

Title	The Berry-Esseen bound for maximum likelihood estimates of translation parameter of truncated distribution
Author(s)	Matsuda, Tadayuki
Citation	Osaka Journal of Mathematics. 1983, 20(1), p. 185-195
Version Type	VoR
URL	https://doi.org/10.18910/12389
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

THE BERRY-ESSEEN BOUND FOR MAXIMUM LIKELIHOOD ESTIMATES OF TRANSLATION PARAMETER OF TRUNCATED DISTRIBUTION

TADAYUKI MATSUDA

(Received February 4, 1981)

1. Introduction. Let X_1, \dots, X_n be independent random variables with common density $f(x-\theta)$, $-\infty < x, \theta < \infty$, where θ is an unknown translation parameter. We shall consider here the case that $f(x)$ is a uniformly continuous density which vanishes on the interval $(-\infty, 0)$ and is positive on the interval $(0, \infty)$ and particularly

$$f(x) \sim \alpha x \quad \text{as } x \rightarrow +0$$

with $0 < \alpha < \infty$. Let $\hat{\theta}_n = \hat{\theta}_n(X_1, \dots, X_n)$ be a m.l.e. (maximum likelihood estimate) of θ for the sample size n . Woodrooffe [1] showed that $(\frac{1}{2}\alpha n \log n)^{1/2} \times (\hat{\theta}_n - \theta)$ has an asymptotic standard normal distribution. The purpose of the present paper is to estimate the speed of convergence of $a_n(\hat{\theta}_n - \theta)$ to the standard normal distribution. Here $2a_n^2 = \alpha n(\log n + \log \log n)$. Similar results for minimum contrast estimates in the regular case were given by Michel and Pfanzagl [2] and Pfanzagl [3]. More precisely, Pfanzagl [3] showed that for every compact K there exists a constant c_K such that for all $\theta \in K$, $n \geq 1$ and $t \in R$

$$\left| P_\theta \left\{ \frac{n^{1/2}(\theta_n^* - \theta)}{\beta(\theta)} < t \right\} - \frac{1}{\sqrt{2\pi}} \int_{-\infty}^t \exp\left(-\frac{r^2}{2}\right) dr \right| \leq c_K n^{-1/2},$$

where θ_n^* denotes a minimum contrast estimate for the sample size n .

2. Conditions and the main result. We shall impose the following regularity conditions on $f(x)$. These conditions are stronger than those made by Woodrooffe [1].

CONDITIONS

- (i) $f(x)$ is a uniformly continuous density which vanishes on $(-\infty, 0)$ and is positive on $(0, \infty)$.
- (ii) $f(x)$ is continuously differentiable on $(0, \infty)$ with derivative $f'(x)$ and $f'(x)$ is absolutely continuous on every compact subinterval of $(0, \infty)$ with de-

rivative $f''(x)$.

(iii) For some α and r , $0 < \alpha, r < \infty$

$$f'(x) = \alpha + O(x^r) \text{ and } f''(x) = O(x^{r-1}) \quad \text{as } x \rightarrow +0.$$

Let $g(x) = \log f(x)$ for $x > 0$. Then $g(x)$ will be continuously differentiable on $(0, \infty)$ with derivative $g' = f'/f$ and $g'(x)$ will be absolutely continuous on every compact subinterval of $(0, \infty)$ with derivative $g'' = (ff'' - f'^2)/f^2$.

(iv) For every $t \geq 0$

$$\int_0^\infty \{g(x+t)\}^2 f(x) dx < \infty.$$

(v) For every $a > 0$, there is a $\delta > 0$, for which

$$\int_a^\infty \sup_{|u| \leq \delta} |g'(x+u)|^3 f(x) dx < \infty.$$

(vi) For every $a > 0$, there is a $\delta > 0$, for which

$$\int_a^\infty \sup_{|u| \leq \delta} \{g''(x+u)\}^2 f(x) dx < \infty.$$

REMARK. Under conditions (i) and (ii), condition (iii) is equivalent to the following condition (iii)'.

(iii)' For some α and r , $0 < \alpha, r < \infty$

$$f(x) = \alpha x + O(x^{1+r}), \quad g'(x) = x^{-1} + O(x^{r-1}) \text{ and } g''(x) = -x^{-2} + O(x^{r-2})$$

as $x \rightarrow +0$.

EXAMPLES ([1]). Let

$$f(x) = r \left[\Gamma \left(\frac{2}{r} \right) \right]^{-1} x \exp(-x^r), \quad x > 0, \quad \text{for some } r > 0,$$

$$\text{or } f(x) = \frac{1}{d(1+d)} \frac{x}{(1+x)^{2+d}}, \quad x > 0, \quad \text{for some } d > 0,$$

then conditions (i)–(vi) are all satisfied.

