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Introduction

Let kG be the group algebra of a finite group G over a field & of charac-
teristic p. For any non-projective indecomposable right 2G-module W, there
is a so called Auslander-Reiten sequence SW:0—Q*W—>X— W—0 (exact)
terminating at W, where Q denotes the Heller operator. (See [2, 2.17.6] for the
definition of Auslander-Reiten sequences.) From this sequence, we get the exact

sequence 0— Homyg (¢, Q*W)— Homyg (-, X)— Homyg (-, W)—a-;Ext},G (-, O*'W)
of contravariant functors from the category of #G-modules into that of k-spaces.
Those functors and natural transformations among them form a category. This
functor category possesses properties similar to those of the category of kG-
modules. For instance, we can give notions of simplicity, indecomposability
and so on for its objects. It is known that the image of the above ¢ is a simple
object. Moreover, each simple object of the functor category gives rise to a
simple object of the module category or an Auslander-Reiten sequence, and this
gives a one-to-one correspondence between the set of isomorphism classes of
simple objects of the functor category and the union of the set of isomorphism
classes of simple #G-modules with the set of equivalence classes of Auslander-
Reiten sequences. In this way, Auslander-Reiten sequences are often identified
with simple objects of the functor category. In this paper, we consider SW
as an Auslander-Reiten sequence and as a simple object simultaneously.

Up to this point, these facts hold for any finite dimensional k-algebras if
we replace O? by a certain operator. One can see a brief review of these facts
(Auslander-Reiten theory) in [9, §1].

Recently in [9] Green studied Auslander-Reiten theory for group algebras
and gave several notions for the functor category, which have analogues in the
kG-module category. “Restrictions”, “inductions” and ‘‘trace maps’ are ex-
amples of them.

In this paper, we consider “relative projectivity” and “extendibility” of
Auslander-Reiten sequences for group modules, which can be defined as soon
as the above notions are given.
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Concerning relative projectivity, Green showed that each Auslander-Reiten
sequence ST has “a vertex”, which is a p-subgroup of G determined uniquely
up to G-conjugate and that some conjugate of a vertex of SW contains a vertex
of W and is contained in the normalizer of a vertex of W. Moreover, an ana-
logue of Green correspondence exists. Thus, in order to find a vertex of an
Auslander-Reiten sequence SW, we may assume that a vertex of W is normal
in G. (See the first paragraph of [9, §8].)

Concerning extendibility, we are given a normal subgroup N of G and a
simple object SV of the functor category corresponding to an indecomposable
kN-module V. We consider when we can extend SV to G.

In view of the above, one might notice that we will have to study modules
over kG and over kN for a normal subgroup N of G. So it seems that Clifford
theory is useful. As a matter of fact, using Clifford theory, it can be shown
that, if & is sufficiently large, then a simple object corresponding to an IN-pro-
jective indecomposable kG-module having a G-invariant N-source gives a simple
module over some twisted group algebra of G/N over k.

We can prove that, for any subgroup H of G with NCHCG, SW is H-
projective if and only if the simple module given by SW is H/N-projective
(Theorem 5.4). In certain cases, one can apply this fact to determine a vertex
of SW.

On the other hand, for any indecomposable AN-module V, we can see that
if V extends to G, then so does SV. Also, if V is G-invariant, then for any
indecomposable direct summand W of the induced module V¢, SW is an ex-
tension of SV if and only if the simple module given by SW is 1-dimensional.
(See Theorem 6.1).

We note that the same idea is already used to give a sufficient condition
which guarantees that W and SW have vertices in common. ([13, Theorem
2.5])

This paper is organized as follows. After introducing terminologies and
notations in Section 1, we will briefly review the Auslander-Reiten theory (Sec-
tion 2) and Clifford theory (Section 3). Some results concerning trace maps
are proved in Section 4. Relative projectivity and extendibility of simple ob-
jects of the functor category are studied in Sections 5 and 6, respectively.

1. Notations and conventions

Throughout this paper, we see the following notations and conventions.

G is a fixed finite group and £ is a field of characteristic p, p==0. All modules
considered here are finitely generated and, unless otherwise noted, every module
is a right module. ModkG denotes the category whose objects are all the
(finite dimensional) modules over the group algebra #G and whose morphisms
are all the AG-homomorphisms among them. For any 2G-modules W and W',
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we use ¢(W, W’) to denote Hom,;(W, W') for notational convenience. For any
finite dimensional k-algebra R, we write JR to denote its radical, and for any
R-module W, 8x(W) means the dimension of Endg(I¥)/] Endx(W) over k.
Other notations and terminologies in representation theory are standard. (See
for example [8].)

In addition to the above, the letters NV and V are reserved to mean a normal
subgroup of G and a kN-module, respectively. Usually V' is assumed to be
non-projective, indecomposable or G-invariant. Here we say that V is G-
invariant if VQ®,y g=V as AN-modules for all gG.

Whenever V is given, E denotes the 2G-endomorphism ring of the induced
module Vé=VQ®,y kG. Fix representatives G/N of cosets of N in G, and for
any subgroup H of G wtih NC HCG, choose representatives G/H of left cosets
of H in G from G/N. We can and will regard V¥ as a kH-direct summand of
V¢. In fact, by Mackey’s theorem, we have the decomposition

(1.1) Ve = D.ec/u(V Qv x)*

of V¢ into the direct sum of AH-submodules (V'®,y x)?. We write, for instance,
Vx instead of V @,y x. Letting E, be End,,(V#), we can consider E, as a
subalgebra of E via the injective k-algebra homomorphism i,: E;—E given by
ig(f)=fQ@ux Idys. Note that for any NCHCH'CG, we have iy | p,=1y. Fur-
thermore, if V' is G-invariant, then for each x&G/N, there exists a unit u, of E
such that u(V)="Vx, and E has 2 decomposition E=®,cq/ny Entt,= DB co/n 4 En
into the direct sum of k-subspaces Eyu,=u Ey. Also, there hold Ey=&,cy/n
Eyu,=®,cqy u.Ey and E=P,co/y Eqt, =P ey 4.Ey. For these facts see
for example [4] and [5].

