<table>
<thead>
<tr>
<th>Title</th>
<th>On a generalization of the ring theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nobusawa, Nobuo</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 1(1) P.81-P.89</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1964</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/12354</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/12354</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive: OUKA

https://ir.library.osaka-u.ac.jp/repo/ouka/all/

Osaka University
ON A GENERALIZATION OF THE RING THEORY

NOBUO NOBUSAWA

(Received May 20, 1964)

1. Introduction. A ring of endomorphisms of a module plays a
very important role in many parts of mathematics; the property of a
ring itself is also clarified when we consider it as a ring of endomor-
phisms of a module. As a generalization of this idea, we can consider
a set of homomorphisms of a module to another module which is closed
under the addition and subtraction defined naturally but has no more a
structure of a ring since we can not define the product. However, sup-
pose that we have an additive group M consisting of homomorphisms of
a module A to a module B and that we have also an additive group N
consisting of homomorphisms of B to A. In this case we can define the
product of three elements f_1, g and f_2 where f_1 and f_2 are elements of
M and g is an element of N. If this product f_1gf_2 is also an element
of M for every f_1, g and f_2, we say that M is closed under the mul-
tiplication using N between. Similarly we can define that N is closed
under the multiplication using M between. Take f_1, f_2 and f_3 in M and
g_1$ and g_2 in N in the above case. Then we have

$$(f_1g_1f_1)g_2f_3 = f_1g_1(f_2g_2f_3) = f_1(g_1f_2g_2)f_3.$$

When we define this situation abstractly, we can get a new algebraic
system.

DEFINITION. Let M be an additive group whose elements are denoted
by a, b, c, \ldots, and Γ another additive group whose elements are $\gamma, \beta, \alpha, \ldots$.
Suppose that $a\gamma b$ is defined to be an element of M and that $\gamma a\beta$ is de-
defined to be an element of Γ for every a, b, γ and β. If the products
satisfy the following three conditions:

1 $$(a_i + a_2)\gamma b = a_i\gamma b + a_2\gamma b,$$

2 $a(\gamma_1 + \gamma_2)b = a\gamma_1 b + a\gamma_2 b,$$

3 $a\gamma(b_1 + b_2) = a\gamma b_1 + a\gamma b_2,$$
2) $(a\gamma b)\beta c = a\gamma(b\beta c) = a(\gamma b\beta)c$,

3) if $a\gamma b = 0$ for any a and b in M, then $\gamma = 0$,
then M is called a Γ-ring

The purpose of this note is to determine the structure of Γ-rings under the following conditions which are called semi-simple and simple according to the usual ring theory.

Definition. Let M be a Γ-ring as above. If for any non-zero element a of M there exists such an element γ (depending on a) in Γ that $a\gamma a = 0$, we say that M is semi-simple. If for any non-zero elements a and b of M there exists γ (depending on a and b) in Γ such that $a\gamma b = 0$, we say that M is simple.

The main result obtained in this note is that a simple Γ-ring which satisfies the chain condition for left and right ideals (defined in §3) is the set D_{nm} of all rectangular matrices of type $n \times m$ over some division ring D and Γ is $D_{m,n}$ of type $m \times n$. The product $a\gamma b$ is the same as the usual matrix product of elements a, γ and b of $D_{n,m}$, $D_{m,n}$ and $D_{s,m}$. This is a generalization of the theorem of Wedderburn on simple rings. Subsequently, a semi-simple Γ-ring satisfying the chain condition for left and right ideals will be shown to be a direct sum of simple Γ-rings, where $\Gamma = \Gamma_1 + \Gamma_2 + \cdots + \Gamma_n$ (direct).

2. **Examples.** Suppose we have a right R-module M with an operator ring R. Take a submodule Γ of $\text{Hom}_R(M, R)$. Then M is a Γ-ring as follows: If a and b are elements of M and if γ is an element of Γ, then we define

$$a\gamma b = a \cdot \gamma(b),$$

where $\gamma(b)$ is an image of b by γ and is an element of R. It is easy to verify that

$$(a\gamma b)\beta c = (a \cdot \gamma(b)) \cdot \beta(c) = a(\gamma(b)\beta(c)) = a \cdot \gamma(b \cdot \beta(c)) = a\gamma(b\beta)c.$$

We also define that

$$\gamma b\beta = \beta \cdot \gamma(b),$$

(\beta \text{ operating first}),

where $\gamma(b)$ means the left multiplication of $\gamma(b)$. Then

$$(a\gamma b)\beta c = a(\gamma(b)\beta(c)) = a(\gamma b\beta)c.$$

The conditions 1) and 3) hold naturally and M is a Γ-ring. But it will be shown in §3 that every Γ-ring is given in this way.

