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Introduction

Let kG be the group algebra of a finite group G over a field k of charac-
teristic p. For any non-projective indecomposable right &G-module W, there
is a so called Auslander-Reiten sequence SW\Q-*ΰPW-*X-*W-*Q (exact)
terminating at W, where Ω denotes the Heller operator. (See [2, 2.17.6] for the
definition of Auslander-Reiten sequences.) From this sequence, we get the exact

sequence 0-^ Hom*G( , Ω2W)-*HomkG( , X)->Hom*G( ,W)Z>ExtJG( , SfW)
of contravariant functors from the category of AG-modules into that of ^-spaces.
Those functors and natural transformations among them form a category. This
functor category possesses properties similar to those of the category of kG-
modules. For instance, we can give notions of simplicity, indecomposability
and so on for its objects. It is known that the image of the above σ is a simple
object. Moreover, each simple object of the functor category gives rise to a
simple object of the module category or an Auslander-Reiten sequence, and this
gives a one-to-one correspondence between the set of isomorphism classes of
simple objects of the functor category and the union of the set of isomorphism
classes of simple AG-modules with the set of equivalence classes of Auslander-
Reiten sequences. In this way, Auslander-Reiten sequences are often identified
with simple objects of the functor category. In this paper, we consider SW
as an Auslander-Reiten sequence and as a simple object simultaneously.

Up to this point, these facts hold for any finite dimensional Λ-algebras if
we replace Ω2 by a certain operator. One can see a brief review of these facts
(Auslander-Reiten theory) in [9, § 1].

Recently in [9] Green studied Auslander-Reiten theory for group algebras
and gave several notions for the functor category, which have analogues in the
&<7-module category. "Restrictions", "inductions" and "trace maps" are ex-
amples of them.

In this paper, we consider "relative projectivity" and "extendibility" of
Auslander-Reiten sequences for group modules, which can be defined as soon
as the above notions are given.
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Concerning relative projectivity, Green showed that each Auslander-Reiten

sequence SW has "a vertex", which is a />-subgrouρ of G determined uniquely

up to G-conjugate and that some conjugate of a vertex of SW contains a vertex
of W and is contained in the normalizer of a vertex of W. Moreover, an ana-

logue of Green correspondence exists. Thus, in order to find a vertex of an

Auslander-Reiten sequence SWy we may assume that a vertex of W is normal

in G. (See the first paragraph of [9, §8].)

Concerning extendibility, we are given a normal subgroup N of G and a

simple object SV of the functor category corresponding to an indecomposable

&/V-module V. We consider when we can extend SV to G.
In view of the above, one might notice that we will have to study modules

over kG and over kN for a normal subgroup N of G. So it seems that Clifford

theory is useful. As a matter of fact, using Clifford theory, it can be shown

that, if k is sufficiently large, then a simple object corresponding to an Λf-pro-

jective indecomposable ΛG-module having a G-invariant Λ^source gives a simple

module over some twisted group algebra of G/N over k.

We can prove that, for any subgroup H of G with TVcT/cG, SW is H-
projective if and only if the simple module given by SW is ff/W-projective

(Theorem 5.4). In certain cases, one can apply this fact to determine a vertex

of SW.
On the other hand, for any indecomposable fe/V-module V, we can see that

if V extends to G, then so does SV. Also, if V is G-invariant, then for any
indecomposable direct summand W of the induced module VG

y SW is an ex-

tension of SV if and only if the simple module given by SW is 1-dimensional.
(See Theorem 6.1).

We note that the same idea is already used to give a sufficient condition
which guarantees that W and SW have vertices in common. ([13, Theorem

2.5].)
This paper is organized as follows. After introducing terminologies and

notations in Section 1, we will briefly review the Auslander-Reiten theory (Sec-

tion 2) and Clifford theory (Section 3). Some results concerning trace maps
are proved in Section 4. Relative projectivity and extendibility of simple ob-

jects of the functor category are studied in Sections 5 and 6, respectively.

1. Notations and conventions

Throughout this paper, we see the following notations and conventions.
G is a fixed finite group and k is a field of characteristic p,p^Q. All modules

considered here are finitely generated and, unless otherwise noted, every module

is a right module. Mod&G denotes the category whose objects are all the

(finite dimensional) modules over the group algebra kG and whose morphisms
are all the &G-homomorphisms among them. For any ΛG-modules W and W'y
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we use G(W, W) to denote HomkG(W, W) for notational convenience. For any
finite dimensional ^-algebra R, we write JR to denote its radical, and for any
7?-module W, Sχ(W) means the dimension of EndR( W)/J EndR( W) over k.
Other notations and terminologies in representation theory are standard. (See
for example [8].)

In addition to the above, the letters N and V are reserved to mean a normal
subgroup of G and a &/V-module, respectively. Usually V is assumed to be
non-projective, indecomposable or G-invariant. Here we say that V is G-
invariant if V®kN g—V as fcΛΓ-modules for all g^G.

