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1. Introduction. Let Xly- -yXn be independent random variables with
common density f(x—θ)y — oo<#, θ<°of where θ is an unknown translation
parameter. We shall consider here the case that f(x) is a uniformly continuous
density which vanishes on the interval (—°o, 0) and is positive on the interval
(0, oo) and particularly

f(x)~ax as x->-\-0

with 0 < α < o o . Let Sn=θn(Xl9» ,Xn) be a m.l.e. (maximum likelihood es-

timate) of θ for the sample size n. Woodroofe [1] showed that {-~-an log n)1/2

χ Φn—Θ) n a s an asymptotic standard normal distribution. The purpose of the
present paper is to estimate the speed of convergence of anφn—θ) to the standard
normal distribution. Here 2a2

n=an{\ogn-\-\og\ogn). Similar results for mi-
nimum contrast estimates in the regular case were given by Michel and Pfanzagl
[2] and Pfanzagl [3]. More precisely, Pfanzagl [3] showed that for every com-
pact K there exists a constant cκ such that for all Θ^Ky n^l and

where θ% denotes a minimum contrast estimate for the sample size n.

2. Conditions and the main result. We shall impose the following
regularity conditions on f(x). These conditions are stronger than those made
by Woodroofe [1].

CONDITIONS

( i ) f(x) is a uniformly continuous density which vanishes on (— oo, 0) and
is positive on (0, oo).

(ii) f(x) is continuously differentiate on (0, oo) with derivative f\x) and
f'(x) is absolutely continuous on every compact subinterval of (0, oo) with de-
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rivative/"(#).
(iii) For some a and r, Q<a, r<oo

f'(x) = a+O(xr) and /"(*) - O{xr~ι) as x -> + 0 .

Let £(#)=log/(#) for #>0. Then £(#) will be continuously differentiable
on (0, oo) with derivative g'=f'\f and g\x) will be absolutely continuous on
every compact subinterval of (0, oo) with derivative g//=(ff//—f'2)lf2'

(iv) For every t^O

\"{g(x+t)}2f(x)dx<co.

(v) For every α>0, there is a δ>0, for which

\"sup\g'(x+u)\3flx)dx<oo .
Ja |«|^δ

(vi) For every α>0, there is a δ>0, for which

\ &\ip{£'(x+u)}2f(x)dx<oo .
Ja I»I^S

REMARK. Under conditions (i) and (ii), condition (iii) is equivalent to the
following condition (iii)'.

(iii)' For some a and r, 0<α, r<oo

1 + r ), g'(x) - x - ' + O ^ - 1 ) and ^ ( Λ ) = -χ-2+O(xr~2)

as Λ -> + 0 .

EXAMPLES ([1]). Let

f(x) = y[r(—)Ί ^ exp (-xr), x>0, for some r>0 ,

then conditions (i)—(vi) are all satisfied.

Let MΛ=min (Xu - ,Xn) and GH(t)=Jlg(Xi-'t) for t<Mn. Condition

(i) insures that m.l.e.'s exist in the interval (—oo, Mn). Let uny n^.\y be a
sequence of m.l.e.'s. If conditions (i) and (ii) are satisfied, then

-oo<S n<M n and G'nφn) = 0

with probability 1.

Theorem. Suppose that conditions (i)—(vi) are all satisfied. Let vnf w^l,
n

denote a sequence of m.l.e.'s for Tίf(Xi~θ) and let 2al=an(log n+log log n).

Then there exists a constant cx such that for all Θ&R, n^\ and t^O
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(2.1) \P,{*.Φ.-Θ)£t) -Φ(ί)I ^

Also, for every s, 0 < ί < l , there exists a constant c2 such that for all Θ^R, n^

andt>0

(2.2) \Pθ{an(Sn-θ)^t} -Φ(t) I

Here

REMARK. (1) The assertion of (2.2) holds with (log ri)~ι instead of (log n)s~ι

provided t is restricted to a finite interval (0, M],

(2) We used {-yατz(log n-\-\og log ή))1/2 as the convergence order of m.l.e.

to the true parameter θ. However our result is true for any an, n^zl, satisfying

that analog an= 1+O((log n)~ι). Obviously, this condition includes the case that

an— {-=-an(log n-\-log log ή)}1/2 but excludes the case that an=(-^-an log n)1 / 2.
Al Li

3. Some lemmas. Since θ is a translation parameter, it will suffice to

prove our result in the special case that 0=0. Hereafter, suppose that 0=0.