To illustrate further this new algebraic system, we introduce the
DEFINITION. We call that M is a cubic ring when we can define the product of three elements of M which is an additive group such that it satisfies

\[(a_1 + a_2)b = a_1b + a_2b,
4)\]
\[a(b_1 + b_2)c = ab_1c + ab_2c,
5)\]
\[ab(c_1 + c_2) = abc_1 + abc_2,
6)\]
\[ab(cde) = (abc)de,
\]
\[\text{if } abc = 0 \text{ for all } a \text{ and } c, \text{ then } b = 0.\]

If we take the product in a cubic ring M as the product of two elements of M using one element of $\Gamma = M$ between, then conditions 1) and 3) for a Γ-ring are satisfied. Also the first part of 2) is satisfied. Hence, in order that M is a Γ-ring, we must be able to define the product $\Gamma \times M \times \Gamma$ such that the latter part of 2) holds. In the following examples, we can find it easily.

Example 1. Let $V_n(F)$ be a vector space of dim n over a field F. If a, b, and c are vectors in it, we define $abc = (a \cdot b)c$, where $(a \cdot b)$ is the inner product of a and b. It is easy to see that $V_n(F)$ is a cubic ring. Now we define $(bcd)' = b(c \cdot d)$. Then $ab(cde) = (a \cdot b)(c \cdot d)e = a(bcd)'e$, i.e., $V_n(F)$ is a Γ-ring with $\Gamma = V_n(F)$.

Example 2. Let $D_{n,m}$ be the set of all rectangular matrices of type $n \times m$ over a division ring D. If a, b, and c are elements in it, we define $abc = ab'tc$, where b' is the transpose of a matrix b and the above product is well-defined. Then $D_{n,m}$ is clearly a cubic ring. Now we define $(bcd)' = dc'b$. Then $ab(cde) = ab'cd'e = a(bcd)'e$, i.e., $D_{n,m}$ is a Γ-ring with $\Gamma = D_{n,m}$.

Example 3. Let I be the set of all purely imaginary complex numbers. Then it is a cubic ring with the usual multiplication. Also it is a Γ-ring with $\Gamma = I$. However, even with the same I, we can define another cubic ring. For example, if a, b, and c are elements in I, we define the product of a, b, and c as \overline{abc} where \overline{b} is the conjugate of b, i.e., $-b$. This product also satisfies 4), 5) and 6) of the definition of cubic rings. In this case, we put $(bcd)' = -bcd$.

3. The operator rings and ideals. Let M be a Γ-ring. Consider the additive group generated by pairs (γ, a), where $\gamma \in \Gamma$ and $a \in M$ with defining relations $(\gamma_1 + \gamma_2, a) = (\gamma_1, a) + (\gamma_2, a)$ and $(\gamma, a_1 + a_2) = (\gamma, a_1) + (\gamma, a_2)$. We define the multiplication of the elements of this additive group such that

$$(\gamma, a)(\beta, b) = (\gamma, a\beta b).$$

Using the condition 2), we can verify that

$$((\gamma, a)(\beta, b))(\alpha, c) = (\gamma, a)((\beta, b)(\alpha, c)).$$

Thus we get a ring which we denote by F. Now we can see that F is a right operator ring of M by the following definition:

$$a(\gamma, b) = a\gamma b,$$

for, we have

$$(a(\gamma, b))(\beta, c) = (a\gamma b)\beta c = a(\gamma, b\beta c) = a((\gamma, b)(\beta, c)).$$

The set of all elements of F that annihilate M forms an ideal which we denote by A, and we denote F/A by R and call it the right operator ring of M. We use γa for an element of R which is gained from (γ, a). Thus $a\gamma b = a(\gamma b)$. Then, take an element γ of Γ. It induces an R-homomorphisms of M to R such that $\gamma(a) = \gamma a$. The condition 3) implies that Γ induces the zero homomorphism if and only if $\gamma = 0$. Thus Γ is considered to be a subset of the total set of R-homomorphisms of M to R; $\Gamma \subseteq \text{Hom}_R(M, R)$.

