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1. Introduction

Kallaher [3] proposed the following conjecture.

Conjecture. Let π be a finite affine plane of order n with a collineation

group G which is transitive on the affine points of π. If G has two orbits on the

line at infinity, then one of the following statements holds:

(i) The plane π is a translation plane, and the group G contains the group
of translations of π.

(ii) The plane π is a dual translation plane, and the group G contains the

group of dual translations of π.

The purpose of this paper is to study this conjecture. When GA has two
orbits of length 1 and n on the line at infinity, where A is an affine point of π,
some work has been done on this conjecture. (See Johnson and Kallaher [2].)

Our notation is largely standard and taken from [3], Let <£>=π{Jίoo be the
projective extention of an affine plane π, and G a collineation group of £P. If P
is a point of & and / is a line of ίP, then G(P, ΐ) is the subgroup of G consisting
of all perspectivities in G with center P and axis /. If m is a line of ίP, then
G("*, *n) is the subgroup consisting of all elations in G with axis m.

In § 2 we prove the following theorem.

Theorem 1. Let π be a finite affine plane of order n with a collineation group
G and let A be a subset of L such that | Δ | =t>2, (n, t)=l and (n, f—l)=l . //
there is an integer ^ > 1 such that \G(P, ίj)\ =kλ for all P e Δ and there is an
integer k2>ί sucht that \G(Qy L)\=k2 for all Q^L—A, then π is a translation
plane, and G contains the group T of translations of π.

In § 3 and § 4, we prove the following theorem by using Theorem 1.

Theorem 2. Let π be a finite affine plane of order n with a collineation

group G which is transitive on the affine points of π. If G has two orbits of length

2 and n—ί on l^, then one of the following statements holds:
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(i) The plane π is a translation plane, and the group G contains the group
T of translations of π.

(ii) \G(L,L)\=n=2m for some m>\, G(Ply L) = G(P2, L) = 1 and

IG{P, L) I =2 for all P e = 4 - {Pu P2}.

The planes which are not Andrό planes, satisfying the hypothesis of

Theorem 2, include a class of translation planes of "order (f, where q is an odd

prime power. (See Suetake [4] and Hiramine [1].)

2. The proof of Theorem 1

In this section, we prove Theorem 1.

Let π be a finite affine plane of order n with a collineation group G,
satisfying the hypothesis of Theorem 1. By Theorem 4.5 of [3], G(4>, 4.) is an
elementary abelian r-group for some prime r dividing n. Hence there exist
positive integers m and s such that k1=rm and k2—rs. Let P be a point of π such
that P e Δ. Let / be an affine line of n such that / 9 P . Since G(P, /«,) is semi-
regular on /-{P},rm\n. Similarly, rs\n. By definition, G(L, L)= U G(P,

and G(P, L) ΠG(Q, L)=\ for distinct points P, Q e / . . Thus

\G(L,L)\ =1+ Σ (\G(P,L)\-l)+ Σ
PΔ Q/

Since τ w | |G(4, ^ ) | , it follows 0= l - ί + ( l - ί ) r 5 - l + ί (modr*). Therefore
(t-l)rs=Ξθ(modrm). Since (ί—1, r)=l, this imples rm\rs. Thus m<ί. On
the other hand, since rs\ \G(L,Q\, it follows O=l+t(rm—\)-l+t (modrs).
Therefore trm = 0 (modr5). Since (ί, r ) = l , this imples rs\rm. Thus w > ί .
Therefore m=.y and k1=k2. By a result of Gleason (See Theorem 5.2 of [3].),
the theorem holds.

3. The proof of Theorem 2 when n is odd

In this section, we prove Theorem 2 when n is odd.
Let π be a finite affine plane of odd order n with a collineation group G

which is transitive on the affine points of π, satisfying the hypothesis of Theo-
rem 2. Then G has an orbit Δ = {Ply P2} of length 2 on /oo. Let A be an affine
point of π. Let Φ be the set of the affine points of π, and let Ω = Φ U 4>. Then
G induces a permutation group on Ω. Φ, Δ and l^—Δ are orbits of G. Since
( | Φ | , | Δ | H ( n 2 , 2)=1 and ( | Φ | , \L-A\)=(n2

y n - l ) = l , by Theorem 3.3 of
[3] Δ and 4,—Δ are orbits of GA.