The following Lemma 1 refines the result of Woodroofe [1].

Lemma 1. Let conditions (i)-(iii) and (vi) be satisfied. Then, for suffi-

ciently small £ > 0 , there exists £iΞ>0 such that

(3.1) Pi sup —Gί'iή^-Δ^cn-1

for alln^l.

Proof. Let a>0 be so small that g\χ)^—λ.χ-* for 0<Λ^2α. There is

a sufficiently small number 0<£<a such that

(\x+6)-2f(x)dx>2\\up I g"(x+t) I f(x)dx+5

because the left-hand integral diverges to oo as £ ^ 0 . Then the event Mn^£

implies that

sup 1 G'n'(t)£=±Σ S (X, + £ ) - 2 + - Σ 7 sup\g"(Xi+t)I
-«^#<jr« n 2n n v\&

where Σ 2 denotes summation over i^n for which u^X{<v. Hence the re-

lations Mn ^ £ and sup — G'n'(t) ̂  — 1 imply
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or

I — Σ ό (Xi+ε)-2- \\χ+ε)-2f(χ)dx I ^ l
n Jo

I ̂  Σ r sup i f(x,+t) I - Jjup i /'(*+*) i /(χ)ώ i ^:

Hence we have

p\ sup -

Since P{Mn>ε}=o(w~1), Lemma 1 follows from condition (vi) and Cheby-
shev's inequality.

Woodroofe [1] mentioned that condition (i) and

\ -g(x)f(x)dx< oo ,
Jo

which is a weaker condition than (iv), imply all assumptions of Wald [4]. Thus
we can make use of his results.

Lemma 2. Let Sn, tt^l, be a sequence of mJ.e.'s. Suppose that conditions
(i)-(iii) and (iv) hold. Then for every £>0 there exists c^O such that

foralln^l.

Proof. Let M be a positive number chosen such that

E{logsupf(X-ή)<E{logf(X)} .

For every t^[—M> —6] there exists an open neighborhood Ut of t such that

The existence of such a positive number M and that of such a Ut follow from
Wald [4]. As {Ut: t^[—M, —£]} covers the compact set [—M, —6], there exists
a finite subcover of this set [—M> —S] determined by * y e [—M, —6]J=1, •••, m.
For notational convenience, let ί70=(—oo, —M) and Uj=Utpj=l, ~-,m. If
|$ j ;>£ and Mn<8, then — o o « ^ — £ and therefore όn&Uj for some j<E
{0, 1, •••, m}, that is to say,



BERRY-ESSEEN BOUND FOR M.L.E. 189

if1 Σ log sup/(Xi-ή^TΓ1 Σ log/(*,•)
» = 1 t&U j ί = l

for someye {0, 1, •••, m). Write

bj = £{log/(X)}-£{log^up/(Jf-0} >0, j = 0, 1, ..., m

and let 2i=min {δ/,i=0, 1, •••, m) >0. Then

In"1 Σ log sup AXi-ή-E{log sup/(X~0} I <*, = 0, 1, .-, m
ί = i t&σ j t&TTj

and

w

ί = l

imply

n~ι 2 log suρ/(X,—ί)<w~12 log/(^i), i = 0, 1, •••, m .
ί = l /eJ7y i = l

Hence we have

Σ ^{I n-1 Σ log sup f{Xt-t)-E {log sup /(Z-ί)} I ̂
y=o ί=i t^Vj tezTj

Now, by conditions (i)-(iii) and (iv), the assertion follows from Chebyshev's
inequality.

