and present test

calculations.

E.1 Formulation

In SPH, the fluid is expressed as an ensamble of extended spherically symmetric gas particles.

The density at the position Z is given by
k

where my, indicates the mass of the k-th particle, W (Z, h) is a spherically symmetric kernel
function, and h is a parameter of the kernel function. The kernel function must satisfy the

following conditions:

W(Z,h) =W (-%,h), (E.2)
/W(f, h)d’z =1, (E.3)

and
}lg% W(Z, h) = 0(Z). (E.4)
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In this thesis, we use the following Gaussian kernel function:

W(E, h) = (#)dexp [— @)1 , (E.5)

where d is the number of dimensions. The smoothing length, A, indicates the size of particles.

Each particle has different the smoothe length h; that is defined by

hi = (@)w, (E.6)

Pi
where h; is the smoothing length of i-th particle. The density of i-th particle is given by

Z mkW — .’L‘k, h ) s (E?)

where h;;, is a mean value of h; and hy. We adopt

_ nZ 1 K2
o = \/% (E.8)

as the mean smoothing length.

E.1.1 Equation of Motion and Energy Equation

Inutsuka (2002) developed Godunov SPH where the solution of Rimann solver is used to
estimate the numerical flux between particles. This method has been originally developed in
finite difference methods (Godunov, 1959; van Leer, 1997). In the Godunov SPH, equation

of motion and energy equation are given by

d 1 = -

and

dez ]. — df’b = g g 7
ka <_ _2> <U — T ) VW(Z} — xk7hik)7 (ElO)

Pi Pk
respectively, where e; is the specific internal energy of i-th particle, P* and v* are the solution
of the Riemann problem along the direction of ¥; — ) that used density, pressure and velocity
of each pair of particles. The detailed derivation of equations (E.9) and (E.10) are found in
Inutsuka (2002). We use spatially second order Godunov SPH where linear interpolation of
the physical variables is used when solving Riemann solver (van Leer, 1997).
If the gas is subject to cooling and heating, equation (E.10) becomes
g ;mkP* (iQ T %) (17* - i“:) NW(E - Fohi) — L0 T).  (E1D)

i Pk
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E.1.2 Implementation of Heat Conduction

Koyama and Inutsuka (2004) shows that the numerical code must include heat conduction
and must resolve Field length in order to obtain converged results. Heat conduction term
contains second derivative that is found to be very sensitive to particle disorder (Monaghan,
1988). Monaghan (1992) proposed the following implementation of heat conduction that

does not contains second derivative of kneral function,

K+ KT — T = h
:Z m; (K + K;)(T; = T)) (&, — &;) - ViW(Z; — Ty, hig).  (E.12)

F=7 ~ PiPj |z — ;]2

%ﬁ : (KﬁT)

Since equation (E.12) is antisymmetric in the particles ¢ and j, the energy conservation is

guaranteed.

E.2 Test Calculations

In this section, we present test calculations to confirm that our code produces reliable results

using two-dimensional SPH code.

E.2.1 Shock-tube Problem

We calculate shock-tube problems and compare the results with the exact solutions. The
simulation box is a rigid rectangular box with —0.5 <z < 0.5, —=1/16 < y < 1/16. The box
is divided in two regions by x = 0 plane. The physical variables in the left and right region
are denoted by subscript L and R, respectively.

Sod’s solution

First, we use Sod’s solution (Sod, 1978) where initial condition is given by

PL = ]_, PR — 0.125
P =1, Py=01 . (E.13)
VL = 0, VR = 0

The ratio of specific heats is v = 1.4. The mass of the particle at the right-hand side, mg,

is set to be my,/8. In other words, the initial smoothing length of the particle is assumed to

be spatially uniform. The total number of particle is 2000. Figure E.1 shows the snapshots



E.2. Test Calculations 105

of the density, pressure, velocity and internal energy at ¢ = 0.2. The red and blue dots
denote the results by using second and first order accuracy SPH codes, respectively. The
black lines denote the exact solution. From figure E.1, SPH calculation can reproduce the

exact solution well.