Similarly we can define the left operator ring L of M. We start with (a, γ) and define the product such that $(a, \gamma)(b, \beta) = (a\gamma b, \beta)$. Also we define the left operation such that $(a, \gamma)b = a\gamma b$, and so on. $a\gamma b$ is an element of L given from (γ, a) and $a\gamma b = (a\gamma)b$. And we can say that $\Gamma \subseteq \text{Hom}_L(M, L)$.

Definition. R-submodules of M are called right ideals of M, and L-submodules of M are left ideals.

A right ideal τ is nothing but a submodule of M such that $\tau M \subseteq \tau$. A left ideal \imath is a submodule of M such that $M\imath \subseteq \imath$.

4. Peirce decomposition in semi-simple Γ-rings. Assume that M is semi-simple, and let τ be a minimal right ideal. Then by semi-simplicity there exists an element e in Γ such that $a\varepsilon a = 0$ for a non-zero element a in τ. Then $0 = a\varepsilon \tau \subseteq \tau$ and hence $\tau = a\varepsilon \tau$, for τ is minimal. Therefore $a = a\varepsilon e$ with some element e of τ. Then $e = e\varepsilon e$, since from $a = a\varepsilon e = (a\varepsilon e)e$
We have \(a \varepsilon (e - e \varepsilon e) = 0 \) which means \(e - e \varepsilon e = 0 \), for a set \(\{ c | a \varepsilon c = 0, c \in \mathfrak{r} \} \) is a right ideal contained in a minimal ideal \(\mathfrak{r} \) and is \{0\}. Since \(e \in \mathfrak{r} \), \(e \mathfrak{r} \subset \mathfrak{r} \), i.e., \(e \mathfrak{r} = \mathfrak{r} \). \(\varepsilon \mathfrak{M} \) being a right ideal of \(\mathfrak{R} \), \(e \varepsilon \mathfrak{M} \) is a right ideal of \(\mathfrak{M} \) contained in \(\mathfrak{r} \), and hence \(e \varepsilon \mathfrak{M} = \mathfrak{r} \). Thus we get

Lemma 1. If \(\mathfrak{M} \) is semi-simple and \(\mathfrak{r} \) is a minimal right ideal, then \(\mathfrak{r} = e \mathfrak{R} = e \varepsilon \mathfrak{M} \) with \(e \in \mathfrak{r} \) and \(\varepsilon \in \Gamma \), where \(e \varepsilon e = e \).

Now we use the idea of Peirce decomposition of the ring theory. Suppose that we have a right ideal \(\mathfrak{r} = e \varepsilon \mathfrak{M} \) such that \(e \varepsilon e = e \). Then

\[M = e \varepsilon \mathfrak{M} + M_i \] (direct),

where \(M_i = \{ b | b e b = 0 \} \), since any element \(a \) of \(\mathfrak{M} \) is written

\[a = e \varepsilon a + (a - e \varepsilon a) , \]

and \(e \varepsilon (a - e \varepsilon a) = 0 \). \(\mathfrak{M} \) is clearly a right ideal of \(\mathfrak{M} \). Now we can get a decomposition theorem.

Theorem 1. If \(\mathfrak{M} \) is semi-simple and satisfies the minimum condition for right ideals, then

\[M = e_i \mathfrak{R} + e_2 \mathfrak{R} + \cdots + e_n \mathfrak{R} \] (direct),

where \(e_i \mathfrak{R} \) are minimal right ideals and \(e_i \mathfrak{R} = e_i \varepsilon_i \mathfrak{M} \), and \(e_i \varepsilon_i e_i = e_i \) and \(e_i \varepsilon_i e_j = 0 \) if \(i \neq j \).

