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対数線形 モデルによる3次 元

分割表データの分析法

1序

実験,調 査等によって蒐集されたデータに対 して,そ の内部構造を検討するた め に要 因

(項目,変 量)間 相互の関連の分析を行なうのは常套的手段である。データが連続量(qua-

nt三tativedata)の 場合 には,積 率に基づ くPearson,K.の 相関係数の拡張 としての多変量相

関係数,例 えば重相関係数,偏 相関係数,或 いは正準相関係数等を目的に応 じて算出し,検

討することによってデータの構造を多面的に吟味することができる。

一般に,連 続量データは加減算(場 合によっては乗除算を加えての四則演算)が 可能であ

り,そ の故に低次の積率を求めることによってデータの持つ情報を少数の指標に圧縮するこ

とができる。又,分 布形が既知であるか,或 いはその仮定が許容されるときには,分 布形 と

その母数の推定値を もってほぼ完全に縮約することが可能である。多変量の場合であって も

2次 以下の積率,即 ち平均値ベク トル,分 散 ・共分散行列さえ求めておけば十分な場合が多

い。更に一般化分散を求めれば,分 散 ・共分散はスカラーにさえ圧縮される。

ところが,属 性データ(categoricaldata)の 場合には,加 減算が許されないために積率が

計算できず,分 析の期間を通じて常にカテゴリーを残しておかねばな らない。統計的分析は

連続量データに比し格段に煩墳なものである。統計学の発展の歴史においても先ず連続量デ

ータに関する理論と方法が研究され,属 性データについての研究は後続であった21)。その間

の事情は,例 えば検定の理論が先ずパ ラメ トリックなものから研究され,ノ ンパラメリック

なものは遅れて開始されたことと軌を一にしているし,又 多変量解析の理論は連続量たる多

変量正規分布を前堤としたものか ら研究され,そ れ らについてはほぼ体系化された今,属 性

データを主とした離散量多変量解析の研究はBishop,Y.M.etal.7)に ょれば,コ ンピュータ

の普及と共にここ10年あまり前か ら急速に始められたばか りという。

心理学で扱うデータがすべて連続量であると限 らないのは周知の事実である。Stevens,S.S.

の分類を借りれば加減算の許される間隔尺度,比 例尺度で与え られるデータはむしろ稀であ

って,尺 度構成の領域における研究は,換 言すれば測定水準の向上を目指すものといえよう。

即ち,心 理学的実験や調査で得 られる粗データの多 くは名義尺度或いは順序尺度の水準のも

のであり,こ れを事後の処理により間隔尺度以上の水準に引き上げるのをね らいとしている。

そして少 くともデータが順序づけられたカテゴリーの場合には,尺 度構成の領域で開発され
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た手法 を用 いるこ とによ り加減算 の演算の可能性が保証 され,或 い は順序 とい う制限 のもと

で許容 され る統計的処理の範囲が拡大 され るが,順 序の保証す らない属性デ ータで は,処 理

法に対 する制 的は厳 しい。連 続量データ に適用可能な効率的な積率 の計算法 は,カ テゴ リー

の粋が外せない以上,こ こでは用い ることがで きない。

こうした属性データの連関の分析 に際 して,従 来多 くな されて来た方法は κ2一統計量を用

いる独 立性 の検 定であ る。項 目間の クロス集計結果 は2次 元 の分割表(contingencytable)

に ま とめ られ,器 一値が計算 され両項 目を独立 と見な して良い かど うか の検定 がな される。

しか し,適 用 されてい るのは多 くは項 目が2要 因 の場合 までで あって,情 報理論 を適 用す る

方 法以外は3次 元以上の分割表は分析法が普及 していない ため もあ り,限 局 され ていた。そ

もそ も,計 算法,表 示法の煩雑 さか らクロス集計す らな され る ことが少 ないのが現状 のよ う

であ る。或いは分析法 として分散分析の手段が適 用 されてい るケース も散見 され るが,こ の

場合 には,分 散分析の前堤であ る(1)デ ー タが分散 の算 出可能 な測定値であ り,そ れが例えば

二元配置の場合,X雛=μ+偽+β ゴ+γzゴ+ε蝋 の単純 効果,交 互作用効果,誤 差項の各成分

に分解 で きる こと,② 誤差項 が正規分布 に従 うと仮定で きること,即 ちπε～N(0,σ2)の 点 に

ついての吟味が必要で ある。属性 データ(多 くの場合は頻度のデ ータで あるが)に 対 して,

これ らの検討を欠 く機械的な適用 は危険 といわざ るを得 ない。

こうした属性デ ータの処理法 のひ とつ として,本 稿では近年,統 計学や社会学 の領域 で注

目を集 めるに至 ったLog-LinearMode1(対 数 線形 モデル)に よる多次 元分割表 データの分

析法を紹介す る。

Lo9-LinearModelは 先 ずBirch,M.W4).(1963)に よ って堤案 され,Goodman,L.A.12-15)

(1970～72)に よ って社会 学の領域 に紹介 され理論の発展 と多方 直への適用が試み られた。

そ してHaberman,s.J.16)・17)(1973,74),Plackett,R.L.22)(1974),BishoP,Y.M.M.5)・6)

(1969),BishoP,Y.M.M.etal7).(1975)ら に よ って数理 統計学的 に詳細 に吟味 され,体 系

化 された理論 とな って いる。又 同モデルの入 門的解説 はEveritt,B.S.9)(1977),Payne,C.19)

(1977),upton,G.J.G.26)(1977)等 に詳 しい。

以下,皿 で は同 モデ ルの考 え方 を2次 元分 割表の場合 について紹介 し,「皿で はそれ を3次

元分割表 の場合 に拡張 する。同様 に して4次 元以上の場合への拡張 も可能で あるが詳細 な方

法の検討 は今後 の課題 とす る。更 にIVで は3次 元分割 表の場合 について のコン ピュータ ・プ

ログ ラ ミングにつ いて言 及 し,Vで は数値例 を もとに同 モデルを具体的 に述べ る。そ して最

後 にWで は情報理論で用 い られ る情報量 との関連 について吟味 してお く。

本稿 における紹介 は上記 の論文や書物 に負つて お り,最 終適合 モデル発見 のアルゴ リズム,

結 果 の図示,AICに よ るモデルの検討,解 法の比較,情 報理論 との関連,及 び コンピュー

タプ ログ ラ ミングは筆 者の試論,試 作であ る。
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∬2次 元分割表

1,モ デ ル

2要 因 オ,Bが 各 々 ∬,ノ個 のカテゴ リーに分割 されている とき,同 時観測度数を!:毎,同

時期待度数(モ デルHzの も とで の)をFη とす る。 この とき,次 の5種 類 のモデルが考 え

られ る。但 しこの場合 のモデル とは対 数線 形モデル とい うときのモデルではな く,そ の下位

モデル即 ち仮説 とい う意味で ある。

(1)H4:独 立 モデル(lndepedenceModel)

A,β が独 立で細胞 の同時母 比率を π乞ゴ,周 辺比率を 編,π ・ゴとする とき,H4の も とで は

π乞ゴ=御 π,ゴであ り,従 って 期待度数 の間には周辺度数 をF¢.,Fヴ,全 観 測度 数を η とすれ

ば

F哲ゴ=F乞.F.ゴ/π(2.1)

の 関係が ある場合で ある。 この とき両辺 の対 数を とれば

logF¢ ゴ==logF乞.十10gF.ゴ ーlogη(2.2)

と な り,今 μ一項 として

・一 方 写写1・9・ ・'

・・(の一ナ 写1・9・ ・ゴー・(…)

・・σ)一 ÷ 写1・9・ ザ ・

但 し Σ μ、(の置Σ μ2σ)=0(束 縛 条件)
② ゴ

とおけば(2.2)式 は(注)

10gF乞 ブ=μ十μ1(3)一十一μ2(ブ)(2.4)

と表現 する ことがで きる。'記 号 と してBishop7)ら は%、 ①,Goodman12)は ゐ を用いてい

るが本 稿ではPayne19)に な らい μ1(の を用い ることとす る。μ、(の,μ2σ)は 要因 浸,Bの 単

純 効果,μ は全体的修正項であ る。期待度数 の対数度数 が各効果 の線形結合 として表わ され

るとす るものであ り,Lo9-LinearModel(以 下LLMと 略 記す る)と 呼ばれ るゆ えんであ る。

(注)(2・2)式 か ら(2・4)式へ の代数的展開は容易である。(2・2)式をゴについて和をとりノで除し,又

ち ノについて和をとり1ノ で除したものとの差をとればよい。展開の過程で

・1(の一rデ 早1・9… 一方 多写1・画

一1・9飛・一十 写1・9…(・ ・)

・・ω 一一¥1・9… 一赫 多1・9…
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一1・gR・ 一 ヲ1・9且 ・

も得 られ る。(2.5)式 を ゴ,ノにつ い て和 を とる こ と に ょ り Σ μ1(の=Σ μ2(の;0も 容 易 に 確 か
ゴ ゴ

め る こ と もで き る。

(2)H5:飽 和 モデル(SaturationModel)

独 立 モデルの場合 には モデルが適合 しない とき ノ砂 と 馬 との間 にはずれが生 じてい るが,

飽 和モデルではそれを μ一項 に組込み μ、2(の とし,舟=Fη とお く。 このことの故 に飽和

モデル と呼ばれてい る。 この ときLLMは

logF乞 ゴ=μ一←μ■(z)一1一μ2(ノ)十μ12(ガ)(2.6)

とな り,μ,μ 、①,μ2(ガ は先 の場合 と同様単純 効果,μ 、2@)は オ,Bの 交 互作用効果 であ り

・・2(の 一1・9… 一÷写1・9… 一ナ写1・9馬+・(・ ・7)

但 し Σ μ、2ω)=Σ μ、2(の=0(束 縛 条件)
乞 ゴ

で ある。

この モデルで μ12④)=0と 見 な しうるとき,先 の独立 モデ ルに帰着 し 」,Bは 独立 と結

論で きる。又 μ、2(の ≒0の とき,独 立 モデル は適合せず48は 関連 あ り(帰 無 仮説 採択

の意味 において)と 結論づ けるこ とが できる。従来2次 元の分割表 においてZ2一 統計量 を用

いた独立性 の検定が なされて来 たが,同 じ結論をLLMに お いてH4,H5の いず れのモデ

ルを採用す るか によって得 る ことがで きる。

更 に今,logF乞 ゴニ殉 とお くと,μ=η..,μ1(の=晦 一〃..,μ2(の=".一 び..,μ12(の=殉_

易.一 τ・ゴ+五.と な り,Xη=μ+α 汁 βゴ+ε乞ゴを想定 し αFXz.一X.,β ゴーX:ゴ ー忍.,殉=

蕩 ゴー鰯.一 λ:.ゴ+X"と 分 解 する二 元配置分散分析 のモデル と類似 して いる。従 って μ、2①)

～N(0 ,σ2)の 先 の(2)の 仮 定 を導入 で きるとき分散分析の処理が可能であ る・(1)の 仮定 にっ

いては,(2.6)式 か ら対数を外せば

馬 詔 κρ(μ+μ 、⑦+μ 、⑦+μ 、2(の)

一 τ・τ、(り・τ2(ブ)・τ、2σブ)(2.8)

但 し τ=8,τ1(の=疏 ρ(μ、①),τ2(D=6κ ρ(μ2(ブ),

τ、2(の 一吻(μ 、2(の)

とな り,LLMは 頻 数 砺 を各効果 の成分の積 に分解 して分析す るモデル とい えよう。頻数

データを比率 に分解(ど の要因が何%関 与 してい るか)す る ことがで きるとい うの は無理 の

ない仮定であ り,LLMの 根 拠を特 に否定 する理 由はない。

(3}H1～H3=縮 減 モデ ル(ReducedModel)

デ ー タの形式 は 孟,B2次 元 の分割表で与 え られていて も構造 と して は1次 元以下 の場合
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も考 え られ,こ れ らは縮減 モデ ル と呼ばれて いる。

1H
1:細 胞 の母比率が π乞ゴ=. で すべて等 しい場合,IogF¢ ゴ=μ と書 ける。η『

H2:π ¢ゴ=π乞.〃,logF乞 ゴ=μ+μ 、(の の場合。

H3:砺=π ・ゴ/1,IogF乞,=μ 十μ2(の の 場合。

H2,H3は1要 因の単純効果 のみ しか存在 しない場合 である。 但 しこれ らはいずれ もtrivial

で あ り,重 要なのはH4,H5で あ るので以下 両モデルを中心 に解法を述べ ることにす る。

2,解 法

第1法

ム
飽 和 モ デ ル で は 瓦 戸 ん で あ る の でP==1× ノ 元 の 連 立 方 程 式 を 解 い て μ一項 を 求 め る こ

と が で き る。(Fiゴ の 推 定 値 の 意 味 で,又 後 述(2・11)式 で は μ の 解 と い っ た 意 味 で △ を 冠

す る 。)μ 一項 の 未 知 数 は(1+1+ノ+IJ)個 で あ る が 束 縛 条 件 が あ る た め1+(1-1)+(7-1)

