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Abstract
Kawashita, Nakazawa, and Soga [3] give a necessary comditiothe uniform

energy decay of the dissipative wave equation whose pahdgrm has constant
coefficients. In their proof, they construct asymptoticusioins for a suitable family
of the Cauchy data. In this paper, instead of the asymptoligtisns, we consider
the semiclassical measure associated with the family ateheéxthis result to the
variable coefficient case. Moreover we give some lower boustimate for the
energy decay.

1. Introduction

We consider the Cauchy problem of the dissipative wave émualf the form

Btzu(t, X) — Z (&5 (X)d, u(t, X)} +a(t, x)au(t, x) =0 in [0, 00) x R,
(1.1) i
Ult=0 = G1(X), dtUlt=0 = G2(X) on R",

where the functionsj (x) € B(R") and a(t, x) € B>([0, oo) x R") are real-valued,
B>*(X) is the space of smooth functions otiwhose all derivatives are bounded, and
(aj (x)) is positive-definite for eack. Moreover we assume the uniform ellipticity con-
dition: (&;(x)) > cld in R" for somec > 0, and a dissipative conditiora(t, x) > 0 in

[0, 00) x R". As is well known, under these conditions, for any Cauchydgi, 92) €
HY(R") x L2(R") there exists a solution € C°([0, o0); HY(R™) N C([0, 00); L?(R"))

of (1.1) which is unique in the spad@!([0, o0); L?(R")) and satisfies the energy equa-
tion

t

(1.2) E(u, t) +// ajug|?(t, x) dx dt= E(u, 0)
0 JRn

for anyt > 0. Here E(u, t) is the total energy

1 _
E(u, t):= 5/}; |8tu|2+2aij 3y, U Dy U dX.
i

2000 Mathematics Subject Classification. 35L05, 35L15.
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From this energy equatiorg > 0 means dissipation; ifi > t;, then E(u,t;) < E(u, tp).
Therefore we expect that the total energy converges to zetaends to infinity if the
dissipative term is sufficiently large. For example,aifis a positive constant, then
E(u, t) decays uniformly with respect to the norrmg(||2H1(Rn) + ||g2||f2(Rn)).

In the paper [3], Kawashita, Nakazawa, and Soga define ttferamienergy decay

property

DerINITION (Uniform decay property). We say that the equation (1.1) thes
uniform decay property if and only if for any > 0, there existsTI' (¢) > 0 independent
of the Cauchy data such that the inequality

E(U, 1) < (01 rmy + 192l 22gey + (01, G, ).

(1.3) , )
(91, ®)E, R = /(1+|X|){|92| +|Vgy[7} dx

holds for anyt > T(¢) and for any solutioru of (1.1) with the Cauchy datag{, g.)
satisfying [[(91, 92) |, (rn) < 00.

They proved following theorem for a necessary condition te uniform decay
property.

Theorem 1.1. In the equation(1.1), we assume;a = §j, a(t, x) = a(x). Assume
also that there exist some points ¢ R", o € S"~! and a neighborhood U of gysatis-

fying

oo 0

sup a(y+sng)ds<oo or sup a(y + sng) ds < oo.
yeU JO yeU J —oco

Then the equatiorfl.1) does not have the uniform decay property

REMARK. For a sufficient condition of uniform energy decay, in [6hder the
assumption thag; = 6,

a(t,x) > ag(L+|x]+t)%, da(t,x) <0, a>1,
it is proved that the equation (1.1) has uniform decay ptyper

In their proof, they construct a family of asymptotic sotums whose energy is
concentrated on the ray. Instead of asymptotic solutiores,censider the semiclassical
measure associated with a family and extend this result éoetjuation with variable
coefficients. In this case, we should consider a cunt( (Yo, n0)), n+(t, (Yo, n0)))
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which is the solution to the following the Hamilton equation

d
G 06, 70) = 51 POA(E O 10D, 78, G ), € 0

d
BB ) Gt 06, 10) =~ PR G0, 10D (8, (o, 1), > O

(y+(0, (Yo, m0)), n+(0, (Yo, n0))) = (Yo, 10)

wherep = /37 ; aj(x)¢'&1. Similarly, (y-(t, (Yo, 70)), n-(t, (Yo, n0))) denotes the so-
lution of the Hamilton equation forp.
Our main result is the following lower bound estimate for #eergy decay.

