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Abstract
Kawashita, Nakazawa, and Soga [3] give a necessary condition for the uniform

energy decay of the dissipative wave equation whose principal term has constant
coefficients. In their proof, they construct asymptotic solutions for a suitable family
of the Cauchy data. In this paper, instead of the asymptotic solutions, we consider
the semiclassical measure associated with the family and extend this result to the
variable coefficient case. Moreover we give some lower bound estimate for the
energy decay.

1. Introduction

We consider the Cauchy problem of the dissipative wave equation of the form

(1.1)

8<
:
�2

t u(t , x)�X
i , j

�xi fai j (x)�x j u(t , x)g + a(t , x)�tu(t , x) = 0 in [0,1)� Rn,

ujt=0 = g1(x), �tujt=0 = g2(x) on Rn,

where the functionsai j (x) 2 B1(Rn) and a(t , x) 2 B1([0,1) � Rn) are real-valued;
B1(X) is the space of smooth functions onX whose all derivatives are bounded, and
(ai j (x)) is positive-definite for eachx. Moreover we assume the uniform ellipticity con-
dition: (ai j (x)) � cId in Rn for somec> 0, and a dissipative condition:a(t , x) � 0 in
[0,1)�Rn. As is well known, under these conditions, for any Cauchy data (g1, g2) 2
H1(Rn)� L2(Rn) there exists a solutionu 2 C0([0,1); H1(Rn)) \C1([0,1); L2(Rn))
of (1.1) which is unique in the spaceC1([0,1); L2(Rn)) and satisfies the energy equa-
tion

(1.2) E(u, t) +
Z t

0

Z
Rn

ajut j2(t , x) dx dt = E(u, 0)

for any t � 0. Here E(u, t) is the total energy

E(u, t) :=
1

2

Z
Rn

j�tuj2 +
X
i , j

ai j �x j u �xi u dx.
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From this energy equation,a � 0 means dissipation; ift1 � t2, then E(u, t1) � E(u, t2).
Therefore we expect that the total energy converges to zero as t tends to infinity if the
dissipative term is sufficiently large. For example, ifa is a positive constant, then
E(u, t) decays uniformly with respect to the norm (kg1k2H1(Rn) + kg2k2L2(Rn)).

In the paper [3], Kawashita, Nakazawa, and Soga define the uniform energy decay
property

DEFINITION (Uniform decay property). We say that the equation (1.1) hasthe
uniform decay property if and only if for any" > 0, there existsT(") > 0 independent
of the Cauchy data such that the inequality

(1.3)
E(u, t) � "(kg1k2H1(Rn) + kg2k2L2(Rn) + k(g1, g2)kE' (Rn)),

k(g1, g2)kE' (Rn) :=
Z

(1 + jxj)fjg2j2 + jrg1j2g dx

holds for anyt � T(") and for any solutionu of (1.1) with the Cauchy data (g1, g2)
satisfyingk(g1, g2)kE' (Rn) <1.

They proved following theorem for a necessary condition of the uniform decay
property.

Theorem 1.1. In the equation(1.1), we assume ai j = Æi j , a(t , x) = a(x). Assume
also that there exist some points y0 2 Rn, �0 2 Sn�1 and a neighborhood U of y0 satis-
fying

sup
y2U

Z 1
0

a(y + s�0) ds<1 or sup
y2U

Z 0

�1 a(y + s�0) ds<1.

Then the equation(1.1) does not have the uniform decay property.

REMARK . For a sufficient condition of uniform energy decay, in [6], under the
assumption thatai j = Æi j ,

a(t , x) � a0(1 + jxj + t)�1, �ta(t , x) � 0, a0 > 1,

it is proved that the equation (1.1) has uniform decay property.

In their proof, they construct a family of asymptotic solutions whose energy is
concentrated on the ray. Instead of asymptotic solutions, we consider the semiclassical
measure associated with a family and extend this result to the equation with variable
coefficients. In this case, we should consider a curve (y+(t , (y0, �0)), �+(t , (y0, �0)))
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which is the solution to the following the Hamilton equation

(1.4)

8>>>><
>>>>:

d

dt
y+(t , (y0, �0)) =

��� p(y+(t , (y0, �0)), �+(t , (y0, �0))), t > 0

d

dt
�+(t , (y0, �0)) = � ��x

p(y+(t , (y0, �0)), �+(t , (y0, �0))), t > 0

(y+(0, (y0, �0)), �+(0, (y0, �0))) = (y0, �0)

where p =
qP

i , j ai j (x)� i � j . Similarly, (y�(t , (y0, �0)), ��(t , (y0, �0))) denotes the so-

lution of the Hamilton equation for�p.
Our main result is the following lower bound estimate for theenergy decay.