+(1-1)(」 一1)=IJ個 に 減 少 し,連 立 方 程 式 の 次 元 数 と一 致 す る 。

今,簡 単 の た め1=2,J=3,P=IJ=6の 場 合 に つ い て 例 示 す る 。 求 め る μ一項 は μ,μ1

(1),μ2(1),μ2(2),μ12(ll),μ 、2(12)の6個 で あ り,残 り は μ1(2)=:一 μ1(1),μ2(3)=

一(μ2(1)+μ ・(2)) ,μ 、2(13)一 一(μ 、2(11)+μ 、2(12)),μ 、2(21)=一 μ、2(11),μ 、2(23)=一

μ、2(13)よ り求 め る こ と が で き る 。 こ れ を 行 列 で 表 現 し て

f'=(109Fll,10gF12,logF13,logF21,logF22,10gF2s)'

let'=(ltt,leti(1),μ2(1),μ2(2),Pt12(11),iU12(12))'

と お き,更 に 計 画 行 列(designmatrix)と して

X=

I

l

1

1

1

1

O

1

1

0

1

1

一

一

1

0

1

1

0

1

一

}

0

1

1

0

1

1

　

}

1

0

1

1

0

1

一

一

-

1

1

0

0

0

(2.9)

を選べぱ連立方程式は

f=Xμ(2.10)

と書 くことができる。計画行列の性質から1,ノ が共に2の 場合にはX'X=PIで あるので

餌 押 但 しP一 ・(2.11)

よ り μ の解 を求 める ことがで きる。一般 の1,ノ の場合 にはX'Xを 求 めム
μ=(X'X)"1X,f(2.12)

と す れ ば よ い 。
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計画行列の第1列(1=2,…,P)をPで 除 した もの(一 般の場合 には(X'X)一ixの 第1

行)をatと す れば

ム ア
μ=al'f=Σat,logFr(2.13)

r==1

で あ り,μ の 第2項 以 下 は Σae…O注b(1=2,…,P)で あ る の でlogF。 の 対 比(contrast)
7=■

として求め ることがで きる。但 しここでrは 添字i,ゴ を第2添 字 」か ら先 に変化 させ た もの

とす る。 この ときム
E(ttt)==iUe(2.14)

ム ア
v(Ptt)=Σa2ir/Fr

γ=1

であることが証明されており注2)

命 、一(<<、μrE(μL))ψ(2),)(2.15)

ヘ ム

で μ`を 標準化すればnが 大の とき漸近的 に μ～N(0,1)と な り,こ れを用いてH。:Ptt・ ・O

ム
の検定をす ることがで き多。即 ち,標 準正規分布 の両 側100α%点 を1(。とすれば1iUt、1>1(。

でH。 を棄却すれば よい。

ム

独立 モデル の場合 には 舟 と 昂ゴは一致 しない ので

f=Xμ+ε

と重回帰分析の モデル とな り,ε'ε=minと して最少2乗 解 μニ(X'X)一ix'fが 求 まるが こ

れは先の飽和 モデルの場合 と一致す る。

種 々のデ ータに適用 して解を求 めたところ筆者 の経験 ではnは 少 な くと も1000以 上 で な

いと次 に述べ る第2法 の解 と一致 しない ことが多 く,正 規近似が十分で ないよ うであ る。従

ってLLMの 一 般解 としては次の第2法 の方が望 ま しい よ うに思 える。

(注1)Bishopeta17)(P.497)は μ 項 の 算 出公 式 を 次 式 で 与 え て い る 。

・・(の漂(一 毒)1・9婦 措(1一 ÷)1・9秘

・・(ノ)一季壽、(一夷)1・9婦 孝ナ(1一 ナ)励

・・2(の一(1一})(1一 ナ)1・9β・劇 一ナ)(1一 ÷)・・9伽

・黒(一÷)(1一 ナ)1・9婦 顯!毒)1・9プ 伽

例えば μユ(のの係数の和をとると

(11ノ)(・ 一ly・ ナ(レ 十y一 ・

(2.16)
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とな って お り,他 も同 様で あ る。

(注2)Bishopeta17)(p.141,487～)に 証 明 が与 え られて い るが そ の骨 子 は 次 の ごと くで あ る。

ム ム ム
Qnを パ ラ メ ー タ θ の推 定 量 と し,ゾ ーi(Qn一 θ)がn→ 大 の と きN(0,σ2(θ))に,即 ちQnが

ム
平均 θ,分 数 σ2(θ)/nの正規分布に法則収束するものとする。このときQnの 微分可能な実数

ム
値 関数f(en)は 漸 近 的 に平 均f(θ),分 数 σ2(θ)[〆(θ)]2/nの 正 規 分 布 に 従 う(同 書 定 理!4.6

-1)。

H・Mの 場 合,X==(X1,…,Xr,…,Xp)が 多 項 分 布Mp(n,π)に 従 うと考 えれ ば,πrのMLEは

ム ム ム ム ム
π・=Xr/nで あ り,E(π ・)=πrtV(πr)==zar(1一 πr)/n,Cov(π 。,π8)==一 πrπs/nで あ る 。Xrの 対

ム
数 変換 をYr=logXr=lognπrと す れ ば 上 の 定 理 よ り

・(Yr)一z「(!i-1'!・ 「)(朶)2-1孟 穿 一
。島 一÷ 一 霧 噛(・ 一 ・・)・(2・ ・7)

nπr

ム

更 にLLMの μ一項 の 第1項 はibt=ΣatrYr=ΣairlogXrで 求 め られ る ので
rr

・θ ・)一》 ・(・)・ ・署 一 ・・v(Y・・Ys)一Σ'畦 ・(・ ・8)

r≒s

となる・ここで共分散は定理の雛 から 伽(y7,y書)一 一 雫(〈 劫 一一÷一・と考えてよ
πγT8

い 。

第2法
へ

Hl～H4の 各 モデル の もとで の期待度taFi」 を 求め,観 測度数fidと の ずれを検 討する解

ム
法 である。Hs:飽 和 モデルの場合には 瓦ゴ=ん,df=Oと な り検定はで きないのでH1～H4

ム
の場合 について 行なえば よい。各 モデル下 での 瓦ゴの算出公 式,自 由度 については表1に 示

す 。適合度検定 について従来はPearson,K.のX2一 統 計量を 用い る方 法が多用 されて来 た

が,こ こでは尤度比統計量G2(又 は2r2L)を 使 用 する こととす る。階層 モデル(後 述)の と

表12次 元 分割表のモデル

番 号

ユ

　

ヨ

る

ヨ

H

H

H

H

H

1.LM

logF5ゴ

μ

μ十`μ1

μ十μ2

μ十μ三十μ2

μ+μ1+μ2+μ12

構 造
π唇ゴ

⊥
η

亙/

亙
1

π5・π・'

期待度数
ム
Fif

⊥
η

血
」

血
1

ん.ん

π

ん

自由度

Zノー1

1(」 一1)

ノ(1-1)

(1-1)(ノ ー1)

0

束 縛

{π}

{孟}

{B}

{』}{B}

{』β}
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き,02一統計量には加算性が成立するので便利である。検定の結果,Hエ ～H4の すべてが棄却

されればH5を 採用すればよい。H、～H4の 中に採択 されるものがあればそれらを用いて総

合的判断により最適モデルを1つ 結論づける。この際のアルゴ リズムについては皿,3次 元

分割表の場合に述べる。

2次 元分割表の場合,関 心は結局のところH4かH5の いずれかを採用することである

ので,そ の意味では従来の独立性の検定を行なうことで十分であるが,LLMの 方法を適用

すればH、 ～H3に ついて も吟味することができるし,加 えて各効果を定量的に抽出するこ

ともできる。又3次 元以上への拡張 も容易であり,考 えうる種々のモデルを総合的,体 系的

に検討できる点が同法の特徴 といえよう。但 し計算量は彪大となるのでコンピュータの使用

を倹っそ始めて適用可能な方法である。

皿3次 元分割表

1.μ 一項

3要 因を 浸,B,σ と し,カ テゴ リー数を各1,ノ,1(,P匹1/1(と す る。単純 効果,2次 の交

互作用効果 は2次 元 の場合 の拡 張であ る。

・一振 響1・9馬 一 ゑ・・

一
肌一か

一
"=μ一沸ロもF910Σ

池

Σ

ゴ

1

κノ
の式μ

・・σ)一素 写¥1・9瓦 ・・一画 ド 江一(・1)

陶(・)一十 翔 ・9恥 画1毛

但 し Σ μ、σ)=Σ μ2(ブ)=Σ μ3(ん)=0(束 縛 条件)
乞 ゴ あ

・・2ω 一素¥1・9・ …一☆ 努1・9・ ・ヂー 、}嬰1・9…+・

=砺 ・一"冨 ・・一 び・ゴ・+η …(3.2)

同 様 に

μ13(猛)=zノ 靴 一zノ`・・一 航.乱+zア_

μ2、 σ 乃)="・ ゴ房一 〃.あ一 〃..彦+"_

Σ μヱ2(の=Σ μ ユ2(の=Σ μ エ3σ の=…=0(束 縛 条 件)
乞 ゴ 名
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3次 の交互作用は次のように導入される。

絢23㈱ 一1・9鑑・　 ÷写1・9… 一 ナ写1・9… 一 オ¥1・9・ …

+方 写苧1・9瓦 ・・+撫 写1・9瑞 ・・+ジK嬰1・9… 一 ・

=～ ノzゴ陀一zノ乞ゴ.一zノ乞.あ一zノσゴん十z尾..十zア.ゴ.十z/6・ 轟,一～ノ...(3.3)

Σ μエ23(琳)=Σ μ エ23(沸)=Σ μ・23(躯)二 〇(束 縛 条 件)
盛 ゴ κ

2次 元 分割表の場合 と同 じ く ηで表現 すれば三元配置分散分析X麟=μ+醐+β ゴ+γ彦+αβ乞ノ

+α 毎+β γ幽+α βγ卿 の場合 と類似 して お り統一的理解 が容 易 となる。

2.モ デル及び解法

μ一項をすべて書 き下 す と

1・gF・炉 μ+μ 、(の+μ2(ノ)+μ 、(ん)+μ、2(の+μ 、3㈹+μ23㈲+μ ・・3(桝)(3・3)

とな り,こ れは飽 和モデルであ る。以後 自明の場合には添字 ∫,ブ,κを省 略 し

logF乞 ゴん=μ十μ1十μ2十 μ3十 μ12十 μ13十 μ23十 μ123

一μ.+μ 、2+μ 、3+μ23+μ 、23(3・4)

等 と書 くことにす る。(3.1)～(3.3)式 の μ一項を用いて(3.4)式 が表現 で きる こと,及 び

束縛条件が満た されてい ることは先の2次 元分割表の場合 と同様で ある。

第1の 解 法ではP=1/1(元 の連立方程式を解 き,検 定 によ りH。:μ 乙図0の ものを落 して

LLMの モデ ルを決 めれば よい。 第2法 で解 くため に考え うるモデルをすぺて列挙すれば表

2の ごと くとな り,合 計19組 の モデルについて適 合度 検定を反復すれば よい。H1～H、 。は

ReducedModelで あ り,3次 元 分割表 の本来 の興味 はHu～H■9に ついての検 討であ る。・

(1)縮 減 モデル(ReducedModel),Hl～Hio

デ ー タの形 式は3次 元で与 え られていて も構造 としては2次 元以下 に縮約 され る場合で あ

って,H2～H4は1次 元 のモデ ル,H5～Hl。 は2次 元 のモデルであ る。

(2)相 互独 立モデル(MutualIndependenceModel),H、 、

2次 元 の独立 の場合 の素 直な3次 元へ の拡 張であ って,A,B,Cが 相 互 に独立で ある場合

で ある。 即 ちP(A∩B∩C)=P(A)P(B)P(C)で あ り母 比率間 には π雛=π 乞・・πφπ..彦の

ム ム ム
関係が見 られ る場合で ある。期待度数 の算 出に周辺度数 瓦..=f`..,E距=メ ゴ.,F一,=f..,

が 用 い られ るので拘束条件か ら見て モデ ルを{A},{B},{C}又 は(A⊥B⊥C)等 の 記号で

端的 に表現す るこ とにす る。 こ こで{}はPayne19)に よ る表記方法であ り,1次 元の周

辺度数を例 えば{A},2次 元 の周辺度数 を{AB}と 表 わす ことにすれば{A}=fi..=Σ Σ
乞 κ
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表23次 元分割表のモデル

番 号
LI.M

IogF伽

ω 縮減モデル

1

2

3

4

5

6

7

8

9

10

H

H

H

H

H

H

H

H

H

H

μ

μ+μ エ

μ十 μ2

μ十 μ3

μ+μ1+μ2

μ十 μ1十 μ3

μ十 μ2十 μ3

μ+μ ・+μ2+μ12

μ十 μ1十 μ3十 μ13

μ+μ2+μ3+μ23

② 相互独立モデル

H・1レ+μ ・+μ ・+μ ・

{3)多 重 独 立 モ デ ル

、H12μ.十 μ12

H13μ.十 μ13

H14μ.+μ23

㈲ 条 件 付 独 立 モ デ ル

H・5μ.+μ12+μ ・3

H・6μ ・+μ12+μ23

H・7μ ・+μ ユ3+μ23

(5}対 連 関 モ デ ル

H・8!μ+μ 隣.払
、、

㈲ 飽和モデル

H・glμ+肇 鎧 錨

構 造
π`ブ㌃

1/η1(

πε.〃1(

π.ゴ./11(

π..酌/η

πε..πφ/κ

π乞..π..尾〃

π.ゴ.π,.喬/1

π乞ブ./κ

π齢/ノ

π.ノ陀/1

π 乞・・π ・ゴ ・

π 。.彦

π〃 ・π ・・彦

π』・彦π・ゴ・

πヴ㌃π乞・・

π乞ブ.π乞.な/

だかコ

π乞ゴ.π.ゴ記/

π・ブ・

π齢 π.ゴ彦/

π..κ

期待度数
ム
F励

η/・uκ

β..〃 κ

孟ゴ./η(

∫.κ/η

ん.≠ ブ./κπ

!≧..ん 南/1π

ん ≠.な/∬η

∫`ブ./κ

.ん 乃/1

1ブ.滝/1

ん,.!:ブ≠.κ/η2

弄 ゴ・ズ.治/η

尭.彦君ブ./π

.ん 碗./η

カ ゴ.ノを.κ/ん.。

ん ≠ ゴな〃1ノ.