Let $M_n = \min(X_1, \dots, X_n)$ and $G_n(t) = \sum_{i=1}^n g(X_i - t)$ for $t < M_n$. Condition (i) insures that m.l.e.'s exist in the interval $(-\infty, M_n)$. Let $\hat{\theta}_n$, $n \geq 1$, be a sequence of m.l.e.'s. If conditions (i) and (ii) are satisfied, then

$$-\infty < \hat{\theta}_n < M_n \text{ and } G'_n(\hat{\theta}_n) = 0$$

with probability 1.

Theorem. Suppose that conditions (i)–(vi) are all satisfied. Let $\hat{\theta}_n$, $n \geq 1$, denote a sequence of m.l.e.'s for $\prod_{i=1}^n f(X_i - \theta)$ and let $2a_n^2 = \alpha n(\log n + \log \log n)$. Then there exists a constant c_1 such that for all $\theta \in R$, $n \geq 1$ and $t \leq 0$

$$(2.1) \quad |P_\theta\{a_n(\hat{\theta}_n - \theta) \leq t\} - \Phi(t)| \leq c_1(\log n)^{-1}.$$

Also, for every s , $0 < s < 1$, there exists a constant c_2 such that for all $\theta \in R$, $n \geq 1$ and $t > 0$

$$(2.2) \quad |P_\theta\{a_n(\hat{\theta}_n - \theta) \leq t\} - \Phi(t)| \leq c_2(\log n)^{s-1}.$$

Here

$$\Phi(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^t \exp\left(-\frac{x^2}{2}\right) dx.$$

REMARK. (1) The assertion of (2.2) holds with $(\log n)^{-1}$ instead of $(\log n)^{s-1}$ provided t is restricted to a finite interval $(0, M]$.

(2) We used $\{\frac{1}{2}\alpha n(\log n + \log \log n)\}^{1/2}$ as the convergence order of m.l.e. to the true parameter θ . However our result is true for any a_n , $n \geq 1$, satisfying that $\alpha n a_n^{-2} \log a_n = 1 + O((\log n)^{-1})$. Obviously, this condition includes the case that $a_n = \{\frac{1}{2}\alpha n(\log n + \log \log n)\}^{1/2}$ but excludes the case that $a_n = (\frac{1}{2}\alpha n \log n)^{1/2}$.

3. Some lemmas. Since θ is a translation parameter, it will suffice to prove our result in the special case that $\theta = 0$. Hereafter, suppose that $\theta = 0$. The following Lemma 1 refines the result of Woodrooffe [1].

Lemma 1. *Let conditions (i)–(iii) and (vi) be satisfied. Then, for sufficiently small $\varepsilon > 0$, there exists $c \geq 0$ such that*

$$(3.1) \quad P\left\{\sup_{-\varepsilon \leq t < x_n} \frac{1}{n} G_n''(t) \geq -1\right\} \leq cn^{-1}$$

for all $n \geq 1$.

Proof. Let $a > 0$ be so small that $g''(x) \leq -\frac{1}{2}x^{-2}$ for $0 < x \leq 2a$. There is a sufficiently small number $0 < \varepsilon < a$ such that

$$\int_0^a (x + \varepsilon)^{-2} f(x) dx > 2 \int_a^\infty \sup_{|t| \leq \varepsilon} |g''(x + t)| f(x) dx + 5$$

because the left-hand integral diverges to ∞ as $\varepsilon \rightarrow 0$. Then the event $M_n \leq \varepsilon$ implies that

$$\sup_{-\varepsilon \leq t < x_n} \frac{1}{n} G_n''(t) \leq -\frac{1}{2n} \sum_u^v (X_u + \varepsilon)^{-2} + \frac{1}{n} \sum_u^\infty \sup_{|t| \leq \varepsilon} |g''(X_u + t)|$$

where \sum_u^v denotes summation over $i \leq n$ for which $u \leq X_i < v$. Hence the relations $M_n \leq \varepsilon$ and $\sup_{-\varepsilon \leq t < x_n} \frac{1}{n} G_n''(t) \geq -1$ imply

$$\left| \frac{1}{n} \sum_{i=0}^n (X_i + \varepsilon)^{-2} - \int_0^\infty (x + \varepsilon)^{-2} f(x) dx \right| \geq 1$$

or

$$\left| \frac{1}{n} \sum_{i=0}^n \sup_{|t| \leq \varepsilon} |g''(X_i + t)| - \int_{-\varepsilon}^\infty \sup_{|t| \leq \varepsilon} |g''(x + t)| f(x) dx \right| \geq 1.$$

