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Introduction

Let (xy, *++, &,,: 7,, -+, 7,,) be a presentation of a group G. Then an Alex-
ander matrix of G can be obtained by mapping the #Xm matrix (9r,/0x;) into
a matrix with coefficients in the group ring JH of some homomorphic image
H of G. (We are using 7 for the row index and j for the column index. More-
over, what we call Alexander matrices are called in Fox [4] ‘Homomorphisms
of the Jacobian’.) In this note, we consider the reverse of the above procedure.
We start with a matrix A over a group ring, and look for groups with an Alex-
ander matrix equal to 4.

Let F be the free group on the set of m letters {x,, -+, x,,}, and JF be the
integral group ring on F. Let X: F—H be an epimorphism from F onto a
group H, and let X: JF— JH be the extension of X to group rings. Then
for an # X m matrix A with entries f} over JH, if G is such that

X
F— H

o\ /v

commutes and (ar,-/axj)izA, we say G realizes A w.rt. X. Here ¢ is the
canonical projection, and «r is the epimorphism induced by X. Let R denote
Ker X. We show

Theorem I. Given an nxXm matrix A with entries fi over JH, there is
a group G realizing A war.t. X iff 7., fiX(x;—1)=0, i=1, ---,n. Further if
the entries of A satisfy this condition and G is a group with presentation (x,, +++, X,,:
71, ++*, 1,) such that (0r;[0x,;)*=A, the collection of all groups realizing A w.r.t X is

{(xla oty Xt A4l o0y anrn)lal) ) d"E[R, R]} .

(1) Submitted as part of the requirements for the degree of Master of Science at Osaka
City University, March 1983.
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Thus ‘up to [R, R]’, groups realizing 4 w.r.t. X are unique, a result in effect

established in Crowell [1] (by a different method) and attributed there to Blanch-
field.

For the proof, we consider the set A(f,, -+, f,) defined with respect to
s+ fwin JH by
A(fy s Fu) = {weF: X(Owjox;) = f;y j=1, -, m} .
We also use the following condition (*):
S fX(x;—1) = h—1;,,  for some he H (%)

and show

Theorem II. A(f, -, Fu) s non empty iff i, oo, Fu satisfy (), in which
case, fOT uEA(fla Hh) fm)r A(fl) °-~,fm)=10[R, R]-

As an immediate corollary, we give a description of
0(4) = {@", -+, w")EF": (dw'|ox;)* = A} .

When a group G realizing A w.r.t. X satisfies a certain condition, we say
that 4 is the pseudo Fox Alexander matrix of G w.r.t. X. (See section 1)
We give necessary and sufficient conditions on A for A to be the pseudo Fox
Alexander matrix of some group w.r.t X.

In order to compare matrices of different size, we introduce the concept
of a satisfactory (matrix, homomorphism) pair (4, X), where (4, X) is satis-
factory iff A can be realized by some group w.r.t. X. To every satisfactory
pair there is uniquely associated a (group, homomorphism) pair we call the
associate. We define an equivalence relation in the spirit of [4] between satis-
factory pairs, and an equivalence relation between associates, such that equiva-
lent satisfactory pairs have equivalent associates, and satisfactory pairs with
equivalent associates are equivalent. Further, we consider satisfactory pairs
(4, X) such that 4 is the pseudo Fox Alexander matrix of some group G w.r.t. X,
and show that in this case the associate of (4, X) has group G/G”, where
G” is the second commutator of G. In the special case H is the trivial group,
the uniqueness of X renders the concept of a pair redundant. The satisfactory
pairs are effectively all matrices 4 over JH=]. The associate to A turns out
to be the abelian group with relation matrix 4. Moreover, the equivalence
relation on satisfactory pairs reduces to the usual equivalence relation on rela-
tion matrices of abelian groups, and the equivalence relation on associates is
that of group isomorphism. We have thus generalized the well known abelian
group—integral matrix correspondence.