Theorem 1.2. Let (yo, n0) € R" x R"\ {0} and U be an neighbourhood of,y
then we have
E(u, t)
su
ue.A(B) { E(u, 0)

Here A(U) is the set of solutions t(l.1) satisfying t=o, Utlt=0 € Cg°(U) and & means
that the above inequality holds for eash —.

} = exp{_/ot a(s, y=(t = s, (Yo, n0))) ds}.

From this theorem and the Poinéa inequality, we have

Corollary 1.3. Assume that
(1.5)

t t
Iitm inf/ a(s, y«(t—s, (Yo, no)))ds<oo or Iitrn inff a(s, y_(t—s, (Yo, no))) ds< oo
—00 0 —>00 0

for some(yo, no) € R" x R"\ {0}. Then the equatiorfl.1) does not have the uniform
decay property

REMARK. If &; = §j, a(t, x) = a(x), then the assumption becomes

0 0
/ a(yo +sng)ds < oo or / a(yo + sno) ds < oo.
0 —00
So in the assumption of Theorem 1.1, it is sufficient that aegration ofa(x) on
some ray is bounded.

Thus a magnitude of the dissipative term can be measured byntegration of
a(x) on the Hamilton flow. This is well-known for the wave equation a compact
Riemannian manifold. In this case, there are many works tier énergy decay and
more detailed results are known, e.g. [4], [7]. Especiallyj4], the semiclassical mea-
sure is used but the framework is a little different from thaper.
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2. Preliminaries

NOTATION. No = N U {0}, Rj.c = {§ € R" [§] > C} (C > 0). For points
X,y € R" and a multi-indexx = («y, . . ., an) € Ng, we write dy; = 9/0%j, Vx =9/dx =
(B, - - - » By, 0% =021+ 32, Dy = (1/i)dy, Dy = (1/i)Vx, XY =XaY1+ -+ XnYn,
(x) = (L+Ix1))"2, (D)*u = F '[(§)°Fu(§)]. Here Fu(§) = (1/(27)"?) [ e ™4u(x) dx.

CK(U; V) is the set of allCk maps fromU to V (k € NoU {oc}). L(E, F) is the
set of all continuous linear operators froento F. The symbol (, -) denotes the
inner product ofL?(R").

2.1. h-pseudodifferential operators.We recall basic facts about h-pseudodifferential
operators. Fom € S'(R?"), its Weyl quantizatioray’ = a*(x, hD) is defined by

1 Y X+y
g (x=y)-€)/h
/ y a( > ,é)u(y)dydé

(2.1) A0 = o5

whereh € (0, 1] andu € S(R"). We interpret this integral in the sense of the temperate
distribution. The correspondence P@ € S'(R™") — a® =a*(x,hD) € L(S(R"), S'(R"))

is an isomorphism for each € (0, 1]. For A € L(S(R"), S'(R")), on(A) := Op;l(A)
denotes the Weyl symbol of A. We define the adjoiite L(S(R?"), S'(R?")) by (Au,v) =

(u, A*v), u, v € S(R"), where (1, v) = [uvdx. ThenA* =0p,(a), a=on(A). So if

ae S'(R™M) is real, thenA = Op,(a) is formally self-adjoint.

DEFINITION. The symbol spacé&, k € R is the set ofh-dependenC> func-
tions a(x, £; h) on R?" satisfying
|0%a(x, &; h)| < C,(&)¢ on R™x (0,1] for any multi-index «.
We denote byOPS the space of operators whose symbol is in the sg#ce

Following theorems are fundamental tools for pseudodifidal operators.

Theorem 2.1. (i). If a(x, &;h) € S¢ for k € R, then Op,(a) is an element of
L(S, S), and L(S', §'), for each he (O, 1].
(if) (compositiol. If a; € S, j =1, 2, then Op,(a1) Op,(a2) = Op,(ay fin @) with

Op,(2y fin ap) = eMM/APDy=DuDilg, (x  £)ay(y, 1)ly=x,,=¢
N-1

1 /ih )
= Z _<'E[Dé Dy — Dy D,,]) au(X, §)az(y, n)ly=x,y=¢

j=0 j!
+ Oﬂw(rN(al: a-Z)(X1 é));
rn(a, a)(x, &) € hNgatke,

Here N e N. Set p(ay, a) = a3 fip ap.
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(iii) (L? boundednegs If a € S°, then Op,(a) is L? bounded and there is a constant
C > 0 independent of h such thOp, (a)ll_ (2w, L2rm) < C for 0 < h < 1.
(iv) (the sharp Garding inequali}y Let ac S*® Mq4(C) (d € N) satisfy(a+a*)/2> 0
on R?". Then there exists G 0 such that

(Op, (@)U, W)z = —ChIlUlIF 2y,
for every ue (L3(R")¢ and all he (0, 1].