鳶.κん ㌃〃=。κ

1雛

自 由 度
〃

4ノκ一1

1(ノκ 一1)

1(11(一1)

κ(η 一1)

り κ一1-」 十1

ηK-1一 κ十1

」7K一 ノーκ十1

孟ノ(1(一1)

11((!一1)

ノκ(1-1)

η κ一(1十 ノ十κ)
+2

(κ一1)(」U-1)

(1-1)(∬ κr1)

(1-1)(/1(一1)

1(ノ ー1)(κ 一1)

」(1-1)(κ 一1)

κ(1-1)(ノ ー1)

(1-1)(1-1)

(1(一 翌)

0

束 縛

{η}

IA}

{B}

{σ}

{オ}{β}

{浸}{o}

{β}{o}

{オβ}

{浸σ}

{Bσ}

{オ}{β}{σ}

{浸β}{σ}

{五σ}{β}

{Bσ}{丑}

{」B}{4c}{A}

{∠4β}{βσ}{β}

{オo}{Bα{σ}

{4B}{濯o}

{Bσ}

{』βσ}

パ ラ メ ー タ数

γ

1

1

」

κ

」+ノ ー1

1十 κ 一1

1+κ 一1

η

1κ

1κ

1+ノ+κ 一2

五ノ+・K-1

11(+ノ ー1

」1(+1-1

η+11(一1

η+1κ 一」.

∬1(+/1(一 κ

り+η(+!1(
一1一 ノー1(十1

∬ノκ

μ・ロμ十μ1十 μ2十 μ34f十7=柔1κ

ゐ 角 伝 β}=ん ・=Σ/雛 で あ る 。 同 様 の 意 味 でBishopetal7)は01,σ12の 記 号 を 用 い て
治

い る。

(3)多 重 独立 モデ ル(MultipleIndependenceModel),H12～H14

要 因 浸,BとCが 独立性を示す場合で あって,P(」 ∩B∩(7)=P(遵 ∩B)P(0),π 沸=πZゴ.

π"κ の構造を示す。3次 元 の分割表 をAとBの カテゴ リーを合併 して1要 因 とし,そ れ

とCと の2次 元分割表 に還元 したとき独立性が示 され る場合で ある。 従 って周辺度数を用

いて 但B},{0},又 は独立性 の構造 か ら(オ8⊥0)等 の記号 で略記 され る。」,8,Cを 循

環 させて(∠4(7⊥B),(βC⊥ の の3通 りが存在す る。
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(4}条 件 付独立 モデル(ConditionalIndependenceModel),H、5～H、7

要 因B,C間 の 独立性が 遵 の条件付の もとで示 され る場合で あってP(浸 ∩β∩0)=

P(のP(B国)P(qの=P(浸 ∩8∩ ご)P(遵 ∩0)/P(の
,π 晒=πzゴ ・π副 砺.の 構造 を示 す。

3次 元 の分割表 でカテゴ リー 遜
,β を合併,カ ラゴ リー オ,0を 合併 して2次 元の分割表 に

還元 した とき独立性が示 され る場合 である。 周辺度 数を用いれば{』 β}{』0}{澱 で あ り
,

独 立性の構造か らは(β ⊥Olの で 示 され る。4B,Cを 循 環 させて(4⊥CIB),(濯 ⊥ βiσ)

の3通 りが存在す る。

(5)対 連 関 モデル(Pair-W重se .AssociationModel),H■8

3要 因 」・B,0が 相 互 に関連 する場合
,即 ち オ と β が関連,」 と0が 連 関,BとC

が連 関する場合 である。周辺度数 似B},似0},{B(7}の 拘 束 はある ものの π榊 を周辺比率

の積 では表現 できない。従 って反復 法によ り求 め る。

Newton-Raphason法 に よ る反復 のテ クニ ックは次 のよ うに進 めれ ばよい
。 任意 の初期値,

例 えばF批(o)={1,1,…,1}か ら出発 し

F・ゴ・`・+1'一F響 ゴん 「(・ ・)

よ り⑫+1)サ イ クルのF雛 を求 める。収束 の判定条件 はIF雛 ゆ+1}一F沸 ω1<ε で もよい

し・ 「F・沸ω 一ノ:圃くεで もよい。 但 し添字 樋 に続 いて ゴ・ん,か について も試 みなければ

な らない。収束信速 く,経 験的 には5～10サ イ クルでほぼ十 分のよ うであ る。

(注)131,141の 機 械 的 拡 張 か らP(・4∩8∩C)二P(β114)P(Cl8)P(・41C)躍P(Cレ4)P(β[C)P(・41・8)

π¢ゴ。π乞・彦π・齢(
3.6)πzゴ髭= π¢

・・π・ゴ・π・。滝

の構造を想定 したとき,μ 一項か らLLMは 代数的に導 くことはできた。従 ってその限りにおい

ては,こ の構造式は肯定 しうるが,周 辺度数の拘束条件{・4B},{・4C},{βC}が 満足されないの

で(3.6)式 は容認できない。Everitt9),Payne19)ら も周辺度数の積で表現できないので反復

法により求めることを提案 している。

(6)飽 和 モ デ ル(SaturationModel),Hlg

ム
2次 元 分割表の場合 と同 じ くF蜘=fi」k,{ABC}の 場 合 である。残差部分 を μ123(沸)と

してモデル に組 込んでい るので独立性 の検定 は:不要であ る。 この場合,自 由度 も0で あ る。

ム

以上 の各 モデルの各 々の場合 について,求 め られ たFi」iCとfii'ilと の適合度検定 を行 な う。

その際検定統計量 として尤度比統 計量

ム

・一21・9禦 ん ・1・9無(3 ・・)
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を用い,こ れが当該 モデルの もとで近 似的 に自由度=ガ の 疋2一分布 に従 うととを利用す る。

自由度 は表2中 の第5欄 に示 すご と くμ一項で0と 見 な した ものの数 である。例 えばH、7に

おいて,μ 一項 は(1十1十 ノ十η 十1κ 十」.κ十1)の うち,μ 、2(の,μ エ3(歪わ,μ23(髄),μ 、23(澱)

は0と 見な してい るもので その個数 は(1-1)(ノL1)+(1-1)(1(一1)+(」 一1)(1(一1)+(1-

1)(」一1)(1(一1)=η'1(一1-」 一1(+2で あ る。μ一項 で0と 見 な していない ものは μ,μ、(2),

μ2(ノ),μ3(ん)で あ り,そ の個数 は1+(∫ 一1)+(1-1)÷(1(一1)=1+ノ+1(一2で ある。 これ

と自由度 を加えれば η1(と な り,細 胞数Pに 一 致す る。 この関係はH、 ～H、9の すべ ての

モデル について当てはま る。

3.最 終適合 モデルの決定

第2法 で解 くとき,H1～H19の 中 か らあてはめのよいモデルを拾 い出 し最終 的 に適合 す

るモデル(FinalFittedMode1)を 決 定 しなければ な らない。その判定 に際 してLLMが 階

層構造(Hierarchy)を な してい ることに注 目して おけば最終判定が容易 とな る。

/塩 ＼

砿〈§≦;認…〉 恥

44

①一 §一⑫一 一3 1

1

・ ⑤一「婦 一一 ⑧
423

節 点 ① ～⑧:階 層の段階

パス下の数字:節 点における分岐数

図1モ デルの階層構造

(3.4)式 のLLMに は 下位 の μ一項 が0の とき,そ れ に関わる上位 の μ一項 も0と な る性質

が あり,そ の故 に図1の ごとき階層構造を示 してい る。例えば μ、(り=01の と き,上 位 の

μ12(の 二μ■3(紛 一μ123@ん)=0で あ る。又 μエ(の,μ2σ)に 関 していえぱ図1よ り

H・ ⊂H・ ⊂H・ ⊂ 珪
、⊂H・2⊂H・5⊂H・ ・⊂H・9

の ごとき包摂関係が示 され ることにな る。

この性質を用いれば,最 終 モデルの発見 は次 の4つ のステ ップを 踏んで探 して行 けば よい

ことがわか る(表3)。

ス テ ップ1H1～H、9の すべてのモデルが適合す るとき,H1が 最 終適合 モデルである。
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表3最 終適合モデル選択のためのアルゴリズム

番 号 ・テ・プ11・ テ・プ2」 ・テ・プ・1・ テ・プ・1・ テ・プ ・ ・テ・ブ・

Hl

H2

～H

lo

H11

H12

～
Hl8

H19

最 終

○

○

○

○

○

H1

×

○又は×
表4参 照

Oor×

○

○

H2～Hlo

×

×

○

○

○

H11

×

×

×

○又は×
表5参 照

○

H12～H18

×

×

×

×

○

H19

その他

H20

○:モ デ ル 適 合(5%水 準)

×:モ デル不適合(5%水 準)

ス テ ップ2H、 が不適合,H、 、～H、9が すべて適合,H2～H、 。の中 に適,不 適の ものが

あ るとき,H2～H、 。 の中か ら探せば よい。

ステ ップ3H1～Hloが す べて不適合,H11～H19が す べて適合 の とき,H1、 が 最終適

合 モデルであ る。

ステ ップ4H、 ～H、 、がすべて不適合,H、2～H、8の 中に適,不 適 のモデルがある とき,

H、2～H、8の 中か ら探せぱ よい。

ステ ップ5H1～H18が 不 適合,H19の み 適合の ときH19が 最 終適合 モデル。

ステ ップ6そ の他 の場合,機 械(論 理)的 判定 は困難 で他 の情報 を加 味 して総 合的に行

な う。

ステ ップ1,3,5に お ける判定 は容易 であ り,ス テ ップ2,4の 場 合 に判定の アルゴ リズム

が複雑 とな る。 この とき手順を一覧 して表示すれば,表4,表5,で あ る。 コン ピュータ ・

プ ログ ラ ミング に際 してはH、 ～H、gの 適合,不 適合の結果 のみを記憶 させて おけば よ く,

表4,表5の アルゴ リズムはFORTRAN語 で も容易 に書 ける。

問題 はH1～Hlgの い ずれ にも判定で きない場合で ある。 この場合 にはケースに応 じて総

合 的にな さざるを得 ないのでプ ログ ラ ミングは容易ではな く,判 定不能 とい う意味でH20と

し,事 後他 の情報 を用いつつ人間が判断す ることとす る。 その ような場合 は稀であ ったが散

見 されたケース について,次 の ごとき基準を導入すれば判定は可能であ った。

(1)判 定 に矛循を きた したH己 の有意水準を調べ α=0.05を α=0.Olに 上 げてH`を 適

合(○)に す るにす るか,又 は α=0.10に 落 として不適合(×)に す ることによ り判定 の矛
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表4ス テ ップ2の アル ゴ リズ ム(H2～H、 。)