Lemma 3.1. GA includes an ίnvolutory homology of TΓ.
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Proof. GA induces a permutation group on 4,— {Ply P2}. Since n is odd,
\L— {Pv P2} I =n— 1 is even. Let S be a Sylow 2-subgroup of GA. As G^ is
transitive on /«— {Pj, P2}, n—11 IG^I Hence S φ l . There exists an involu-
tion σ in the center of S. Suppose that σ is a Baer involution. If P1<r = P1,
then P2σ=P2 and so | { P e 4 — Δ | P σ = P } | = %/"**" —l This contradicts a result
of Lύneburg. (See Corollary 3.6.1 of [3].) If PxσφPly then P 2 σ φ P 2 and so
I {Pe/oo—Δ|P<τ=P} | = y^wΓ-fl. This is again a contradiction by Corollary
3.6.1 of [3]. Therefore σ is an involutory homology.

Lemma 3.2. Let σ be an involutory homology of π such that <r^GA. If
P1σ=P], then π is a translation plane, and G contains the group T of translations
of π.

Proof. Since P1σ=^Pv P2σ=P2. Assume that /«, is the axis of σ. Then
σ e φ , L). By a result of Andre (See Corollary 10.1.3 of [3].), the lemma
holds. Assume that /«, is not the axis of σ. We a may assume that APX is the
axis of σ. Then σ^G{P2y APX). There exists τ<=GA such that Pxτ = P2.
Clearly P 2 τ = P 1 . Since P2T-PJ and (ilP1)τ=AP2 > τ-ιστ<ΞG{Pιy AP2). There-
fore σ ( τ " V τ ) G φ , /oo)— {1}, by a result of Ostrom. (See Lemma 4.13 of [3].)
Thus the lemma holds by Corollary 10.1.3 of [3].

Lemma 3.3. If GA includes an involutory homology of π which does not
fix Plf then the following statements hold:

(i) // P^L-{Ply P2}, then there exist Q e L- {Pu P2i P} and σG
G{Q}AP) such that | σ | = 2 .

(ii) // Q^L-{PlfP2}} then there exist P<EL—{P19 P2, Q} and r e
G(QyAP) such that | τ | = 2 .

Proof. By assumption, there exists an involutory homology σ of n such

that σ<=GA and Pγσ^Pv Clearly P2σ^P2. There exists P0<=L—{PvP2}

such that AP0 is the axis of σ. Let Qo be the center of σ. Then Q0e/oo—

{Ply P2, Po}. Let Pe/oo—{Pn P2}. Then there exists φ^GA such that P =

Po9>. Set Q=Qoφ. Clearly Q φ {Pj, P2}. Since σ<ΞG(Q0, ̂ P o ) and (-4P0)^=

APy φ~ισφ^G(Qy AP). This yields the statement (i). Similarly, we have the

statement (ii).

Lemma 3.4. If GA includes an involutory homology of π which does not

fix Pu then one of the following statements holds:

(i) The plane π is a translation plane and G contains the group T of trans-

lations ofπ.

(ii) IfPϊΞL-{P1} P 2}, then G(Py AP)Φl.
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Proof. Let P<=4— {Pv P2}. By Lemma 3.3 (i), there exist Q e 4 —
{Pv P2, P} and σE G(Q> AP) such that | σ | = 2 . On the other hand, by Lemma
3.3 (ii) there exist R^L-{Pιy P2, Q} and TΪΞG(R,AQ) such that | σ | = 2.
Assume that R=P. Then σ<=G(Q, AP) and τ ε G ( P , i4Q). By Lemma 4.13
of [3], στξΞG(A, 4 ) - { l } . Thus the statement (i) holds by Corollary 10.1.3 of
[3]. Assume that RφP. Then since τ(ΞG(R, AQ) and (AQ)σ=AQ, σ~ιτσ<=
G(Rσ, AQ). As R±Rσ, τ(σ'ιτσ)^G(Q9 AQ)-{1} by a result of Baer. (See
Lemma 4.12 of [3].) Thus G(Qy AQ)^1. On the other hand, since GA acts
transitively on 4 — {Pv P2}, the statement (ii) holds.

Lemma 3.5. // G(P,AP) Φ l for all P<=L—{PUP2}, then there is an
integer k> 1 such that \ G{P, 4 ) \ =k for all PΪΞL- {P1} P2}.

Proof. Let P<=4— {Pj, P2}. Let / be an affine line of π such that
By a result of Ostrom and Wagner (See Theorem 4.3 of [3].), there exists
such that (AP)τ = l Since G(P, AP)Φl, τ~ιG{P, AP)τ = G(Pτ, (AP)τ) =
G(P, /)φ 1. Therefore by the dual of Corollary 4.6.1 of [3], G(P, 4 ) Φ 1. On
the other hand, since GA acts transitively on /«,— {Pv P2}, the lemma holds.