In some cases, it is a simple matter to determine whether polynomials
Fi» =+, fm satisfy (¥). Good examples are the abelianizer F— FJ[F, F], and
the epimorphism F—<z> onto the free group on one element defined by x;—¢
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for all j. Here KerX equals {weF: exponent sum over each generator is
zero} (Lyndon [5], corollary 4.2), and {w&F: exponent sum equals zero},
respectively. Moreover, in the proof of sufficiency of (%) for A(f, -+, f,) to
be non empty, we explicitly construct an element w in A(f,, ++, f,,)-

Section 1 contains the proof of the main result and corollaries. Section
2 deals with satisfactory pairs and their associates. In section 3 we give some
examples of the construction of a @ in A(f,, «++, f,,) for fi, -+, f,, satisfying (*).
It gives me much pleasure to thank my supervisors Professor J. Tao and Pro-
fessor A. Kawauchi, for all their help and encouragement.

1. The main results

Suppose there is a weEF such that X(ow/ox;)=Ff, j=1, -, m. By the
fundamental formula (Fox [3], 2.3), we have

231 (0wfox)(x;—1) = w—1.
Then applying X,
P> FiX(x—1) = R(w—1) = X(w)— 1,4

Noting that X(w)&H, condition (%) in the introduction is seen to be necessary
for A(f, -+, f,) to be non empty. We proceed to show sufficiency.

Lemma 1.1. Let f,, -, f,, be elements of JH, and h be an element of H,
such that 330, fX(x;—1)=h—1;5. Then there is a word wEF such that X(w)
=h, and X(0w/ox;)=f;, j=1, -+, m.

Proof. Let R denote Ker X. Let w*&F be an element of X'(h). (recall
X is assumed to be onto.) Let f¥* be representatives of X7'(f)), j=1, ---, m,
and set f=3,f(x;—1)+1. Then X(offox;))=f;, j=1,-,m. For
0(f*(x;—1))/ox;=f*5;;, for any f*< JF. Further, X(f—aw*)=(2r F,X(x;—
1)+1)—h=0. So f—w*cR. Hence fw* '—1€ R, since ¥ is an ideal. Let
denote the fundamental ideal ([3]) of JF. By [3, 4.10], there is an element
rER such that fw* ' —r& R X;moreover, since RX is an ideal, we have f—rw*
ERX. Set w=rw*cF. Then X(w)=h, and by [3, 4.5], X(3(f—w)/0x;)=0,
or X(0w[dx;)=X(df|0x;)=f;, j=1, --+, m, as required.

Corollary 1.2. A(f), +++, f,) is non empty iff f,, -+, f satisfy (*).

The proof is immediate.
We now turn to the question of structure in A(f;, +*+, fo)-

Lemma 1.3. For a[R, R], awcS A(f,, -, fn) whenever wE A(F, +++, F)-
Proof. By [3, 4.9], the ideal R determines the commutator subgroup
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[R, R] of R. Hence {acF: a—1€ RX}=[R, R]. But by [3,4.5], for acF,
an element a—1 is in RX iff all derivatives of a belong to R. Hence for
a<[R, R], X(8a/dx;)=0, j=1, ---,m. So as d(aw)/dx; = 0a[0x;+ a(0w/[dx;), we
see X(8(aw)/0x,;)=0+X(dw[dx;)=f;, j=1, ---, m, completing the proof.

Lemma 1.3 implies that w[R, R]=[R, RJw CA(fy, ***, f) for wEA(Fy, -+, Fu)-

Lemma 1.4. Any two elements w, w' € A(f,, -+, f) differ by an element
of [R, R), so that w[R, R]=[R, Rlw=A(fy, -**, f)-

Proof. By assumption, X(dw/ox;)=f;=X(0w'[ox;), j=1, -, m. Hence
X(0(w—w')[0x;)=0, j=1, ---,m. 'Then, by [3, 4.5], w—w'E RX. But w—w’
in R implies ww' ' —1€ R, since RX is an ideal. So by [3, 4.9], ww' '€
[R, R], and the proof is complete.

Proof of Theorem II. Corollary 1.2 and Lemmas 1.3 and 1.4.