番 号

2

3

4

H

H

H

5

6

7

H

H

H

H8

Hg

Hlo

H11

最 終

H.M

μ十μ1

μ十μ2

μ十μ3

μ十μ1十 μ2

μ+μ1+μ3

μ十μ2+μ3

μ十μ1十 μ2十 μエ2

μ十μ1十 μ3十 μ13

μ+μ2+μ3+μ23

μ十μ1十 μ2+μ3

モデルの適合状況

×
.
×

○

×

○

×

○

×

×

○ ○ ×

○ × ○

× ○ ○

×

○

○

O

x

O

O

O

×

○ ○ ○

×

×

×

×

×

×

×

×

×

○

×

×

×

×

○

×

○

×

○

×

×

×

×

○

×

○

×

○ ○ ○

× × ×

×X×

× × ×

×

×

×

×

×

×

X

×

×

×

×

O

x

O

×

○

×

×

× × ×

H2.H3H4 H5H6H7 H8HgHlo

○:モ デ ル 適 合(5%水 準)

×:モ デル不適合(5%水 準)

表5ス テ ップ4の ア ル ゴ リズ ム1(Hエ2～H18)

番 号

H12

H13

Hユ4

H15

H16

H17

H18

最 終

LI.M

μ 十 μ12

μ・十 μ13

μ・+μ23

μ 十μ12十 μ13

μ・+μ ・2+μ23

μ・十 μ13+μ23

μ・+μ ・2+μ ・3+μ23

モデル適合状況

○

×

×

× ×

○ ×

× ○

○

○

×

0

×

○

x
O

O

○ ○ ○

H12H13H14

×

×

×

×

×

X

×

×

×

○

×

×

×X

Ox

× ○

○ ○ ○

H15H161{17

×

×

×

×

×

X

○

H18

μ・=μ+μ1+μ2+μ3

0:モ デ ル 適 合(5%水 準)

×:モ デル不適合(5%水 準)

循 を解消す る。

② 矛循を きたす2つ のH`の 上 側確率P注 》を比較 し,予 め設定 しておいた有 意水準 内

であれば(例 えば α〈0.30あ た りが限度であろ うが)Pの 小 さい方を不適合(×)に す るか,

又 はPの 大 きい方を適合(○)に 書 きかえて調 整する。

③ πが大の とき,第1法 の結果を参考 にす る。

(4>類 似 の他の項 目.(デ ータ)の 結果を参考 にす る。

具体例で示せば次の ごと くで ある。

今,Hエ2～Hエ8の 適 合状 況が(× ××○○ ×0)で あ ったとする。表5に よれば これは判
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定不能であ る。 この とき矛盾克服 の方法 は2つ 考 え られ る。先ずH、2の(×)が(○)で あ

ればH、2を 最終適合 モデルに決定で きるのでH、2の 上 側確率を調べ,こ れがP>0.Olで

あれば解決す る。他 の方法 はH、5,H、6の 適 合(○)の うちいずれが不適合(×)で あれば

よいので,H15とH16のPを 調べ小 さい方を,例 えば αくo.30の 範 囲内であれば不適合

(×)と して処理す る。

こうした柔軟 な判断はプ ログ ラ ミングが容易ではないので最終判定を保留 してお く。出現

のケース も少 ない し,さ ほど問題 とはな らない 。

(注)適 合度検定は通常なされるごとく実現値 κ2・と数表からの上側100α%点 κ2d∫(α)とを比較する

方式をとればz20分 布 の数表を予め記憶させておかねばならず,非 能率的なので実現値からその

上側確率P扁P7{κ2好>G20}を 求 め,P<α の とき棄却,P>α のとき採択するという方式をと

った。従 って各モデル毎にPが 算出されている。

4,結 果 の図示 と解 釈

LLMで 最 終的 に1つ のモデルが決定 されれば,そ れをμ一項 で書 き下 し,次 いでその解釈

がな されなければな らない。縮減モデルの場合は さて おき,3次 元 のモデルの場合 について

の興味の中心は要因間相互の関連であ り,μ 、2(の,μ 二3(の,μ23(ブ ん),及 び μ、23(鍬)の 存 在

とその量の大小であ る。LLMで 残 され た μ一項 は要因間の有意 な関連が存在 す ることを示 唆

している。

(1)相 互 独立 モデルH1■

μ、2=μ 、3濡μ23=μ 、23=0で あ るか ら,浸,B,0は 相互 に独 立であ り,こ の場合解 釈は容

易で ある。

② 多重独立 モデル,H、2～H、4

H、2の 場合 について示せぱ μ、2≒0,μ 、3=μ28漏 μ123コ0で あ り,孟 とBの みが 関連を示

し他 はすべて独立で ある。

(3}条 件 付独立 モデル,H、5～H、7

H、7は μ、2≒0,μ13≒0,μ23=μ123=0を 示 してい る。遵一B,孟 一〇 間 に関連 があ り,

BO間 は独立 である。データに見 られるBO間 の関連は オ を介在 する ことによ って生 じた

関連 である。

(4)対 連 関モデル,H18

2次 の交互 作用がす べて有意 で μ、2,μ、8,μ23は す べ て0で ない。3要 因 孟,β,0が 相 互に

関連 を示 す場合であ る。

以上の結果を端的 に図示す るためには,例 えば 図2の ご ときものを考 えれば よい。

しか しなが ら解 釈を更に深め るため には関連の存在 と共 にそ の強度の情報 も必要で あろう。
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A

〆 ＼
ノ 、
!、

!、
!、

ジ 、

B.噸 一一一___弓 レC

H11

相 互5虫立

モデ ル

A

/＼ 、
B<白 一_一_→>C

H12

多重 独 立

モ デル

A

/＼
B噌 ←_____同 レC

H15

条 件 付独 立

モ デル

図23次 元 モデ ルの 図 示(H1・ ～H18)

その指標 として,ば らつきの程度を試験 的に採 り上げてみ る。

μ、2①)に 関 して そのパ ラメータ数 は η 個であ り,分 散を

・塞・ry雰 ・・22(の

A

/＼
B紳 ■■■一rレC

正{18

対 連 関

モデ ル

(3.8)

で求 める。束縛条件が あるので独立 に動 きうるのは(∫ 一工)(ノー1)個 で あ るが,平 均を0と

す る こと と,カ テゴ り一数が2つ の場合 に も適 用可能 とす るため,η 個の方を用い ること

とす る。他の μ、3(fん),μ23σ ん)に 比 し μ、2(の の分散が大の とき,10gF雛=μ.+μ 、2(の

+μ 、3(の+μ23(踵)+μ 、23(躯)の 加算 に際 して μエ2(の が大 き く効 いて いる ことを示 して い

る。端的 には範囲(レ ンジ)

1～■2=maxμ12ω)一minμ12(の(3.9)
乞,ゴ 乞,ブ

を求 め,R、3,R23と 比 較す ることも可能であ り,ち なみ に数量化理論(林)で はアイテムの

予測へ の貢献度 として簡便 的に範囲 が用 い られて いる。 しか し範 囲よ りも分 散の方がμ12(の

のパ ラメータすべてを用い るので望 ま しい と思 われる。

そ して ここでの興味 は2次 の交互 作用3種 間の』強度の比較で あるので各分散を相対 化 して

新 たに 趨2,鎧3,碍3と し,そ れを 図3の ごとき 三 角座標(方 眼紙)で 図示 する ことにす

る。同図では,正 三 角形ABCの 高 さを1と し,点Pか ら各辺へ の垂線 の長 さが分散 の相

対値 と等 しくなるよ う点Pを 選べば,例 えば三角形ABPの 面 積を大小を もって 確2即 ち

μ12(の の 項 の強度を示す ことがで きる。 磯3,罎3に ついて も同様で あ り,LLMの 結 論 か

ら得 られ た有意 な項 に斜線 を施 すこ とによって,最 終 適合 モデルを直観的 に理解 する ことが

できよ う。

5.AICに よ る モ デ ル の 比 較

第2法 でH、 ～H、8の 各 モ デ ル に つ い て 適 合 度 検 定 を 行 な い 最 終 適 合 モ デ ル を 探 索 す る 方

法 に つ い て 述 べ た が,AIC(AkaikeInformationCriterion)を 用 い て 最 適 の モ デ ル を 発 見 す

る こ と も 可 能 で あ る 。Akaike,H.1),Sakamoto,Y.andAkaike,H.24)に よ れ ばAICは
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A

E

μ12

s亀

s,言

μ13

PS1亀

μ23

F

BG

S3:燭 の分散

図3三 角座標による交互作用項強度の図示

AIC=一210g(最 大 尤度)+2(パ ラメータ数)

で 定義 され,

C

(3.10)

モデルのあてはめの悪 さの指標(Alcが 小 さい程あてはめが よい)と して用い

ることがで きるとい う。上式 の第1項 は以下 の変形 によ りあてはめ られたモデル下 で予 測値

と観測値 とのずれの程度を表わす量 に還元 でき,パ ラメータを多 く用い ることによ りあては

めを良 くし,い くらで も小 さ くす ることがで きる(デ ータ数 だけパ ラメー タを用いればあて

は めは完壁であ る)。しか し,パ ラメータを多 くす る ことはそれだけあてはめの効率 を悪 くす

ることで あ り,第2項 を加 えるこ とによ り相対 的にバ ランスを企 り,よ り小の労力で より大

の精度を確保せん とす る,い わば"parsimonyの 原 理"に 基づい たモデル評価の方式 といえ

よ う。

3次 元分割表デ ータにAICを 適 用 するには以下 のご と くに考 えればよい。先ず,各 細胞の

頻度X喚 は多項 分布 に従 うと仮定 する。 これは無理のない仮定であ る。その とき実現値fi、'le

を得 る確 率は,母 比率を π歌 とす ると

・(娠 細 一,rlZ
tl;A1・k,蔽(・歌)∫雛 ・(3・11)

乞,ブ,κ

Σ ∫岨=η,Σ π雛=五
ぱ,ゴ,産 ¢,ゴ,な

であ り,こ れ よ り πi」teの最 尤推定量を求 めそれを上式 に代入 してAICの 第1項 を求 めればよ

い。今一例 として相互独立モデル,H11:π 晒=πi・・π・距π・・teの場合を選べば,各 周辺母比率

ム ム ム
の 最 尤 推 定 量 は 容 易 に πi一=/乞 ・・/n,π ・」・・=f=」./n,π..k=f..k/nと し て 求 め られ る 。 更 にH、7
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の と き,

ヘ ム

金・炉鉱 分《 一軽 許み』 孕 一午 ・舞

と変形できるのでAICの 第1項 は

一21・9(最 大 鍍)一 一・(1・9
。荒、1,・ Σ ん ・1・9煽

ム
ー一・(1・9

。潔,+Σ 廊1・9孚)一 ・Σf・V・・1・9無

=C十G2

とな る。上の前項(

(3.12)

(3.13)

)内 は選択されたモデルに関係しない量のなのでモデル相互の比較に
ム

際 しては常数0と して よ く,後 項 は(3.7)式 よ りC2そ の ものであ る。 そ して πi」iC=

ヘ ム

瓦郷 ηの変形 はHユ8以 外 のすべてのモデルの場合に も可能 である。H、8に ついては πi」kを
ム

代数式で表現 で きないが反復法で求 あ られたF晒 を用 いれば よい・AICの 第2項 は 瓦躍

の推定 に際 して用いたパ ラメー タ数r=ijK一 自由度(表2,第7欄)の2倍 であ る。従 って

Hl～H、gの 全 モデルを通 じて定 数Cを 除き

AIC=G2十2r(3.14)

と して:求めて もよい ことがわか る。

前述 のごと くH、 ～Hユ9は 階層デルであ り,そ の間の包 含関係は図1の 樹形図 に示す通 り

で ある。4-1(H8～Hie)を 通 るパスは3×2×1×1×2×1×1・12通 り,4-2(Hl、)を 通

る ものは3×2×1×3×2×1×1=36通 り,併 せ て48通 りの階層構造の組合わせが得 られ る

ことにな る。例えば

H1一 一一一H2-HsH,一H12・H15-Hls.Hlg

μ+μ 、+μ2+μ ・2+μ3+μ ・3+μ23+μ 重23

H1-H4・H7-H1■ 一H14・H17・H18・Hlg

μ+μ3+μ2+μ ・+μ23+μ ・3+μ ・2+侮23

等 で あ り,こ れ らは加 える順序 の相違で あ り,い ずれ もすべての μ一項 を含んでい る。各 々

の場合 について モデル番号がふ えるにつれて次 々と μ一項が加わ り(即 ちパ ラメータ数が増

加 し),そ れ に応 じてG2は 減少 して予測の精度は向上す ることにな る。AICの 最 少値(mi・

mimumAICestimate)を 今MAICEと 書 けば,各 々の場合 のMAICEを そ の階層構造 の中

で の最適 モデ ルとして選択すれば よい。

本来AICは 包 含 関係のあるモデルの中での最適 モデルの発見 に用い られ るべ き性質 の も

ので あるが,48通 りの全組合せを通 じてMAICEを 選 ぶ ことは結局の ところH1～H19の
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AICを 比較してその中での最小のものを最適モデルとして結論づけるζとと同じである。後

