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On hypergroups of group right cosets

By Yuzo UTUMI

In this paper we present certain results for the so-called hyper-

groups of classes, or more precisely, hypergroups of (group) right cosets.

In § 1. we givΌ several definitions. For any hypergroup of right cosets

we give in § 2. a representation by permutations which will be used to

characterize such hypergroups. By means of some partitions of elements

of a hypergroup of right cosets we may define new hypergroups of

right cosets which are treated in § 3. Some results on such kind of

partitions for cogroups are given in § 4. This investigation is applied

to obtain a counter-example for the conjecture of J. E. Eaton that every

cogroup is isomorphic to a hypergroup of right cosets. The author ex-

presses many thanks to Prof. K. Shoda for his kind encouragement

and valuable remarks.

A set M is called a hypergroupoίd if a product ab is defined to

be a non-empty subset of M for every a and b in M. We define the

product ST for any two subsets S and T of a hypergroupoid M as the

set-sum of all products si of s in S and t in T. An element e of M

satisfying the relation ae z a for any a in Ma is called a right unit of

M. Similarly we define a left unit and a two-sided unit. A one-

to-one mapping θ of M onto itself is called a {right) mulίiplίcaίor of

M if ab s c implies α6°scθ and conversely. The totality of multiplica-

tors of M forms an ordinary group which will be denoted by R(M). A

subgroup T of R (M) is called a (right) transferor group of M if it satis-

fies the condition: if ab s bf and ac 3 cr then there exists a mapping θ

in T such that 6° — c and &'θ = c-'β. If T is a transferor group of M

then any group U between T and R(M) is also a transferor group of M .

Let ilf and N be two hypergroupoids. A many-to-one mapping θ of
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M onto N is called a homomorphismτ) if it satisfies the eondition:

1) ab a c in M implies aQbQ 3 c° in N, and

2) if α0δπ s <ίθ in N then there exist α 1 ? bι and cx in Λf such that

aL» = α θ , V --•= 6°, c/ = c° and αA 3 cλ.

If a homomorphism θ of M to ΛΓ is one-to-one, then # is called an

isomorphism. An isomorphism onto itself is called an automorphism.

Let F be such a family of subsets of a hypergroupoid M that covers

M, and S, Γ be elements of F. If we define a product of 5 and T as the

set of elements of F which have a non-empty intersection with ST,

then F forms a hypergroupoid. Particularly if ί7 consists of all the classes

of a partition of M, then F is called a partition hypergroupoid ,.oί M.

We shall consider here the rather important notion of (right) scalar

partition hypergroupoid which consists of all the elements α, 6, . . .

of M and the composition of which is given by 'α*6-= \a)b where {a}

is the class containing a.

A hypergroupoid M is called ,a hyper group 2) if the following two

conditions are satisfied:

1) The multiplication is associative.

2) For any two elements a and 6 of M there exist x and y such

that xa 3 b and ay 3b.

Let G be an ordinary group and iϊ be its subgroup. The partition

hypergroupoid with respect to the right coset decomposition of G by H

is clearly a hypergroup which is called a hypergroup of (group right)

cosets3) and denoted by G/H. A hypergroup M is called a D-hyper-

group4) if M is isomorphic to a G/H. If # contains no subgroup,

except e, which is normal in G, we call the group pair (G, H) irre-

1) Cf. J. E. Eaton, Associative multiplicative systems, Amer. J. of Math., y. 62 (1940),

pp. 222-32.
o

2) Cf. F . Marty, S u r une general isat ion de la notion de groupe, Attonde Skandinaviska

Matemat ikerkongressen i Stockholm 14-18 Au'gusti 1934, pp. 45-9. M. Krasner , S u r la

pr imi t iv i te des corps φ - a d i q u e s , Mathemat ica, v. 23 (1937), pp. 72-191. M. D r e s h e r and

O. Ore, Theory of Mult igroups, A m e r . J. of Math., v. 60 (1933), pp. 705-33..
3) I t is also called a " h y p e r g r o u p of c l a s s e s " . Cf. M. Krasner , loc. cit.
4) I t is so-called " hypergroupo "> Cf. M. Krasner , S u r la theorie de la ramification

des ideaux de corps non-galoisieris de n o m b r e s aϊgebriques, (These Par i s) (1938).
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ducίble.5) The irreducible group pair is not uniquely determind by M

as may be shown easily by examples. Two group pairs {G1, HΎ) and

(G2, H2) for a £>-hypergroup is called equivalent if Gx and Hx are iso-

morphic to G2 and H2 resp. in the same mapping.

A hypergroup is called a (right) cogrσup6) if it satisfies the follow-

ing conditions:

1) There exists a left unit e such that ea contains only one element

a for any a in C: ea = a .