Proof. Suppose that we have

\[M = e_i \varepsilon_i \mathfrak{M} + \cdots + e_k \varepsilon_{k-1} \mathfrak{M} + M_{k-1} \] (direct)

such that \(e_i \varepsilon_i \mathfrak{M} \) are minimal right ideals and

\[e_i \varepsilon_i e_j = \begin{cases} e_i & \text{if } i = j , \\ 0 & \text{if } i \neq j , \end{cases} \]

and that \(e_i \varepsilon_i a = 0 \) if \(a \in M_{k-1} \) for \(i = 1, 2, \ldots, k-1 \). This is true for \(k = 2 \) as above. Apply the above discussion on \(M_{k-1} \), and we get

\[M_{k-1} = e_k \varepsilon_k \mathfrak{M} + M_k \] (direct)

as in the above. Here \(e_i \varepsilon_k e_k = 0 \) if \(i < k \), but we can not say that \(e_k \varepsilon_k e_i = 0 \). So, we change \(\varepsilon_k \) suitably. Put

\[\varepsilon_k = \varepsilon_k - \varepsilon_k (e_1 \varepsilon_1 + \cdots + e_{k-1} \varepsilon_{k-1}) . \]

Then we can see that \(e_k \varepsilon_k e_k = e_k \) and \(e_k \varepsilon_k e_i = 0 \). Thus we have a decomposition for \(k \). Since \(\mathfrak{M} \) satisfies the minimum condition for right ideals, we
can get the decomposition in Theorem 1. Similarly we can get

Theorem 1'. If \(M \) is semi-simple and satisfies the minimum condition for left ideals, then

\[
M = Ld_1 + Ld_2 + \cdots + Ld_m \quad \text{(direct),}
\]

where \(Ld_i \) are minimal left ideals and \(Ld_i = M \delta_i d_i \), and \(d_i \delta_i d_i = d_i \) and \(d_j \delta_i d_i = 0 \) if \(i \neq j \).

5. **Simple \(\Gamma \)-rings.** Assume \(M \) is simple and satisfies the minimum condition for right and left ideals in this section. First we want to show that \(e_i R \) and \(e_j R \) are isomorphic as \(\Gamma \)-modules. \(M \) being simple, we can find an element \(\gamma \) in \(\Gamma \) such that \(e_i \gamma e_j = 0 \). Then \(e_i \gamma \tau_j = \tau_i \) where \(\tau_i \) and \(\tau_j \) are \(e_i R \) and \(e_j R \). By a correspondence:

\[
(\tau_j \ni x) \rightarrow e_i \gamma x (\in \tau_i)
\]

we have a one-one mapping of \(\tau_j \) onto \(\tau_i \). If \(x = 0 \), \(e_i \gamma x = 0 \), because \(\{c | e_i \gamma c = 0, c \in \tau_j\} \) is a right ideal contained in \(\tau_j \) and is \(\{0\} \) as \(\tau_j \) is minimal. This mapping is “onto” because \(\tau_i \) is minimal. Since \(x(\beta c) = x\beta c \) corresponds to \(e_i \gamma (x\beta c) = (e_i \gamma x)(\beta c) \), this mapping is an \(R \)-homomorphism, i.e., an \(R \)-isomorphism. Similarly \(Ld_i \approx Ld_j \) (\(L \)-isomorphic). Next, we want to show that all \(L \)-endomorphisms of \(M \) are given by the right multiplication of \(R \). Let \(\phi \) be an \(L \)-endomorphism of \(M \) and put \(\phi(d_i) = u_i \). Since \(d_i = d_i \delta_i d_i, u_i = d_i \delta_i u_i \). Therefore, \(u_i = d_i(\sum_j \delta_j d_j \delta_j u_j) \) where \(\sum_j \delta_j d_j \delta_j u_j \)

is an element of \(R \). On the other hand, by the definition of the right operator ring, \(R \) is considered to be the set of all \(L \)-endomorphisms of \(M \). Then the ring theory shows us that the latter ring is a matrix ring \(D_m \) over a division ring \(D \), where \(D_m \) is \(D_{mm} \). Matrix units \(E_{r,s} \) of \(D_m \) map \(d_r \) to \(d_s \) and \(d_t \) to 0 if \(t \neq r \).