See [1] or [2] for the proof. Next lemmas follow from the abaveorem.

Lemma 2.2. Leta e SN, j =1, 2 and supp6y) Nsuppéy) =@. Then a fhay €
hNga*ke for any Ne R.

From now on, we writeh®S< := ", g h" S and h*OPS in a similar way.

DEFINITION. Let V be a subset o0R?". We say thata € S¢ is elliptic in S¢ on
V, if there existhg > 0 andC > 0 such that

la(x, & h)| > C({)* on  (0,hg] x V.

Lemma 2.3. (i). Let a>0e S be elliptic in & on R?". Then there exista €
S¥/2 which is rea) elliptic in S¥2 on R® and satisfies

Op,(a) = Op,(«) Op,(@) mod h*0OP<.
Moreovera is the forma = /a+hay, a; € SV2.
(ii). Let ae S5 b e S and assume that a is elliptic inkSon suppb). Then there
exists ce S such that

Op,(a) Op,(c) = Op,(b) mod h*OPS.

Proposition 2.4. Let ae S¢ and assume that a is elliptic in¥Son R?". Then
there exists f> 0 and be S such that

Opy (@) Opy(b) = Op,(b) Opy(a) = Id,
for any he (0, hg].

See [1] for the proof.
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2.2. Semiclassical defect measuresin this section, we explain some properties
of the semiclassical measure. We consider the family oftfans onR" {un}o<h<n,
that is bounded in_?;

Sup |[UpllL2 < oo.
0<h§h0

Lemma 2.5. Let ae S°. Then

(2.2) lla”(x, hD)ll 2,12 < supal + O(hY?).
R2n

Proof. We write A, =a"”(x,hD). From Theorem 2.1, we hav&; A, = Op,(aa)+
hOop!(r), r € S°. Since sugx|al’> —aa > 0 and the sharp Garding inequality,

2 2011112 2
IAUll{. = supalllullf. + ChllulI{.. 0
n

R2

Theorem 2.6 (Existance of the semiclassical defect measurbgre exists &Radon
measurex on R? and a sequence jh— 0 such that

(@0 D), ) > [ alx, &) d
R n
for all symbols ae CS°(R™).
See [2] for the proof.

DErFINITION. We call u a semiclassical defect measure associated with the se-
quence{uy, }.

REMARK. In general, the semiclassical defect measure depend ondtake a
sequenceghi}.

We give examples of semiclassical measures which are usdédeiproof of the
main theorem.

ExAMPLE 1. Letu be a semiclassical defect measure associated with a sequenc
{un;} and x € S°. Then{x™(x, hjD)un;} has a semiclassical defect measye L.

EXAMPLE 2. LetXg, X1, & € R", ¢ € L?(R"). Take

_ X =X0\ i((x=x)-
o =h n/4¢( " )en«x x)&)/h
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Then there exists precisely one associated semiclassigasure
1 = 11911 280,0)-

Proof. We prove it here fom € C°(R?"), ¢ € CS°(R") since we only use this
case in this paper.

(a(x, h D)Uh, Llh)

- (27r1h)n / a(x ; , é)e‘i/")(X—”fuh(y)uh(X) dy d& dx

- 1 X+y e (Y =X\ (X=X
_(277)nh3n/2/a( > ,g)e(l/)(x y)-( o)fp hi2 1) Hij2 dy dt dx

After the change of variable (- xg)/hY/2 = X, (y — Xo)/hY? =Y, (€ —&)/hY?2 = &,
we obtain.