Corollary 1.5. Given an nxm matrix A with entries f% over JH, 6(A)=
| A(f;) ) f:n)'

Proof of Theorem I. Assume G is a group realizing 4 w.r.t. X, with
presentation (¥, =+, &,,: #;, ***, 7,) such that (6r,-/6xj)§=/1. By the fundamental
formula 7,—1=317., (0r,/xd,)(x;,—1), i=1, ---,n. Hence X(r,—1)=217-, X(r,/
0x;)(x;—1), i=1, -+, n. But by our assumption on G, X(r;)=1, and we have
0=237, X(3r;[0x;)X(x;— 1)=2") FiX(x;—1), i=1, -+, m, as required.

Conversely, suppose the entries of A satisfy 3., fiX(x;—1)=0, i=1, -+, n.
Since this is just () with h=1,,, Theorem II gives elements 7, A(f1, ++, fh),
t=1, +«-,n. Using the definition of A and the fundamental formula, we see

0 = 33721 Fi%(oe;—1) = 2371 X(0r,[0x;)%(x;— 1)=X(r;— 1),
whence X(r,)=1, =1, --,n. It is now easy to see the group G presented by
(%) +++y X2 7y, +oo, 7,) realizes A w.r.t. X. That all groups G* realizing 4 w.r.t.
X, with presentation (x, -+, x,,: 7¥, «--, 7¥) such that (ar’,-"/axj);‘zA have the
stated form follows from Corollary 1.5 and Theorem II, after noting that
(r¥, -, r¥)cO(A4). This completes the proof.

Let »: F—GJ[G, G] be the composite FiG»G/[G, G], and X be its ex-
tension to group rings. Fox ([4, §4]) calls the #Xm matrix (6r,-/8xj)’? an Alex-
ander matrix of G. This leads to the question of when, for a group G realizing
A w.r.t. X, there is an isomorphism o: G/[G, G]—H such that the diagram

Pl

\, /-

GG, G]
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commutes. When such a diagram exists, we say that G has A as its Alexander
matrix in the pseudo Fox sense w.r.t. X, or that A4 is the pseudo Fox Alexander
matrix of G w.r.t. X.

Lemma 1.6. Let A be an nXm matrix with entries f: over JH, and G
be group realizing A w.r.t. X, with presentation (x,, -++, x,,: 1y, -*+, ,) such that
(6r,-/6xj)7‘=A. Then G has A as ils Alexander matrix in the pseudo Fox sense
w.r.t. X iff H is abelian and A° is a relation matrix for H, where o denotes the
trivializer JH—J.

Proof. Observe that A°=(f})°=(0r;/0x;)°. Suppose that G has A4 as its
Alexander matrix in the pseudo Fox sense w.rt. X. Then G/[G, G]=H.
H is therefore abelian, and by [4, 3.5], A° is a relation matrix for H. This

proves sufficiency.
Conversely, suppose H is abelian and 4° is a relation matrix for H. Since
H is abelian, there is an epimorphism ¢: G/[G G)—H such that

DN //

GJIG, G]

commutes. Moreover, by [4, 3.5], 4° is also a relation matrix for G/[G, G],
whence G/[G, G]=H. But any homomorphism from a finitely generated
group onto itself is an isomorphism, from which we deduce o to be an isomor-
phism. This completes the proof.

2. Satisfactory pairs and their associates

We say that the pair (4, X) is satisfactory when there exists a group G
realizing 4 w.r.t. X. Recall that if G is a group realizing 4 w.r.t. X, there
is a diagram

F———)H

A

Define the subgroup G*+ of G to be [¢R, $R]. Since G**CKer y, ) in-
duces an epimorphism Vr: G/G**—H. Let G=G/G**. Then

Theorem 3.1. The pair (G, ¥ is determined umiquely by the satisfactory
pair (4, X).
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Proof. The quotient G has a presentation which may be obtained from
a presentation of G by adding {a: a<[R, R]} as relators. The proof now
follows from the description of all groups realizing 4 w.r.t. X given in Theorem I.

(G, ) is called the associate of (A4, X). The associates (G, V) and (G, ¥)
of satisfactory pairs (4, X) and (4, X4) are said to be equal in case there is
an isomorphism p: G—Gy such that

AN
pl; >‘p*H

commutes. Equality is the equivalence relation between associates mentioned
in the introduction. We define an equivalence relation between satisfactory
pairs as follows:

*

DEFINITION (compare [4], p. 199.). Two satisfactory pairs are equivalent
if one can be obtained from the other by a finite number of elementary trans-
formations (I), (II), (I)7Y, (II)~?, defined as follows:

(I) Replace (4, X) by (4’, X'), where A’ is obtained from A4 by adjoining
a new row equal to a left linear combination of the rows of 4, and X'=X.