Whenever V is given, E denotes the ΛG-endomorphism ring of the induced
module VG= V®kN kG. Fix representatives G/N of cosets of N in G, and for
any subgroup H of G wtih TVcίfcG, choose representatives G/H of left cosets
of H in G from G/N. We can and will regard VH as a kH-direct summand of
VG. In fact, by Mackey's theorem, we have the decomposition

(1.1) V°=®^G!H(V®kNX)»

of VG into the direct sum of &ί/-submodules (V®kN x)H. We write, for instance,

Vx instead of V®kN x. Letting EH be EndkH(VH), we can consider EH as a
subalgebra of E via the injective Λ-algebra homomorphism iH\ EH-^E given by

ίH(f}=f®kH Id*G Note that for any NdHdH' C G, we have iH> \ EH=ίH- Fur-
thermore, if V is G-invariant, then for each x^G/N, there exists a unit ux of £"

such that ux(V) = Vxy and E has a decomposition £*= @X(=G/N ENU*— @XGG/N ux^N

into the direct sum of Λ-subspaces ENux—uxEN. Also, there hold EH=@χξΞH/N

ENux=®xGH/NuxEN and E=φxeG/ffEffux=®xeG/auxEa. For these facts see

for example [4] and [5].

For a ΛG-module Wy let a=aff(W) be the isomorphism

in the Frobenius reciprocity law. Note that a is an isomorphism of EndkG(W)-
jE'jy-bimodules. For each/eG(FG, W}, the image of /by a is denoted by/Λ.

Also for any ΛG-modules W and W, we use f£=*ίί(W, W7') to denote the
usual trace map from H(W, W) into G(W, W'}. Note that, since we are taking
representatives of left cosets of H in G, for any f^H(W, W), £#(/) sends any

Regarding (Vx)H as a A/ί-direct summand of VG, we may apply

to elements of H((Vχ)ffy W). In doing so, of course, each element of ff((Vx)H, W)
is considered to vanish on (Vy)H for all y ^G/H with y=$=x. When V is G-
invariant, we let sx (x^G/H) be the element of ff(VG, VH) defined by
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fu7l(v) if

if

The following are of later use. (See Section 5.)

Lemma 1.2. Suppose that V is G-invariant. Let W be a kH-module.
Then we have H(VG, W)=®X^G/H H(VH, W) sx.

Proof. By (1.1) it suffices to see H(VH, W)sx=H((Vx)H, W). But this is
clear because the restriction of sx to (Vx)H gives an isomorphism from (Vx)ff

onto VH.

Lemma 1.3. Suppose that V is G-invariant. Let W be a kG-module.
Then for anyf<=ff(VH, W)dH(VG, W), we have

^fa-u71 for all x^G/H .

In particular, we get

Proof. For any v e Vx, we have

since sx vanishes on Vxy if y$H. It follows by the definition of sx that tπ(βx)
agrees with/i/71 on Vx> and hence it is equal to/*"1 wj1 on Vx by the definition
of a. Since both tG

I(fsx) and/β-1 wj1 are ΛG-homomorphisms, they must coincide
with each other. The last statement holds since we can take the identity ele-
ment of E for uλ. Now the proof is complete.

2. Preliminaries for the Auslander-Reiten and Green theories

In this section, we review a part of the Auslander-Reiten and Green theories
following [9], while some of the results will be stated in a way convenient for
our use.

Let MMod kG be the category whose objects are all the ^-linear contravariant
functors from Mod&G into Mod/z and whose morphisms are all the natural
transformations between those functors. It is known from the Auslander-
Reiten theory that for each indecomposable AG-module W, there is a simple
object SW of MMod kG, which is unique up to isomorphisms, such that G( , W)
is the projective cover of SW. Moreover, each simple object appears in this
way. Furthermore, SW corresponds to a simple &G-module, if W is projec-
tive, or to an Auslander-Reiten sequence terminating at W, otherwise. Recall
also that any SW is known to be finitely presented.

For any non-projective indecomposable module W, we can obtain SW as
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the image of some a: G( , W)-*DG(W, •)> where DG(W, •) is the space dual to
c(*> W7) ([9> Theorem 1.7]). However, when W is a direct summand of VG,
it seems better to use DG(VG, •) instead of DG(Wy •). The following should be
compared with [9, Theorem 1.8].

Proposition 2.1. Let e be a primitive ίdempotent of E and let W=eV°.
Then a functor ry=rγe: G( , W)-+DG(VG, •) satisfies Im γ~SW if and only if

(i) γ^HId^ΦO, and
(ii)

Proof. By an. argument similar to the one in the proof of [9, Theorem
1.8], Im γ^SWif and only if

, X)dJ(eEe) <* Ύ(W) (Uw) (/ G(FG, X)) = 0 ,

for any ΛG-module X and/eG(JY", W7). Thus it suffices to show that

f-G(W, X)CLj(eEe) ~f G(Ve, X)CeJE .

Now, notice that/ G(FG, X) is an £"-submodule of eE. Since eE has the unique
maximal submodule eJE, the above is easy to see.

REMARK. If γ: G( , W)-*DG(VG, •) satisfies (i) and (ii) of Proposition 2.1,
we have the following exact sequence in MMod kG.

0 -> radc( , W) -> G( , W) -̂  SW-* 0

Here, for each ΛG-module X, radG(Jί, W)={fζΞG(X, W):fg^JEndkG(W) for
all ^eG(ίF,Z)}. See [9, Theorem 1.4].)

Let Wand W be &G-modules. Then each/eG(PF, W) gives a morphism

/#* G ( * > W^)~>G(*> W')> which is defined as follows. For any ΛG-module X and
any φ^G(X, W), f*(φ)=f φ Yoneda's lemma says that the above map /->/#
is bijective, namely;

Lemma 2.2 ([9, 1.1]). For any kG-modules W and W, the map

Y(W, W): G(W, W) -* Hom(G( , W), G( , W'))

given by Y(W, W) (/)=/* for all f^G(W3 W) is an isomorphism. Moreover,
if W=W , then Y(W, W) is an isomorphism of k-algebras.