1 X +Y _ .
= oy [ 2o m 5 e R S0 e

Now we apply the Lebesgue’s convergence theorem.

lim (@(x, hD)u, un)

1 X+Y : -
:MBW/a<xo+hl/2 5 ,$0+hl/zE)e'(x_Y)'“q)(Y)go(X)dY d= d X

= Gy | a0 )¢ S(FoNENX) d2 dX
= a(xo, £)ll@llf.. O
For the proof of the main theorem, we consider a semicldssieasure associated

with a functionu(x,t;h) on R" x [0, 00) x (0,hg] for somehg > 0. Heret is a parameter
and assume that

sup  |[[UnllLzry < oo forany T > 0.
O<h<hg,0<t<T

We define the symbol clas§ which is the space of functiorat, x, £; h) satisfying

alae . a(t, x, £; h
sup | t X,E ( é )|

Bk < oo, forall | € Ng and multi-index «.
(t,x,&,h)€[0,00) xR x (0, 1]

Similarly OP$ is the space of operators whose symbol is in the s{Sicd et r(x,t;h)
be the function orR" x [0, oo) x (0, ho] such thatr (x, t; h) € HI(RD) for somed € R
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and any {, h) € [0, o) x (0, hg]. We write r(x; t, h) = o (h) when

(Op,(@)re,n, It,h)

H — 0, h— 0 uniformly on [0,T]

for any T > 0 anda € C{°(U). HereU c R?" is an open set.

We now assume that a familjun}o<n<n, iS an approximate solution of a certain
equation. In this case, we have a propagation theorem forrasponding semiclassi-
cal defect measure.

Theorem 2.7. Let p= po+hpy, po, p1 € § Where p, p; are independent of the
h-variable and p is real-valued Assume that g(t) € C1([0, o0); L2(R")) satisfy

{(h Dt + Po)un = I p,

2.3
(2:3) Unlt=0 = vn,

where g, = of (h) for some open set UMoreover we assume that

sup  [un(t)llLzgny < oo
O0<h<1,0<t<T

forany T > 0, and{uvh,} has a semiclassical measure Then there exists a subsequence
of {hj} such that{un, (t)} has a semiclassical measuyugt) € C1([0, 00); D' (V)) satisfying

(2.4) [%/«L(t) +{po, u}(t) — 2(Im py) =0, in [0, o) x U,
() =v.

Here {a, b} denotes the Poisson bracket of a anddefined by

Proof. By usual existence theorem and diagonal argumeete tis a subsequence
{hj.} € {hj} such that{uhjk} has an associated semiclassical defect meas(tjec D’
for anyt in a dense sef C [0, oc0). we extend this semiclassical defect measure to
anyt € [0, c0).

For any sequencéti} C 7, lim_, ti =t anda € C°(U), we show the existence
of limi_ [ adu(t). We estimate A,un, Un)(ti) where we writeA, = a*(x, hD)

|(AnUn, Un)(ti +1) — (AnUn, un)(ti)]

i+ d
[ S woar

i

ti+l i+
/ (Ahatuh,uh)dt+/ (Anun, d:up) dt

1 i
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ti+l .
=| [ { A Pontn, w0 ~ (B Pastn, w0+ (At )

ti+ .
- {—%(Ahuh, Poytn)(t) — (Anti, IPrah)(©) — 1 (Aut, rh,t)(t)} dt‘
ti

<

ti+
/r {%(i [Pon, An]Un, Un)(t) — (Ani P1p + (i P1n)" Ann, Uh)(t)} dt‘

+

ti+
/ (A i) — (U, Agrn (O} dt

ti

sinceuy, is a solution of (2.3). Byryn =0 (h) and Lemma 2.5, we have
(2.5)
|(Anun, Un)(ti +1) — (Anun, un)(ti)| < C{(sup{po, a}| + 2 supapy|) +o(1)}ll, h— 0.

We now taket; +1 € 7, h = h;,. Since{u;(t)} has a semiclassical measure fot 7,
by takingk — oo, we obtain

2.6) ‘/ adu(t +1) - / a du(t)| = Clsuri{po, )l + 2 supap)iil

From this inequality,{fadu(ti)} is the Cauchy sequence so {im, [‘adu(t) exists.
We now define/ a du(t) by this limit. We haveu € C([0, o0), D'(U)) by (2.6).

Next we show lim—oo(Anun, , Un, )(t) — [adu(t). This can be seen from the
following inequality

(Ahuhjk, Uhik)(t) - / a dM(t)‘
= |(Ahuhik’ uhik)(t) o (Ahuhik’ uhik)(ti)|

(Avtn U, )(©) — [ @ du(t)

+ +

/adu(ti)—/adu(t)‘.