Theorem 1.2. Let (y0, �0) 2 Rn � Rn n f0g and U be an neighbourhood of y0,
then we have

sup
u2A(U )

�
E(u, t)

E(u, 0)

� � exp

��Z t

0
a(s, y�(t � s, (y0, �0))) ds

�
.

HereA(U ) is the set of solutions to(1.1) satisfying ujt=0, ut jt=0 2 C1
0 (U ) and� means

that the above inequality holds for each+, �.

From this theorem and the Poincaré’s inequality, we have

Corollary 1.3. Assume that
(1.5)

lim inf
t!1

Z t

0
a(s, y+(t�s, (y0, �0))) ds<1 or lim inf

t!1
Z t

0
a(s, y�(t�s, (y0, �0))) ds<1

for some(y0, �0) 2 Rn � Rn n f0g. Then the equation(1.1) does not have the uniform
decay property.

REMARK . If ai j = Æi j , a(t , x) = a(x), then the assumption becomes

Z 1
0

a(y0 + s�0) ds<1 or
Z 0

�1 a(y0 + s�0) ds<1.

So in the assumption of Theorem 1.1, it is sufficient that an integration of a(x) on
some ray is bounded.

Thus a magnitude of the dissipative term can be measured by anintegration of
a(x) on the Hamilton flow. This is well-known for the wave equation on a compact
Riemannian manifold. In this case, there are many works for the energy decay and
more detailed results are known, e.g. [4], [7]. Especially in [4], the semiclassical mea-
sure is used but the framework is a little different from thispaper.
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2. Preliminaries

NOTATION. N0 = N [ f0g, Rnj� j>C = f� 2 Rn; j� j > Cg (C > 0). For points
x, y 2 Rn and a multi-index� = (�1, : : : , �n) 2 Nn

0, we write �x j = �=�x j , rx = �=�x =
(�x1, : : : , �xn), �� = ��1

x1
� � � ��n

xn
, Dx j = (1=i )�x j , Dx = (1=i )rx, x � y = x1y1 + � � � + xnyn,hxi = (1 + jxj2)1=2, hDisu = F�1[h�isFu(� )]. HereFu(� ) = (1=(2�)n=2)

R
e�i x ��u(x) dx.

Ck(U ; V) is the set of allCk maps fromU to V (k 2 N0 [ f1g). L(E, F) is the
set of all continuous linear operators fromE to F . The symbol (� , � ) denotes the
inner product ofL2(Rn).

2.1. h-pseudodifferential operators.We recall basic facts about h-pseudodifferential
operators. Fora 2 S 0(R2n), its Weyl quantizationawh = aw(x, hD) is defined by

(2.1) awh u(x) =
1

(2�h)n

Z Z
ei ((x�y)�� )=ha

� x + y

2
, ��u(y) dy d�

whereh 2 (0, 1] andu 2 S(Rn). We interpret this integral in the sense of the temperate
distribution. The correspondence Oph: a2S 0(R2n) 7! awh = aw(x,hD)2 L(S(Rn),S 0(Rn))

is an isomorphism for eachh 2 (0, 1]. For A 2 L(S(Rn), S 0(Rn)), �h(A) := Op�1
h (A)

denotes the Weyl symbol of A. We define the adjointA� 2 L(S(R2n),S 0(R2n)) by (Au,v) =
(u, A�v), u, v 2 S(Rn), where (u, v) =

R
uv dx. Then A� = Oph(a), a = �h(A). So if

a 2 S 0(R2n) is real, thenA = Oph(a) is formally self-adjoint.

DEFINITION. The symbol spaceSk, k 2 R is the set ofh-dependentC1 func-
tions a(x, � ; h) on R2n satisfying

j��a(x, � ; h)j � C�h�ik on R2n � (0, 1] for any multi-index �.

We denote byOPSk the space of operators whose symbol is in the spaceSk.

Following theorems are fundamental tools for pseudodifferential operators.

Theorem 2.1. (i). If a(x, � ; h) 2 Sk for k 2 R, then Oph(a) is an element of
L(S, S), and L(S 0, S 0), for each h2 (0, 1].
(ii) (composition). If a j 2 Sk j, j = 1, 2, then Oph(a1) Oph(a2) = Oph(a1 ℄h a2) with

Oph(a1 ℄h a2) = e(ih=2)[D� Dy�Dx D� ]a1(x, � )a2(y, �)jy=x,�=�
=

N�1X
j =0

1

j !