For a kG-module W, let a=ay (W) be the isomorphism
ag(W): o(VE, W) — y(VH, W)

in the Frobenius reciprocity law. Note that a is an isomorphism of End,;(W)-
Ey-bimodules. For each fe (V¢ W), the image of f by a is denoted by f*.

Also for any kG-modules W and W', we use t5=t5(W, W’) to denote the
usual trace map from z(W, W’) into o(W, W’). Note that, since we are taking
representatives of left cosets of H in G, for any f& (W, W’), ti(f) sends any
we W into 3,cq/m f(wx)x™.

Regarding (Vx)# as a kH-direct summand of V¢, we may apply t5(VC, W)
to elements of ,((Vx)#, W). In doing so, of course, each element of ,((Vx)%, W)
is considered to vanish on (Vy)# for all y €G/H with yx. When V is G-
invariant, we let s, (¢€G/H) be the element of z(V¢, V#) defined by



502 K. Uno

©) {u;l(v) if ve(Vx)f,
s/(v) = .
0 if vE®,ecm ye: (VY)F .

The following are of later use. (See Section 5.)

Lemma 1.2. Suppose that V is G-invariant. Let W be a kH-module.
Then we have y(VC, W)=®,ec/g g(VE, W) s,.

Proof. By (1.1) it suffices to see x(VZ, W)s,=4(Vx)?, W). But this is
clear because the restriction of s, to (Vx)¥ gives an isomorphism from (Vx)?
onto V4.

Lemma 1.3. Suppose that V is G-invariant. Let W be a kG-module.
Then for any fEz(V2, W)Cx(VC, W), we have

tyVe, W) (fs,) =f"u;' forall xG/H.
In particular, we get
Ve, W) (f)=1""
Proof. For any v& Vx, we have
t5(f5:) (v) = Zyeomm fs:(2) ¥ = fso(0)

since s, vanishes on Vxy if yee H. It follows by the definition of s, that z§(fs,)
agrees with fu;! on Vx, and hence it is equal to /7 u;! on Vi by the definition
of a. Since both t§(fs,) and f*~" u; " are kG-homomorphisms, they must coincide
with each other. The last statement holds since we can take the identity ele-
ment of E for u,. Now the proof is complete.

2. Preliminaries for the Auslander-Reiten and Green theories

In this section, we review a part of the Auslander-Reiten and Green theories
following [9], while some of the results will be stated in a way convenient for
our use.

Let MMod &G be the category whose objects are all the k-linear contravariant
functors from Mod AG into Mod k and whose morphisms are all the natural
transformations between those functors. It is known from the Auslander-
Reiten theory that for each indecomposable #G-module W, there is a simple
object SW of MMod &G, which is unique up to isomorphisms, such that (-, W)
is the projective cover of SW. Moreover, each simple object appears in this
way. Furthermore, SW corresponds to a simple AG-module, if W is projec-
tive, or to an Auslander-Reiten sequence terminating at W, otherwise. Recall
also that any SW is known to be finitely presented.

For any non-projective indecomposable module W, we can obtain SW as
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the image of some a@: (-, W)—Dg(W, +), where Dg(W, +) is the space dual to
c(*s W) ([9, Theorem 1.7]). However, when W is a direct summand of V¢,
it seems better to use Dg(VC, +) instead of Dg(W, +). The following should be
compared with [9, Theorem 1.8].

Proposition 2.1. Let e be a primitive idempotent of E and let W—=eVC.
Then a functor y=1,: ¢(+, W)—=>Dg(VC, *) satisfies Im y=SW if and only if

(1) (W) (Idy)=*=0, and

() (W) (Idy) (JE)=0.

Proof. By an argument similar to the one in the proof of [9, Theorem
1.8], Im y=SW if and only if

f-o(W, X)CJ(eEe) & (W) (Idw) (f-6(VE, X)) =0,
for any £AG-module X and fe (X, W). Thus it suffices to show that
f+o(W, X)CJ(eEe) & f-o(V¢, X)CeJE.

Now, notice that f+;(V¢, X) is an E-submodule of eE. Since eE has the unique
maximal submodule eJE, the above is easy to see.

Remark. If v: (e, W)—Dg(VC, -) satisfies (i) and (ii) of Proposition 2.1,
we have the following exact sequence in MMod kG.

0= radg(, W) = o+, W) > SW—0

Here, for each kG-module X, rad (X, W)= {f€ (X, W): fgJ End,x(W) for
all geg(W, X)}. See [9, Theorem 1.4].)

Let W and W’ be kG-modules. Then each fe (W, W’) gives a morphism
fxio(sy W)—4(+, W’), which is defined as follows. For any 2G-module X and
any @ E4(X, W), fu(p)=f-@. Yoneda’s lemma says that the above map f—f
is bijective, namely;

Lemma 2.2 ([9, 1.1]). For any kG-modules W and W', the map
Y (W, W'): (W, W) — Hom(g(+, W), ¢(+, W)

given by Y(W, W') (f)=fx for all fe (W, W’) is an isomorphism. Moreover,
if W=W’, then Y(W, W') is an isomorphism of k-algebras.