Let H be a subgroup of G. Then at any &ff-module X, the restriction
(G( > W))H of G( , W) to H has the value G(XG, W) by its definition ([9, §2]).
Moreover, the isomorphism a(X, W): G(XG, W)->ff(X, W) in the Frobenius
reciprocity law yields (G( , W))H^H( y WH) ([9, Prop. 2.12]). Hence, for any
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fGa(W,W), the composite Λ( , W')'1 Y(Wa, W'H) (/) α( , W) gives a mor-
phism from (G( , W))H into (G( ,W))H. Furthermore, the map sending any

such / into β( , W')'1 Y(Wff, W'Ίy) (/)#(•, W) is clearly an isomorphism from

a(W,W) onto Hom((G( yW))Hy(G( yW'))H). We denote this isomorphism
by YH(W, W). Note that for any fetf-module X, Ya(W, W'} (/) (X) is a
homomorphism from G(XG, W) into G(^ΓG, IF').

Next, we recall some properties of trace maps and relative projectivity for
MMod kG. In [9, §5] Green gave a definition of trace maps. For any objects
F and F' of MMod kG and any subgroup H of G, the trace map TG

H= T%(F, F')
is a Λ-linear map from Hom(FH, F'H) into Hom(F, F').

One of his interesting results is as follows.

Lemma 2.3 ([9, Prop. 6.4]). For any kG-modules W and W and any

fϊΞH(Wy W'\ we have TG

H(YH(W, W)(f))=Y(W, W')(tG

H(f)).

We shall study more about the trace maps in Section 4.
Using the notion of induction, we can give a definition of relative projec-

tivity for MMod kG. Here we remark that relative projectivity is defined only
among finitely presented objects of MMod kG. Moreover, it can be shown that
"Higman's criterion" exists [9, Th. 5.11]. Hence a (finitely presented) object
of MMod kG is ίί-projective if and only if its identity automorphism lies in
the image of the trace map T%.

If F is a finitely presented indecomposable object of MMod kG, then there
is a unique (up to G-conjugate) ̂ -subgroup P of G such that F is /f-projective
if and only if HlDG P. ([9, Theorem 4.7]). We call this P a vertex of F and

denote it by vtx(F).
Let W be an indecomposable ΛG-module. Then SW is finitely presented

and simple. Now we have the following result which follows from [9, 5.12

and 7.7].

Proposition 2.4. (i) There holds vtx(W)dc vtx(SW)C.G I, where I is the
ίnertial subgroup of a vtx(W)-source of W in NG(vtx(W)).

(ii) Let W be the kNG(vtx(W))-module that corresponds to W via the Green

correspondence with respect tu (G, vtx(W), NG(vtx(W)))y and let W" be a kl-module
such that W"Ne(υix(w»—W' and that W and W" have vertices in common. (Note :
Such W" always exists.) Then we have vtx(SW)=G vtx(SW')=vtx(SW").

By the above proposition, some problems concerning vtx(SW) can be re-
duced to the case where vtx(W) is normal and a vtx(W)-sourcQ of W is G-
invariant. If it is the case, letting F be a source of W, we should consider direct
summands of VG. For this, Clifford theory (see Section 3) is useful. Using
the above technique, we shall investigate vertices of simple objects of MMod kG
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in Section 5.

The final result in this section is the following, which will be used in Sec-
tions 5 and 6. This is a special case of [9, Prop. 7.9].

Lemma 2.5. Let N be a normal subgroup of G and fix a G-invarίant in-
decomposable kN-module V. Suppose that an indecomposable kG-module W has
multiplicity r(r>0) as a direct summand of VG. Then we have (SW)N~8r(SV),
where S=8kG(W)/8kN(V).

3. Clifford theory

In this section we review Clifford theory. Following [5], we state the
results in terms of group-graded rings and modules. The main theorem in
Clifford theory is Theorem 3.4 below. We also give a criterion on extendibility
of modules.

Let if be a finite group. If a ring R (with 1) has a direct sum decomposi-

tion R=®hGH^ h into additive subgroups Rhί h^H, such that RhRk'=Rkhs for
all hyh'^Hy we say that R is a (fully) jff-graded ring. For those R, it is clear
that R1 is a subring of R and Rh is an Λj-^-bimodule.

Note that kG is a fully G/W-graded ring with the decomposition kG—

For any ring R, let jR* denote the unit group of R.
In the rest of this section, R is always assumed to be a fully //-graded

ring.
We set GU(R)= U k&r(Rh Π R*) and define a map d:. GU(R)-+H by d(r)=h

if r^Rh, h^H. The elements of GU(R) form a subgroup of .R*. It is not
difficult to see that

d
3?<Λ> 1 -> Rf -> GU(R) -*H-+l

is exact except possibly at H. ([5, Prop. 5.2].)

Let X be an ^-module. The induced 72-module XR— X®RI R has a de-
composition XR—®hGHX®RlRh into a direct sum of .Rj-submodules X®RlRh.
Now as in [5, §3, 4, 5] we have the following. (See also the first half of Section

1.)

(3.1) ΈndR(X*)=®heHEh,

where Eh={φGEndR(X*)\φ(X®]tίRk)c:X®lllRhh' for all λ'<Ξ#}. As in
Section 1, we put E=End#(XR) for convenience. It is easy to see that the map
from EndRl(X) into El sending any Φ^End^X) into Φ®^ IdΛ gives a ring
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isomorphism. Moreover, if X is Λ-invariant, i.e., X is isomorphic to each X®RI

Rh, h€ΞH, as /^-modules, then E is fully graded with the decomposition (3.1).
Furthermore, if this is the case, the sequence

-»£?-* GU(E) ->#-*!.

is exact ([5, §4,5].)
On the extendibility of X, we have;

Theorem 3.2 ([6, Theorem 2.8]). X extends to R if and only if

splits.