Now we can determine \(M \) with respect to \(R \) which is identified with \(D_m \) as above. Since minimal right ideals of \(D_m \) are \(E_{r,s}D_m, e_i D_m \) in Theorem 2) = \(e_i E_{r,s}D_m \) with some \(r \). Then put \(e_i E_{r,s} = e_{i,s} \). We get \(e_{i,s} \) \((i = 1, 2, \ldots, n; s = 1, 2, \ldots, m) \) such that

\[
e_{i,s}E_{r,s} = \begin{cases} e_{i,t} & s = r, \\ 0 & s \neq r. \end{cases}
\]

Thus we can say that \(M = \sum_{i,s} e_{i,s} D \), i.e., \(e_{i,s} \) are matrix units of \(D_{n,m} \) and \(M \) is (isomorphic to) \(D_{n,m} \) as a right \(D_m \)-module.

Next we must determine \(\Gamma \). An element \(\gamma \) of \(\Gamma \) is considered to
induce a mapping from M to R as in §3, and Γ is considered to be a subset of the set of all R-homomorphisms of $M=D_{n,m}$ to $R=D_m$. On the other hand, D_m-homomorphisms of $M=D_{n,m}$ to D_m are induced by the left multiplications of elements of $D_{m,n}$. In fact, suppose ϕ is a D_m-homomorphism of M to R as in §3, and Γ is considered to be a subset of the set of all R-homomorphisms of $M=D_{n,m}$ to $R=D_m$.

On the other hand, D_m-homomorphisms of $D_{n,m}$ to D_m are induced by the left multiplications of elements of $D_{m,n}$. In fact, suppose ϕ is a D_m-homomorphism of $D_{n,m}$ to D_m such that

$$\phi(e_{i,s}) = \sum_{p,q} E_{p,q} T_{p,q}(i, s)$$

with $T_{p,q}(i, s)$ in D. Multiply $E_{s,s}$, and we can see $T_{p,q}(i, s)=0$ if $q \neq s$. Multiply $E_{s,t}$, and we can see $T_{p,s}(i, s)=T_{p,t}(i, t)$. Putting $T_{p,s}(i, s)=T_{p}(i)$, we have

$$\phi(e_{i,s}) = \sum_{p} E_{p,s} T_{p}(i) = \left(\sum_{j} e'_{p,j} T_{p}(j)\right) e_{i,s},$$

where $e'_{p,i}$ are matrix units of $D_{m,n}$ such that

$$e'_{p,j} e_{i,s} = \begin{cases} E_{p,s} & \text{if } j = i, \\ 0 & \text{if } j \neq i. \end{cases}$$

Hence ϕ is induced by the left multiplication of an element $A=\sum e'_{p,j} T_{p}(j)$ of $D_{m,n}$. Identifying γ which induces ϕ and A which corresponds to ϕ, we can say that $\Gamma \subset D_{m,n}$. What we want to show is that $\Gamma = D_{m,n}$. But Γ is a two sided $D_m - D_n$ module and must be identical with $D_{m,n}$.

Summarizing all the discussions, we get the main theorem.

Theorem 2. If M is a simple Γ-ring satisfying the minimum condition for left and right ideals, then M is $D_{n,m}$ and Γ is $D_{m,n}$. The product $ab\gamma$ is the usual matrix product of three elements a, γ and b of $D_{n,m}$, $D_{m,n}$ and $D_{m,n}$.

6. Semi-simple Γ-rings. Let M be a semi-simple Γ-ring which satisfies the minimum condition for left and right ideals in this section. Arranging suitably, we can see that M is expressed as follows:

$$M = Ld_{1}^{(1)} + \cdots + Ld_{m(1)}^{(1)} + Ld_{1}^{(2)} + \cdots + Ld_{m(2)}^{(2)} + \cdots + Ld_{1}^{(p)} + \cdots + Ld_{m(p)}^{(p)};$$

where $d_{j}^{(p)}$ are some d_b of Theorem 1. Moreover we take the order such that in the above $Ld_{i}^{(j)} \cong Ld_{k}^{(j)}$ (L-isomorphic) and $Ld_{i}^{(j)} \cong Ld_{j}^{(j')}$ if $j \neq j'$. Then, R is, as the right multiplication ring of the L-module M, equal to a direct ring sum $\sum_{j} D_{m(j)}^{(j)}$, where $D_{m(j)}^{(j)}$ are matrix rings over division rings $D^{(j)}$ of type $m(j) \times m(j)$. Furthermore $D_{m(j)}^{(j)}$ operate on $Ld_{i}^{(j)}$ as usual and are zero on $Ld_{i}^{(j')}$ if $j \neq j'$. On the other hand, we have in Theorem 1
$M = e_1R + e_2R + \cdots + e_nR.$
e_iR$ being minimal, $e_iR = e_iD^{(j)}_{m(j)}$ with some j. Rearranging the order suitably, we have