Lemma 3.6. // G(P, AP)Φ1 for all P G / M - {PU P2}, ίA«ι | G(PV L) \ -

Proof. Since the order n of π is odd, by Lemma 3.5 |G(P, 4 ) 1 ^ 3 for
all P e 4 - {PJ, P2}. Therefore

U G(P,L)\

Σ

Thus |G(4, 4 ) | > Λ . Hence by a result of Ostrom (See Theorem 4.6 of [3].),
G(P, 4 ) Φ l for all P<=4. In particular G(Ply 4 ) Φ l . There exists τ^GA

such that P2τ=Pv Thus I G(P2, 4 ) I = | r-1G(P2,4)τ | = | G(Ply 4 ) | > 1. Hence
the lemma holds.

Proof of Theorem 2 when w is odd: By Lemmas 3.2, 3.4, 3.5, 3.6 and
Theorem 1, the theorem holds.

4. The proof of Theorem 2 when n is even

In this section, we prove Theorem 2 when n is even.
Let π be a finite affine plane of even order n with a collineation group G
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which is transitive on the affine points of π satisfying the hypothesis of The-
orem 2. Then G has an orbit Δ = {Ply P2} of length 2 on 4 .

Lemma 4.1. G includes a translation of order 2 of π.

Proof. Since n2 \ \ G |, 21 | G | . Let S be a Sylow 2-subgroup of G. Then
there exists an involution σ in the center of S. By Corollary 3.6.1 of [3] the
involution σ is neither a Baer involution, nor an affine elation. It follows that
σ is a translation of π.

Lemma 4.2. G(4, 4 ) is an elementary abelίan 2-group and |G(4, 4 ) | >2 .

Proof. If 72=2, then the lemma holds. Let τzΦ2. Considering the
action of G on 4 , by Lemma 4.1 there exist distinct points Qu <2 2e4 s u c h
that G{Q» 4 ) Φ l and G(Q2, 4)4=1. By Theorem 4.5 of [3], the lemma holds.

Lemma 4.3. // G(PU 4 ) Φ l , then the plane π is a translation plane, and
the group G contains the group T of translations of π.

Proof. There exists an involution σ, such that σ lGG(P I, 4 ) for iG {1, 2}.
Then σ !σ 2 eG(4, 4 ) and \σ1σ2\ = 2« Let Q be the center ίoί σxσv Then
Q ^ 4 — {Pj, P2} Since G acts transitively on L—{Plf P2}, there exists r>\
such that |G(P, 4 ) | =2r for all P G 4 — {P1? P2}. There exists 5>1 such that
IG(Plf L)\ = \G(P2, 4)I =2S. Let |G(4, 4 ) | - 2 f . Then t^r+s. Since

2' =

By the same argument as in the proof of Theorem 1, 2r = 0 (mod 2s) and 2 s+1 = 0
(mod 2r). Thus s<r<s+l.

Suppose that r=s+l. From (*), 2 ' = l + ( n - l ) ( 2 s + 1 - l ) + 2 ( 2 s - l ) follows.
Therefore n=2* (2S+1— I)" 1. As n is an integer, this is a contradiction. Hence
r=s. By Theorem 5.2 of [3], the lemma holds.

Lemma 4.4. // G(PuL) = l, then \G(L,L)\=n=2m for some m>\,
G(PU L)=1 and \ G(P, 4 ) | =2 for all P e 4 - {Pu Pz}.

Proof. By assumption, G(P2, 4 ) = 1 follows. If P e 4 — {Pv P2}, then
G(P, 4 ) Φ 1. Therefore there exists kan integer r> 1 such that | G(Q, 4 ) I = 2r

for all Q e 4 — {Pj, P2}. Suppose that r > 2. Then

|G(4,4)|
Σ

= (2"
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= 3/2—2

By Theorem 4.6 of [3], it follows that G(Q, Qφl for all Q e 4 . In particular

G(PvQ*l, a contradiction. Hence r = l . Therefore |<3(/oo, 4 ) | =(2—l)

(n—\)-{-\=n. Therefore there exists an integer m>\ such that n=2m. Thus

the lemma holds.

Proof of Theorem 2 when n is even: By Lemmas 4.3 and 4.4, the theorem

holds.
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