(IT) Replace (4, X) by (4', X'), where A" is the result of adjoining to
A a new row and a new column (say the pth and gth respectively) such that:

(a) The entry in the intersection of the row and column is 1.

(b) The remaining entries in the new column are all 0.

(c) The remaining entries f%, ---, f2, --+, 4., in the new row satisfy ‘—(*)’;
that is

Z]j:"i}:ff%(xj—l) = —h+1,y, for some heH ,
J
and the epimorphism X’ from the free group F' on m+1 letter {x,, --+, x,, **-,
%n1} onto H is defined by X'(x;)=X(x,), j=1, -+, §, --*, m+1; X'(x,)=h.

()™ The inverse operation to (I).

(II)™* Replace (4, X) by (4', X'), where A’ is obtained from A by removal
of the pth row and the gth column, and X’ is the restriction of X to the free
group F' generated by {x,, --+, £,, *--, x,,}. Here A satisfies

(a) The entry in the intersection of the pth row and the gth column is 1.

(b) The remaining entries in the gth column are all 0.

If (4, X) is satisfactory, by Theorem I 3Y., f2X(x;,—1)=0. If in addi-
tion A satisfies condition (a) of (II)7},

S FiGe,—1) = 1-X(w,).
So f4, -, fh, -, fh satisfy ‘—(x)’ for h=X(x,). This together with the next
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lemma justifies the label (IT)™.

Since the interchange of any two rows or any two columns is easily seen
to be an elementary transformation, we shall assume throughout the rest of this
paper that the pth row and gth column are the bottom row and extreme right
hand column respectively.

Lemma 2.2. The result of applying (I), (II), (I)~", or (II)™* to a satisfactory
pair is again a satisfactory pair.

Proof. For the elementary transformations (I), (I)™!, and (II), this is
clear. In the case of (II)™" we must show the map X’ from F’ into H is onto,
or X(x,) can be written in terms of X(x,), -+, X(¥,-;). By Lemma 1.1, there is
a word v F such that X(v)=1, and X(6v/dx;)=f%, j=1, ---,m. In the special
case the number of times x, occurs in o is one, the relation X(v)=1 shows
X(x,,) is expressible in terms of X(x,), -**, X(%,-,), and X’ is onto. So suppose
the number of times x, occurs in v is p>1. As X(dv/ox,)=1, p is odd, and
among the p terms in this derivative, there are (p—1)/2 cancelling pairs cor-
responding to particular occurrences of x, and x,' in . Focussing on one
pair, write v=ax},bx;’c, E=+1, and note the assumption

X[(a—ax'bxy’)(0x%/0x,)] = 0

implies b&Ker X. Consequently v,=abc is such that X(v,)=1, and X(6v,/0x,,)
=1. Moreover, v, has fewer cancelling pairs by one. Repeating this argument
enough times brings us back to the special case, and X’ is seen to be onto.
This completes the proof.

Theorem 2.3. Equivalent satisfactory pairs have equal associates.

Proof. Let (4, X) be a satisfactory pair, and G be a group realizing 4
w.r.t. X with presentation (x,, +:-, x,,: 7y, **+, 7,) such that (6r,-/8x,-)’~‘=A. By
Lemma 2.2, it suffices to show the satisfactory pair obtained from (4, X) by
applying any one of (I), (II), (I)™%, or (II)~! has associate equal to that of (4, X).
For this, let G’ be any group realizing 4’ w.r.t. X’. Let ¢': F'— G’ be canon-
ical projection, and y»': G'— H be the epimorphism induced by X’. We find
a G’ and an isomorphism p: G—G"’ such that

GI
commutes. Then pp Ker X=¢' Ker X', and p induces an isomorphism p: G—
G’ such that
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4