にVIで数値例を呈示するが,第2法 で選択されたモデルはAICを 最少にしている。ただ例

外も見 られたが,詳 細に検討すれば第2法 の結論よりも望ましいようであり,AICに よる方

法を第3法 とし,こ の点については後に考察することとしたい。

(注)今,π 歌,ノ 初 をまとめて π,fと 書き,(3.11)式 よ り尤度関数の対数をとり

・(π,f)一1・9磁 ・景姻 ・9姻(景 ・雛一1)(・15)

.但 し λ:ラ グ ラ ン ジ ュ の 乗 数

と お く 。

H11の 場 合 π励=πz..π.ゴ.π 魂 の 関 係 が あ る の で,こ れ を 用 い れ ば

'(π:f)=σ 十Σ Σ Σ .ん 産(109π 信・.十109π φ 十109π..の 一 λ(Σ Σ Σ π乞..πφ π.魂一1)
乞ゴ 池 ¢ゴ 匙

富`十 Σ 乃 ・・lo9π 包・・十 Σ ∫ ゴ・lo9π ・ゴ・十 Σ メ ・乱Io9π.な 一 λ(Σ π乞.。Σ π.ゴ.Σπ。r1)
ゴ ㌃ .乞 ゴ κ

(3.16)

、霧転一譜 、ll鍔1一 ・よ・

声 ・・_λ_ノ:ゴ ・_λ=ノ:・ 為_λ 需0

降 ∴r⑬ 恥
の方磁 解いて執 錘 争 毎 一妻 冷 ・一撃(・18)

が得 られる。

Huの 他のモデルの場合も同様で

斜 、.一迦,賑 一伽 冷 炉 ム丞・ 熔 易に求められる。 御9)
η ηπ

6.階 層 モデルの加算性

Hm⊂HMな る モデル に対 して

G2(m-M)=G2(m)一G2(M)(3,20)

df(m-M)==df(m)一df(M)

な る 関係が あるとき,G2の 加 算性 とい う。AICに つ いて も同様 にG2,rに つ いて加算性が

成立 してい るので

AIC(m-M)=AIC(m)一AIC(M)(3,21)

で あ る。今 これを具体例で示せば μエ2を 加 えるこ とによって得 られるモデルの包含 関係 は

H、 、一H、2,H、3-H、5,H、4-H、6,H8-H5,H、7-H、8(い ず れ も前者 に μユ2を 加えれ

へ

ば後者 となる)で ある。但 し,H18を 用 い る場合 には周辺度数か ら反復法 によ りFi」kを 求 め
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て い る の で 加 算 性 は 成 立 しな い 。 こ れ ら の 関 係 は μ13に 関 してH、1-H、3,Hl2-H、5,

H14-H17,Hg-H6か ら,let23に 関 し て はH■1-H14,H12-H■6,H13-H17,Hlo-H7,

か ら求 め た も の が す べ て 一 致 す る と こ ろ か ら確 認 す る こ と が で き る 。

G2はX2一 分 布 に 従 い,X2一 変 数 の 加 法 性 か らG2(m-M)も ま た 自 由 度df(m-M)のZ2

一 分 布 に 従 う と 考 え て よ い
。 従 っ て こ のG2(m-M)を 用 い て 試 論 で は あ る が μ己 を0と 見 な

ム
して よいか どうかの検定が可能の ように思 える。即 ちG2(m-M)は 一2109L(πi」klHm)/L

ム

(π劇H趾)と 変形で きるので モデルHmとHMの 尤 度比統計量 に関連 した統計量であ り,

直 観的 には両 モデル間の距離を表わす量 と考 え られ る。そ してその距離を発生 せ しめてい る

の はモデルHmに 加え られたパ ラメータ μ乙であ り,Ptt=oの と き両 モデルは重 な りG2(m

-M)は0に 近づ く。以上 の ことよ り,棄 却域 としてR={G21G2>X2df(α)}を 選 べぱ有意

水準 α な るH。:Ptt・ ・O,H:、:μ 痔0(対 立 仮説)の 検定 方式を定め ることがで きる。 この方

式か ら最適 モデルを選択す る方法を今後第4法 と し,第2法 による結 果 と比較すれば ほぼ平

行関係が見 られ た。但 しデータ4,5に つ いて はず れを見 たが詳細については後 に数値例で

考察す る。

IVコ ン ピ ュ ー タ ・フ。ロ グ ラ ミン グ

LLMに よる解法は前述のごとく第1法 と第2法 があり,い ずれもカテゴリー数がふえる

とき計算量は彪大となるのでコンピュータの活用を倹 ってはじめて可能な方法である。

2次 元分割表の場合には伝統的な独立性の検定を実施 し,独 立性が否定されたとき,細 胞

の有意差の検討を行なえば μエ2(のの分析が簡単にできるので,コ ンピュータによる処理は

3次 元分割表データの場合とする。

処理の流れの大要は図4で あり,同 図に従い要点を解説する。なお,計 算結果のプ リン ト

は常時行なわれるので特に出力の表示はしていない。

1.メ イ ンル ーチン

メィンル ーチ ンはデー タの読込みであ り,カ テ ゴ リー数 ろノ,κ と頻数 ノ擁 を入力 した後,

周 辺度数 ∫か,ん.も ここで求 めてお く。1次 元周辺度数 は ∫乞"の 他2を 循環 させ て.ん ・,

み 鳶があ り,同 様 に2次 元 周辺度数 も ノ払 の他!砿 ノ魂 があ る。そ して ∫岨 の対 数値を

fと し,配 列 に格納 して お く。

2つ の解法 はサブルーチ ンと して独立 しているので解 法を選 択する ことができ るが,両 法

を併用 し,解 を比較す ることももちろん可能であ る。
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1 2
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1

解法の
選 択

ヨ

〈
μ

(2

μs=0の 検 定
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;

図4LLM解 法 の フ ロー チ ャー ト
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2.第1法,サ ブ ル ー チ ンLOGSAT

ム
飽和モデルの もとで計画行列を作成 し,連 立方程式を解いて解 μを求める。カテゴリー数

ム ヘ ム

は一般 の場合で あるので μ一(X'X)『iXfよ り求 める。 μ を標準化 して μsと し,検 定 の

結果,有 意の ものを残 して適合モデルを決定す る。

ム ム

最終 モデルよ りfを 求 め,対 数を外 してF雛 を算出 し,観 測度数 ∫蜘 との適合度検定

を行 な ってお く。X2一 値 とG2一 値(尤 度比統計量)を 計算 す るが,検 定 に使 用す るのはG2一 値

であ る。そ してモデルの適合状況を検討す るため,所 与の 自由度を用いてz2一 分布 の上 側確

率Pを 求 め,P>0.05を 確 認 して お く。

3。 第2法,サ ブ ル ー チ ンLOGLIN

ム
第2法 ではHl(1=1～19)の19種 数 のモデルが考 え られるので,各 々の場合 についてF雛

を求め る。H、8(対 連 関 モデ ル)の 場合 には反復法 によるため,計 算 が複雑 であ るのでサブ

ル ーチンとしてお くが,そ の他の場合 には周辺度数 の積か ら簡単 に求 め られる。

Hlの 適合状 況か ら最終適合 モデルを決定 しなければ な らないが,こ れ は縮減 モデル(1,2

次 元)と3次 元 モデル に分け,表3～ 表5の アルゴ リズムを用いて行な う。その結果 はAIC

(り一値 によ り確認す る ことがで きる。

最終 モデルが縮減 モデルでない とき,2次 元の交互作用 陶 の分散を求め,図 示の準備を

す る。周辺装置 にX-Yプ ロ ッターが使用 できる とき,作 図 も可能であ るが,値 さえ算出 さ

れていれば手書 きも困難でない。

FORTRAN語 で プログ ラ ミング した結果 では第1法 のサブルーチ ンが約420語,第2法

が約550語 で あ った。

V数 値 例

プ ログラムチェ ック及びデバ ッグ用 として成書 に紹介 されてい る以下 のデ ータを 用いたが,

本 節で は出力結果 に基づ いて更 に手法 の検討を行 な うことにする。データはいずれ も 浸,β,

0の3次 元分割表で ある。

デ ータ1(Payne19),P.106),1=2,ノ 嵩2,1(=3。

浸 投票:典 保守 党,・42労 働 党,

B性:B、 男,B2女,

c階 級:c、 上 流,02中 流,03労 働 者。
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観 測 度 数/扇 を 第3添 字 か ら先 に 変 化 さ せ,1次 元 の 配 列 で 示 ナ 。

(82,79,玉18,96,101,155,30,53,252,30,34,227),〃 ニ=1257。

デ ー タ2(Everittg),P.67),1=2,ノ=2,1(=3。

オ 集 団 行 動:」 、適 応,浸2不 適 応,

β リス ク 指 標:B1低 ,β2高,

0学 校 環 境:C、 不 良 ,C2中,C3良,

(16,15,5,7,34,3,1,3,1,1,8,3),π=97。

デ ー タ3(B三shoP7)P.87),1=2,ノ=2,1(=2。

濯 植 物 の 生 育:淫 、生,亀 枯 ,

B植 え た 時 期:B1,B2,

C切 断 の 長 さ;σ エ,C2,

(156,107,84,31,84,133,156,209),η;=960。

デ ー タ4(Bishop7),p.90),1;2,/=2,κ=2。

オ 食 中 毒:オ1症 状 あ り,堀 症 状 な し,

β ポ テ トサ ラ ダ:B■ 食 べ た,B2食 べ な い,

Cか に の 肉:0■ 食 べ た,C2食 べ な い,

(120,22,4,0,80,24,31,23),1z=3080

デ ー タ4(Everitt9),p.95),1=4,」=4,K=2。

竣 血 圧:4～122,淫2127～146,オ3147～166,∠4167～,

8血 清 コ ル ス テ ロ ー ル:β1～200,B2200～219,B3220～259,B4260～,

c冠 状 動 脈 異 状:o、 あ り,σ2な し,

(2,117,3,

6,43,7,67,12,99,11,46,11,33),π=13300

125

121,3,47,4,22,3,85,2,98,1,43,3,20,8,119,ll,209,6,68,

1.第1法 による解

ム ム

入力データか ら計画行列を成作し,連 立方程式を解いてμを求めたのか表6で ある。μを
ム

標準化したものがμsであり,検 定の結果有意な もの(*印 を付 した)を 残 してLLMを 書 く

ことができる。

データ1の 場合,Bの 単純効果(μ2)が 有意とな らないが2次 の交互作用(μ12)が 有意
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(1)デ ー タ1

表6第1法 結 果(μ 、)

(2)デ ー タ2{3)デ ー タ3 (4)デ ー タ4

μ一項

)

)

)

)

)

)

)

1

9
6

)

)

)

)

・

1

2

1

1

1

1

・

.

1

2

1

・

・

1

2

1

1

・

-

・

●

1

1

1

。

・

(

(

-

。

●

。

(

(

(

(

(

3

3

(

(

(

(

2

3

3

3

3

2

2

ユ

　

ヨ

ヨ

エ

　

エ

　

　

エ

　

μ

μ

μ

μ

μ

μ

μ

μ

μ

μ

μ

μ

分 散

82

83

83

最終モデル

〈
μ

〈
μ

4.419123.81*

0.2105。876*

一 〇.OI1-0。298

-0 .475-8.489*

一 〇.298-5.689*

一 〇.102-2.859*

0.3325.939*

0.1623.095*

一 〇.029-0.514

0,0601.148

0.0631,119

-0 .070-1.342

0.102(0.204)

0.357(0.712)

0.043(0.085)

H15

μ・+μ エ2+μ13

へ
μ δ

〈
μ

1.4958.340*

0。7824.363*

一 〇.130-0.725

-0 .315-1.128

0.8584.107*

0.2171.208

0.3981.423

-0 .018-0.086

0.3371.205

-0 .320-1.530

-0 .010-0.035

-0.176-0 。842

μzブ:notsign童ficant

O●217(0,270)

0.318(0,396)

0.268(0。334)

H6

μ 十 μ1十 μ3

〈
μ

〈
4、

4.663123.97*

一 〇.266-7.065*

0.0982.615*

0.0782.067*

0,3669.734*

0,2667.065*

一 〇.098-2。615*

一 〇.057-1.505

0.336(0.501)

0.266(0.364)

0.098(0.135)

H18

μ・+μ ・2+μ13+μ23

〈
μ

〈
μ

2.86414孕781*

一 〇.685-3.534*

1.0095.209*

0.6703.457*

0.7643.945*

0.2991.544

0,0470.244

-0.177-0.913

0.764(0.688)

0,299(0.269)

0.047(0.043)