Let H be a subgroup of G. Then at any kH-module X, the restriction
(c(*s W)y of (s, W) to H has the value (X¢, W) by its definition ([9, §2]).
Moreover, the isomorphism a(X, W): o(X¢ W)—yx(X, W) in the Frobenius
reciprocity law yields (¢(+, W))z—g(+, Wg) ([9, Prop. 2.12]). Hence, for any
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fex (W, W’), the composite a(-, W)™ Y(Wy, W) (f)a(-, W) gives a mor-
phism from (5(+, W))y into (g(+, W’))y. Furthermore, the map sending any
such f into a(-, W)™ Y(Wy, W) (f) a(+, W) is clearly an isomorphism from
#(W, W') onto Hom((¢(+, W))u, (c(+» W'))g). We denote this isomorphism
by Yy (W, W’). Note that for any kH-module X, Y,(W,W')(f)(X) is a
homomorphism from 4(X¢, W) into 4(X€, W’).

Next, we recall some properties of trace maps and relative projectivity for
MMod kG. In [9, §5] Green gave a definition of trace maps. For any objects
F and F’ of MMod kG and any subgroup H of G, the trace map 7= T§(F, F’)
is a k-linear map from Hom (Fy, F%) into Hom(F, F).

One of his interesting results is as follows.

Lemma 2.3 ([9, Prop. 6.4]). For any kG-modules W and W' and any
fEx(W, W), we have TH(Yy(W, W) (f))=Y(W, W) (t(f))-

We shall study more about the trace maps in Section 4.

Using the notion of induction, we can give a definition of relative projec-
tivity for MMod #G. Here we remark that relative projectivity is defined only
among finitely presented objects of MMod kG. Moreover, it can be shown that
“Higman’s criterion” exists [9, Th. 5.11]. Hence a (finitely presented) object
of MMod kG is H-projective if and only if its identity automorphism lies in
the image of the trace map 7'§.

If F is a finitely presented indecomposable object of MMod kG, then there
is a unique (up to G-conjugate) p-subgroup P of G such that F' is H-projective
if and only if HD; P. ([9, Theorem 4.7]). We call this P a vertex of F and
denote it by vtx(F).

Let W be an indecomposable 2G-module. Then SW is finitely presented
and simple. Now we have the following result which follows from [9, 5.12
and 7.7].

Proposition 2.4. (i) There holds vtx(W)C ; vtx(SW)C I, where I is the
inertial subgroup of a vtx(W)-source of W in Ng(vtx(W)).

(i1) Let W' be the kNg(vtx(W))-module that corresponds to W via the Green
correspondence with respect to (G, vtx(W), Ny(vtx(W))), and let W' be a kI-module
such that W''Ne@*W"D=W" and that W' and W" have vertices in common. (Note:
Such W' always exists.) Then we have vtx(SW)=; vtx(SW')=vtx(SW").

By the above proposition, some problems concerning v#x(SW) can be re-
duced to the case where vtx(W) is normal and a vtx(W)-source of W is G-
invariant. If it is the case, letting V' be a source of W, we should consider direct
summands of V€. For this, Clifford theory (see Section 3) is useful. Using
the above technique, we shall investigate vertices of simple objects of MMod kG
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in Section 5.

The final result in this section is the following, which will be used in Sec-
tions 5 and 6. This is a special case of [9, Prop. 7.9].

Lemma 2.5. Let N be a normal subgroup of G and fix a G-invariant in-
decomposable RN-module V. Suppose that an indecomposable kG-module W has
multiplicity r(r>0) as a direct summand of VC. Then we have (SW)y=38r(SV),
where §=28,c(W)/8yn(V).

3. Clifford theory

In this section we review Clifford theory. Following [5], we state the
results in terms of group-graded rings and modules. The main theorem in
Clifford theory is Theorem 3.4 below. We also give a criterion on extendibility
of modules.

Let H be a finite group. If a ring R (with 1) has a direct sum decomposi-
tion R=@,ecy R, into additive subgroups R,, h€H, such that R,R,,=R,, for
all b, i’ €H, we say that R is a (fully) H-graded ring. For those R, it is clear
that R, is a subring of R and R, is an R,-R,-bimodule.

Note that 2G is a fully G/N-graded ring with the decomposition AG=
Decrv kNx.

For any ring R, let R* denote the unit group of R.

In the rest of this section, R is always assumed to be a fully H-graded
ring.

We set GU(R)= U ,exz(R, N R*) and define a map d:. GU(R)—H by d(r)=h
if reéR,, heH. The elements of GU(R) form a subgroup of R*. It is not
difficult to see that

d
X{R>:1->R¥->GUR)-H—1
is exact except possibly at H. ([5, Prop. 5.2].)

Let X be an R-module. The induced R-module X*=X®g R has a de-
composition X?=,cy X@p, R, into a direct sum of R,-submodules X® p, R,.
Now as in [5, §3, 4, 5] we have the following. (See also the first half of Section

1.)
(3.1) Endg(X*) = @ien Ei »
where E,={pE€End;(X*)|p(XQpg, R;) CXQpg, Ry for all A'€H}. As in

Section 1, we put E=Endg(X¥) for convenience. It is easy to see that the map
from Endg (X) into E, sending any ®EEndg(X) into ®Qp, Id, gives a ring
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isomorphism. Moreover, if X is R-invariant, i.e., X is isomorphic to each X®,
R,, heH, as R,-modules, then E is fully graded with the decomposition (3.1).
Furthermore, if this is the case, the sequence

X<EY: 1> E¥—> GUE)—>H—1.

is exact ([5, §4, 5].)
On the extendibility of X, we have;

Theorem 3.2 ([6, Theorem 2.8]). X extends to R if and only if X<E>
splits.