For ί = l , •••, n and 0^ί^(log n)1/2, let

Zui = ZΛ{Xift)=Yni-E{Yai},

where

yMί = Ytti(Xiy t) = ^'(X t +α M -^), if ^ ^ α ή 1 ,

= 0 , if

Here £ denotes expectation. Moreover, let bH(t)=E{ZHl(Xu t)}2.

Lemma 3. Let conditions (i)—(iii), (v) and (vi) be satisfied. Then there
exists a constant c such that for all x^R, n^l and 0^ί^(log n)1/2

\P{{nbn{t)γιβΣZm{Xi, t)<x)-Φ(x)I

Proof. We shall first show that

(3.2) E{Ynl} = - t o α ή 1

(3.3) E{Y^ = a log ^
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(3.4) E{\Yκl\
3}=O(an(l+t)->).

By condition (in)', choose a>0 and co^O such that

(3.5) I f(x)-ax I ^ 0 * 1 + r , I g\x)-x-11 ^ V " 1 and | g"(x)+χ-2 \ ^

for 0<x^2a. Next choose >δ>0 such that conditions (v) and (vi) hold. Then

we may establish (3.2) as follows. Since

" *g"(x+u) du
o

we have

say.

It is easily seen that

so that /1=O(αJ1) by (3.5). Next we put

h = \\A°"tg'Xx+u)du}f(x)dx+['{[nl'g"{x+u)du)f{x)dx
Jan Jo Ja Jo

= ^21+^22 > say.

By condition (vi), we have I22=O(aή1t). Moreover let

where

{\ (x+u)-2du}axdx,
aH Jo

W {
αΛ Jo

4a = J\ " [g"(x+u)+(x+u)-*)du}f(x)dx .
Jan Jo

By easy computation, (3.5) implies that

4 i = -taaή1 log ^

Im = O(a»H)

and 7213 = 0{a~lt),

so that (3.2) is established.

To establish (3.3), let
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= J1+J2 > say-

Condition (v) implies that / 2=O(1). Divide ]λ into Jll9 J12, J13 and Ju as fol-
lows:

J a

(x-\-aζιty2axdx,

Then, by (3.5), we have

/is = 0(1)
and Ju = 0(1),

so that (3.3) is established.
Finally, we shall establish (3.4). Let

E{\ YnΔ3} = [jg\

= Kx+K2, say.

By condition (v), we have K2=O(1). Also by (3.5) we have

Ja

This implies (3.4).
From (3.2), (3.3) and (3.4), we have

(3.6) E{Znl

2} = a log an{\+t)-'+O{\),

E{\Znl\*}=O(an(l+t)-1).

Now, the assertion of Lemma 3 follows from the Berry-Esseen theorem ([5],
Theorem 12.4).

In the rest of this section, we shall study the conditional distribution of
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4Γ1 llg\Xi-aήιt) given Mn>aZιt for 0<α^(log ή)1/2. The conditional ditribu-

tion of Xu •••, Xny given Mn>anxt> is that of independent random variables with
common density

f»*{x) = cuf(x), x>aήH

= 0 , otherwise

where

For i = l , ••, n and 0<ί^(log w)1/2 let

ZΛ, * = Zβ l (X,, t) = Yni*-E*{Yni*}

where

Yni*=Yni*(Xi,t)=g'(Xi-a?t), if X,>a;\l+2t),

= 0 if X,.^a^(l+2i).

Here E* denotes conditional expectation given Mn>aZιt. It is easily seen
that cn=l-\-O(n~1) for 0</^(logre)1/2. Thus, in a similar way to Lemma 3, we
obtain

E*{YΛ*} = ta a? log β

E*{Zn*
2} = a log an(\+t)-ι+O(l)

and

which lead to the following lemma.

Lemma 4. Let conditions (i)—(iii), (v) and (vi) be satisfied. Then there
exists a constant c such that for all x^R, n^\ and 0<ί^(log n)1/2

±
where bn*(t)=E*[Zn*(Xl9t)y .