H12

μ・十 μ12

μ・:μ+μ ・+μ2+μ3
*:5%水 準 で有意

():分 散 の相対値

データ5の 結果については省略

で あるので,階 層構造 には矛 盾す るが ここでは残す ことにす る。

ム

陶 間 の強度を 比較 するために,そ の分散8乞 ノを求 めたのが同表 の下欄で ある。 μの検定

結果 とほぼ平行 関係 にある ことがわかる。例 えば データ1で 有 意な μ、2,μ、3は 分散 も大 き

く,有 意性 を示 さない μ23は 小 さい値でその相対値 も8.5%に しかす ぎない。 しか し両者

の平行関係は分散の検討を もって検定 に代 え うる ことを意味 しない。分散はあ くまで も同一

デ ータ内の比較 に用い うるべ き性質 の もので ある。例 えばデ ータ1の 碍2は20.4%で 有 意

で あ り,デ ータ4の 艦3は26.9%で も有 意でないが,こ れ は矛盾で はな い。又デ ータ2は

縮減 モデル との結論 が出て い るので,そ の ことを考慮 に入れて分散 の検討を行 うべ きである。

データ5は μ一項 が4×4×2=32に も及ぶ ので結果 の作表 は省 略す るが,Ptt2が 有 意でな

くH、7:μ.+μ 、3+μ23の 結 論であ った(表9)。

ム

次 に μ一項 を用 いて求 めた 瓦盈 がfi」'iCと一 致す るかを確 かめてみ る。LLMよ り一例 と し

ム
て 瓦1■ を求 あると
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ム ハ ム ドヘ ム ム ム ム ム
logF111=μ 十Pti(1)十 μ2(1)十 μ3(1)十 μ12(11)十 μ13(ll)十 μ23(11)十 μ123(111)

=4 .419十 〇.210-O.011-0.475-O.102十 〇332-0.029十 〇.063=4.407

ム

で あ る か らF、ii・e4'407=.s2.023と な り 五 盈=82と 試 算 誤 差 の 範 囲 内 で 一 致 して い る 。 更

に 飽 和 モ デ ル 以 外 の 場 合 の 例 と してH、1:相 互 独 立 モ デ ル を 考 え て み る 。LI.Mは

logFijic=μ →一ICt1(i)十Pt2(ノ)一 トPt3(k)

で あ る か ら

ム ム ム ヘ へ
10g、F■11==μ 十Fe1(1)十 μ2(1)十 μ3(1)

=4.419一 ト0.210-0.011-O.475=4.143

ム ム

とな りF11、=62.99で あ る。すべて の細胞 につ いて繰返 し,か つ周辺度数 を求 める とF、 ・・

ム ム ム
=723.15,F.1.=592 .56,F..1=211.08,F_=1198.3と な る か ら

7、 、一723・15醤 瀞 ×2'1・08一 ・2.99

であ り両者は一致 している。つまりH∬ の構造式を満たしている。

ム
しか しなが ら注意を要す るの は,第2法 で は最尤推定量を用いて 瓦..=f`..等 と してい る

ので

e… 一 ・'×睾 ・×f'・・631× 器 ζ238一 ・8・36

とは一致 しない ことであ る。

へ
Iog瓦 掴 ま上記 のごと く手計算で は面倒で あるが コンピュータで は計 画行 列を用 いて(2.9)

ム
式からf ,=X'μ で一度に求められる。第2法 で解 く場合には構造式を問題 にするよりも

LLMで μ一項の加算的性質を検討する方が簡明である。

2.第2法 による解

第2法 の適合度検定 ではG2を 用い るがその値は表7に 示す通 りで ある。但 しデ ータ2～

5に つ いて は数字 の検討 が 目的で はないので煩 雑 さを避 けH、 、～H、8の みを示す にとどめ

る。いずれ もH1～H、 。は不適合であ った。表5の アルゴ リズ ムを用い た最終判定結果は表

7,下 欄であ る。 これ らのデ ータの場合 についてはステ ップ6を 用いる ことな く機 械的判定

が可能であ った。

第2法 の結果をMAICEに よ る結論 と比較す るとき,デ ータ1～3に ついては合致 した

ものの,デ ータ4,5に お いて くい違いを示 した。 これは後 にV-5で 考 察す る。

表7に おけるPは02～ 場 ∫ と して実理値 碍 を得 た ときの上 側確率であ る。p>0.05

の ときモデ ル適合 として○,Pく0.05の とき不適合 として ×に記 号で示 されて いる。第2法

で は○ か ×かの結果 しか用いないが,ス テ ップ6で はPを 参考 に用 いなければ な らない し,
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表7

に)デ ー タ1

第2法(02)お よび第3法(ATC)の 結果

H

1

9
向

n
O

4
」

に
J

ρ0

7

8

0
σ

01

11

9
6

3

4
▲

i

1

1

民
」

6

7

1

1

1

18

最 終

o竃 〃KtP

535.51 11×01)

535.49

534.84

165.73

10×0

10×0

9×0

534.82

165.71

165.06

9×0

8×0

8×0

523.93

14.32

164.68

8×0

6×0.026

6×0

165.04 7×0

154.15

13.65

164.66

6×0

5×0.018

5×0

2.76

153.77

13.27

400.599

4×0

3×0.004

1.87 20

H15

AIC γ

537.51 1

539,49

542.84

171.73

0
4

9
白

00

540.82

173.71

173.06

3

4
▲

4

531.93

155.16

176.68

4
4

6

ρり

175.04 5

166.15

27.65

178.66

ρ0

ツ
0

7

△18.76

169.77

31.27

8

8

Q
り

21.87 10

H15

1)0:P<0.001

(2)デ ー タ2

△:MAICE

H

112)

12

13

14

15

16

17

18

最 終

2
0
σ ♂fFitP

16.42

14.98

12.76

5.56

11.32

4.12

1.90

0.94

7

6

5

5

4

4

3

2

×

×

X

O

×

○

○

○

0.022

0.020

0.026

0.351

0.023

0.390

0.593

0.624

H14

AIC 7

26.42

26.98

26.76

△19.56

27.32

20.12

19.90

20.94

5

6

7

7

8

8

9

01

H14

2)デ ー タ2～5に つ い て はH1～Hloの 結 果 は省 略
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㈲ データ3

H G言 ガFitP AIC

1

2

3

4

5

6

7

8

1

1

1

1

i

1

1

1

15LO2

53.44

105.18

151.02

7.60

53.44

105.18

2.29

4×0

3×0

3×0

3×0

2×0.022

2×0

2×0

100.130

159.02

63.44

115.18

161.02

19.60

65.44

117.18

△16.29

4

5

5

5

6

6

6

7

最 痢 H18 且18

(4)デ ー タ4

H 2
0
σ ガFitP AIC 7

1

2

3

4

5

6

7

8

1

1

1

1

1

1

1

1

69.82

15.69

60.58

58.82

6.45

4.69

49.58

1.13

4×0

3×0.001

3×0

3×0

2×0.040

200.096

2×O

lOO.289

77.82

25.69

70.58

68.82

18.45

16.69

61.58

△15.13

4

5

5

5

6

6

6

7

最 終 H16 H18

(5)デ ー タ5

H 2
0
σ

ガFitP AIC 7

1

2

3

4

5

6

7

8

1

1

1

1

1

1

1

1

78.96

54。51

48.51

54.85

24.06

30.41

24.40

4.77

4

5

1

1

2

2

8

9

り
ム

ー

り
4

り
ん

1

1

1

×

×

×

×

×

×

○

○

0

0

0.001

0

0.020

0.002

0.142

0.854

94.96

68.51

70.51

76.85

64.06

70.41

52.40

△50.77

8

7

1

1

0

0

4

3

i

1

1

り
4

9
4

1

9
4

最 終i H17 H18

モデルの適合状況を詳細に検討する際にはこのP値 が有効な情報をもたらすことになる。

3.階 層 構 造 及 びAIC(第3法)

図1の 階 層 構 造 を デ ー タ1の 場 合 の 数 値 例 で 示 せ ば 図5の ご と くで あ る 。 同 図 よ り

H11-H12-H15-H18,H11-H12-H■6-H18,… … …,H11-Hユ4-HlrH18等 の 併 せ て
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H12

154.15

6

166.15

μ13

H15'

2.76

8

18.76

μ23

μ23

μ12

H11

165。04

5

175.04

μ13

H13

13.65

7

27.65

μ12

H16

153.77

8

169.77

μ13

H18

1.87

10

21.87

μ23

μ23

H14

164.66

7

178.66

μ12

μ13

H17

13。27

9

31.27

μ12

ε

2

H

G

AIC

図5H11～H18モ デ ル の 階層 構 造(デ ー タ1)

6通 りの構造 が得 られ るが,い ずれを とって も同図中の数字 は σ2に ついては減少
,7に つ

いては上昇 の傾 向を示 してい る。両者を加 えたAICはH、5又 はHユ8の とき最 小である。

モデル番号が1つ ふ える毎 に 陶 が1つ 加わ り,最 終的 にはH、8に いきつ くが ,以 上の

6通 りの構造 はいずれ も 陶 を加 える順序 の相違 であ りそれ以外 の ものを包含 して いないの

でH、5とH、8の いず れを採 用す るかは,結 局 の ところAIC(15)とAIC(18)の 小 さい方

を採ればよい ことにな る。従 っていちいち階層構造 に還 元 して判断せず とも,H、 、～H18の

中 でMAICEを 探 せぱ よ く,こ うした方法は簡単 に してかつ効果的 な方法 といえ よう。

生 σ2,AICの 加 算 性

隣…接 す る2つ の モ デ ルH㎜ ⊂H趾 に 対 して(3.18),(3.19)が 成 立 す る と き 加 算 性 と 呼 ん

だ が,こ れ を 数 値 例 で 示 す 。

今 μ■2を 加 え る こ と に よ ってH■ ■一H■2,H■3-H15,H■4-H■6,H■rH■8の 包 含 関

係 が 生 ず る が,表7の デ ー タ1に つ い て 示 せ ば

σ2(11)一 σ2(12)=165.04-154.15=10.89

02(13)一 σ2(15)隔13.65-2.76ロ10.89

(茅2(14)一 σ2(16)=164.66-153.77=10.89
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で す べ て 一 致 して い る が

θ2(17)一 σ2(18)=13.27-1.87=11.4

の 結 果 は これ ら と く い 違 っ て い る 。 自 由 度 に つ い て も

ガ(11)一 ガ(12)=ガ(13)一 ガ(15)漏 〔げ(14)一 〔」ノ(16)竺1

で あ る 。AICに つ い て も 同 様 に

AIC(11)一AIC(12);175.04-166.15=8.89

AIC(13)一AIC(15)=27.65-18.76=8.89

AIC(14)一AIC(16)=178.66-169.77=8.89

で 共 に 同 じ値 で あ る 。 そ し て こ れ ら の 関 係 は μ13,μ23に つ い て も,又 他 の デ ー タ に つ い て

も妥 当 し て い る 。

然 る に 伝 統 的 に 用 い られ て 来 たz2一 統 計 量 で は μ、2の 場 合(コ ン ピ ュ ー タ 出 力 は 省 略 し

て い る が),

えr2(11)一Z2(12)冨159.82-149.38=10.44

」ビ2(13)一Z2(15)=13.60-2.74=10.86

ニビ2(14)一 ニビ2(16)=159.17-149.59匹9.58

と な り加 算 性 は 近 似 的 に しか 成 立 して い な い 。 こ の 故 に 本 稿 で は 適 合 度 検 定 に 際 し て は σ2一

統 計 量 を 用 い る こ と と し た 。

表8G2(?π 一ル{)に よ る μ毎 の 検 定 結 果

デ ー タ1

σ2μ
12

σ2μ
13

4〆

σ2μ
23

dプ

10.89*

1

151.39*

2

83

り
4

0

デ ー タ2 デ ー タ3 デ ー タ4 デ ー タ5

1,44

1

6ρ0

0
4

3

10.86*

2

97.58*

1

45.84*

1

0.00

1

54.i3*

1
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1
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1
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9
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5.02@一 ルf)に よ る検定(第4法)

前 項 の方法 によ りデ ータ毎 に2次 の交互作用項 についてG2@一M)を 求 め一覧表 に した

のが表8で ある。*印 を付 した ものはOo2∈Rと な り,μ 乙≒0と 見な しうるもの,即 ちモデ

ルH㎜ とH胚 間 の距離 が遠 く交互作用を無視 できない もので ある。 第2法 とほぼ同様の結

論 が得 られてい るが,第1～4法 を結合 した ものが表9で あ る。
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.表9第1～4法 の結果比較

μzゴ

μ12

・μ13

μ23

最終モデル

方 法

1

9
向

nO

4
^

1

9
鞠

3

4
凸

1

9
向

00

4

ー

ワ
角

0
0

4
^

デ ー タ1
η鴇1257

*

*

*

*

*

*

*

*

0

0

0

0

5

5

5

5

H

H

H

H

デ ー タ2

π=97

0

0

0

0

0

0

0

0

*

*

*

*

①

4

4

4

　

ユ

　

エ

H

H

H

H

デ ー タ3
π=960

*

*

*

*

*

*

*

*

*

*

　