$$M = e_1^{(1)}R + \cdots + e_{n(1)}^{(1)}R + e_1^{(2)}R + \cdots + e_{n(2)}^{(2)}R + \cdots + e_1^{(q)}R + \cdots + e_{n(q)}^{(q)}R,$$

where $e_i^{(j)}R = e_i D^{(j)}_{m(j)}$ and $e_i^{(j)}$ are some e_k. Hence $n = \sum_j n(j)$. With the same discussion as in §5, we can say that

$$e_1^{(1)}R + \cdots + e_{n(1)}^{(1)}R = D^{(1)}_{m(1)},$$
$$e_1^{(2)}R + \cdots + e_{n(2)}^{(2)}R = D^{(2)}_{m(2)},$$
\[\vdots\]
$$e_1^{(q)}R + \cdots + e_{n(q)}^{(q)}R = D^{(q)}_{m(q)},$$
i.e.,

$$M = D^{(1)}_{m(1), m(1)} + \cdots + D^{(q)}_{m(q), m(q)},$$

where $D^{(j)}_{m(j), m(j)}$ are matrix rings over division rings $D^{(j)}$ of type $n(j) \times m(j)$. Naturally $D^{(j)}_{m(j), m(j)}$ operate on $D^{(j)}_{m(j), m(j)}$ as usual and are zero on $D^{(j)}_{m(j'), m(j')}$ if $j \neq j'$. Γ is then a set of R-homomorphisms of M to R and is contained in $\sum_j D^{(j)}_{m(j), m(j)}$. Here the product of elements of $D^{(j)}_{m(j), m(j)}$ and of $D^{(j')}_{m(j), m(j')}$ is performed as usual if $j = j'$ and is 0 if $j \neq j'$. On the other hand, the condition of semi-simplicity means that for any non-zero element a of $D^{(j)}_{m(j), m(j)}$ there exists γ in Γ such that $a\gamma a = 0$. Now we want to show that each $D^{(j)}_{m(j), m(j)}$ is a simple Γ_j-ring. Let V and V' be left $D^{(j)}$-modules of dim $n(j)$ and of dim $m(j)$. $D^{(j)}_{m(j), m(j)}$ and $D^{(j')}_{m(j), m(j)}$ are considered to be the sets of all $D^{(j)}$-homomorphisms of V to V' and of V' to V. When we notice that $D^{(j)}_{m(j), m(j)}$ induce zero mapping on V' if $j \neq j'$, we can say that elements of Γ induce mappings of V' to V. In this case we can show that $X\Gamma = V$ for any subspace X of dim 1 of V. For, suppose that $X\Gamma \subseteq V$. Then we can find an element a in $D^{(j)}_{m(j), m(j)}$ such that $Va = X$ and $(X\Gamma)a = 0$. Then $a\gamma a = 0$ for every γ in Γ, which is a contradiction. Now this fact implies the existance of γ such that $a\gamma b = 0$ for any non-zero a and b, for we can take a subspace of Va as X and take γ such that $(X\gamma)b = 0$. Thus we can conclude that $\Gamma = \sum_j D^{(j)}_{m(j), m(j)}$. Now put $\Gamma_j = D^{(j)}_{m(j), m(j)}$.

Theorem 3. If M is a semi-simple Γ-ring satisfying the minimum condition for left and right ideals, then M is a direct sum of simple Γ_i-rings where $\Gamma = \Gamma_1 + \cdots + \Gamma_q$ (direct):
\[M = M_1 + M_2 + \cdots + M_n \quad (direct), \]

where \(M_i \) are simple \(\Gamma_i \)-rings and \(M_i \Gamma_j = 0 \) if \(i \neq j \), and \(M_i \Gamma_j M_i = 0 \) if \(i = j \).

Osaka University and University of Alberta