REMARK. Suppose that X<E) is a split exact sequence. Let y: H—>GU(E)
be a splitting homomorphism. Then for each &, A’ H, the restriction of (k)
to XQ®p, R;, gives an R;-isomorphism from XQ@p Ry onto XQpg Ryr.

As a corollary to the above theorem, we obtain;

Corollary 3.3. Assume further that R is a finite dimensional k-algebra and
each R, is a k-subspace of R and is free as a left R,-module. Then, if X extends
to R, then X=X|JX extends to R. Here JX denotes the radical of X.

Proof. By Theorem 3.2, we have a splitting homomorphism : H—GU(E).
Since R is fully graded, it is easy to see that the radical of the R,-module X® .
R, is precisely JXQ®pg R, for all 2 in H. Hence by the remark following
Theorem 3.2, each (k) sends JXQ®pg, Ry into JXQpg R,y for all €H. The
sum@,ep JXQp, R,=(JX)? is an R-submodule of X* and it follows that

XB/(JX)*=D1en(X[JX) Q% Ry = (X[JX)* = X%,

Since (JX)~ is fixed by all «y(k), each (k) gives an R-automorphism (k) of XZ.
Therefore, by the choice of {y(k)}, the map ¥: H—>GU(Endg(X¥)) defined by
3(h)=v(h), hEH, gives a splitting homomorphism for the sequence X¥<Endg
(X®)>. Now the proof is completed by Theorem 3.2.

In the case where X is R-invariant so that E(=Endg(X¥)) is fully H-graded,
we have a nice correspondence theorem originally due to Clifford. Before we
state it, we introduce some notations.

Let Mod(R|X) be the additive full subcategory of Mod R whose objects are
those R-modules such that their restrictions to R, are isomorphic to direct sum-
mands of direct sums of some copies of X. Also Mod(E | E,) denotes the addi-
tive full subcategory of Mod E whose objects are those E-modules such that
their restrictions to E, are projective E,~-modules.

Regarding X% as an E-R-bimodule naturally, for any R-module W, Homg
(X%, W) can be considered as an object of Mod E. And for any E-module Y,
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the tensor product Y®; X* is an object of ModR. In fact, Homg(X¥%, +) (resp.
- @z X®) is an additive functor from Mod R (resp. Mod E) into Mod E (resp.
Mod R). (See [5, §7] for detail.)

The following is the main theorem of Clifford theory.

Theorem 3.4. Suppose that an R,-module X is R-invariant. Then:

(1) The restrictions of Homgz(X?®, <) and « Q ; X* give an equivalence between
Mod(R| X) and Mod(E | E,).

(i) Assume that an object W of Mod(R|X) corresponds to an object Y of
Mod(E | E,) under the equivalence. Then we have a ring isomorphism End (W)=
End(Y).

The definition of equivalence used here can be found on page 65 of [7].

Proof. (i) 'This is [5, Theorem 7.4].
(i) This is an immediate consequence of (i).

Corollary 3.5. Suppose that X is R-invariant. Then X extends to R if
and only if the regular E\-module E, extends to E.

Proof. It is obvious that extensions of X are objects of Mod(R|X). One
can show easily that extensions of X correspond to extensions of E, under the
equivalence. (See also [12, Cor. 3.16].)

ReMARK 3.6. If X is R-invariant, then X% is an object of Mod(R|X).
Since Homg(X?%, X*)=E, the regular E-module E is the object of Mod(E|E,)
that corresponds to X® under the equivalence. Since both Homg(X%, ) and
-®z X® are additive, every direct summand of X% (resp. E) is an object of
Mod(R|X) (resp. Mod(E|E,)). Moreover, if an indecomposable R-module W
is a direct summand of X* and corresponds to an indecomposable direct sum-
mand Y of E under the equivalence, then W and Y have the same multiplicity
in X® and E.

Finally we consider so called Nakayama relations. Now we further assume
that our ring R is a (finite dimensional) k-algebra and that each R, is a k-sub-
space of R. Let {P;} and {Q;} be basic sets of non-isomorphic projective in-
decomposable R- and Rj-modules, respectively. And let P,=P,/JP, and Q,=
0,/JO,. Then an argument similar to the one in the proof of [8, III, Theorem
2.6] can be applied to obtain the following.

Theorem 3.7. Suppose that QF =D, a, P,, and let a’; be the multiplicity of
O, in a composition series of (P,)g,. Then we have ay 8x(P,)=a%; 8z(0Q)-
4. Trace maps

In this section we study trace maps in various categories. The main
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purposes of this section are to give a definition of a trace map in the category
Mod E and to show that an assertion similar to Lemma 2.3 holds. After this,
we consider the trace maps for quotient objects.

Throughout this section, we assume that 7 is G-invariant and fix a
subgroup H of G with NCHCG. As in Section 1, we put E;=End,(V¥)
which is regarded as a subalgebra of E, and choose units u,, x&G|N, of E with
E=®,cc/v Ey ;=D .ee/n t: Ey.

We now define a trace map for E-modules. Let Y and Y’ be E-modules.
Then =7, Y’'): Homz (Y, Y')—>Homy(Y, Y’) is defined as follows.

THE) (¥) = Diecm E(yu)uz'  forall E€Homg,(Y,Y’) and yeY.