Hence we have

$$\begin{aligned} & P \left\{ \sup_{-2 \leq t \leq 2} \frac{1}{n} G''(t) \geq -1 \right\} \\ & \leq P \{ M_n > \varepsilon \} + P \left\{ \left| \frac{1}{n} \sum_{i=0}^n (X_i + \varepsilon)^{-2} - \int_0^\infty (x + \varepsilon)^{-2} f(x) dx \right| \geq 1 \right\} \\ & \quad + P \left\{ \left| \frac{1}{n} \sum_{i=0}^n \sup_{|t| \leq \varepsilon} |g''(X_i + t)| - \int_{-\varepsilon}^\infty \sup_{|t| \leq \varepsilon} |g''(x + t)| f(x) dx \right| \geq 1 \right\}. \end{aligned}$$

Since $P \{ M_n > \varepsilon \} = o(n^{-1})$, Lemma 1 follows from condition (vi) and Chebychev's inequality.

Woodroffe [1] mentioned that condition (i) and

$$\int_0^\infty -g(x)f(x) dx < \infty,$$

which is a weaker condition than (iv), imply all assumptions of Wald [4]. Thus we can make use of his results.

Lemma 2. *Let $\hat{\theta}_n$, $n \geq 1$, be a sequence of m.l.e.'s. Suppose that conditions (i)–(iii) and (iv) hold. Then for every $\varepsilon > 0$ there exists $c \geq 0$ such that*

$$P \{ |\hat{\theta}_n| \geq \varepsilon \} \leq cn^{-1}$$

for all $n \geq 1$.

Proof. Let M be a positive number chosen such that

$$E \{ \log \sup_{t < -M} f(X - t) \} < E \{ \log f(X) \}.$$

For every $t \in [-M, -\varepsilon]$ there exists an open neighborhood U_t of t such that

$$E \{ \log \sup_{u \in U_t} f(X - u) \} < E \{ \log f(X) \}.$$

The existence of such a positive number M and that of such a U_t follow from Wald [4]. As $\{U_t : t \in [-M, -\varepsilon]\}$ covers the compact set $[-M, -\varepsilon]$, there exists a finite subcover of this set $[-M, -\varepsilon]$ determined by $t_j \in [-M, -\varepsilon]$, $j = 1, \dots, m$. For notational convenience, let $U_0 = (-\infty, -M)$ and $U_j = U_{t_j}$, $j = 1, \dots, m$. If $|\hat{\theta}_n| \geq \varepsilon$ and $M_n < \varepsilon$, then $-\infty < \hat{\theta}_n \leq -\varepsilon$ and therefore $\hat{\theta}_n \in U_j$ for some $j \in \{0, 1, \dots, m\}$, that is to say,

$$n^{-1} \sum_{i=1}^n \log \sup_{t \in U_j} f(X_i - t) \geq n^{-1} \sum_{i=1}^n \log f(X_i)$$

for some $j \in \{0, 1, \dots, m\}$. Write

$$b_j = E \{ \log f(X) \} - E \{ \log \sup_{t \in U_j} f(X - t) \} > 0, \quad j = 0, 1, \dots, m$$

and let $2b = \min \{b_j; j = 0, 1, \dots, m\} > 0$. Then

$$|n^{-1} \sum_{i=1}^n \log \sup_{t \in U_j} f(X_i - t) - E \{ \log \sup_{t \in U_j} f(X - t) \}| < b, \quad j = 0, 1, \dots, m$$

and

$$|n^{-1} \sum_{i=1}^n \log f(X_i) - E \{ \log f(X) \}| < b$$

imply

$$n^{-1} \sum_{i=1}^n \log \sup_{t \in U_j} f(X_i - t) < n^{-1} \sum_{i=1}^n \log f(X_i), \quad j = 0, 1, \dots, m.$$

Hence we have

$$\begin{aligned} P \{ |\hat{\theta}_n| \geq \varepsilon \} &\leq P \{ |\hat{\theta}_n| \geq \varepsilon, M_n < \varepsilon \} + P \{ M_n \geq \varepsilon \} \\ &\leq \sum_{j=0}^m P \{ |n^{-1} \sum_{i=1}^n \log \sup_{t \in U_j} f(X_i - t) - E \{ \log \sup_{t \in U_j} f(X - t) \}| \geq b \} \\ &\quad + P \{ |n^{-1} \sum_{i=1}^n \log f(X_i) - E \{ \log f(X) \}| \geq b \} + P \{ M_n \geq \varepsilon \}. \end{aligned}$$

Now, by conditions (i)–(iii) and (iv), the assertion follows from Chebyshev's inequality.