Finally we showu(t) satisfies (2.4). From previous calculus, we have

(AnUn,,, U, )(t +1) — (AnUn,,, Un, )(t)
t+
= / (10 ({po. a)) + Opt'(2a(im pp)}un, , un, ) dt+0(1), Kk — co.
t
Takek — oco. Then we have
t+H
d 1) — du(t) = , 2a(l du(t) dt.
/a w(t+1) /a w(t) /t /({po a} +2a(lm py)) du(t)

Dividing this equation byl and lettingl — 0, we obtain

e [ adu© = [ tpo. @)+ 220m po) ducv,
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So u(t) satisfies (2.4) angk € C*([0, oc], D'(U)). O
3. Proof of Theorem 1.2

3.1. Systemization. We transform the equation (1.1) to the first order system by
using h-pseudodifferntial operators. We multiply (1.1) tby

1
(3.1) h8t2u+ﬁZhDia4j(x)hDju+a(t,x)h du=0.
i

Putqg=qo+0; € S*. Here
o h2
— 1 -
o = ?j g &'l Ch—z ?i 0i 9 &j .
We can rewrite (3.1) as

1
(3.2) h 92u + Eq;{’u +a(t, x)h 8u = 0.

Take x € C3°(R") which has a sufficiently small support negr= 0, x(0) > 0 and
0 < x(¢) < 1. Aifter adding (¥h)xu to both side of the equation, we have

1 1
(3.3) h3t2U+ﬁ(q"’X)ﬁ’U+a(t’ x)h gu = Hxﬁ)u.

Thenq+ x > 0 and it is elliptic inS?. So from Lemma 2.3 (i), we can takee S
that is elliptic in S' and satisfies

@+ x)y =2y oAy mod h*OPS.
Moreover . is of the formi = Ao +hiy, o= /0o + x, A1 € S'. Set
[
h
[
h

Then (3.3) can be written in the following form
(3.5)

()5 2 )(2)-tnlE D)~ G

wherer” € h*S. We take Q(t) € S ® My(C) of the form Q(t) = | + hQ(t) to
diagonalise (3.5). Here

(10 _1(0 -a
"(0 1>’ Ql'ﬂ(a o>'

B+ AL
(3.4)

B — — A
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We have
wl V1) _ Ay 0 w( V1 h a(t,x) 0 w V1
mor(12)=("8 0 )ei(0) =207 e @) ()
(3.6) 1 u v
(o) (0) = (32)

wheref € h*S?, R e h?S® ® M(C). Here we use the-differentiability of a. Let

% (12)=(5)

i)»ﬁ/ 0 U1 h a(t,x) 0 U1

(o —iAﬁ)(az)_E( 0 a(t,x)>(52>
1

~(epui i) () w32

Choosex™e C5° such that O< y <1,

We obtain

>
=
N
SIS
N =
~
1]

(3.7)

(3-8) X

0 (|&]: sufficiently large),
1 (|&]: sufficiently small),

and supp(t %) Nsuppf) = ¥. Multiply (3.7) by (1— %)¥ and the equation becomes
haa—xm(?)
U2
_ syw I)»K 0 U1 _E oy a(t,x) 0 U1
=@ X)h< 0 —i,\g)><52> o X)h< 0 at,x) /\ %

_ Ay 0 ~\w U1 h a(t,x) 0 ~w U1
:( 0 —ikﬁ’)(l_X)h<ﬁ2>_§< 0 a(t,x)>(1_X)h(T)2>

h
[a—zmwxﬁ—zﬂ 0 )
+

0 [(1 A py ga]
mod h*0OPSu,h?0PS ® MZ(C)( zl )
2
We write [(1— %2, ia2 — (h/2)a] = @1, [(1 — )P, —ial — (h/2)a] = @,2. Then
¢1, 92 € hg, supp@s), supp@2) C suppf) modh™ g
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We set

Finally we get

ho w1 _ I)\.ﬁ 0 w1 _ E a(t, X) 0 w1
Nw, )"\ 0 —iAp wo 2 0 a(t, x) wo
3 )
3.9 + -
(3.9 ( 0 o 7
mod h*OPZu, h20PS ® Mz(C)( Zl >
2
Here g1, ¢, € $1 and suppg:), suppfz) C suppf) mod h°°$1.