�
ih

2
[D� Dy � Dx D�]

� j

a1(x, � )a2(y, �)jy=x,�=�
+ Oph(r N(a1, a2)(x, � ));

r N(a1, a2)(x, � ) 2 hN Sk1+k2.

Here N2 N. Set r0(a1, a2) = a1 ℄h a2.
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(iii) ( L2 boundedness). If a 2 S0, then Oph(a) is L2 bounded and there is a constant
C > 0 independent of h such thatkOph(a)kL(L2(Rn),L2(Rn)) � C for 0< h � 1.
(iv) (the sharp Gårding inequality). Let a2 S0
Md(C) (d 2 N) satisfy(a + a�)=2� 0
on R2n. Then there exists C> 0 such that

(Oph (a)u, u)(L2)d � �Chkuk2(L2)d ,

for every u2 (L2(Rn))d and all h2 (0, 1].

See [1] or [2] for the proof. Next lemmas follow from the abovetheorem.

Lemma 2.2. Let aj 2 Sk j, j = 1, 2 and supp(a1) \ supp(a2) = ;. Then a1 ℄h a2 2
hN Sk1+k2 for any N2 R.

From now on, we writeh1Sk :=
T

r2R hr Sk and h1OPSk in a similar way.

DEFINITION. Let V be a subset ofR2n. We say thata 2 Sk is elliptic in Sk on
V, if there existh0 > 0 andC > 0 such that

ja(x, � ; h)j � Ch�ik on (0,h0] � V.

Lemma 2.3. (i). Let a� 0 2 Sk be elliptic in Sk on R2n. Then there exists� 2
Sk=2 which is real, elliptic in Sk=2 on R2n and satisfies

Oph(a) � Oph(�) Oph(�) mod h1OPSk.

Moreover� is the form� =
p

a + ha1, a1 2 Sk=2.
(ii). Let a 2 Sk, b 2 S0 and assume that a is elliptic in Sk on supp(b). Then there
exists c2 S�k such that

Oph(a) Oph(c) � Oph(b) mod h1OPS0.

Proposition 2.4. Let a 2 Sk and assume that a is elliptic in Sk on R2n. Then
there exists h0 > 0 and b2 S�k such that

Oph(a) Oph(b) = Oph(b) Oph(a) = Id,

for any h2 (0, h0].

See [1] for the proof.
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2.2. Semiclassical defect measures.In this section, we explain some properties
of the semiclassical measure. We consider the family of functions on Rn fuhg0<h�h0

that is bounded inL2;

sup
0<h�h0

kuhkL2 <1.

Lemma 2.5. Let a2 S0. Then

(2.2) kaw(x, hD)kL(L2,L2) � sup
R2n

jaj + O(h1=2).

Proof. We writeAh = aw(x, hD). From Theorem 2.1, we haveA�h Ah = Oph(āa)+
h Opwh (r ), r 2 S0. Since supR2n jaj2� āa� 0 and the sharp Gårding inequality,

kAuk2L2 � sup
R2n

jaj2kuk2L2 + Chkuk2L2.

Theorem 2.6 (Existance of the semiclassical defect measure).There exists aRadon
measure� on R2n and a sequence hj ! 0 such that

(aw(x, h j D)uh j , uh j )!
Z

R2n

a(x, � ) d�
for all symbols a2 C1

0 (R2n).

See [2] for the proof.

DEFINITION. We call � a semiclassical defect measure associated with the se-
quencefuh j g.

REMARK . In general, the semiclassical defect measure depend on howto take a
sequencefh j g.

We give examples of semiclassical measures which are used inthe proof of the
main theorem.

EXAMPLE 1. Let� be a semiclassical defect measure associated with a sequencefuh j g and � 2 S0. Then f�w(x, h j D)uh j g has a semiclassical defect measurej� j2�.

EXAMPLE 2. Let x0, x1, �0 2 Rn, ' 2 L2(Rn). Take

uh = h�n=4'�x � x0

h1=2
�

ei ((x�x1)��0)=h.
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Then there exists precisely one associated semiclassical measure

� = k'k2L2Æ(x0,�0).

Proof. We prove it here fora 2 C1
0 (R2n), ' 2 C1

0 (Rn) since we only use this
case in this paper.