2) If ab 3 c there exists b! such that bbf s e and cbf 3 a .

3) If α& contains fc7) elements then αc also contains fc elements

for any c in C.

4) If the intersection of ac and be is not empty, then a e 3 b.

We can easily prove that any Z)-hypergroup is a cogroup. An ele-

ment a is called e-co>njugate tob Ίί a ebe: the e-conjugation is evident-

ly an equivalence relation. A left unit e of a cogroup is a two-sided

unit it is uniquely determined and ab 3 e if and only if ba 3 c . Then

6 is called an inverse of α. If a is e-conjugate to α' then ab 3 e

follows from a'b 3 e. Conversely, if ab 3 e and a'b 3 e then a is β-

conjugate to α'.

§ 2 .

Lemma 1. Let M and N be two hypergrouvoids, and M be homo-

morphic to N by a homomorphism θ . Let Mi be the partition hyper-

groupoid of M with respect to the partition given by the equivalence

which is defined in M by the homamorphism θ . Then Mx is isomorphic

to N.

This can be proved in the usual way.

5) The group pair is called " representation" by M. Krasner . Cf. M. Krasner, La

caracterisation des hypergroupes de classes et la probleme de Schreier dan les hypergroupes,

C. R. Acad. Sci. Par i s , v. 212 (1941), pp. 948-50 Errata, ibid. v. 218 (1944), pp. 483-4 :

Rectification a m a note precedente et quelques nouvelles contributions a la theorie des hy-

pergroupes. ibid. v. 218 (1944), pp. 542-4. I could not see these papers, but saw only

reviews by R. Hull and D. C. Muldoch.

6) Cf. J. E. Eaton, T h e o r y of cogroups, D u k e M a t h . J., v. 6 (1940), pp . 101-7. J. E.

Eaton h a s d iscussed h i s cogroups in finite case only, but h e r e we drop this re s t r ic t ion and

add one axiom which is the t h e o r e m 3 of the p a p e r cited above.
7 ) Here k may be an infinite cardinal number.
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Theorem ί. A hypergroupoid M with a right unit e is a D-hyper-

group if and only if R (M) is a transferor group of M.

Theorem 2. Every irrdeucible group pair of a D-hypergroup M

is equivalent to a group pair (T, Te) where T is a transferor group

of M and Te is the subst of T consisting of all the mappings in T

which make the unit e of M invariant. Conversely, (T, Te) is an

irreducible grpup pair of M for every transferor group T of M.

Proof. Let M be a D-hypergroup and (G, H) be one of its irre-

ducible group pairs. By ma we denote the element of M corresponding.

to the coset Ha for every a in G. Then the mapping

p{x) : ma > max

is a multiplicatQr and all such multiplicators forms a group T. Let e

be the unit of M. We denote by Tn the totality of elements of T which

map e to m. Then the group pair [G, H) is clearly equivalent to (T,

Te). If mamb3mc and mamb

f 3 mc

r then HaHb^> He and HaHbf^>

Hcf therefore Hahb^=Hc and Hahrbf — Hcf for some h and hr

in H. Let y = &-ιΛ-1ft'&'. Then Hby = Hb' and Hey = He', i.e.,

mb

p(y)^=m^ and ma

pιVj — me'. This implies that T is a transferor

group of M.

Conversely, let M be a hypergroupoid with a right unit e. We

assume the existence of a transferor group T of M. Now we prove

that Γ is homomorphic to M. We make p map to ep, then the mapping is

" o n t o " . By the assumption aεae, we get aσε aeσ for any a in M.

Thus epσ ε epeσ. Conversely let e?eσ 9 eτ. Since e°e 3 e?, there exists π in

Γ such that eπ = e'7 and βPπ = βΓ. Therefore, by lemma 1, T/Te is iso-

morphic to M. Evidently T e contains no subgroup, except e, which is

normal in Γ .

§ 3 .

A partition M *=Σ W oί a Z)-hypergroup M is called a {right) co-

partition if the scalar partition hypergroupoid of M with respect to the

partition is also a D-hypergroup.

As an immediate consequence of the theorem 1, we prove
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Theorem 3. A partition M = U {a} of a D-hypergroup M is a co-

partition if and only if for each pair a and b with {a} -•= {b} there

exists a multiplicator θ of the scalar partition hypergroupoid M* of

M with respect to the partition, such that β° = e and α° — b .

Proof. Let M - = ΣJ{α} be a copartition. If {a} = {b\ then α # e =

{a} e = {6}e = δ * e s 6 . Since a * β 3 a , by the theorem 1., there exists

^ in β (M*) such that β° = β and αθ = 6 .