Remark. (i) It is an easy exercise to check that the above 7§ does not

depend on the choice of {u,},cq/
(if) Once we obtain a notion of a trace map, we can give a definition of
relative projectivity for Mod E. An E-module Y is H/N-projective if Id, lies

in §(End; ().

Let W and W’ be objects of Mod(kG|V) and let Y=4(V¢, W) and Y'=
(V€ W’). Then by Theorem 3.4, ;(W, W')SHom(Y, Y’) as additive groups.
We denote this isomorphism by 2=2(W, W’). This 2z is described as follows.
For any fe (W, W’) and ye Y=,(V°, W), we have 2(f) (y)=fy.

Notice that Wy is an object of Mod(kH | V), and that the Frobenius recipro-
city law yields ay(W): z(V#, W)S(VE, W)=Y as Ez-modules. Thus again
by Theorem 3.4, Wy corresponds to the Ey-module Y, and we have zz=z,
(W, W’): w(W, W’):HomEﬂ( Y, Y’). To describe 2, explicitly, recall that the
action of E; on Y is given via the isomorphism agz(W). Thus for any fe
#(W, W) and any y& ¥, we have z,(f) (3)—(fy*)" "

Now we have the following diagram.

o(W, W') =2 Homy(¥, Y)
th T T %
2(W, W) =25 Hom, (¥, Y')
Lemma 4.1. The above diagram commutes.
Proof. Let fex(W, W') and yeY. By the definition of + we have
(76 2a(f)) (9) (2) = Sheom(f(y1))" " 4:'(2)

for all v V. Suppose that vEV. Then we have u;'(v)=v'x"" for some v’
V. Hence we have
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(fm)') ™ u' (o) = (f(yw)") " (v'%™)
= ((f(yu)")" @) &7
= ((f(yu,) (")) &~
= (fyu,(v") x™
= (fy(ox)) 27"

Therefore we get

(7% 2a(f)) () (v) = Zecm(fy(vx)) x™
= ta(fy) (v)
= t5(f) y(v)

for all veV. Since both (7§ 2x(f)) (¥) and t§(f)y are kG-homomorphisms
from V¢ into W', they must agree on V°. Hence we obtain 7§ 24(f) (y)=t%(f)
y=2(t3(f)) (y) for all ye Y. The proof is now complete.

Next, we study the trace maps for quotient objects. The following lemma
is easy to show and we omit the proof.

Lemma 4.2. Let W' be a kG-submodule of W. Suppose that f& (W, W)
satisfies f(W'YCW'. Then f induces fE,(W/W', WIW'), ti(f) (W)C W', and
t5(f) naturally induces t§( f).

ReMARK. Replacing kG and kH by E and Ej respectively, we can prove
a similar statement for 5.

It is nontrivial to show a similar assertion for 7%, while this is essentially
discussed in the first half of [9, §6]. Before proving it, we must give a notion
that an endomorphism of an object 4(+, W) of MMod kG “preserves” a subobject
of it.

Let K be a subobject of (-, W). Then an element feEnd,,(W) (or the
corresponding element Y (W, W) (f) of End((¢(+, W))g) is said to preserve K
if the following holds.

(K X))CKy(X)  for all kH-module X.

More precisely, by the definition of the restriction in MMod kG, the above
is equivalent to:

(ferx ) e Ky(X) = K(X°)

for all ge Ky(X)=K(X°) € (X®, W), where a(X, W) is the isomorphism from
¢(X6 W) onto 4(X, W) in the Frobenius reciprocity law. In other words, f
preserves K if and only if
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Yu(W, W) (f) (X) (K(X9) CK(XE).
(See the argument following Lemma 2.2.)

Lemma 4.3. In the above situation, suppose that f&End, (W) preserves K.
Then f naturally induces f*€End((¢(-, W)/K)yg), ti(f) preserves K, and t§(f)
naturally induces TE(f*).

Proof. Since f preserves K, it clearly induces some f*&End((¢(+, W)/K)z),
and by the above argument, f* must come from Y (W, W) (f). To see the
other statements, taking any #G-module X, consider the following sequence.

43y o W) 2oxas, w) L WNDE) | oy B, wy.

Here the maps #z and m are defined as follows.
n(8) (Biccm®: Q%) = §(Xxeem@:¥) and m(h) (a) = h(Zcemax@x7")

for all ge4(X, W), h€ (X% W) and @, a,€X. An easy calculation shows that

m Y (W, W) (f) (Xg) n(g)=t5(f) g for all g€c(W, X). On the other hand,
since m and 7 are natural and since f preserves K, (4.3)" induces

Yu(W, W) (f) (Xa) K(Xs%) 5 K(X)

@37 K(X)>K(Xx°)

Hence t§(f) preserves K. Now let O be the quotient object z(+, W)/K. Notic-
ing Q(X5°)=0u(Xy), (4.3)" and (4.3)” give

fH(Xg)

(010:4 ) QH(XH) QH(XH) g Q(X)

Since Oy(Xg)=0xX), it follows from the definition of the trace map [9, 5.6]
that the composite of the above sequence is precisely T'5(f*) (X). On the other
hand, the early computation yields that the composite of the above takes any
2€0(X) into t%(f) g€ Q(X), where f means the image of f under the natural

epimorphism from (X, W) onto Q(X). Therefore, t§(f) induces TH(f*)e
End(4(+, W)/K). Now the proof is complete.