REMARK. Suppose that 3?<£'> is a split exact sequence. Let γ : H-*GU(E)
be a splitting homomorphism. Then for each λ, A'GΞ/f, the restriction of <γ(h)

to X® RI Rhy gives an ^-isomorphism from X®RI Rh' onto X®RI Rhh'

As a corollary to the above theorem, we obtain;

Corollary 3.3. Assume further that R is a finite dimensional k-algebra and
each Rh is a k-subspace of R and is free as a left RΓmodule. Then, if X extends
to R, then X=X/JX extends to R. Here JX denotes the radical of X.

Proof. By Theorem 3.2, we have a splitting homomorphism y: H-*GU(E).

Since R is fully graded, it is easy to see that the radical of the jR^module X®RI

Rh is precisely JX®RlRh for all h in H. Hence by the remark following
Theorem 3.2, each γ(h) sends JX®Rί Rh' into JX®Rl Rhh> for all h'<=H. The

Rί Rh=(JX)R is an 72-submodule of XR and it follows that

= x* .

Since (JX)R is fixed by all j(h), each j(h) gives an jR-automorphism <γ(h) of XR.
Therefore, by the choice of {γ(A)}, the map 7: H-^>GU(Endχ(XR)) defined by

fy(h)=γ(h)yh^H, gives a splitting homomorphism for the sequence 3?<EndΛ

(XR)y. Now the proof is completed by Theorem 3.2.

In the case where X is Λ-invariant so that E(=EndR(XR)) is fully //-graded,
we have a nice correspondence theorem originally due to Clifford. Before we
state it, we introduce some notations.

Let Mod(Λ I X ) be the additive full subcategory of Mod .R whose objects are
those Λ-modules such that their restrictions to Rl are isomorphic to direct sum-
mands of direct sums of some copies of X. Also Mod(E \ Eλ) denotes the addi-
tive full subcategory of Mod E whose objects are those E'-modules such that
their restrictions to E1 are projective E^-modules.

Regarding XR as an E'-.R-bimodule naturally, for any Λ-module Wy Hom^
(XR, W) can be considered as an object of Mod E. And for any £"-module Y,
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the tensor product Y®E XR is an object of ModR. In fact, Homκ(Xs, •) (resp.
• ®E XR) is an additive functor from Mod R (resp. Mod E) into Mod E (resp.
Mod R). (See [5, § 7] for detail.)

The following is the main theorem of Clifford theory.

Theorem 3.4. Suppose that an RΓmodule X is R-invariant. Then :

(1) The restrictions of HomR(XR, ) and ®E XR give an equivalence between

Mod(R I X) and Mod(£ | E^.
(ii) Assume that an object W of Mod(J? | X) corresponds to an object Y of

Mod(E\Ej) under the equivalence. Then we have a ring isomorphism EndR(W)—

The definition of equivalence used here can be found on page 65 of [7].

Proof, (i) This is [5, Theorem 7.4].

(ii) This is an immediate consequence of (i).

Corollary 3.5. Suppose that X is R-ίnvariant. Then X extends to R if

and only if the regular E^module E1 extends to E.

Proof. It is obvious that extensions of X are objects of Mod(i?| X). One

can show easily that extensions of X correspond to extensions of El under the

equivalence. (See also [12, Cor. 3.16].)

REMARK 3.6. If X is Λ-invariant, then XR is an object of Mod(R\X).

Since HomR(XR, XR)= E, the regular ^-module E is the object of Mod(E\E1)

that corresponds to Xs under the equivalence. Since both HomR(XR, •) and
• ®£ XR are additive, every direct summand of XR (resp. E) is an object of

Moά(R\X) (resp. Mod^lEΊ)). Moreover, if an indecomposable Λ-module W

is a direct summand of XR and corresponds to an indecomposable direct sum-

mand Y of E under the equivalence, then W and Y have the same multiplicity

in XR and E.

Finally we consider so called Nakayama relations. Now we further assume

that our ring R is a (finite dimensional) Λ-algebra and that each Rh is a Λ-sub-

space of R. Let {PJ and {Qt} be basic sets of non-isomorphic projective in-

decomposable R- and ^-modules, respectively. And let PS=PSIJPS and Qt=

QtίJQt Then an argument similar to the one in the proof of [8, III, Theorem
2.6] can be applied to obtain the following.

Theorem 3.7. Suppose that £)f^0s ast Psί and let a'st be the multiplicity of

Qt in a composition series of (Ps)Rl. Then we have ast SR(Ps)=a'st δ

4. Trace maps

In this section we study trace maps in various categories. The main
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purposes of this section ate to give a definition of a trace map in the category
Mod E and to show that an assertion similar to Lemma 2.3 holds. After this,
we consider the trace maps for quotient objects.

Throughout this section, we assume that V is G-invariant and fix a

subgroup H of G with NdHdG. As in Section 1, we put EH=Endkff(VH)
which is regarded as a subalgebra of E, and choose units ux, x^G/Ny of E with

E= ®xeG/N EN ux= ξ&χξ=G/N ux EN.
We now define a trace map for E'-modules. Let Y and Yr be ^-modules.

