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1. Introduction

Throughout the development of ergodic theory, attention has been devoted by
many authors, beginning with the classical struggles of Birkhoff and von Neumann,
to proofs of different forms of ergodic theorems. Recenttly, a standard principle has
begun to emerge (see [6], but also [4], [5]). The aim of this short note is to apply
the principle to obtain a proof of Hopf’s ratio ergodic theorem ([1]).

Fundamental Lemma. Lef (a,)n=0,,.. and (bp)n=o,1,.. be sequences of non-
negative real numbers for which there exists a positive integer M such that for any
n=20,1,--- there exists an integer m with 1 < m < M satisfying that

Z An+i Z Z bn+i-
0<i<m 0<i<m
Then for any integer N with N > M,

Z ay > Z by.

0<n<N 0<n<N-M

Proof. = The proof of the Fundamental Lemma is easy. By the assumption,
we can take integers 0 = mg < m1 < --- < mp < N with mjy1 —m; <M (i =
0,1,---,k—1) and N — my < M such that

Y owz Yo
m; <N<mi4i m; <n<miq
for any ¢ =0,1,---,k — 1. Then, by adding these inequalities, we have
)SIEED PSS A DI

0<n<N 0<n<my 0<n<my 0<n<N-M

We apply this Lemma to prove the Ratio Ergodic Theorem [8]. Let (2, B, u)
be a o-finite measure space and 7" : 2 — 2 be a measure preserving transformation.
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Let f and g be integrable functions on 2 such that

(e o)
(1) g(w) >0 and Zg(T"w) =00
n=0
for all w € ©2. Then we have the following theorem. O

Ratio Ergodic Theorem. The following limit exists for almost allw € Q) :

T(w) = lim f(W) + f(Tu)) 44 f(T"_lw)

Moreover, r is T-invariant and
@ [ au= [roan

In the special case that u is a finite measure, the above theorem is nothing but
a consequence of the individual Ergodic theorem applied to f and g separately.

2. The proof of the Theorem

We may and do assume without loss of generality that f(w) > 0 for any w € Q.
For any function h on 2 and a positive integer n, we denote

hy(w) i= h(w) + h(Tw) + -+ + R(T" "W).

Let
7(w) := lim fn(w)
( ) . 1 n—0oo gn(w)

and
r(w) := lim —f"(w)
rw): 1—’H""gn(w)’

where we admit +oo as a value. Then, 7 and r are T-invariant, that is, 7(w) = 7(Tw)
and r(w) = r(Tw) for any w € Q, in virtue of (1).

We fix e > 0 and L > 0. For any w € ), there exists a positive integer m such
that

N

(w
gm (w

> (F(w)"L)(1 —¢),

~—
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where we denote a"b := min{a,b}. Let v be the finite measure on Q defined by
dv(w) = g(w)dp(w). Then for any é > 0, there exists a positive integer M such that
v(Qp) > v(Q2) — 6, where
Qo := {w € Q; there exists m with 1 < m < M such that
fm(W) < (F(w) " L)gm(w) - (1 — &)}

Let

| fw) w € Qo
Flo)= { Low) ¢ .

Then, for a, = F(T"w) and b, = (F(w)"L)9(T™w) - (1 —¢) (n = 0,1,---),
the assumption of the Fundamental Lemma holds since if T"w € Qq, then we can
take the same m as in the definition of {2y, nothing that f < F' as well as 7L is T-
invariant, and if T"w ¢ o, then we can take m = 1. Therefore, by the Fundamental
Lemma, for any w € Q and any positive integer N > M,

Fy(w) > (F(w) L)gn-m(w) - (1 =€),

where we use the fact that 7 is T-invariant. We integrate the both sides in the above
inequality by du(w) and use the fact that p as well as 7 is T-invariant. We have

N/qu _ /FNdu > /(FAL)gN_M (1 —e)du = (N - M)/(?AL)gdu 1—e).

On the other hand, since

/fduz/qu—/ LgduZ/qu—Lé,
2\Q0

/fdu >N ]_VM /(FAL)gdu- (1—¢)—Lé.

we have

Here, letting N — 00, 6§ | 0, € | 0 and L — oo in this order, we have

3) / fdu > / —

This also implies that 7g is integrable and by (1), 7(w) < oo for almost all w € .
Now, we prove equality in (3) by establishing the reverse inequality. Fix € > 0.
Then for any w € €, there exists a positive integer m such that

fm(w)
gm(w)

<r(w)+e.
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Let v be the finite measure on  defined by dv(w) = f(w)du(w). Then for any
6 > 0, there exists a positive integer M such that v(€Qp) > v(2) — 6, where

Qo = {w e WA <7m < M) [fm(w) < (@) + )gm(w)]}-

Let

_Jfw) we

Then, for b, = F(T™w) and a, = (r(w) + £)9(T"w) (n = 0,1,---), the assumption
of the Fundamental Lemma holds since if T"w € Q,, then we can take the same m
as in the definition of g, nothing that f > F, and if T"w ¢ Qo, then we can take
m = 1. Therefore, by the Fundamental Lemma, it holds that for any w € © and
any positive integer N > M,

Fn_m(w) < (z(w) +€)gn (W),

where we use the fact that r is T-invariant. We integrate both sides in the above
inequality by du(w) and use the fact that p as well as r is T-invariant. We have

(N—M)/qu=/FN_MduS/(£+E)gwdu=N/(£+€)gdu-

On the other hand, since

/fduS/qu+/ fduS/FdﬂJré,
2\ Q0

\/’d/l < — /(] +€)gdll/ '|‘ 6-
N - M

Here, letting N — oo, 6 | 0 and € | 0 in this order, we have

4 /fdu < /zgdu-

By (1), (3), (4) and the trivial inequality that 7(w) > r(w) for any w € Q, it
follows that 7(w) = r(w) < oo for almost all w € Q. Hence, r(w) exists and
r(w) = F(w) = r(w) for almost all w € Q. The equality (2) also follows, the proof
is complete.

ReEMARK. The basic idea used here originates from [4], which is developed
in [5] so that a new type of proofs of Birkhoff type ergodic theorems without
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using the maximal ergodic lemma is created. The article [9] has escaped attention
until now for obvious reasons, being published in an engineering journal. It seems
to be an early instance of an application of the basic idea, but is still cluttered
with unnecessary details, as is the development in [5]. The clearest and simplest
exposition is, in our opinion, contained in [7] and based on [6]. Other relevant
references include [2], [3] and [10], and there may well be earlier ones which we
have not yet found.
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