(a(x, hD)uh, uh)

=
1

(2�h)n

Z
a
� x + y

2
, ��e(i =h)(x�y)��uh(y)uh(x) dy d� dx

=
1

(2�)nh3n=2
Z

a
� x + y

2
, ��e(i =h)(x�y)�(���0)'� y� x0

h1=2
�'�x � x0

h1=2
�

dy d� dx

After the change of variables (x � x0)=h1=2 = X, (y� x0)=h1=2 = Y, (� � �0)=h1=2 = 4,
we obtain.

=
1

(2�)n

Z
a

�
x0 + h1=2 X + Y

2
, �0 + h1=24�ei (X�Y)�4'(Y)'(X) dY d4 d X.

Now we apply the Lebesgue’s convergence theorem.

lim
h!0

(a(x, hD)uh, uh)

= lim
h!0

1

(2�)n

Z
a

�
x0 + h1=2 X + Y

2
, �0 + h1=24�ei (X�Y)�4'(Y)'(X) dY d4 d X

=
1

(2�)n=2
Z

a(x0, �0)ei X �4(F')(4)'(X) d4 d X

= a(x0, �0)k'k2L2.

For the proof of the main theorem, we consider a semiclassical measure associated
with a functionu(x, t ;h) on Rn�[0,1)�(0,h0] for someh0 > 0. Heret is a parameter
and assume that

sup
0<h�h0,0�t�T

kuhkL2(Rn
x) <1 for any T > 0.

We define the symbol classSk
t which is the space of functionsa(t , x, � ; h) satisfying

sup
(t ,x,� ,h)2[0,1)�R2n�(0,1]

j� l
t ��x,�a(t , x, � ; h)j

h�ik <1, for all l 2 N0 and multi-index �.

Similarly OPSk
t is the space of operators whose symbol is in the spaceSk

t . Let r (x, t ;h)
be the function onRn� [0,1)� (0, h0] such thatr (x, t ; h) 2 Hd(Rn

x) for somed 2 R
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and any (t , h) 2 [0,1)� (0, h0]. We write r (x; t , h) = oU
t (h) when���� (Oph(a)r t ,h, r t ,h)

h

����! 0, h! 0 uniformly on [0,T ]

for any T > 0 anda 2 C1
0 (U ). HereU � R2n is an open set.

We now assume that a familyfuhg0<h�h0 is an approximate solution of a certain
equation. In this case, we have a propagation theorem for a corresponding semiclassi-
cal defect measure.

Theorem 2.7. Let p= p0 + hp1, p0, p1 2 Sk
t where p0, p1 are independent of the

h-variable and p0 is real-valued. Assume that uh(t) 2 C1([0,1); L2(Rn)) satisfy

(2.3)

�
(hDt + Ph)uh = r t ,h,
uhjt=0 = vh,

where rt ,h = oU
t (h) for some open set U. Moreover we assume that

sup
0<h�1,0�t�T

kuh(t)kL2(Rn) <1
for any T> 0, and fvh j g has a semiclassical measure�. Then there exists a subsequence

of fh j g such thatfuh jk
(t)g has a semiclassical measure�(t) 2 C1([0,1);D0(U )) satisfying

(2.4)

8<
:

d

dt
�(t) + fp0, �g(t)� 2(Im p1)� = 0, in [0,1)�U,

�(0) = �.

Here fa, bg denotes the Poisson bracket of a and b, defined by

fa, bg =
�a�� �b�x

� �a�x

�b�� .

Proof. By usual existence theorem and diagonal argument, there is a subsequencefh jkg � fh j g such thatfuh jk
g has an associated semiclassical defect measure�(t) 2 D0

for any t in a dense setT � [0,1). we extend this semiclassical defect measure to
any t 2 [0,1).

For any sequencefti g � T , limi!1 ti = t and a 2 C1
0 (U ), we show the existence

of lim i!1 R
a d�(ti ). We estimate (Ahuh, uh)(ti ) where we writeAh = aw(x, hD)

j(Ahuh, uh)(ti + l )� (Ahuh, uh)(ti )j
=

����
Z ti +l

ti

d

dt
(Ahuh, uh)(t) dt

����
=

����
Z ti +l

ti

(Ah�tuh, uh) dt +
Z ti +l

ti

(Ahuh, �tuh) dt

����
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=

����
Z ti +l

ti

��1

h
(Ahi P0huh, uh)(t)� (Ahi P1huh, uh)(t) +

i

h
(Ahrh,t , uh)(t)