Conversely, let the condition of the theorem be satisfied. If a * 6 3 c

and a*br 3cf then there exist αx and a> such that {αj ~ {a2} — {a\,

aLb 3 c and aώrscr. From αxe 3 αx and a2esa2, there exist multipli-

cators /o and σ o f I such that b9 — e, c9^-=aϊ, eσ =bf and a2

σ=^c'a
By the assumption, there is a multiplicator θ of ilί* such that β° = β

and α/ = a2. Hence 6 p 0 σ =•-= b! and c p 0 σ = c7.

Theorem 4. Let H and K be two] subgroups of groμp G such that

HK -•= KH. Then HK/H is a scalar partition hypergroupoid of K/

K -̂N H with respect to a copartition.

Conversely, if Mj< be a scalar partition hypergroupoid of a D-hy-

pergroup M with respect to a copartition, then i2(ilί*) = Rβ(M*)R(M)

and Re (M) =--= Re (M*) <^ R (M) in the symmetric group on M , where

Re (ilf *) and Re (M) are the totalities of elements in R (M*) and R (M)

resp. ϊohich make unit e invariant.

Proof. It is sufficient to prove that (HaH ^ K) (Hb — K\ = HaHb

^ K. The left side of the expression is evidently included in the right

side. Let hφhjb^'k be an arbitrary element in the right side, and

hdb = kf be an element in Hb^K. Then kkf~] =Λ1αfe2fe3~
1 is in

HaH ^ K.

To prove the other part of the theorem it is sufficient to prove that

R (M*) = Re (M*) R (M). Clearly, by the assumption, R (M*) > R {M),

Hfence R (M*) > Re (ilί *) i2 (ilί). Let <9 e i? (M*). Then there exists p in

β (M) such that β? = e θ . Now e0?"1 -= e and (9 p"1 e Re (M*), hence 72 (ilf*)

< β e (ikf *) R (M).

Theorem 5β T&e partition join of tivo copartitions of a D-hyper•

group is also a copartition.
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Proof. Let Mγ and M> be two scalar partition hypergroupoids with

respect to the given two copartitions resp. And let T be the join group

of R {Mλ) and R (Af2) in the symmetric group. Then, by the theorem 3,

we may easily prove that T is a transferor group of the scalar partition

hypergroupoid with respect to the join copartition.

Theorem 6. Let A be a subgroup of the automorphism group of

a D-hypergroup M and M = Σ {&} be a partition of M to transitive

systems with respect to A . Then M = 23 W is a cύpartition.

This follows easily from the theorem 3. In fact, every automor-

phism in A is a multiplicator of the scalar partition hypergroupoid of

M with respect to the partition.

Theorem 7. Let A be a subgroup of the automorphism group of

a group G and H = GA be the holomorph of G for A . Let H = ΣfAhA

be the double coset decomposition of H by A . Then the partition

G = 2J {AhA ' ^ G) of G coincides with the partition into the transitive

systems with respect to A and it is a copartition. The scalar partition

hypergroupoid of G with respect to the copartition is isΰ\morphic to

El A .

Proof. Let G = Σ W be the partition of G into the transitive

systems of G with respect to A. In the decomposition ί f ^ Σ A M , we

can assume that h is in G . If AhA ^ G 3 gτ, g2, then gx = ajia^

and g2 = aJ&aJ where <xλ, α/, a2, α2 ' are in A . If #' = a2

r~ιaL

rct1ha2

f

then g'g2-
LeA and S f ' - t ^ r ^ T ' ^ k ' t ^ ' ) " ^ ' ] ' ^ . Hence

g'flfa"1 e A ^ G , therefore #2 = #' = ffiCCαiO"1^']. Conversely if Gs gi9

g2 and 0^ = r̂2 for a in A . • then βr2 = aτlgxa e AgΎA . Hence two par-

titions G = 2] (.A ft A ̂  G) = Σ M coincide. The second part of the

theorem follows easily from the first part of the proof of theorem 4.

§ 4 .

Theorem 8, Let C be a cogroup and (7 = 13 {a} be its partition

such that ae<^{a). Then the scalar partition hypergroupoid Cκ of C

with respect to the partition is a cogroup if and only if the partition

satisfies the condition:

1) {e\ = e for the unit e of C, and
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2) >{{a}b~1} = {a} {6}"1 tohere { {a} b'1} is the set-sum, of {c} for

all c which is contained in a1b'1 ϊυith a1 ε {a} , and b"1 is some inver-

se of b, and {b)~ι is the set of all inverses of all elements in{b] .