Then τg=τf(F, F7): Hom^F, Y')-+KomE(Y9 Y') is defined as follows.

τGt(ξ)(y) = ΣxeG/ffξ(yux)u71 for all feHom^F, Y') and y(=Y .

REMARK, (i) It is an easy exercise to check that the above τ# does not
depend on the choice of {ux}x€ΞG/H.

(ii) Once we obtain a notion of a trace map, we can give a definition of
relative projectivity for Mod E. An E"-module Y is /f/Λf-projective if Idγ lies

Let W and W be objects of Mod(AG| V) and let Y=G(VG

y W) and F'=

G(FG, W7'). Then by Theorem 3.4, C(ΪΓ, JΠ^Hom^F, Y') as additive groups.
We denote this isomorphism by z=z(W, W). This z is described as follows.
For any f<=G(W, W) and y€Ξ Y=G(VG, W), we have *(/) (y)=/y.

Notice that WH is an object of Moά(kH\ V), and that the Frobenius recipro-
city law yields aH(W):H(VH, W)^H(VG, W)=Y as ^-modules. Thus again
by Theorem 3.4, WH corresponds to the £^-module YEs and we have ZH=ZH

(W, W): H(W, W')~HomEB(Y, Y'). To describe za explicitly, recall that the
action of EH on Y is given via the isomorphism cιH(W). Thus for any /GΞ

H(W, W) and any y^ Y, we have *„(/) (y)=(fyV\
Now we have the following diagram.

« I
Lemma 4.1. The above diagram commutes.

Proof. Let f&H(W, W) and je Y. By the definition of r we have

(/)) (y) (v) -

for all V^L VG. Suppose that v^V. Then we have uϊl(v)=v'x~1 for some
V. Hence we have
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= (σo«.) (»'))*-'
= (#«,(«'))*-'

= (fy(vχ)) x'1

Therefore we get

for all v^V. Since both (τ£ ##(/))(>>) and *£(/):y are ΛG-homomorphisms

from VG into W', they must agree on VG. Hence we obtain TH ##(/) (y)=tff(f)
y=z(tπ(f)) (y) for all y^ Y. The proof is now complete.

Next, we study the trace maps for quotient objects. The following lemma
is easy to show and we omit the proof.

Lemma 4.2. Let W be a kG-submodule of W. Suppose thatf^H(W, W)
satisfies f(W')cW. Then f induces f<=ΞH(W\W', W\W'\ tG

H(f) (W')dW'y and
tff(f) naturally induces *§(/).

REMARK. Replacing kG and kH by E and EH respectively, we can prove
a similar statement for TH.

It is nontrivial to show a similar assertion for T#, while this is essentially
discussed in the first half of [9, §6]. Before proving it, we must give a notion
that an endomorphism of an object G( , W) of MMod kG * preserves" a subobject
of it.

Let K be a subobject of G( , W). Then an element f^EndkH(W) (or the
corresponding element Yff(W, W)(f) of End((G( , W))ff) is said to preserve K
if the following holds.

f(Kff(X)) C KH(X) for all AίaΓ-module X.

More precisely, by the definition of the restriction in MMod kG, the above
is equivalent to :

(fg (x wY* wrl*=Ks(X) = K(XG)

for 3llgϊΞKff(X)=K(XG)€ΞG(XG, W), where a(X, W) is the isomorphism from

G(X G, W) onto H(X, W) in the Frobenius reciprocity law. In other words, /
preserves K if and only if
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Ya(W,

(See the argument following Lemma 2.2.)

Lemma 4.3. In the above situation, suppose that f^EnάkH(W) preserves K.
Then f naturally induces /*eEnd((G( , W)/K)ff), *£(/) preserves K, and *£(/)
naturally induces Γf (/*).

Proof. Since/ preserves K, it clearly induces some/* eEnd((G( , W)IK)H\
and by the above argument, /* must come from YH(W, W)(f) To see the
other statements, taking any &G-module X, consider the following sequence.

(4.3)' G(X, w} ^xs, w) ^ c(XaG> w]

Here the maps n and m are defined as follows.

n (g) (ΣUc/Λ® *) = g(Σx<=G/H<xxx) and m(h) (a) =

for all g^G(X, W), h^G(XH

G, W) and α, ax^X. An easy calculation shows that
m YH(W,W)(f)(Xff)n(g)=t%(f)g for all g<=G(W,X). On the other hand,
since m and n are natural and since /preserves Ky (4.3)' induces

(4.3)'' •>

Hence tπ(f) preserves K. Now let Q be the quotient object G( , W)IK. Notic-

ing Q(XHG)^QH(XH), (4.3)' and (4.3)" give

/ f ύk ( "V \ l

Q(X) ^ QH(χf)
J-L-g QH(XH) ϋ Q(χ) .

Since QH(XH)=QHG(X)> it follows from the definition of the trace map [9, 5.6]
that the composite of the above sequence is precisely Tf (/*) (X). On the other
hand, the early computation yields that the composite of the above takes any

g^Q(X) into tff(f)g^Q(X), where /means the image of/ under the natural
epimorphism from G(X, W) onto Q(X). Therefore, ίg(/) induces Γ£(/*)e
End(G( , W)/K). Now the proof is complete.

5. Relative projectinity of simple objects

In this section, we study relative projectivity of SW for a fixed non-projec-
tive indecomposable ΛG-module W. As remarked in Section 2, to determine a
vertex of SW, we may consider the case where a vertex of W is normal in G
and a source of W is £?-invariant. Thus in this section, we assume that W is
a direct summand of VG and that V is G-invariant.