�
dt

+
Z ti +l

ti

��1

h
(Ahuh, i P0huh)(t)� (Ahuh, i P1huh)(t)� i

h
(Ahuh, rh,t )(t)

�
dt

����
� ����
Z ti +l

ti

�
1

h
(i [ P0h, Ah]uh, uh)(t)� (Ahi P1h + (i P1h)�Ahuh, uh)(t)

�
dt

����
+

����
Z ti +l

ti

i

h
f(Ahrh,t , uh)(t)� (uh, A�hrh,t )(t)g dt

����
sinceuh is a solution of (2.3). Byr t ,h = oU

t (h) and Lemma 2.5, we have
(2.5)j(Ahuh, uh)(ti + l )� (Ahuh, uh)(ti )j � Cf(supjfp0, agj + 2 supjap1j) + o(1)gjl j, h! 0.

We now taketi + l 2 T , h = h jk . Sincefu jk (t)g has a semiclassical measure fort 2 T ,
by taking k!1, we obtain

(2.6)

����
Z

a d�(ti + l )� Z a d�(ti )

���� � C(supjfp0, agj + 2 supjap1j)jl j.
From this inequality,

�R
a d�(ti )

	
is the Cauchy sequence so limi!1 R a d�(ti ) exists.

We now define
R

a d�(t) by this limit. We have� 2 C([0,1), D0(U )) by (2.6).
Next we show limk!1(Ahuh jk

, uh jk
)(t) ! R

a d�(t). This can be seen from the
following inequality�����Ahuh jk

, uh jk

�
(t)� Z a d�(t)

����
� ���Ahuh jk

, uh jk

�
(t)� �Ahuh jk

, uh jk

�
(ti )
��

+

�����Ahuh jk
, uh jk

�
(ti )� Z a d�(ti )

���� +

����
Z

a d�(ti )� Z a d�(t)

����.
Finally we show�(t) satisfies (2.4). From previous calculus, we have

(Ahuh jk
, uh jk

)(t + l )� (Ahuh jk
, uh jk

)(t)

=
Z t+l

t

�fOpwh (fp0, ag) + Opwh (2a(Im p1))guh jk
, uh jk

�
dt + o(1), k!1.

Take k!1. Then we haveZ
a d�(t + l )� Z a d�(t) =

Z t+l

t

Z
(fp0, ag + 2a(Im p1)) d�(t) dt.

Dividing this equation byl and lettingl ! 0, we obtain

d

dt

Z
a d�(t) =

Z
(fp0, ag + 2a(Im p1)) d�(t).
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So �(t) satisfies (2.4) and� 2 C1([0,1], D0(U )).

3. Proof of Theorem 1.2

3.1. Systemization. We transform the equation (1.1) to the first order system by
using h-pseudodifferntial operators. We multiply (1.1) byh

(3.1) h �2
t u +

1

h

X
i , j

hDi ai j (x)hD j u + a(t , x)h �tu = 0.

Put q = q0 + q1 2 S2. Here

q0 =
X
i , j

ai j � i � j , q1 =
h2

4

X
i , j

�i � j ai j .

We can rewrite (3.1) as

(3.2) h �2
t u +

1

h
qwh u + a(t , x)h �tu = 0.

Take � 2 C1
0 (Rn) which has a sufficiently small support near� = 0, �(0) > 0 and

0� �(� ) � 1. After adding (1=h)�wh u to both side of the equation, we have

(3.3) h �2
t u +

1

h
(q + �)wh u + a(t , x)h �tu =

1

h
�wh u.

Then q + � > 0 and it is elliptic in S2. So from Lemma 2.3 (i), we can take� 2 S1

that is elliptic in S1 and satisfies

(q + �)wh � �wh Æ �wh mod h1OPS2.

Moreover� is of the form� = �0 + h�1, �0 =
p

q0 + � , �1 2 S1. Set

(3.4)

0
BB�
�t +

i

h
�wh

�t � i

h
�wh

1
CCAu =

� v1v2

�
.