3.2. Proof of Theorem 1.2. First we prepare some lemmas for the proof.

Lemma 3.1. Let u be the solution of the equatidt.1) and v, v, be the func-
tions defined in(3.4). Then for any Ne N, there exists a constant & 0 such that

(3.10) 1((L = )i vallf aggeny + (L= X v2ll? 2gmy < 4E(U, 1)+ C(NE(U, 1) +hN Ul 2gn))-

Here x is the function in (3.8).
Proof. We write

~\W ~ - 1 .
11— %) vall?2 + (L — R)Fvall? =2{||(1—x)ﬁ’atu||iz+ﬁn(l—x)ﬁ) ﬁ’unfz}
=1+l

We easily have an estimate K1 — %) aull?, < llaull?,.
Next we shall estimate Il

1 S\wWAqw S\ \WAqw 1 w S\w S\wqw
= ﬁ((l_X)hAh u, (1— X)nipu) = ﬁ()\h(l_X)h(l_X)h)\h U, Uyp-1 {1

Thanks to the composition formula, we have

b= (L= XA = (L — O ¥A A+ hyy,
v e S, suppf/) C supp(l— %) mod h*S2.

So we estimate 1l by dividing three parts?®<S?, hy» and {(1 — %)L }2ALAL.



NON UNIFORM DECAY OF TOTAL ENERGY 473

Let us begin withh>®S? part. Suppose € h*S?. We obtain
(i, W1 = ((D) 'y, (D)u)y2
< ChN(Ilullfs) < ChN(Jlull?; + E(u, t))
for all N e N. By this estimate, we can ignore mudS? term appeared in Il.

hy part; Sincey vanishes neaf =0, we can take) € S satisfying—hZAl/?ﬁ’ =
Y. For —h?Ay, we have

(=h2A4Pu, Uyy-1.41 = (DY Pu, hDu)
= (¥ *hDu, hDu) + ([hD, ¥]u, hDu)
= O(W?| DUz ) + ((NDY/]u, hDu)
= O(h?E(u, t)) + (hD - [hD, ¥*]u, Uyy-1 pi.
Leto(hD-[hD, &ﬁ]) = hyy. Thenyy € S, suppf/1) C supp(l- ). So we can apply
similar argument ta/1, ¥, ... and get sufficient estimate.

(1= )ALl part; RecallhPAP = q¥ + x* and supp Nsupp(l-¥) = 9. Then
Lemma 2.3 implies{(1 — %) PAPAY = {(1— X)1%q¥. So we estimatd(1 — %)¥}%qY

(1= DPawu, W = Y (1 — Dy )*hDiajhDju, u)
i

=3 (@ - R)¥1?a;hDju, hDu)
i,j

=Y (ajhDju, hDiu)
i

+ (A - % - DyajhDju, hDu).
]

Since ((1— X)? — 1}a;) is negative, we apply the sharp Garding inequality. We have

> (- %)? - 1ya;hDju, hDu) < ChiihDul?, < ChR*E(u, t).
i

This completes the proof. 0

By definition, we have

(u)-a-o(2)=a-ome( ).

We take x" e C5° satisfying supp C suppy” and x = 1 near the origin. Then (%
AEhQy =1 — X)PhQw (1 — x)y modh®OPS. Using Lemma 3.1, we have

(3.11) lwi — (1 = %)Pvall = Oc(hllulle(t)”2 + h™ |[u]l Lzgny).
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From |Jullg(t) < |lulle(0), we can replacdu|g(t) with ||ul|g(0). The same estimate
follows for w,.

Next we consider a family of solutionfun}o<h<n, Of the equation (1.1) with a
family of the Cauchy datd(gin, O2,n)}o<h<h,- We systematisgup}o<nh<n, as in the
previous section and use notations, for examplen, wap, ... in an analogous way.

Lemma 3.2. Let {un}o<h<n, be the family of solutions of the equati¢h.1) and
assume that Ein, 0) is uniformly bounded on.hThen

(3.12) unllL2gey(t) < Ct+ [lunllL2wrny(0).
Proof. This lemma follows from the inequality

d
2||unllL2rn) T lUnlL2@n)

d d
= S llunlE) =2 Re<&uh, uh>

d
2_
= ‘dtuh

lunILA(R™) < 2¢/2lluplle(t) unllzge < Cllunllizgn. O

L2(R")

Theorem 3.3. Let {uy} be a family of solutions t¢1.1). Assume that|gyn|l 2 =
O(h™) and sup,¢(on,] E(Un, 0) < co. For some C> 0, we can take a subsequence
{hj} € (0, hg] such thatwy h;, wan; have semiclassical measureg v, on R" x R[‘§|>C
satisfying the equation

d
avl ={Ag, v1} —am in [0, 00) x R" x R|”E|>C,
(3.13) q
avz = —{ho, v2} —avy in [0, 00) x R" x RrE|>C‘

Here O(h~*°) meansO(h~™) for somem € N. We can takeC arbitrary small by
shrinking suppf).