>
\ o
< <4 g

el
Q<<—Q

commutes. Hence this suffices to show (4, X) and (4’, X) have equal associ-
ates. 'The isomorphism p: G—G"’ is defined as follows. A group G’ realizing
A’ w.r.t. X' can be obtained by applying a Tietze transformation ([4], p. 197)
to (xy, ***y X,: 7y, +++, 7,) Oof the same type as the type of the elementary trans-
formation used to obtain (A4’, X’) from (A4, X). For an elementary trans-
formation of type (I) or (I)7!, this follows from [4], p. 199. For a type (II)
elementary transformation, by Lemma 1.1, there is a @ €F such that X(w)=
h=X(%p+.), and X(0w/0x;)=—f%*", j=1, ---,m. But then

X' (0t i207)/0;) = { — R (g ) @wfox) = F1*, =1,y m,
1y j=m+1.

So we may take G’ to be the group presented by (x, «*«, X, Xpi1: 71, *+0y 7,
%,11@7"). For a type (II)~! elementary transformation, recall that in Lemma 2.2
we showed X(x,), -+, X(x,,—,;) generate H. Hence there is a word w& F’ such
that X(w)=X(*,,), and X(dw/dx;)=f%, j=1, ---,m—1. We may thus assume the
presentation of G is (%, =+, X% 73, ***, 71, X, "),  The isomorphism p: G—G’
induced by the Tietze transformation is easily seen to satisfy diagram (a), and
the proof is complete.

Next we establish the converse to this theorem.
Theorem 2.4. Satisfactory pairs with equal associates are equivalent.

Proof. Let (4, X) and (A4, X4) be satisfactory pairs, where 4, is a
u Xt matrix over JH and X, is an epimorphism from the free group Fy on ¢
letters {v,, -+, ¥;} onto H. Further, let G be a group realizing 4 w.r.t. X,
with presentation (xy, «:+, ®,: 7y, ***, 7,) such that (6r,~/6xj)’7=A; let G4 be a
group realizing A, w.r.t. X4, with presentation (yi, ---,¥,: §, -, §,) such that
(854/8y,)%*=Ay; and let p: G—>Gy be an isomorphism such that

G'\H(_1
Pl H
(_;*/‘p’*

commutes. We must show (4, X) and (44, X4) are equivalent. We begin
with two observations. First, a Tietze transformation T applied to (x,, -*-, x,,:
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7, -+, 7,) induces an elementary transformation on (4, X) of the same type as
follows. Let the result of applying T to (xy, *++, &, 7y, ==+, 7,) be (xf, -+, x4:
71, -+, 75). Denote the group presented by (xf, -, x5’z 7{, -+, 7}) by G’, and
let p: G—G' be the isomorphism induced by 7. Denote by ¢’ the canonical
projection from the free group F’ on {1, -+, x5} onto G’, and define the epimor-
phism X': F'— H to be the composite
Fe Lo n.

Set A':(arf/axf)"', 1=1, <, p; j=1, --;0. Then it is easy to see that the
satisfactory pair (4’, X) differs from (A4, X) by an elementary transformation
S of the same type as that of 7. We say & was induced by 7. Second, let
{a,, a, ---} and {b;, by, ---} be subsets of F and F respectively which generate
[Ker X, Ker X] and [Ker X4, Ker X,] respectively. Then G is presented by
(%1, *+*y X2 71y =+ ¥y @y, Gy, =) and Gy is presented by (¥, ==, ¥t 835 *++, Suy by,
by, --+). Moreover, X(daox;)=0, for all ac{a, a, -} and j=1, -, m, by
Lemma 1.3 with w=1, and f,=---=f,=0. So denoting by a; any finite subset
of {a, a, ---}, the Alexander matrix A’ of the presentation (x, -+, x,,: 7y, -+,
7, ap) at X is just A with finitely many zero rows added. Hence (4, X) and
(4, x) differ by an elementary transformation of type (I), so are equivalent.
Similarly, X4(086/8y,)=0, for all 5 {b,, b,, ---}. And denoting by b, any finite
subset of {b,, b,, -}, the Alexander matrix A% of the presentation (y,, ---, y,:
S1y 00y Suy bp) at Xy 1s just A, with finitely many zero rows added. Hence
(A%, X«) and (A4, X4) are equivalent. Our method of proof is to give a finite
sequence of Tietze transformations starting from (x,, «--, x,: 75,°*+, 7,, az) such
that the induced sequence of elementary transformations applied to (4', X) gives
(A%, X«). Here ag is the smallest subset of {a,, a,, ---} necessary for the mani-
pulations which follow. It will be clear that a is finite.