Then (3.3) can be written in the following form
(3.5)

h�t

� v1v2

�
=

�
i�wh 0
0 �i�wh

�� v1v2

�� h

2
a(t , x)

�
1 1
1 1

�� v1v2

�� �1

h
�wh + r wh

��
u
u

�

where r wh 2 h1S2. We take Q(t) 2 S0
t 
 M2(C) of the form Q(t) = I + hQ1(t) to

diagonalise (3.5). Here

I =

�
1 0
0 1

�
, Q1 =

1

4i�
�

0 �a
a 0

�
.
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We have

(3.6)

h�t Q
w
h

� v1v2

�
=

�
i�wh 0
0 �i�wh

�
Qw

h

� v1v2

�� h

2

�
a(t , x) 0

0 a(t , x)
Qw

h

�� v1v2

�

� �Qw
h

1

h
�wh + r̃ wh

��
u
u

�
+ Rwh

� v1v2

�

where r̃ 2 h1S2
t , R 2 h2S0

t 
 M2(C). Here we use thet-differentiability of a. Let

Qw
h

� v1v2

�
=

� ṽ1ṽ2

�
.

We obtain

(3.7)

h�t

� ṽ1ṽ2

�
=

�
i�wh 0
0 �i�wh

�� ṽ1ṽ2

�� h

2

�
a(t , x) 0

0 a(t , x)

�� ṽ1ṽ2

�

� �Q
1

h
�wh + r̃ wh

��
u
u

�
+ Rwh

� v1v2

�
.

Choose ˜� 2 C1
0 such that 0� �̃ � 1,

(3.8) �̃ � �0 (j� j : sufficiently large),
1 (j� j : sufficiently small),

and supp(1� �̃) \ supp(�) = ;. Multiply (3.7) by (1� �̃)wh and the equation becomes

h�t (1� �̃)wh
� ṽ1ṽ2

�

� (1� �̃ )wh
�

i�wh 0
0 �i�wh

�� ṽ1ṽ2

�� h

2
(1� �̃ )wh

�
a(t , x) 0

0 a(t , x)

�� ṽ1ṽ2

�

� � i�wh 0
0 �i�wh

�
(1� �̃)wh

� ṽ1ṽ2

�� h

2

�
a(t , x) 0

0 a(t , x)

�
(1� �̃)wh

� ṽ1ṽ2

�

+

0
BB�
�
(1� �̃ )wh , i�wh � h

2
a

�
0

0

�
(1� �̃ )wh , �i�wh � h

2
a

�
1
CCA
� ṽ1ṽ2

�

mod h1OPS2
t u,h2OPS2

t 
 M2(C)

� v1v2

�
.

We write [(1� �̃)wh , i�wh � (h=2)a] = '1
w
h , [(1 � �̃ )wh , �i�wh � (h=2)a] = '2

w
h . Then'1, '2 2 hS1

t , supp('1), supp('2) � supp(�̃ ) modh1S1
t .
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We set

(1� �̃)wh
� ṽ1ṽ2

�
=

� w1w2

�
.

Finally we get

(3.9)

h�t

� w1w2

� � � i�wh 0
0 �i�wh

�� w1w2

�� h

2

�
a(t , x) 0

0 a(t , x)

�� w1w2

�

+

� '1
w
h 0

0 '2
w
h

�� ṽ1ṽ2

�

mod h1OPS2
t u, h2OPS1

t 
 M2(C)

� v1v2

�
.

Here '1, '2 2 S1
t and supp('1), supp('2) � supp(�̃ ) mod h1S1

t .

3.2. Proof of Theorem 1.2. First we prepare some lemmas for the proof.

Lemma 3.1. Let u be the solution of the equation(1.1) and v1, v2 be the func-
tions defined in(3.4). Then for any N2 N, there exists a constant C> 0 such that

(3.10) k((1� �̃ )wh v1k2L2(Rn) +k(1� �̃ )wh v2k2L2(Rn) � 4E(u, t) +C
�
hE(u, t) +hNkuk2L2(Rn)

�
.

Here �̃ is the function in (3.8).
Proof. We write

k(1� �̃)wh v1k2L2 + k(1� �̃)wh v2k2L2 = 2

�k(1� �̃ )wh �tuk2L2 +
1

h2
k(1� �̃ )wh �wh uk2L2

�
= I + II.

We easily have an estimate I =k(1� �̃)wh �tuk2L2 � k�tuk2L2.
Next we shall estimate II

II =
1

h2
((1� �̃)wh �wh u, (1� �̃ )wh �wh u) =

1

h2
h�wh (1� �̃)wh (1� �̃ )wh �wh u, uiH�1,H1.