0②

8

8

8

5

H

H

H

H

デ ー タ4
π=308

*

*

*

*

③0

*

0

*

③0
*

*

*

④2

6

8

8

H

H

H

H

デ ー タ5
η=1330

⑤
0

0

*

*

*

*

*

*

*

*

*

*

7

7

8

8

H

H

H

H

*:陶 ≠05%水 準で棄却0:μzプ=05%水 準で採択

第1法:μ ・=0第2法:適 合度検定 第3法:AIC第4法:σ2@一M)

①～⑤については本文中に記述。

6.4法 の比較

表9よ り第1～ 第4法 間の解 でずれを生 じた個所 につ いて考察 を加 える。①～⑤ は表中の

注番号で ある。

データ2に おいて 陶 に関す る限 り4者 は一致 して いるが,① 第1法 ではH6:縮 減 モデ

ル となって いる。 これ はサ ンプル数が η=97と 少 な く第1法 の漸近理論の適用上の無理 に起

因する と思 われ る。

データ3で は②第4法 の02@一M)が0と な り矛循す る。従 って最終 モデルはH、5と

な り,第4法 のみ異な ってい る。第2種 の過誤 なのか検定方式 その ものに由来す るのか不明

であ る。

データ4で は③ 第1法 で μ13,μ23=0と な りH12で あ るが,こ れは π=308に よ る もの

と思われ る。④ 第2法 ではH16,第3,4法 で はH18で 両 者は くい違 っているが,こ れは

μ12の 判断の相違 による。第2法 で は適合,不 適合 の並 べ方 か ら機械 的に最終 モデ ルを選択

す るが,今 上側確率Pを 参考 に用 いればH16の と きP=0.096,H、8の ときP躍0.289で

Pか ら判 断する限 りH、8の 方が採択 され易い。H、6,H、8の 両者は接近 して お り第2法 で

は こうした情報は得 られない。 しか し第2法 で はAIC(16)冨16.69,AIC(18)=15.13で あ

るか らH、8が 選 択 される ことになるるが,H、6の 可能性 も示唆 して お り,こ の意味でAIC
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を用い る方法が望 ましい ともいえよ う。

デ ータ5に おいて もデ ータ4の 場合 と同 じ く⑤μ2の 判断の相違か ら,第2法 ではH17が

結 論づ け られてい るが,H、7の ときP=0・142,H・8の ときP躍0・854でH18の 方 が採択

され やす い。AIC(17)ニ52.40,AIC(18)=50.77で あ るか ら第3法 では この辺の事情 の想像

がつ く。

以上の理由により,第3法 はAICを 求めてMAICEを 唯1つ の採用するのではなく,

相互に値を比較することにより矛軟な判断が端的に可能となるので(第2法 によるときはP

と表3～5に よるアルゴリズムを用いねばな らないので やや複雑である),第2法 の 結果の

確認という以上に,望 ましい方法であるといえよう。

第4法 の結果はほぼ第3法 と平行 しており,特 に計算を追加 して この方法を積極的に用い

る根拠は乏 しい。加算性はAICに も見 られるので両者は同根の方法である。

V[情 報理論による分析 とLLM

情報理論(Informatlontheory)の 心理 学への紹 介は,McGill,w.J.18)(1954),Garner,

W.R.u)(1g58),Attneave,F.2)(1959),Binder,A.andWolin3),B.R.(1964)ら を は じめ古

くか ら試 み られてお り,属 性デ ータに分析可能 という ことで心理学 のさまざまな領域 で広 く

用い られて来 た。又分散分析 との関連 や,尺 度水準別 の適 用法等,多 方 面か らの研究 もな さ

れて いる(12,20,23,25)。

LLMの 紹 介を終 え るあた り,本 節では情報 理論で用い られ る諸概念 とLLMの μ一項 と

の関連を整理 し,尤 度比統計量 を用 いる限 り両分析法 は同一の もの に帰 着す ることを示 して

お く。

1.2変 量 情報 量

事 象 蕩 の生起 の確率を 鏡 とす る とき,情 報 量は

1(πの=一lo92π 乞(6.1)

で 定 義 され,1(π の の期待値

H(X)=一 Σ π¢1092π乞`(6.2)

はXの(平 均)情 報量 又はエ ン トロピーと呼ばれてい る。E(X)はXが 確 定的である とき

小 さい値を,不 確定的で ある とき大 きい値を示す ので不確実性 の指標(uncertainty)と して

用 い られ る。情報理論 では通常2を 底 とする対 数が とられ,単 位は ビッ トと呼ばれてい るが,
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こ こで は σ2と の関連を問題 にす るた め自然対数を用 いる こととする。両者 は比例 関数 にあ

るので概念 の本質を損 うことはない。

2変 量をX,y(π 節 の オ,Bに 対 応する)と す る とき,η(X),E(Y)の 他 同時事 象の情報

量H(κr,),条 件 付情報量 ∬(劃 γ),∬(矧 ■)等 が用 い られ る。 それ らは同時比率を π¢ブ,

周 辺比率を 砺,π ・ゴとおけば以下 の ごと くであ る。

H(X)=一 Σ π乞.109π乞.
乞

π(Y)=一 Σ π.ゴ109π ヴ
ゴ

H(X,Y)=一 Σ Σ π乞ゴlo9π オゴ
名ゴ

H(XIy)=一 Σ Σ π盛ゴ109砺/π.ゴ=H(X,y)一H(r)
乞ゴ

ノf(riX)=一 Σ Σ π乞ゴ109π 乞ゴ/π乞。=H(X,r)一H(X)
乞ゴ

又 伝 達 情 報 量(transmittedinformation)は

T(X:Y)=H(X)一H(Xlr)=H(X)+H(r)一H(X,}7)

=一 Σ Σ π乞ゴ109π 芭.π.ゴ/π乞ブ
乞 ゴ

(6.3)

(6.4)

であ り,こ れはXを あるシステムへ の入 力,Yを 出力 と考え ると,Xか らYに 伝わ る部

分であ りその意味で伝達情報量 と呼ばれて いる。 関連 の分析 に際 しては,X,γ が独 立の と

きT(X:y)=0で あ るのでT(X:Y)の 大 小 の検討をすれば よい。

ム

データか ら情報量を計算するときは,母 比率の最尤推定量 として前部までのごとく πη=

ム ム

ゐブ/n,Zi.=fi./n,π.ゴ=ん/nを 用 いれば よい。 又尤度比統計量G2と の関連 も次 のご とく

導 くことがで きる。注)

倉(X,y)一 一ΣΣ 須、1。9金、、一1。9・一⊥ΣΣ ん1・9ん
乞 ∫ η 乞 ゴ

102(1)
=109η 一

2η

倉(・IX)一 一÷写写!・・1・9兜 一1・9・一一去 伊(・)

餉 ・)一 一÷写写 海1・9砦 〒1・9・読 ぴ(・)

倉(X)一1・9・ 一÷写 ゐ・1・9五 一1・9・一 去(ぴ(1)一 ・2(・))

倉(・)一1・9・ 一}影 ・1・9仔1・9ノ ー去(ぴ(1)一 伊(・))

ヂ(X・ ・)一1・9・ 一撫 仙9勢 洗 ぴ(・)

〈

(6.5)

(6,6)

(6.7)

(6.8)

(6.9)

(6.10)

T(X:y)に よ るX,γ 間 の 関 連 は σ2(4)=2η7'(X:r)～Z2σ.1)(」.エ)の 性 質 を 用 い て 検
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H(x)

μ1

碓lx)
μ・1μ・

T(x:γ)

μ12

H(y)

μ2

H(ylx)

μ・!μ・

〈一一一一一一 一H(x,Y)一 一一一一一 一 一 →〉

μ'

図62変 量情報量 とLLM

討 す ることがで きる。情報理論で もPearsm,K.のX2統 計 量を用い る方 法が多 く紹介 され

て いるようで あるが,既 に考察 したご とく加算性 が成立 す るのでG2を 使 用す る方 が望 ま し

い。x2へ の近似 もG2の 方が よい ようであ る。

そしてT(X:y)の 他H(X),H(X,y)等 の 情報 理論の概念はすべてG2に 置 き換 えるこ

とが可能 である。今,H(X,y)を μ に,H(X)を μi,H(Y)を μ2,H(YIX)をiLt211Ui

(又 は μ一μ1),H(XlY)を μ11μ2(又 はμ一μ2),T(X:y)を μエ2に 対応 させ る。LLMの μ一

項 は,例 えば μ,μ、,μ2は 互 いに素 であるが情報理 論ではH(x)はT(x:y)を 含 み,H(x,

Y)はH(XIY),T(X:Y),H(rlX)を 含 んでいる(図6)・ 従 って上述 の対 応は ゆるい意味 に

ム

おいてで ある。 この対応づ けか ら,例 えば(6・10)よ りG2(4)=2nT(X:y)の 関 係を用 い

てX2検 定を行ない,H4の モ デルが棄却 された とき μ・2が 大 き く,従 って μ12≒0の 結

論を下 す ことがで きる。

(注)次 のごとく考えれば代数的展開はいずれも容易である。例えば(6・5)式 において

1・9ノ・・一一1・9饗 ×一呈 ・変形すれば表 ・及びG2の 公式・り

倉(綱 一1・9η一去(一 ・騨 ・1・9〃鍔)一1・9η 一去 ・2(1)

である。又(6.8)式 も上と同様に

1・9声・一1・9留 ・ 轟 ・÷ ・変形すれば

倉(X)一1・9・ 一÷ 羽 ル(1・9与4-1・9薯+1・9祠 ・9・)

1(02(1) 一 σ2(2))=1091-

2π

で あ る 。

(6.11)

(6.12)

2.3変 量情報量
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H(x)

H(x,y)

/

H(瓦zlγ)

.Hα 匡z) ,建 幽

＼
ド
NH(取)

●・う

滋4＼

Hの

H(y馬z)

T(y:zlx)

万(zレ ζy)

T()ζ:y:z)

班z)

《÷一・一一一一一 一一一一一一・一 一H(x,Y,z)一 一一一一一一一一一一一葺》

図73変 量情報量

2変 量 の場合 の情報 量は3変 量の場合 に も拡張す ることがで きる。但 し3変 量 にす ること

によ り条件付情報量,伝 達情報 量 ともに図7の ごと く多種 の ものが定義 され複雑であ る。

先ずH(X,y,Z),H(X),H(X,y)等 は2変 量か らの単純な拡張であ る。

倉(X・ …)一1・9・ 一 ÷ 写 写¥/…1・9f・ ・k-1・9i」 κ 一 一去 ・2(1)(6・13)

倉(X)一1。9。 一 ⊥ Σ ん1。gf、..
η 乞

一1・9一 ÷写嬰 ん ・1・9/器 κ ・謙 ・1

-1・9・ 一÷(・2(1)一G2(・))(6 ・14)

館 ・)一1・9・一÷罪 ・1・9ル・一1・9η 暖(・ ・(1)一G2(・))(6・15)

ム ム ム ム
この他X,y,Zを 循 環 させてH(Y),H(Z),H(X,Z),H(Y,Z)も あ るが,こ れ らは表10

にま とめて示 す。LLMと の 関連は,H(X,y,Z)は 全 情報量で μ に,H(X)は μ、に,H

(x,Y)は μ、+μ2に 対応 させて お く。

条件付情報量 については3種 の ものが考え られ る。
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表103変 量情報量とLLH

情 報 量1)

∬(X,r,Z)

1ノ(}7,ZIX)

1ノ(X,Zly)

丑(X【,rlZ)

H(x)

H(r)

H(Z)

∬(x,}7)

H(X,Z)

H(r,Z)

1ノ(ZIX,r)

1ノ(ylX,Z)

H(Xlr,Z)

H(Z!X)

H(Z!γ)

H(y}X)

H(rlZ)

H(Xlr)

H(XIZ)

T(X:r)

T(X:Z)

T(y:Z)

:r(■:y:Z)

T(.¥,y:Z)

T(X,Z:r)

7(}7,Z:X)

T(y:Zl.κ)

τ(」¥:Zly)

T(X=rlZ)

オα γz)

σ2

lo9112(一 θ2(1)/2π

logJr1ζ 一σ(2)/2η

lo9∬1(一 σ2(3)/2π

logI1一 σ2(4)/2η

logI一(02(1)一 σ3(2))/2η

IogJ「 一(02(1)一 θ(3))/2π

lo91(一(02(1)一 σ2(4))/2η

10gZノ ー(σ2(1)一 σ2(8))/2π

lo911(一(G2(1)一G2(9))/2π

109/1(一(θ2(1)一 〇2(10))/2π

logノ(一 〇2(8)/2π

lo9/一 σ2(9)/2π

1091-02(10)/2.π

Iog1【 一(σ2(8)一 σ2(15))/2π

log1(一(G3(8)一 σ2(16))/2η

logll一(02(9)一 〇2(15))/2η

logノ ー(02(9)一 〇2(17))/2π

lo91一((}2(10)一 θ2(16))/2地

Io91一(02(10)一 σ2(17))/2η

(σ2(5)一 〇2(8))/2η

(02(6)一 σ2(9))/2π

(σ2(7)一 〇2(10))/2η

σ2(11)/2η

02(12)/2η

(}2(13)/2η

02(14)/2π

σ2(15)/2η

θ2(16)/2π

02(17)/27z

σ2(18)/2η

μ一項

μ

μ2+μ31μ1

μ1+μ3iμ2

μ・+μ21μ3

1

2

3

μ

μ

μ

μ1十 μ2

μ1十 μ3

μ2十 μ3

μ31μ ・+μ2

μ21μ ・+μ3.