Let e be the primitive idempotent of E=EndkG(VG) corresponding to W so
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that eVG=W. As before we fix a subgroup H of G with NdHdG. The re-
sults in the previous section and [9, Prop. 6.4] give the following commutative
diagram.

Y(W W} z
End(c( , W)) — Endkc(W) > EndE(eE)

End((c( , W))ff) < — -Endkff(W) > EndEfl(eE)

For simplicity we write ΎH to denote YH(W, W). The following is a key result.

Theorem 5.2. For any subgroup H of G with NdHdG, the composite

ZffYn1 induces an isomorphism

θ f f : End((SW)ff) -> EndEs(eE/eJE)

of k-algebras such that the following diagram commutes.

End(SW) ?-> EndE(eE/eJE)
(5 2)/ n ΐ τ § ΐi /» i

We first prove the following.

Proposition 5.3. Let f be an element of End^(ίF). Then the following (i)

(resp. (Hi)) is equivalent to (ii) (resp. (iv)).

(i) ##(/) preserves eJE.

(ii) Yπ(f) preserves radG( , W).
(iii) *H(f)(eE)CeJE.

(iv) YH(f) (β( , W))ad(radβ(; W))α.

Proof. We rewrite the above conditions as follows. By the explicit des-

cription of ZH in the paragraph preceding Lemma 4.1, (i) is equivalent to

Moreover, since f(eJE)αc:H(VH, W), it follows by Lemma 1.3 that (i)' is

equivalent to

(i)" ta(f(eJE) )CeJE.
Similarly, (iii) is equivalent to

(iii)' tG

H(f(eE)α)^eJE.

Next, we claim that (ii) is equivalent to
(ii)' For any &fiΓ-module X and any h&ff(X, WH),

tG

H(hH(VG

H,X))<=.eJE implies tG

H(fh H(VG

H, X))^eJE .
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Let K=radG( , W). Then by Propositipon 2.1, we have

0 -» KH(X) -* a(X, W) ̂ Ώ (D(VG, X))H (exact).

Also let Γv=γ(W) (ldw)(ΞD(VG, W). Now (ii) holds if and only if γH(X) (fh)=
0 in (D(V°, X))a for those hea(X, W) with γa(X) (h)=0. Now recall that

7ff (X) (h) (g)=7a(WH) (ϊdw) (hg)=T,a(hg) for all g<=H(VG

H, X) and that T,a=
?V£([9, Prop. 6.7]). On the other hand, since tG

H(h H(VG

H, X)) and tG

H(fh

a(V°n, X)) are right £-submodules of eE, Proposition 2.1 yields that Ker Tv in-
cludes tGH(hH(VG

H,X}) (resp. tG

H(fh H(VG

a, X)}) if and only if eJE includes ίg

(A H(FGH, ̂ 0) (resp. tg(/fc ^(F^, X))). Thus (ii) is equivalent to (ii)'.
A similar argument shows that (iv) is equivalent to
(iv)' For any &H-module X and any h^H(X, WH),

tG

H(flιa(VG

H,X))^eJE.

We will prove that (i)" (resp. (iii)') is equivalent to (ii)' (resp. (iv)').
Next we claim that for any &H-module X and any h^H(Xy WH) we have

(ς 7V /G/'/7; /Ί7G ^^ V / G ^f/? /Ί/^ Λ^^ 7V"1

\D J) τff\Jn ff(V ffy Λ )) — 2-ίχGG/H τff\Jn H\V > ^))UX .

In fact, the left hand side of (5.3)' is equal to

• *π(fh H( VH, X) ss) (by Lemma 1.2.)

u7l (by Lemma 1.3),

which is equal to the right hand side of (5.3)' again by Lemma 1.3. Since
(5.3)' holds for any choice off^Endka(W), we also have

t°»(h K(VG

H, X)) = Σ,eG/* tG

H(h a(V», X)) uj1 .

Furthermore, taking X= VH, we obtain

(5.3)" tG

H(h H(VG

e, V)) = Σ.ββ/ΛW1 U71 = Σ,eC/a h"-1 Ea u7l.

Here the last equality holds since a is an isomorphism of ^-modules.
We first show that (ii)' is equivalent to (i)". Assume (ii)'. Let X=VH in

(ii)', g an element of eJE, and let h=ga<=ΞH(VH, W). Then since ha~l=gtΞeJE,
(5.3)" implies that tG

H(h ff(VG

Hί VH))c:eJE, and hence (ii)' yields that tG

H(fh ff(VG

ffy

Vff))deJE. In particular, taking the element s of H(VG

H, VH) defined by

v if v<=ΞVH

O if

we can conclude that tff(fh)=tff(fga) lies in eJE. Thus (i)" holds.

Conversely, suppose that (i)" holds. For a &H-module X and h^ff(X, WH),
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assume that ta(hH (VG

H, X))<^eJE. Then we in particular get t%(hH(V, X))d

eJE. Hence Lemma 1.3 yields that (hH(VH, X))a'1CeJE, i.e., that (ha(VH, X))

c(*/£)°. Now using (5.3)', (i)" implies that t°H(fhH(VG

H, *))=Σt6β/, t°H(flι

a(VH, X)) Mj'cΣUe/^e/E) u~l=e]E. Hence (ii)' holds.

Let us now show that (iii)' is equivalent to (iv)'. Assume (iϋ)'. Notice
that for any kH-module X and any h^a(X, WH), hH(VH, X) is included in (eE)a.