5. Relative projectinity of simple objects

In this section, we study relative projectivity of SW for a fixed non-projec-
tive indecomposable 2G-module W. As remarked in Section 2, to determine a
vertex of SW, we may consider the case where a vertex of W is normal in G
and a source of W is G-invariant. Thus in this section, we assume that W is
a direct summand of V¢ and that V is G-invariant.

Let e be the primitive idempotent of E=End,(V¢) corresponding to W so
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that el/’=W. As before we fix a subgroup H of G with NCHCG. The re-
sults in the previous section and [9, Prop. 6.4] give the following commutative
diagram.

Y(W, W 3 .
End(¢(-, W)) ( ) End,(W) — Endg(eE)
o om ] il ]
Y. (W, W 2
End((s(+, W))a) LW W) End,,(W) — End,(eE)

For simplicity we write Y to denote Y,(W, W). The following is a key result.

Theorem 5.2. For any subgroup H of G with NCHCG, the composite
25 Y induces an isomorphism

0: End((SW)y) — End; (eE/e]E)

of k-algebras such that the following diagram commutes.

End(SW) —0£—> End(eE/eJE)
(5.2) T’(’;’T 5 I
End((SW)g) —0H—> Endg,(eE/e]JE)
We first prove the following.

Proposition 5.3. Let f be an element of Endy(W). Then the following (i)
(resp. (iii)) is equivalent to (ii) (resp. (iv)).
(1) =2x(f) preserves eJE.
(i) Yg(f) preserves radg(-, W).
(i) =zx(f) (eE)CeJE.
()  Ya(f) (e(+> W))aC(rade(+, W))g.

Proof. We rewrite the above conditions as follows. By the explicit des-
cription of 25 in the paragraph preceding Lemma 4.1, (i) is equivalent to

@) (f(JE)') " CeJE.

Moreover, since f(eJE)'Cz(V#, W), it follows by Lemma 1.3 that (i)’ is
equivalent to

()" ti(f(eJE))Ce]E.

Similarly, (iii) is equivalent to

(i)’ tE(f(eE)")CeJE.

Next, we claim that (ii) is equivalent to

(i)’ For any kH-module X and any ke 4(X, W),

15(h w(Vq, X)) CeJE implies t5(fh x(VCy, X)) CeJE.
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Let K=radg(-, W). Then by Propositipon 2.1, we have

0 Ku(X) = (X, W) 725 (Do, X)), (exact).

Also let Ty=v(W) (Idy,)€D(V®, W). Now (ii) holds if and only if v4(X) (fh)=
0 in (D(VC, X)), for those hey(X, W) with v4(X) (h)=0. Now recall that
Y (X) (B) (8)=7a( W) (Idy) (hg)— T (hg) for all g 4(V°, X) and that Ty,—
Tyt3([9, Prop. 6.7]). On the other hand, since t§(k z(V°y, X)) and t§(fh
#(VCy4, X)) are right E-submodules of eE, Proposition 2.1 yields that Ker Ty in-
cludes t§(h z(VCy, X)) (resp. t§(fh x(VCy, X))) if and only if eJE includes z§
(h g(VCy, X)) (resp. ti(fh x(VCy, X))). Thus (ii) is equivalent to (ii)".

A similar argument shows that (iv) is equivalent to

(iv)’ For any kH-module X and any h€ 4(X, Wy),

t5(fh g(VCy, X)) CeJE.

We will prove that (i)” (resp. (iii)’) is equivalent to (ii)’ (resp. (iv)’).
Next we claim that for any AH-module X and any hegz(X, Wy) we have

(5.3) t5(fh w(Von, X)) = Do ti(fh (V7 X)) us* .
In fact, the left hand side of (5.3)’ is equal to
Sseosn t(fh g(V7, X)s,) (by Lemma 1.2.)
= Sheom(fh u(V%, X)) 45 (by Lemma 1.3),

which is equal to the right hand side of (5.3)’ again by Lemma 1.3. Since
(5.3)" holds for any choice of f€End,,(W), we also have

t§h w(Ves, X)) = Diecsm tilh g(VE, X)) uz’ .
Furthermore, taking X="V#, we obtain
(5.3 t§(h a(VCu, VE)) = Sicem(bEy)  ui' = Dieom b Equs*.

Here the last equality holds since a is an isomorphism of Ej-modules.

We first show that (ii)’ is equivalent to (i)”. Assume (ii)’. Let X=V*# in
(ii)’, g an element of eJE, and let h=g’c,(V¥#, W). Then since h”—lnge]E,
(5.3)"” implies that t§(h z(V Sy, VZ))CeJE, and hence (ii)’ yields that t§(fh 5(VCy,
V#)CeJE. In particular, taking the element s of z(V ¢, V#) defined by

v if vel¥
sw={r
0 if ve®@, . (Vx)#,

we can conclude that t§( fh)=t5(fg*) lies in ¢JE. Thus (i) holds.
Conversely, suppose that (i)” holds. For a kH-module X and k&€ x(X, Wy),
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assume that t§(hy (V°4, X))CeJE. Then we in particular get t5(h (V¥ X))C
eJE. Hence Lemma 1.3 yields that (h4(V¥, X))* " CeJE, i.e., that (hg(V¥, X))
C(eJE)’. Now using (5.3), (i) implies that t§(fhy(VCy, X))=3,ec/u tH(fh
a(VE, X)) u;' 3, com(eJE) uz'=eJE. Hence (ii)’ holds.