Thanks to the composition formula, we have

�wh (1� �̃ )wh (1� �̃)wh �wh = f(1� �̃ )wh g2�wh �wh + h wh ,

 2 S2, supp( ) � supp(1� �̃ ) mod h1S2.

So we estimate II by dividing three parts;h1S2, h wh and f(1� �̃)wh g2�wh �wh .
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Let us begin withh1S2 part. Supposer 2 h1S2. We obtain

hr wh u, uiH�1,H1 = (hDi�1r wh u, hDiu)L2

� ChN(kuk2H1) � ChN(kuk2L2 + E(u, t))

for all N 2 N. By this estimate, we can ignore modh1S2 term appeared in II.
h wh part; Since vanishes near� = 0, we can take ̃ 2 S0 satisfying�h21 ̃wh � wh . For �h21 ̃wh , we have

h�h21 ̃wh u, uiH�1,H1 = (hD ̃w
h u, hDu)

= ( ̃wh hDu, hDu) + ([hD,  ̃wh ]u, hDu)

= O(h2kDuk2L2(Rn)) + ([hD ̃w
h ]u, hDu)

= O(h2E(u, t)) + hhD � [hD,  ̃wh ]u, uiH�1,H1.

Let � (hD � [hD,  ̃w
h ]) = h 1. Then 1 2 S2, supp( 1) � supp(1� �̃ ). So we can apply

similar argument to 1,  2, : : : and get sufficient estimate.f(1� �̃)wh g2�wh �wh part; Recall�wh �wh � qwh +�wh and supp� \supp(1� �̃) = ;. Then
Lemma 2.3 impliesf(1� �̃)wh g2�wh �wh � f(1� �̃)wh g2qwh . So we estimatef(1� �̃ )wh g2qwh

hf(1� �̃ )wh g2qwh u, uiH�1,H1 =
X
i , j

(f(1� �̃)wh g2hDi ai j hD j u, u)

=
X
i , j

(f(1� �̃)wh g2ai j hD j u, hDi u)

=
X
i , j

(ai j hD j u, hDi u)

+
X
i , j

(((1� �̃ )2� 1)wh ai j hD j u, hDi u).

Since (f(1� �̃)2� 1gai j ) is negative, we apply the sharp Gårding inequality. We haveX
i , j

(((1� �̃)2� 1)wh ai j hD j u, hDi u) � ChkhDuk2L2 � Ch3E(u, t).

This completes the proof.

By definition, we have� w1w2

�� (1� �̃)wh
� v1v2

�
= (1� �̃ )wh hQ1

w
h

� v1v2

�
.

We take ˘� 2 C1
0 satisfying supp ˘� � supp�̃ and �̆ � 1 near the origin. Then (1��̃ )wh hQ1

w
h = (1� �̃)wh hQ1

w
h (1� �̆ )wh modh1OPSt . Using Lemma 3.1, we have

(3.11) kw1� (1� �̃)wh v1k = Ot (hkukE(t)1=2 + h1kukL2(Rn)).
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From kukE(t) � kukE(0), we can replacekukE(t) with kukE(0). The same estimate
follows for w2.

Next we consider a family of solutionsfuhg0<h<h0 of the equation (1.1) with a
family of the Cauchy dataf(g1,h, g2,h)g0<h<h0. We systematisefuhg0<h<h0 as in the
previous section and use notations, for example,w1,h, w2,h, : : : in an analogous way.

Lemma 3.2. Let fuhg0<h<h0 be the family of solutions of the equation(1.1) and
assume that E(uh, 0) is uniformly bounded on h. Then

(3.12) kuhkL2(Rn)(t) � Ct + kuhkL2(Rn)(0).

Proof. This lemma follows from the inequality

2kuhkL2(Rn)
d

dt
kuhkL2(Rn)

=
d

dt
fkuhk2L2(Rn)g = 2 Re

�
d

dt
uh, uh

�

� 2





 d

dt
uh






L2(Rn)

kuhkL2(Rn) � 2
p

2kuhkE(t) kuhkL2(Rn) � CkuhkL2(Rn).

Theorem 3.3. Let fuhg be a family of solutions to(1.1). Assume thatkg1,hkL2 =
O(h�1) and suph2(0,h0] E(uh, 0) < 1. For some C> 0, we can take a subsequencefh j g � (0, h0] such thatw1,h j ,w2,h j have semiclassical measures�1, �2 on Rn�Rnj� j>C

satisfying the equation

(3.13)

8>><
>>:

d

dt
�1 = f�0, �1g � a�1 in [0,1)� Rn � Rnj� j>C,

d

dt
�2 = �f�0, �2g � a�2 in [0,1)� Rn � Rnj� j>C.