Thus by (5.3)' we get tG

H(fhH(V°H,X})=^^G/H tG

H(flι H(V«, X}} u? C^G/a(eJE)
u^l=eJE. Hence (iv)' holds. Conversely assume that (iv)' holds. Then we

have tG

H(fH(V, WH))^t%(fH(VG

H, WH))CeJE. Since H(VH, WH)=(eE)a, we get
(iii)'. Now the proof is complete.

Proof of Theorem 5.2. For any H with NdHciG, define Θ'H\ End

((<?(', W))ff)-*EndEs(eE) by ΘΉ=zH YHI Then Θ'H is an isomorphism of k-
algebras. Note that eEEs(re&p. (G( , W))H) is a projective object of ModEff (resp.
MModkH). Hence by Proposition 5.3, ΘΉ induces an isomorphism of ^-algebras

from End((SW)H) onto EndEB(eE/eJE). Namely, for any £eEnd((SW)#), there

is an element η of End((G( , W})H) such that η preserves radG( , W) and induces
ξ. Thus by Proposition 5.3, ΘΉ(η) preserves eJE and θff(ξ) is defined to be the
£"^-endomorρhism of eE\e]E induced by ΘΉ(η} By Proposition 5.3 again, this

does not depend on the choice of those η that induce ξ.
Now we prove that (5.2)' commutes. For any £eEnd((5W)#), Lemma 4.3

implies that T#(£) is induced by T^(η)^ where η is an element of End((G( , W))H)
which induces ξ. It follows by the definition of the ΘH and commutativity of

the diagram (5.1) that ΘG T%(ξ) is induced from TH ΘΉ(η). Now by Lemma 4.2

TH θ'H(η) induces τ£ ##(£). Therefore, we have ΘG T^(ξ)=τ% θff(ξ) as desired.
This completes the proof.

The following theorem, which is an easy consequence of Theorem 5.2, is the

main result of this section.

Theorem 5.4. Let H be a subgroup of G with NdHaG. Then SW is

H-projective if and only if eE/eJE is H/N-projective.

Proof. Using Higman's criterion, the result holds immediately from

Theorem 5.2.

Using the above theorem, to study relative projectivity of SW, we may
consider that of a simple £"-module eE/eJE.

In the rest of this section, we assume further that V is indecomposable and

that k is algebraically closed.

Then we have the following, which is well known. (See, for example, [4.

Propositions 2.4 and 5.2].)
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Lemma 5.5. LetI=J(EN)E. Then;
(i) / is a two sided ideal of E.

(ii) / is included in JΈ, and hence annihilates each simple E-module.
(ιι\) E/I is isomorphic to a twisted group algebra of G/N over k with a basis

{nx}, where nx is the image of ux in E/I.

By the above lemma, each simple jE'-module can be considered as a simple

module over a twisted group algebra E/I. Thus knowledge of modules over
those algebras (see [3] and [10] for example) will help to determine vertices of

a simple object SW.

REMARK. Relative projectivity for twisted group algebras is defined in a
way similar to that for group algebras ([3, §4]), and we can use Higman's criterion,

as well. It follows at once from the definition of the relative projectivity for
ModE that eE/eJE is ffy/V-projective as an .E-module if and only if it is HjN-

projective as an E/I-module.

As an application of Theorem 5.4, we give the following example.

EXAMPLE. Let G=GL(3, q), where q is a power of p. Put

D={
ΊQc
010
001

P={

1 a c

0 1ft

0 0 1

: *, ft,

and let H be the subgroup of G consisting of all the upper triangular matrices.
Then an easy calculation shows that H—NG(D)y H/D has a normal p-Sylow
subgroup P/D, and CG(Z))lDP. Hence every &D-module S is JP-invariant, i.e.,

the inertial subgroup IH(S) of S in H contains P, and every simple module over
any twisted group algebra of Iff(S)/D has P/D as its vertex. Therefore, Proposi-
tion 2.4 and Theorem 5.4 imply that if D is a vertex of an indecomposable kG-
module W, then vtx(SW)=GP.

As another application of Theorem 5.4, we prove;

Theorem 5.6. Suppose that U is an indecomposable kG-module. Let P be

a vertex of U with NG(P)iDvtx(SU)^)P, (see Proposition 2.4 (i)), and S a P-source
of U. If U has pf-multiplicity as a direct summand of SG, then vtx(SU) is a p-
Sylow subgroup of the inertial subgroup IG(S) of S in NG(P).

Proof. Let U' be the Green correspondent of U with respect to (G, P, NG

(P)). Let C7" be an indecomposable direct summand of S1^ such that
U"N*w=U'. Then U" has ^'-multiplicity as a direct summand of S7*(s).
Thus by Proposition 2.4 (ii), we may assume that P is normal in G and S is
G-invariant. Using the letters W, V and N instead of U, S and P, respectively,
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we are in the same situation as in Theorem 5.4. So use the same notation as
there. Consider the simple £"//-module eE/eJE, which is isomorphic to SW(VG)
as £"-modules. Since SW(VG)=(SW)N(V), Lemma 2.5 and our assumption
imply that dim* eE/eJE is relatively prime to p. Hence by [10, Chap. 5 Theorem
9.8], vtx(eEjeJE) is a ^-Sylow subgroup of G/N. Therefore the result follows
from Theorem 5.4. This completes the proof.

As a corollary to the above, we can prove the first half of [9, Theorem
8.2] as follows.

Corollary 5.7. Assume that G is a p-group. Let W be an indecomposable
kG-module, P a vertex of W and S a P-source of W. Then vtx(SW)=G IG(S).