Let us now show that (iii)’ is equivalent to (iv)’. Assume (iii)’. Notice
that for any kH-module X and any kA€ 4(X, Wy), hy(V¥#, X) is included in (eE)”.
Thus by (5.3)’ we get £5(fh u(V%s, X)) = Shcosm t5(a( V7, X)) 45" C Seqrn(e) B)
u;'=eJE. Hence (iv)’ holds. Conversely assume that (iv)’ holds. Then we
have tG(fu(VE, Wy)) Cti(fu(VCy, Wy))CeJE. Since z(VE, Wy)=(eE)*, we get
(iii)’.  Now the proof is complete.

Proof of Theorem 5.2. For any H with NCHCG, define 0%: End
((6(+» W))u)—End;, (eE) by 04=zy Yz'. Then 64 is an isomorphism of -
algebras. Note that eEy(resp. (¢(+, W))y) is a projective object of Mod Ey (resp.
MModkH). Hence by Proposition 5.3, 8 induces an isomorphism of k-algebras
from End((SW)y) onto End;,(eE/eJE). Namely, for any £ €End((SW)y), there
is an element 5 of End((¢(+, W))y) such that 5 preserves radg(+, W) and induces
g. Thus by Proposition 5.3, 8%(n) preserves eJE and @4(£) is defined to be the
Ey-endomorphism of eE/eJE induced by 7(x). By Proposition 5.3 again, this
does not depend on the choice of those % that induce &.

Now we prove that (5.2)" commutes. For any £ €End((SW)), Lemma 4.3
implies that T'§(£) is induced by T'%(»), where % is an element of End((¢(*, W))x)
which induces £. It follows by the definition of the 65 and commutativity of
the diagram (5.1) that §; T5(£) is induced from 7§ 6%(»). Now by Lemma 4.2
7% O4(n) induces 7§ 04(E). Therefore, we have 0, TH(E)=7% 04(E) as desired.
This completes the proof.

The following theorem, which is an easy consequence of Theorem 5.2, is the
main result of this section.

Theorem 5.4. Let H be a subgroup of G with NCHCG. Then SW is
H-projective if and only if eE|eJE is H|N-projective.

Proof. Using Higman’s criterion, the result holds immediately from
Theorem 5.2.

Using the above theorem, to study relative projectivity of SW, we may
consider that of a simple E-module eE/e]E.

In the rest of this section, we assume further that V' is indecomposable and
that % is algebraically closed.

Then we have the following, which is well known. (See, for example, [4.
Propositions 2.4 and 5.2].)
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Lemma 5.5. Let I=J(Ey)E. Then;

(i) 1 s a two sided ideal of E.

(ii) 1 is included in JE, and hence annihilates each simple E-module.

(i) E/I is isomorphic to a twisted group algebra of GIN over k with a basis
{n.}, where 0, is the image of u, in E|I.

By the above lemma, each simple E-module can be considered as a simple
module over a twisted group algebra E/I. Thus knowledge of modules over
those algebras (see [3] and [10] for example) will help to determine vertices of
a simple object SW.

ReMARK. Relative projectivity for twisted group algebras is defined in a
way similar to that for group algebras ([3, §4]), and we can use Higman’s criterion,
as well. It follows at once from the definition of the relative projectivity for
Mod E that eE/eJE is H|N-projective as an E-module if and only if it is H/N-

projective as an E/I-module.
As an application of Theorem 5.4, we give the following example.

ExampLE. Let G=GL(3, q), where ¢ is a power of p. Put

10¢ lac
D={|010|:ceF,}, P={|01b|:a,bcEF;},
001 001

and let H be the subgroup of G consisting of all the upper triangular matrices.
Then an easy calculation shows that H=N¢(D), H/D has a normal p-Sylow
subgroup P/D, and Cg(D)>P. Hence every kD-module S is P-invariant, i.e.,
the inertial subgroup Iy(S) of S in H contains P, and every simple module over
any twisted group algebra of I(S)/D has P/D as its vertex. 'Therefore, Proposi-
tion 2.4 and Theorem 5.4 imply that if D is a vertex of an indecomposable kG-
module W, then vtx(SW)=gP.

As another application of Theorem 5.4, we prove;

Theorem 5.6. Suppose that U is an indecomposable kG-module. Let P be
a vertex of U with Ny(P)Dvtx(SU)DP, (see Proposition 2.4 (i)), and S a P-source
of U. If U has p'-multiplicity as a direct summand of S€, then vtx(SU) is a p-
Sylow subgroup of the inertial subgroup I15(S) of S in Ng(P).

Proof. Let U’ be the Green correspondent of U with respect to (G, P, N,
(P)). Let U” be an indecomposable direct summand of S’ such that
U"%®='. Then U” has p’-multiplicity as a direct summand of S7®).
Thus by Proposition 2.4 (ii), we may assume that P is normal in G and S is
G-invariant. Using the letters W, ¥ and N instead of U, S and P, respectively,
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we are in the same situation as in Theorem 5.4. So use the same notation as
there. Consider the simple E/I-module eE/eJE, which is isomorphic to SW(V°)
as E-modules. Since SW(V)=(SW)y(V), Lemma 2.5 and our assumption
imply that dim, eE/e]JE is relatively prime to p. Hence by [10, Chap. 5 Theorem
9.8], vtx(eE[eJE) is a p-Sylow subgroup of G/N. Therefore the result follows
from Theorem 5.4. This completes the proof.

As a corollary to the above, we can prove the first half of [9, Theorem
8.2] as follows.

Corollary 5.7. Assume that G is a p-group. Let W be an indecomposable
kG-module, P a vertex of W and S a P-source of W. Then vtx(SW)=¢ I4(S).