μ11μ2十 μ3

μ31μ1

μ31μ2

μ21μ1

μ21μ3

μ11μ2

μ・1μ3

μ12

μ13

μ23

μ12+μ ・3+μ23

μ13十 μ23

μ12十 μ23

μ12十 μ13

　

　

ヨ

μ

μ

μ

3

3

2

　

ユ

ユ

μ

μ

μ

μ123

1)σ2と の対応を考えたとき厳密にはくを冠 した方がよいと思われるが煩雑さ

を避け省略する。

倉(ZIX)一 館 ・)一倉(X)一 一÷写嬰/…1・ 畷

1
・=1091一(02(8)一 〇2(15))(6

.16)2η

倉(r,ZIX')一 倉(双 ・)一 倉(X)一1・9ノ κ 一 量
。・・(・)

(6.17)
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倉(・1x,・)==fi(x,・,・)一 倉(x,Y)=・1・9κ 一 赤 ・・(・)(6・18)

H(ZIX)はH(Z)の うちXに 係 る部分を除い た ものでLLMで は2変 量の場 合 と同 じく

μ31'Pt2と 書 くことにする。同様 にH(Y,ZIX).はH(Y,Z)か らXの 部分を除いた もので

μ2+μ31μ1,H(Z【X,「)はH(Z)か らX,Yの 部 分を除いた ものであるので μ31μ1,μ2と し

て対応 させてお く。

伝達情報量 は次 のごと くで あ り,こ れ らを用 いて変 量間の各種 関連の検討をす ることがで

きる。先ずT(X:Y)は2変 量の場合 と同 じ くX,y間 の 関連で

ヂ(X・Y)一fi(X)一 倉(Y)一fi(X・Y)一1・9・ 一÷ΣΣΣ ん ・1・9響

一去(・2(・)一 ・2(・))(6・19)

で あ る。μ、2の 検 討 には これを用いればよ く,自 由度 はG2(5)一G2(8)か ら(JJK-1-1+1)

ム
ー1:ノ(K-1)=(1-1)(」 一1)と な り2nT(X:y)～Z2(■ 一1》(」一、)が 利 用 で き る 。 μ、3,μ23

ム ム

も同様 にT(X:Z),T(Y:Z)を 用 いれば よい。

T(X,Y:Z)は2変 量X,YとZと の関連であ り

会(X,r、Z)一6(・ ・X,Y)一 倉(X,Y)+倉(・)一 倉(X,・,・)

一1・9一 ÷ΣΣΣ ん ・1・9雛 な 一÷ ・2(12)(・ ・2・)

ム

であ る。 これよ りG2(12)=2nT(X,y:Z)～X2(K-1)(■J-1)で あ るか ら,G2(12)の 値 が大

き くH、2が 棄却 された とき μ12+μ ・3が 大 き く無視で きない ことを 示 している。X,y,Z

を 循 環 させれば多重独立 モデルの検討 が可能であ る。

T(X:YIZ)は 先 のT(X:y)か らZの 部分 を除 いた もであ り,

分(x・Y1・)一fi(x1・)一 倉(Xi…)一 一÷ΣΣΣ ん ・1・・垂…1.・盤

一 £ ・2(17)(6・21)

ム
が導け る。X,Yの 関 連をZの 条件付 の もとで検討す るので あるか らG2(17)=2nT(X:YIZ)

～X2K(■.、)(」 一エ)よ りH17が 棄 却 された とき μ12を 無視で きない ことがわか り,T(X:

z]y),T(y:Zlx)と あ わせて条件付独 立モデルの検討をす ることがで きる。

T(X:Y:Z)は 束 縛(cnstrain)と 呼 ば れて お り,3変 量X・y・Z間 の関連 の程度を表わ

してい る。

館,Y、z)。 倉(x)+倉 α)・ 倉(・)一 倉α,Y,・)

一21・9一 ÷ΣΣΣ ん ・1・9牲1濟 一÷ ・2(11)(・ ・22)

。 れ よ り ・・(11)一2・ 分(X・y・Z)～X・ 、。K一、・+J+・、。,の 齪 か らH、 、 が 麹 さ れ た と き,
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μ、2+μ13+μ23が 大 き く無 視 で き な い こ と を 示 し て い る 。 こ れ ら は 相 互 独 立 モ デ ル の 場 合

に 相 当 して い る 。

最 後 にA(XYZ)は 情 報 理 論 で も交 互 作 用(interaction)と 呼 ば れ て お り

・4(XYZ)=T(X,Y:Z)一(T(X:Z)十T(Y:Z))

・=T(X:Y:Z)一T(X:Y)一T(X:Z)一T(Y:Z)(6 .23)

で 定 義 さ れ る(Attneave2),P.58)。 従 っ て(6.19),(6.20)の 循 環 式 を 用 い て 変 形 す れ ば

fi)(X・Z)一 一÷ΣΣΣf・」・1・9鶴1舞 ・毒 一ヤ(18)(・ …)

<<

で あ る。(A(xyz)<0の と きは 一A(XYZ)=G2(18)/2nと す る。 又操 作上 は分離できな

いが オ は 」=(+)一 オ(一)と して 小+)(交 互 作用)と 温(一)(伝 達 重複)と に分 け られ る。)

但 しここでは反復法 によるG2(18)の 算 出ではな く(3.6)式 の構 造式よ り得 られ る

倉…一"宏 磯:鷺(6・25)

を用いた。 これを用い ることにより(6.23)式 と(6.24)式 が 統一的 に説 明で きるし,3次 の

ム
交互作用 の概念で も情報理論 とLLMが 対 応 してい ることがわか る。G2(18)=2nA(XYZ)

～X2(■.、)(J-1)(K.1)の 検 定 か らHl8が 棄 却の ときPt,23≒Oを 結論づければよい。

以上見て来たごとく,LLMの3次 元の各種モデルを伝達情報量を用いて検討することが

でき,又 縮減モデルについて も情報量H(・)を 用いて分析しうるが詳細は割受する。3変 量

の場合について02と の関連を整理し一覧表にすれば表10の ごとくである。同表に明きらか

なごとく両方法は平行関係にあり,LLMの 検討は情報理論の概念(用 語)を 用いて も可能

である。数値例は省略するが表10に より計算 した02の 値 と表7の 鋸一値は計算誤差の範囲

内でよく一致 していた(θ2(18)は 除いて)。'情報量の計算はさほど面倒なものではなく,従

って第2法 の手順は情報理論を用いれば大幅に簡略化することも可能である。

w結 語

多次元属性デ ータが分割表 の形で与 え られ る とき,変 数間の関連を分析す る手法 としLog-

LinearModel(LLM,対 数 線形 モデル)に よる方法が注 目されてい る。 本稿 では3次 元 の

場合 について理論 と分析法が紹介 された。

3変 数 の場合,変 数間 の相互 関連 のあ り方 は(1)縮減 モデル,(2)相 互 独立 モデル,(3>多 重 独

立 モデ ル,(4)条 件 付独立 モデ ル,(5)対 連 関モデ ル,(6)飽 和 モデルに大 別され,併 せて19種 数

の下位 モデ ル(仮 説)に つ いて検 討され るが,LLMは 所 与 のデータがそのいずれ が最適で
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あ るかを決定 する方法 であ り,名 称 は細胞 の期待度数 の対 数を

10gFWIe==pt+μ1+μ2+μ3+μ ■2+μ ■3+μ23十 μ123(飽 和 モデル)

と μ一項 の線形結合 に分解 して分析す るこ とに由来 して いる。

解 法 として は2通 りの ものが紹介 され てい る。第1法 は連立 方程式を解 いて μ一項を求め,

検 定 によ りPtt==oの ものを落 と し,残 され た項 か ら上記(1)～(5)の いずれ のモデルが適合 す

るかを探 る方法 である。

ム

第2法 は,各 場合についてその構造式から期待度数F雛 を求め,観 測度数 ノ1雛との適合

度検定を行ない,そ れ らの結果から最終的に適合モデルを決定する方法である。

両方法の結論は多 くの場合一致するが,第1法 の検:定は正規分布への漸近理論を用いてい

るので,n(サ ンプル数)が 小の場合には必ずしも一致 しない。従 って解法としては第2法 の

方が望ましく,得 られた結論の理解には,μ 乞プの項が2変 数間の関連の存在を示しているの

で,第1法 の方が便利である。

第2法 の適合度検定では尤度比統計量G2が 用いられたが,こ のときの結論は適,不 適の

2値 的なものである。そして19種 類のモデルの適合状況から論理的に最:終モデルが決定され,

そのアルゴリズムも考察されたが,結 果に矛盾をきたし論理的(機 械的)判 断が困難の場合

には,G2の 上側確率,或 はその他の情報を用いて総合的に判断せざるを得ない。

G2か らAICを 求めMAICE(minAIC)の ものを 最適モデルとして 決定する方法も吟

味された。このとき,各 モデルの適合状況を連続的に評価でき,MAICEに 近い複数個のモ

デルを選択すれば柔軟な解釈が可能である。

第1法 で残された 陶 の項は3変 数相互の関連を示唆しているが,関 連の有無と同時にそ

の強度もデータの考察時に必要である。 強度の指標として 陶 の分散を とりあげ,そ れを

相対化して3易 として算出し,三 角座標で表現する方法が提示 された。視覚化された結果か

ら直観的な解釈が可能である。

以上の計算の過程はFORTAN語 でプτ]グラミングされ,チ ェックデータを用いてデバ

ッグ及び出力結果の検討がなされた。

分割表データの分析法のひとつとして情報理論を応用し,各 細胞の出現頻度から平均情報

量,変 数間伝達情報量を算出する方法も心理学の分野に紹介されているが,LLMの 各モデ

ルはこれ ら情報理論の概念を用いて も検討することができる。両方法の平行関係についても

整理された。

従来,心 理学の領域では名義尺度等の属性データが多 く取扱われるにも拘 らず,ク ロス集

計による分析は2次 元に留るケースが多いようにも思える。対数線形モデルによる方法は3

次元以上の属性データの分析に有効であり,今 後一層の普及が期待されるところである。
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ANALYSISOFTHREE-DIMENSIONALCONTINGENCY

TABLEBYLOG・LINEARMODEL

MitSuoYOSHIDA

Log-LinearModel(UM)hasreccntlybeenstudiedinthearearofsociologyand

mathematicalstatistics.Whenmulti-dim6nsionalcategoricalvariablcsarcpresented

inthefbrmofcontingencytable,LLMprovidesacomprehensiveschemefbrthc

analysisofrelationshipsbetwcenthosevariablcs,suchasmutual一,multiple一,condi-

tional-independence,pair-wiseassociations,andsoon.Inthatmodel,thoserela-

tionshipscanbedcscribedwithIinearcombinationsofμ 一termswhichdcnotesimple

ef艶CtSOrinteraCtiOnS.

ThispapertriestointroduccthetheoryandmethodofLLMfbrthree-dimensional

case,andproposeswiderapplicationsofthemodelinpsychology.Generally,there

aretwodif琵renttypesofanalysesinthemodeLTheoncistocomputetheμ 一terms

tosolvesimultancouslinearequationsunderthehypothesisofsaturationmodeland

thefinalfitted.modelisdecidedbyz-testofHo:μs=0.Theotheristotestgoodness

of丘tbylikelihoodratiostatistic(02)andtodetectthemost丘ttedmodel肋lnninc-

tcenhypothescs.Byaruleofthumb,thelattcrmethodisbetter,fbrthcfbrmer,

usingthelimitingtheoryofstandardnormaldistribution,necessiatesmorethanlOOO

samples.Incaseoflesssamplcs,theresultsoftwomethodsarenotalwayscoincident.

Thefbllowingisdiscussedbytheauthor.

Tentativealgorithmsofthe且nalmodelinthesecondmethodareof琵red,The

rcsultsarecon且rmedbyAIC(AkaikeInfbrmationCriterion)一values.Intensiticsof

associationsarevisualizedintriangularcoordinatesofvariancesofsecondorderin-

teractions.02andμ 一termsareexamminedbyin長)rmationtheory.(】omputational

procedurcsareprogramedinFORTRAN-languagesaboutIOOOstatements.