Proof. By Green's theorem, SN^P'> is indecomposable and hence it is the
Green correspondent of W with respect to (G, Py NG(P)). Thus W has multi-
plicity 1 as a direct summand of SG. Therefore the above theorem yields the
results.

6. Extendibility of simple objects

As before, N is a normal subgroup of G and V is an indecomposable kN-
module.

We say that SV extends to G if there exists a finitely presented object F of
MMod&G such that FH=SV. When V is non-projective, by a standard argu-
ment [1, Prop. 4.9], SV extends to G if and only if there exists a short exact
sequence of ΛG-modules such that upon the restriction to N it is isomorphic to
the direct sum of SV with a split short exact sequence. The above F (or short
exact sequence) is called an extension of SV to G.

The main result of this section is as follows.

Theorem 6.1. (i) // V extends to G, then so does SV.
(ii) Suppose that EN/JEN—k. Then, if there is an indecomposable kG-module

W such that (SW}N^SV, the number of isomorphism classes of those modules is
equal to that of \-dimensional representations of G/N over k.

Proof. We first claim that if SW is an extension of SV, then W is isomor-
phic to a direct summand of VG. Assume that it does not hold. Then there
holds SW(VG)={0} for some W with (SW)N—SV. Thus it follows by the
definition of the restriction for MMod kG that (SW)N(V)={0}. This contra-
dicts the fact that (SW)N^SV.

For any indecomposable direct summand W of VG, let rw denote the multi-
plicity of W.

If V extends to G, then it is G-invariant. Thus, if W is isomorphic to a
direct summand of VG, then WN is isomorphic to a direct sum of some copies
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of V. It follows by Lemma 2.5 that for any indecomposable direct summand
W of VG the simple object SW is an extension of SV if and only if rw SkG(W)=

8kN(V). We now apply Theorem 3.4. By the equivalence between Mod(kG\ V)

and Mod(E\EN), each (isomorphism class of) indecomposable direct summand

W of VG corresponds to an (isomorphism class of) indecomposable direct sum-

mand Y of E with the same multiplicity. (Remark 3.6.) Combining this with

the claim in the first paragraph, it follows that the number of isomorphism

classes of indecomposable &G-modules W such that SW are extensions of SV is

equal to the number of isomorphism classes of indecomposable direct summands

of E with the multiplicity bγ satisfying

(6.1)' bYSE(Y) = SEjr(EN).

(See Theorem 3.4 (ii).) Now recall that E is a fully G/ /V-graded ring and that
EN~EndkN(V) is a local ring. So, in particular, EN (resp. EN=EN/JEN) is the

unique protective indecomposable (resp. simple) E^-module. Hence applying

Theorem 3.7 to £", the number of isomorphism classes of those Y satisfying

(6.1)' is equal to the number of isomorphism classes of extensions of EN to E.

On the other hand, since V extends to G, it follows by Corollary 3.5 that EN

extends to E, and hence EN extends to E by Corollary 3.3. Therefore, especial-
ly, an argument given above implies that SV extends to G.

Now assume that EN—k. First note that if an indecomposable ΛG-module

W satisfies (SW)N—SV, then W is JV-projective by the argument in the first
paragraph. It is easily seen from [9, Prop. 7.9] that our assumption implies

that V is G-invariant. Thus to prove the second statement, it suffices to show
that the number of isomorphism classes of extensions of EN—k to E coincides
with the number of 1-dimensional representations of G/JV over k. Now our

previous argument yields that there is an extension of EN to E. Let I=(JEN) E.
Since / annihilates any extension of EN (Lemma 5.5 (ii)), E/I has a 1-dimensional

representation. Thus E/I is isomorphic to the group algebra of GjN over k.

(See Lemma 5.5 (in).) Hence each extension of EN can be considered as a 1-

dimensional representation of G/N. Since IdJE, any two extensions of EN

are isomorphic to each other as ^-modules if and only if they are so as E/I-

modules. Therefore the second statement has been proved.

REMARK, (i) Suppose that G/N is a p-group and that k is sufficiently

large. Then VG is indecomposable by Green's theorem. Thus, if V is G-

invariant, then the proof of Theorem 6.1 implies that S(VG) is a unique simple

extension of SV.

(ii) There might be an extension of SV which is not simple. For example,
let N be a cyclic group of order p, G the direct product of N with another cyclic

group M of order p. Take a non-projective indecomposable &ΛΓ-module V and
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the trivial Mi-module kM. Then the tensor product (SV)®kkM is naturally
a short exact sequence of AG-modules and it is clearly an extension of SV.
However, this sequence is not an Auslander-Reiten sequence. In particular, this

gives an object of MModkG different from S(VG).

Assume that V is G-invariant and EN^k. Then EI(JEN) E is isomorphic
to a twisted group algebra (Lemma 5.5 (ϋi)), and hence it determines an element
φ of H\G/N, k*). See also [11, § 1]. Now we have;

Corollary 6.2. In the above situation, there is an indecomposable kG-module
W such that (SW)N^SV if and only if φ=Q in R2(G/N, k*).

Proof. This is clear by the proof of Theorem 6.1 since a twisted group
algebra has a 1-dimensional representation if and only if φ=Q.

REMARK. If G/N is a ^'-group, then by [11, Cor. 1.12] φ=0 if and only
if V extends to G. Therefore, Theorem 6.1 and Corollary 6.2 yield that there
is an indecomposable ΛG-module W such that (SW}N—SV if and only if V
extends to G.
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