Proof. By Green’s theorem, SVe®) is indecomposable and hence it is the
Green correspondent of W with respect to (G, P, Ng(P)). Thus W has multi-
plicity 1 as a direct summand of S¢ Therefore the above theorem yields the
results.

6. Extendibility of simple objects

As before, N is a normal subgroup of G and V is an indecomposable kN-
module.

We say that SV extends to G if there exists a finitely presented object F of
MModkG such that Fz=SV. When V is non-projective, by a standard argu-
ment [1, Prop. 4.9], SV extends to G if and only if there exists a short exact
sequence of 2G-modules such that upon the restriction to NV it is isomorphic to
the direct sum of SV with a split short exact sequence. The above F (or short
exact sequence) is called an extension of SV to G.

The main result of this section is as follows.

Theorem 6.1. (i) If V extends to G, then so does SV.

(ii) Suppose that Ey[JEy=Fk. Then,if there is an indecomposable kG-module
W such that (SW)y=SV, the number of isomorphism classes of those modules is
equal to that of 1-dimensional representations of G|N over k.

Proof. We first claim that if S is an extension of SV, then W is isomor-
phic to a direct summand of V6. Assume that it does not hold. Then there
holds SW(V°)= {0} for some W with (SW)y==SV. Thus it follows by the
definition of the restriction for MMod kG that (SW)y(V)={0}. This contra-
dicts the fact that (SW)y=SV.

For any indecomposable direct summand W of V¢, let 7 denote the multi-
plicity of W.

If V extends to G, then it is G-invariant. Thus, if W is isomorphic to a
direct summand of V¢, then Wy 1s isomorphic to a direct sum of some copies
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of V. It follows by Lemma 2.5 that for any indecomposable direct summand
W of V¢ the simple object SW is an extension of SV if and only if 7y 8,c(W)=
S:x(V). We now apply Theorem 3.4. By the equivalence between Mod(kG| V)
and Mod(E|Ey), each (isomorphism class of) indecomposable direct summand
W of V¢ corresponds to an (isomorphism class of) indecomposable direct sum-
mand Y of E with the same multiplicity. (Remark 3.6.) Combining this with
the claim in the first paragraph, it follows that the number of isomorphism
classes of indecomposable 2G-modules W such that SW are extensions of SV is
equal to the number of isomorphism classes of indecomposable direct summands
of E with the multiplicity by satisfying

(6.1)' by 8:(Y) = 85, (Ey) .

(See Theorem 3.4 (ii).) Now recall that E is a fully G/N-graded ring and that
Ey=End,y(V) is a local ring. So, in particular, Ey, (resp. Ey=Ey/JEy) is the
unique projective indecomposable (resp. simple) Ey-module. Hence applying
Theorem 3.7 to E, the number of isomorphism classes of those Y satisfying
(6.1)’ is equal to the number of isomorphism classes of extensions of Ey to E.
On the other hand, since V' extends to G, it follows by Corollary 3.5 that Ej
extends to E, and hence E extends to E by Corollary 3.3. Therefore, especial-
ly, an argument given above implies that ST extends to G.

Now assume that Ey=~Fk. First note that if an indecomposable kG-module
W satisfies (SW)y=SV, then W is N-projective by the argument in the first
paragraph. It is easily seen from [9, Prop. 7.9] that our assumption implies
that V is G-invariant. Thus to prove the second statement, it suffices to show
that the number of isomorphism classes of extensions of Ey=k to E coincides
with the number of 1-dimensional representations of G/N over k. Now our
previous argument yields that there is an extension of Ey to E. Let I=(JEy) E.
Since I annihilates any extension of £y (Lemma 5.5 (ii)), E/I has a 1-dimensional
representation. Thus E/I is isomorphic to the group algebra of G/N over k.
(See Lemma 5.5 (iii).) Hence each extension of E can be considered as a 1-
dimensional representation of G/N. Since ICJE, any two extensions of Ey
are isomorphic to each other as E-modules if and only if they are so as E/I-
modules. Therefore the second statement has been proved.

ReMARK. (i) Suppose that G/N is a p-group and that k is sufficiently
large. Then V¢ is indecomposable by Green’s theorem. Thus, if V is G-
invariant, then the proof of Theorem 6.1 implies that S(V¢) is a unique simple
extension of SV.

(ii) There might be an extension of SV which is not simple. For example,
let N be a cyclic group of order p, G the direct product of N with another cyclic
group M of order p. Take a non-projective indecomposable 2ZN-module V" and



PROJECTIVITY AND EXTENDIBILITY OF AUSLANDER-REITEN SEQUENCES 517

the trivial 2M-module k,. Then the tensor product (SV)®, k&, is naturally
a short exact sequence of AG-modules and it is clearly an extension of SV.
However, this sequence is not an Auslander-Reiten sequence. In particular, this
gives an object of MMod kG different from S(V°).

Assume that V' is G-invariant and Ey==k. Then E/(JEy) E is isomorphic
to a twisted group algebra (Lemma 5.5 (iii)), and hence it determines an element

@ of HY(G|N, k*). See also [11, §1]. Now we have;

Corollary 6.2. In the above situation, there is an indecomposable kG-module
W such that (SW)y==SV if and only if =0 in HYG|N, k¥).

Proof. This is clear by the proof of Theorem 6.1 since a twisted group
algebra has a 1-dimensional representation if and only if =0.

ReMmark. If G/N is a p’-group, then by [11, Cor. 1.12] =0 if and only
if V extends to G. Therefore, Theorem 6.1 and Corollary 6.2 yield that there
is an indecomposable #G-module W such that (SW)y=SV if and only if V'
extends to G.
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