HereO(h�1) meansO(h�m) for somem 2 N. We can takeC arbitrary small by
shrinking supp( ˜�).

Proof. We prove this theorem forw1,h. The proof forw2,h is similar. By (3.9),
we have

hDtw1,h �
��wh +

ih

2
a(t , x)

�w1,h � i'1
w
h ṽ1,h

mod h1OPS2
t uh, h2OPS1

t 
 M2(C)

� v1,hv2,h

�
.

Here '1 and supp('1) � supp(�̃ ) modh1S1
t . We takeC such that supp( ˜� ) � f� 2

Rn; j� j < Cg. This theorem follows from Lemma 3.1, Lemma 3.2 and Theorem 2.7.
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Now we give the proof of Theorem 1.2.
Proof. We show Theorem 1.2 for (y+(t , (y0, �0)), �+(t , (y0, �0))). In this case, we

considerw1,h. For (y�(t , (y0, �0)), ��(t , (y0, �0))), we can apply the same argument
to w2,h.

We take a family of the Cauchy data (g1,h, g2,h) = ((h=i )(�wh )�1(1=2)gh, (1=2)gh) for
h2 (0,h0]. Then we have (v1,h, v2,h)jt=0 =(gh, 0). We setgh =h�n=4'((x� y0)=h1=2)ei x ��0=h
for '2C1

0 andk'kL2(Rn) =1. We sawgh has a semiclassical measureÆ(y0,�0) in Example 2
of the semiclassical measure. If supp( ˜� ) is sufficiently small, then (1��̃ )wh v1 andw1 have
a semiclassical measureÆ(y0,�0) by Example 1 and (3.11).

Let uh be the solution (1.1) for this family of the Cauchy data. Thenuh 2 A(U )
if h is small enough. We estimateE(uh, 0) as

E(uh, 0) =
1

2

Z
Rn

X
i , j

ai , j �x j g1,h �xi g1,h + jg2,hj2 dx

=
1

8

X
i , j

(ai , j hDx j (�wh )�1gh, hDxi (�wh )�1gh)L2 +
1

8

=
1

8

X
i , j

((�wh )�1hDxi ai , j hDx j (�wh )�1gh, gh)L2 +
1

8

=
1

4
� (�wh (�wh )�1gh, (�wh )�1gh)L2 + O(h1) � 1

4
+ O(h1).

By Theorem 3.3, we can take a subsequencefh j g and C > 0 such that a semiclassical
measure�1 of w1,h exists and satisfies8<

:
d

dt
�1 = f�0, �1g � a�1 in [0,1)� Rn � Rnj� j>C,

�1jt=0 = Æ(y0,�0).

We solve this equation. By the ellipticity of�0, the Hamilton vector field for the
Hamiltonian�0 is complete. So the solution is unique and decided on (y+(t , (y0, �0)),�+(t , (y0,�0))). Since the Hamilton flow conserve its Hamiltonian andj�0j> c for some
c > 0, we can assume that�0 = p on (y+(t , (y0, �0)), �+(t , (y0, �0))) by changing� to
smaller one. Then this equation has the following solution.

d�1 = exp

�� Z t

0
a(s, y+(t � s, (y0, �0))) ds

�Æ(y+(t ,(y0,�0)),�+(t ,(y0,�0)))

in [0,1)� Rn � Rnj� j>C.

So we haveZ
Rn�Rnj� j>C

d�1 =
Z

Rn�Rnj� j>C

exp

�� Z t

0
a(s, y+(t � s, (y0, �0))) ds

�Æ(y+,�+) dx d�
� exp

�� Z t

0
a(s, y+(t � s, (y0, �0))) ds

�
.
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By (3.11), we havekw1,hk2L2 � 4E(uh, t) + O(h) which implies

Z
Rn�Rnj� j>c

d�1 � 4 lim sup
h!0

E(uh, t).

We have

(3.14) 4 lim sup
h!0

E(uh, t) � exp

�� Z t

0
a(s, y+(t � s, (y0, �0))) ds

�
for any t > 0.

By E(uh, 0)� 1=4 +O(h1), for any " > 0 there exists̃h > 0 such that

E(uh, t)

E(uh, 0)
� 4

1 + � E(uh, t) for any h 2 (0, h̃].

This estimate and (3.14) imply

sup
u2A(U )

�
E(u, t)

E(u, 0)

� � exp

�� Z t

0
a(s, y+(t � s, (y0, �0))) ds

�
.

We have proved the theorem.
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