Let v: F—G denote the composite F—>G—>G of canonical projections.
Define vy: Fy—Gy similarly. Pick a representative p, in »~'p 'wy(y,) and
add a new generator y; and a new relator y,p;" for each /, /=1, -+, ¢, obtaining

(%1 %5 Xy Y1y, Ve2 11y = Ty VDTS "ytp?l’ ap) e (1).

Let (4,, X,) be the result of applying the induced elementary transformations to
(4’, X). 'The epimorphism X, maps from the free group on {x,, «, x,, ¥1, *, ¥:}
onto H, and is defined by X,(x;)=X(x,), j=1, -+, m; X,(y))=X(p)), I=1, -+, ¢.
For all Tietze transformations, hence all induced elementary transformations, are
of type (II). The matrix 4, is the Alexander matrix of the presentation (1) at X,.

Now {p~'w4(¥)): I=1, -++, t} generates G. Hence »(x;)=p 'v4(q;) for some
word ¢; in Fy. Using the yp~' type relators, ¢ can be rewritten as a word
w; in F. Then x;w;'is in Ker », the consequence of {r,, +,7,, a;, a5, **}, j=
1, ---,m. But the number of times elements of {a,, a,, -} appear in x;w;"' is
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finite, whence there is a finite subset of {a,, a,, -} (assumed to be in ay)
which together with 7,, «--, 7, have x;w;' in its consequence, j=1, -, m. Use
this, together with the yp~ type relators, to add in relators x;q7%, j=1, -+, m.
Moreover, s, can be rewritten as a word v, in F, and v, is easily seen to be in
Kerv. Use this, together with the arguments above, to add in the relators

S k=1, «--,u. 'The result is the presentation

(x5, y:r, 8907 xg7Y, ap) e (2)

where we have suppressed the subscripts of the generators and relators. Let
(43 X,) be the result of applying the induced elementary transformations to
(4, %;). The epimorphism X, is equal to X,, since all Tietze transformations
are of type (I). The matrix 4, is the Alexander matrix of the presentation
(2) at X,.

Reversing the roles of G and Gy, it follows that (y;, ==+, y,: 83, **, Suy b5)
is equivalent to

@ yir, s, yp7 Y 2™ bp) e (3).

Here b is the smallest subset of {b, b,, ---} necessary for the proof. It will
be clear by is finite. Let (4; X3) be the result of applying the induced ele-
mentary transformations to (4%, Xy). The epimorphism X; from the free
group on {x,+,%,, ¥1,*, ¥} onto H is defined by Xs(x;)=X(q;), j=1, ---, m,
Xs(y)=Xx(¥:), =1, -+, t. 'The matrix A; is the Alexander matrix of the
presentation (3) at X3 'The arguments used to add the relators s, k=1, -+, ,
to (1) are easily adapted to first add &, to (2) and then add the resulting a, to
(3). The result in both cases is a presentation of the form

(x’ _’V: r: S, _yP_l, xq_lv aFr bF) .
All transformations are of type (1), so if X,=Xs, (4, X.) is seen to be equivalent
to (4, Xs), and the proof will be complete. But by associate equality
Xao(x;) = Xo(x;) = X(x;) = ¥v(x;) = Fp7va(q;) = Xa(q)) = Xo(x;), j=1, -+, m,
and
Xo(¥1) = Xu(y1) = X(p1) = ¥o(p1) = ¥P ws(y) = Xa(y) = Xs(y1), I=1, -,
This completes the proof.