Proof. By * we denote the multiplication in C, and by — 1 * the

inverse in C*, that is, a * b = {a} b and cr 1* * as e . From the assump-

tion, {a} < {ct}β< {a} and hence {a} --= { α } e = α * e . If C* forms a

cogroup, then b~λ * e = (6 * e)"1. In fact, 6~J * β = b~ι* * e = (6 ι< e)'1^ >

(6 * e)~ι and let a? e b'1 * e , then x e (b * e)'1* and there exist y εb λ<e such

that {y\x — y*x*e, hence there exist y' ε {y} =••= /̂ ̂  β = 6 * e such that

yfx s β OΪ y! = ar1, therefore a? ε (6 ^ β)"1, i. e., 6"1 * β < (6 * e)~\ hence

5-1 ^ β = (6 * e)"1. Now {e} = β * β = e , { {a} b*1} ~ (α * 6-3) * e = α * (6"1

,t β)̂ -= a * (b * β)"1 =•-= [a] [b\ ~ι which prove the first part of the theorem.

Conversely, let the partition C = 2] W satisfies the conditions above.

If a = e in 2), then {fe"1} = {b}-1 by 1), and { {aJZr1} = {α} {6"1} by

2). Since every element in a cogroup is an inverse of some element, we

obtain {{α {6} = [a] {6} . We shall prove now that the axioms of co-

groups is satisfied in C*. Since ( α ^ 6 ) ^ c - = {{a\b] c = {a} {b} c = {α}

(5 * c) = α * (6 * c), the multiplication is associative. Let α , 6 be two

elements, then there exist x and y such that ax sb and y a sb , hence

a * # s b and y x a sb . e A< a ^ [e] a =--= eα =--= α . If α * δ a c or {αjδsc

then af b 3 c for some α's {α} and a^ecb~ι for some 6"1, hence ĉ ε \af\

< {{cjδ-1} ---= {c} {6}-1, therefore α e {c}5r = c * b! for some bf ε {b\~ι

and b*b!= \b\bJ s e. {α} is a set-sum of certain number of β-conju-

gate classes of C : {α} = Σ α«e . But if ate φ aόe then αe:6 ̂  α̂  6 is

empty by the axiom 4 of cogroups. Hence the axiom 3 for C* follows

from the same for C , I f α * c ^ ^ 6 ^ c 3 c ί , then a1 c ^~^bf c 3 d for some

α/ ε {α} and 6' e {6} . Hence a!e e 6'. α * e = {α} > αre 3 6r. Therefore

α i< e <C \bf\ 3 6 , which completes the proof.

The above restriction ae<C \a\ is not essential in the sense that

the two partitions (7 = ^] {a} = Σ J {&}# define the same scalar partition

hypergroupoid.

Now let Z ~ [α] be a cyclic group of order 8. Then the partition

(e), (α, α4, α7), (αa, α3, α5, aQ)
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of elements of Z to three classes evidently satisfies the conditions 1)

and 2) in the theorem 8. Hence the scalar partition hypergroupoid Z*

of Z with respect tp the partition forms a cogroup. We shall prove now

that Z* is not a Z>-hypergroup. Obviously, α t α = ( β ) a?y a*), a* a2 =

(α, α3, α6), c& * α3'=--=(α2, a\ α7), α * α 4 ^ = ( e , α3, α5) and α*α5=--=(α, α4,

α6). If Z* were a O-hypergroup, then by the theorem 3 there would

exist a multiplicator θ of Z* such that e9 = e and α9 = . α4. From α >κ a

3 a2, follows a * α 4 l = α * αθ ^ (α2)9. But (α2)0 4= β = βθ. Hence (α2)0 = a?

or α&. First, let (α2)θ = α8. Then α* α3 = α*(α 2 ) θ s(α3)9, since α * o s s Λ

But (α6)9 Φ α4 = α β . Hence (α6)9 = α2 or a\ On the other hand, a*a,3a\

a * α4 = a * α° 3 (α5)9, (α5)9 Φ e = βθ and (α5)9 Φ α3 = lα 8 ) θ , whence (α5)9 = a\

Since α * α5 a α6, α * α3 = α * (α5)9 a (α6)9, (αβ)° Φ α4 = α9, thus we get (α6)9 = α

or a6 which contradicts to an earlier expression. Next, let (α2)9 = α5.

Then, in a similar way, we can prove that (α6)9 = a or α6 and (α6)9 = α2

or a1 which is also a contradiction. Therefore Z* is not a .D-hypergroup,

while it is a cogroup.

(Received November 12, 3948)

Added in proof. Let r , s, s', and ί be elements of a Z)-hypergroup. If ί and s/

are ^-conjugate, then rs r-\ {ί} and r^/ rs {t} contain the same number of elements. But
cogroups have not necessarily this property. In fact, in Z * defined above, a ** a2 ^ {a}
= a, but « * a? rs {a} =^a* and cfl, while {«2} = fα^}.1 (February 11, 1949)