1.0 ] 2nd order
1st order

— analytic solution
0.5 3

—o
oo

RO

0.0
2.8

2.4

2.0

1.6 1 L
— T T T T

T T T T T T T T T T
-05 -04 -03 -02 -01 00 01 02 03 04 05
X

Figure E.1: Sod’s solution. The red and blue dots denote the results by using second and first order SPH

codes, respectively. The black lines denote the exact solution of Sod’s solution.
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Blast Wave

Next, we test SPH code for the case with very high mach number. The initial condition is

pL =1, pr =1
P, =3000, Pg=10""". (E.14)
VL = 0, VR — 0

The ratio of specific heats is v = 5/3. The mach number is as large as 10°. Figure E.2
shows the snapshots of the density, pressure, velocity and internal energy at ¢t = 0.005. From
figure E.2, it is clearly seen that the code can calculate stably and accurately the case with

extreme high mach number problem.

5 n | n | n |
1 2nd order

44 - 1storder 5
] — analytic solution E

O: L i
-05 -04 -03 -02 -01 00 01 02 03 04 05

X

Figure E.2: The same as figure E.1 but for Blast wave.
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Sjogreen test

We test the SPH code against supersonic expansion, or Stogreen test. The initial condition
is given by

pr=1 pr=1

P,=04, PR=04". (E.15)

v, = —2, vgp =2
The ratio of specific heats is v = 1.4. Figure E.3 shows the snapshots of the density, pressure,
velocity and internal energy at ¢ = 0.1. By the supersonic expansion, the cavity forms in the
vicinity of the initial contact front, z = 0. Our code can reproduce the exact solution around
head of the rarefaction wave at x ~ £0.3. However, there is a significant error around z ~ 0.

The second-order code produces better result than the first-order code around x ~ 0.

| |
2nd order -
1st order
— analytic solution

'—0.5 -04 -03 -02 -01 00 01 02 03 04 05
X

Figure E.3: The same as figure E.1 but for Sjogreen test.
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Isothermal Colliding Wall

We consider a colliding flow where the initial condition is given by

p=1 pr=1
P=1, Pa=1 . (E.16)
V1, = 99, VR = -9.9

The mach number is as large as 10. The equation of state is assumed to be isothermal.
The gas compressed and the density increases up to 100 times. Two shock waves propagate
outward. Figure E.4 shows the snapshots of the density, velocities in the xz, and y direction,
and distribution of SPH particles in the (z,y) plane. There is not particle penetration at

the initial contact front. The density fluctuation in the shocked region is reasonably small.

[8)]
I
P ¢
T

-0.5 1

-1.0
0057 - -

> 000 .

-0.05 .

T T
-0.05 0.00 0.05

Figure E.4: Isothermal colliding wall test. The red dots denote the results of SPH calculation. The black

lines indicates the analytic solution.
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E.2.2 Kelvin-Helmholtz Instability

We consider Kelvin-Helmholtz instability across a density jump in two dimensions. The
computational domain is —1/6 < z < 1/6, —1/3 <y < 1/3 and is divided into two regions,
region “1” for |y| < 1/6 and region “2” elsewhere. Equal-mass particles are distributed
randomly such that p; = 2 in region 1 and p, = 1 in region 2. The two regions are in
pressure equilibrium with P = 2.5. A shear flow is set up in the z-direction with velocity
U1 = UshearpP2/(p1 + p2) in region 1 and vy = —Vghearp1/(p1 + p2) in region 2, where vgpear =
vy — vy = 0.8 is the shear velocity. To induce Kelvin-Helmholtz instability, we add the

following velocity perturbation into the initial condition,

by = 0.10ghear sin 27z /] for |y —1/6] < 0.025 | (E17)
—0.10gpeqr sin 2z /A for |y + 1/6] < 0.025
where A = 1/6. The parameters p1, ps, and vUghear 18 set to 2, 1, and 0.8, respectively.
From linear analysis of incompressible fluid (Chandrasekhar, 1961) that is applicable
because the shearing motion is subsonic, the growth timescale of Kelvin-Helmholtz instability
is given by

A
by = M1t p2) (E.18)

Ushear+/ P1P2 .