In Lemma 1.6, we showed that if H is abelian, 4 is a matrix over JH such
that 4° is a relation matrix for H, and G is a group realizing 4 w.r.t. X, then
G has 4 as its Alexander matrix in the pseudo Fox sense w.r.t. X. It is easy
to see that the equivalence relation on satisfactory pairs is such that the mat-
rices A° and A7 obtained from equivalent pairs (4, X,) and (4, X,) are rela-
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tion matrices of isomorphic groups. So if the matrix of one pair in an equiva-
lence class is a pseudo Fox Alexander matrix with respect to its epimorphism,
all are. We claim that in such an equivalence class, the associate has group
equal to G/G”. This will follow if G**=G”. Butif 4 has G as its Alexander
matrix in the pseudo Fox sense w.r.t. X, Ker A=Ker X. (Section 1.) Then
[Ker A, Ker A]=[Ker X, Ker X], and G” = [Ker A, Ker A] =[Ker X, Ker X]=
G+, as required.

3. Examples

ExampLE 1. Let F be the free group on {x, x, x;}. Let X: F—><{¢>
be defined by x;—¢, j=1, 2, 3, and X be the extension of to group rings. Set

= —47 1438458,
fo=2t1—2t—58,
fa=2t""4-12.
Then fi+ft+fs=1+t+1, and 3%, f,(t—1)=£—1. By Theorem I there is

no group realizing A=(f, f, ;) w.r.t. X. But by Lemma 1.1, A(f;, f3, f5) is non
empty; we use the method of proof to construct an element. Set

w=xi,

= —4x7'4+14-3x,4-543,

fF = 2x7'—2x,—5x} ,

[¥=2x7"4af.
Then f=>.:fF(x;—1)+1=—4+ 2%} + Sxi+2x7 x,—2x,20,— Swdn, + 227 x5+
xixy. X(8flox;)=f;, j=12,3. Further, f—u* is in Ker X, whence by [3],
p. 549, we can write

f"“‘ZC* = Ellesl Edi(si—1)e, = P2 (re—1)c

where &=--1; d,, ¢;,, and ¢, are in F; s, 7, are in Ker X, and r,=d,si"d;?,
and ¢,=d,s" "¢, Let w=(IIi-1r)w*. Then w is in A(f;, fo, f3); this is
the essence of the proofs of Lemma 1.1 and [3, 4.10]. A method for determin-
ing the 7, is to be found in [3], p. 549; we write:

— 44207 20y 2067 o0y = 2(a7 20, — 1)+ 2(x7 23— 1),

2x2—2x,%, = 2(xtxz a7 —1)ayx,
2 3 2 —3 3

X1X3— X1 = (x1x3x1 -—1)x1 N

S5x}—5x3x, = 5(wing w7’ —1)xix,,

and put
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w = (o7 ,)%(0e7 " 205) (whoez ooy )P (wdoegne ®) (actoez oo ®)B(wd)
(order is immaterial among the 7,’s.) X(0w/ox;)=f;, j=1, 2, 3.

ExampLE 2. Let F be the free group on {x, x,}. Let X: F—F/[F, F]
be the abelianizer, let X(x,)=2%,, X(x,)=Z%,, and let X be the extension of X to
group rings. Set

= (2%i%,—4%;%)(1—%,),

o= (221%,—427%)(%,—1).
Then fi(%—1)+f,(%,—1)=0, so by Theorem I there is a group G realizing
A=(f, f2) w.r.t. X. Further, since 4°=(00) is a relation matrix for F/[F, F],

it follows by Lemma 1.6 that G has A4 as its Alexander matrix in the pseudo
Fox sense w.r.t. X. To find a G realizing 4 w.r.t. X, set

w* =1
= —4x7 247+ 20kx,— 2x2

¥ = 2x3x,— 4w x5 2 —20ixn,—4x7?

=%

< <

Then f=Y.fF(x;—1)+1= —4xz%x, + 45" 0, 4 2x% 20, 2, — 2xF x5, + 206} 25—
4x,x7 442,572 —2x3%,+1.  Proceeding as in the previous example, we write

f—1=4(x,x3 227 65— 1)z %00, + 4(7 20y 20,007 — 1)acy0z ™ + 2(acdocy,005 27— 1) 20,
2(x3xdxr ooz 27 2 —1)wixdx,, and set

w = (2,207 27 2w5)* (07 "y, 1) (a0 y0,005 o073 (i T e B

The group G presented by (x,, x,: w) has 4 as its pseudo Fox Alexander
matrix w.r.t. X.
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