4. Proof of Theorem. As the left sides of (2.1) and (2.2) are uniformly
bounded for Θ&R and t^R, it sufficies to prove the assertion for all sufficient-
ly large n. To simplify our notations we shall use n0 as a generic constant in-
stead of the phrase "for all sufficiently large rC\ In the same manner we shall
use c as a generic constant to denote factors occurring in the bounds.

We shall use ideas related to Woodroofe [1]. It follows from Lemma 1 and
Lemma 2 that

(4.1) J έ
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where O(n~1) is uniform in *e[0, anS). Here £>0 is chosen sufficiently small so
that (3.1) of Lemma 1 holds. Similarly, it follows from Lemma 1 and Lemma 2
that

(4.2) P{aJn>t} = P R 1 Σ / C ^ — ^ K O , Mn>a»

+0(0,

where O(n"1) is uniform in t>0.
We shall first show the validity of (2.1). By condition (iii)'

(4.3) IP K 1 Σ S\Xi+a-H) ^ 0} -P K 1 ± Yni ̂  0} |
ί = l t = l

^ c(\og n)-1

for all n ̂  «0 and 0 ̂  ί ̂  (log re)1/2. Since

where

it follows from Lemma 3 that

(4.4) IPR1 Σ r.
ί = l

for all ra^ 1 and 0 ^ ^ ( l o g n)ϊβ. According to (3.2) and (3.6)

-*.(*) = {na?E{Ynl}){na-n*h{t)Ym

= {- ί + 2ί log (1+ί) (log n)- ι+O((l+ί) (log w)"1

X {1-2 log (1+ί) (log n)-ι+O((log w)"1)} " ^

= - ί + ί log (1+ί) (log «)-i+O((l+ί) (log M)-1) .

Hence, for n^n^ and 0^ί^(log n)1/?

(4.5) |Φ(-*,( ί))-Φ(-0l ^ ^ | ί - *

From (4.1), (4.3), (4.4) and (4.5), there exists a constant c such that

(4.6) |PkA^-*}-Φ(-*)l ίίφogn)-1

for all ra^Wo and 0 ^ ^ ( l o g n)1/2. For ί>(log n)1/2 we have
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{aJ.g-t} - Φ ( - ί ) I gPiajϊ.g-(log «)1/2} +Φ(-(log nf*).

Using (4.6) and Feller ([6], p. 166, Lemma 2), we obtain

(4.7) IP[aj,£-t) -Φ(- f ) I ^c(log w)"1

for w^M,, and f >(log «)1/2. Hence (4.6) and (4.7) imply (2.1).
We next show the validity of (2.2). By condition (iii)'

Hy-Pitfi} Yni*<0\Mn>azH}
1

^ en a;2(3t2+M+l).

Hence, for every s, 0 < f < l , there exists a constant c such that for n^n^ and

(4.8) \P{a^±g'(Xi-a7H)<0\Mn>a^t}-P{a^± Yni*<0\Mn>a7H} \
i=l i=l

Applying arguments similar to those used in (4.4) and (4.5), Lemma 4 implies

(4.9) \P{aήι± Yni*<0\Mn>a;H}-{l-Φ(t)} | ^ ( log rc)"1

ι = l

for n^n0 and 0<α^(log n)m. By (4.8) and (4.9) we have

K 1 ίlg\Xι-anH)<QIMn>a-H)P{Mn><ςH)- {1 -Φ(ί)} I
l

\P{Mn>a?t}

^ {l-Φ(t))P{M.ga?t}+cQ.σg «)s"x

for n^n0 and 0<<^(log n)s/2. Using Feller ([6], p. 166, Lemma 2), we obtain

{l-Φ(t)}P{Mn^a;H} ^ ct e x p ( — 0 (log n)"1

for «2:w0 and t>0. Hence, from this and (4.2) it follows that for n^n0 and

\P{aβn>t] - { 1 -

from which (2.2) is shown by a similar argument used in (4.7). Thus we com-
plete the proof of the theorem.
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