In the initial setup shown above, it is found that txg = 0.43.

time/t ,;=0.53 time/t ,;=1.08 time/t ,=1.45 time/t ,,=2.00

-01 00 01 -01 00 01 -01 00 01 -01 00 O.1

X X X X
1.0 15 2.0
Density

Figure E.5: Color maps of density fields at ¢/txg = 0.54, 1.00, 1.46, and 2.01.
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time/t ,;=0.53 time/t (,;=1.08 time/t ,,=1.45 time/t ,,=2.00

03p T T =
02F i ; i ol 4
, & B ] T .
i PS5 newi 5
01p I B E
> 00F i, i 3
-0.1F EN s g
T el - * -+ -
E - 2®e 1 T s 3
02 ; s A =
R TN TN 7 T WAL U T T BUVEY LVR IO T W ..
-01 00 01 -01 00 01 -01 00 01 -01 00 0.1
X X X X
2.4 2.5 2.6

Pressure

Figure E.6: The same as figure E.5 but for the pressure field.

Figure E.5 shows color maps of the density fields at ¢ /txy = 0.54, 1.00, 1.46, and 2.01. At
t/txn = 0.51, the contact surface fluctuates due to initial velocity perturbation. It is clearly
seen that the rolled vortices develop well around the contact surface at the later snapshots
in figure E.5. Figure E.6 is the same as figure E.5 but for the pressure field. There are small

wiggles of the pressure at the contact surface at each snapshot.

E.2.3 Thermal Relaxation by Heat Conduction

To test the heat conduction term (E.12), we calculate the following diffusion equation,

de K-,
— = —=VT E.1

where we assume that K and the density are constant. Using e = CyT, equation (E.19) can
be rewritten as
de K -
—=—V’. E.20
dt Cvp © ( )

We consider the following initial distribution of energy,
1
e(Z,t=0)=1+ 5 o8 (kx). (E.21)

The density is assumed to be constant with time. Solving equation (E.20) analytically, one
can get

1
Cana(T, 1) = 1+ 5 cos (kz) e /T, (E.22)
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where

Cvp
7= KVkQ. (E.23)

Parameters k, p, and K are set to 2w, 1, and Cy, respectively, and computational domain is

—0.5 < z,y < 0.5. Periodic boundary conditions are imposed in the  and y directions.
Figures E.7a and E.7b show snapshots of the density and (e — €apa)/€ana at t = 0, 0.01,

0.02, and 0.04 as a function of z, respectively. Figure E.7b shows that our code can produce

the correct results within ~ 0.1% accuracy.

T SRR . P R
| //,// “\\\ ° t= 0 |
144 (a) - 001
1 0.02 |
] N - 004 |
12 N /,’/'//’/ \‘\\,\\a. i
// J— N S
] ’,;ﬁ/ e
® 1.0 e -
0.8 AN g
0.6 AN
] /:/ —t I
00101 (b) -
s 0.005 =
o ] I
©
(O]
g 0.000 e s
= 1 —
T
() ] I
N—r”
-0.005 ] i
~0.010 1 -
T T T T T T T T T T T T

— — ‘
-05 -04 -03 -02 -01 00 01 02 03 04 05
X

Figure E.7: (a):Snapshots of the density at ¢ = 0, 0.01, 0.02, and 0.04 as (b):(€¢ — €ana)/€ana-
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E.2.4 Thermal Instability

We investigate thermal instability of spatially uniform gas in thermal equilibrium state and
compare results of SPH calculation with the linear analysis by Field (1965). We adopt the
power law net cooling rate (1.2) with o = 0.5. The critical wave number is set to kAo = 10.

We consider two cases of kdeoo = 2 and kdeoo = 3.

] ‘ L] QO with heat conduction
| @kAcoo=2 O O without heat conduction |
— linear analysis

6 pm ax

OOO
0000
0.01 T T OQOOOOO
0 5 10 15 20
time

Figure E.8: Time evolution of dpmax for (a)kAcoor = 2 and (b)kAcool = 3. The open boxes and circles
correspond to results with and without heat conduction. The solid lines indicates results of the linear

analysis.

Figures E.8a and E.8b show time evolution of dpnax for kXeoor = 2 and 3, respectively.
The open boxes and circles correspond to results with and without heat conduction. The
solid lines indicates results of the linear analysis. Figure E.8a shows that perturbations

with heat conduction grow slower than that without heat conduction, and both results agree
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with prediction from the linear analysis. Figure E.8b shows that perturbation with heat

conduction completely stabilized by heat conduction.
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