Proof. We prove this theorem fap,,. The proof forw,p is similar. By (3.9),
we have

ih . ~
hDiwip = <w + Ea(t’ X)) Wih — i1y V1h
mod h*0PSu,, h’0PS ® MZ(C)< Z”‘ )
2,h

Here ¢; and suppf1) C suppf) modh>*St. We takeC such that supp(y’'C {& €
R"; |£] < C}. This theorem follows from Lemma 3.1, Lemma 3.2 and Theorewh 2
]
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Now we give the proof of Theorem 1.2.

Proof. We show Theorem 1.2 fow(t, (Yo, n0)), n+(t, (Yo, n0))). In this case, we
considerwy . For (y—(t, (Yo, n0)), n-(t, (Yo, n0))), we can apply the same argument
to wa .

We take a family of the Cauchy datgi, gz2.n) = ((h/i)(A)2(1/2)gh, (1/2)gn) for
h e (0,hg]. Then we havei h, v2h)l=0=(n, 0). We setgh =h~"4¢p((x — yp)/h1/2)eXno/h
for ¢ e Cg° and||o|l 2rny=1. We sawgh has a semiclassical measufg, ) in Example 2
of the semiclassical measure. If supp($ sufficiently small, then (% ¥)p v, andw, have
a semiclassical measusg,, ,,) by Example 1 and (3.11).

Let up be the solution (1.1) for this family of the Cauchy data. Thgne A(U)
if his small enough. We estimaté(uy,, 0) as

1 -
E(un, 0)=5 /Rn D @ By Oun % Gun + 1G2nl® dx
i
1 wy—1 wy—1 1
= 5 2_(@.ihDg () g, hD( () an)z + 5
i

1 1
= 5 2_((:)*hDya ;hDy () 2, Ghs + 5
i

1
= O O) " gn, () Hgn)z + O(h) < 2 HO0™).

N

By Theorem 3.3, we can take a subsequefige and C > 0 such that a semiclassical
measurev; of wyp exists and satisfies

dt

d .
—v1={Ao, v} —avy in [0, 00) x R" x R} _¢,
V1lt=0 = S(yo,no)-

We solve this equation. By the ellipticity ofy, the Hamilton vector field for the
Hamiltonian 1o is complete. So the solution is unique and decided yoft ( (Yo, 10)),
n+(t, (Yo, m0))). Since the Hamilton flow conserve its Hamiltonian gngl > ¢ for some
c > 0, we can assume thap = p on (y«(t, (Yo, n0)), n+(t, (Yo, n0))) by changingy to
smaller one. Then this equation has the following solution.

t
dvy = exp{ - fo a(s, y+(t —s, (Yo, m0))) ds}5(y+(t,<yo,no)),n+<t,(yo,no»)
in [0, o) x R" x Rt _¢.

So we have

t
[ au=] exp{— [ ats et 5. 0. 1) ds}am,m) dx e
RM%RE ¢ R"xRY,.c 0

t
> exp{— /o a(s, y+(t —s, (Yo, m0))) ds}.
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By (3.11), we havd|w1,h||f2 < 4E(up, t) + O(h) which implies

/ dv; < 4lim supE(up, t).
R"xR"

El=c h—0

We have
t
(3.14) 4lim supE(up, t) > exp{—/ a(s, y«(t —s, (Yo, n0))) ds} forany t > 0.
h—0 0

By E(up, 0) < 1/4 +O(h*), for any ¢ > 0 there existh > 0 such that

E(up, t) - 4

E(up, t) f h .
E(un. 0) -~ 1+ (up, t) for any he (0, h]

This estimate and (3.14) imply

E(u, t)

uesX(B) { E(u, 0)} = eXp{_ /Ot a(s, y+(t —s, (Yo, m0))) dS}-

We have proved the theorem. ]
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