For $i = 1, \dots, n$ and $0 \leq t \leq (\log n)^{1/2}$, let

$$Z_{ni} = Z_{ni}(X_i, t) = Y_{ni} - E \{ Y_{ni} \},$$

where

$$\begin{aligned} Y_{ni} &= Y_{ni}(X_i, t) = g'(X_i + a_n^{-1}t), & \text{if } X_i > a_n^{-1}, \\ &= 0 & \text{if } X_i \leq a_n^{-1}. \end{aligned}$$

Here E denotes expectation. Moreover, let $b_n(t) = E \{ Z_{n1}(X_1, t) \}^2$.

Lemma 3. *Let conditions (i)–(iii), (v) and (vi) be satisfied. Then there exists a constant c such that for all $x \in R$, $n \geq 1$ and $0 \leq t \leq (\log n)^{1/2}$*

$$|P \{ (nb_n(t))^{-1/2} \sum_{i=1}^n Z_{ni}(X_i, t) < x \} - \Phi(x)| \leq c(\log n)^{-1}.$$

Proof. We shall first show that

$$(3.2) \quad E \{ Y_{n1} \} = -t\alpha a_n^{-1} \log a_n(1+t)^{-1} + O(a_n^{-1}(1+t)),$$

$$(3.3) \quad E \{ Y_{n1}^2 \} = \alpha \log a_n(1+t)^{-1} + O(1),$$

$$(3.4) \quad E\{|Y_{n1}|^3\} = O(a_n(1+t)^{-1}).$$

By condition (iii)', choose $a > 0$ and $c_0 \geq 0$ such that

$$(3.5) \quad |f(x) - \alpha x| \leq c_0 x^{1+r}, \quad |g'(x) - x^{-1}| \leq c_0 x^{r-1} \text{ and } |g''(x) + x^{-2}| \leq c_0 x^{r-2}$$

for $0 < x \leq 2a$. Next choose $\delta > 0$ such that conditions (v) and (vi) hold. Then we may establish (3.2) as follows. Since

$$g'(x + a_n^{-1}t) = g'(x) + \int_0^{a_n^{-1}t} g''(x+u) du$$

we have

$$\begin{aligned} E\{Y_{n1}\} &= \int_{a_n^{-1}}^{\infty} g'(x)f(x)dx + \int_{a_n^{-1}}^{\infty} \left\{ \int_0^{a_n^{-1}t} g''(x+u) du \right\} f(x)dx \\ &= I_1 + I_2, \quad \text{say.} \end{aligned}$$

It is easily seen that

$$I_1 = - \int_0^{a_n^{-1}} g'(x) f(x) dx,$$

so that $I_1 = O(a_n^{-1})$ by (3.5). Next we put

$$\begin{aligned} I_2 &= \int_{a_n^{-1}}^a \left\{ \int_0^{a_n^{-1}t} g''(x+u) du \right\} f(x) dx + \int_a^{\infty} \left\{ \int_0^{a_n^{-1}t} g''(x+u) du \right\} f(x) dx \\ &= I_{21} + I_{22}, \quad \text{say.} \end{aligned}$$

By condition (vi), we have $I_{22} = O(a_n^{-1}t)$. Moreover let

$$I_{21} = I_{211} + I_{212} + I_{213},$$

where

$$\begin{aligned} I_{211} &= - \int_{a_n^{-1}}^a \left\{ \int_0^{a_n^{-1}t} (x+u)^{-2} du \right\} \alpha x dx, \\ I_{212} &= - \int_{a_n^{-1}}^a \left\{ \int_0^{a_n^{-1}t} (x+u)^{-2} du \right\} (f(x) - \alpha x) dx, \\ I_{213} &= \int_{a_n^{-1}}^a \left\{ \int_0^{a_n^{-1}t} [g''(x+u) + (x+u)^{-2}] du \right\} f(x) dx. \end{aligned}$$

By easy computation, (3.5) implies that

$$I_{211} = -t\alpha a_n^{-1} \log a_n(1+t)^{-1} + O(a_n^{-1}t),$$

$$I_{212} = O(a_n^{-1}t)$$

and

$$I_{213} = O(a_n^{-1}t),$$

so that (3.2) is established.

To establish (3.3), let

$$\begin{aligned} E\{Y_{n1}^2\} &= \int_{a_n^{-1}}^a \{g'(x+a_n^{-1}t)\}^2 f(x) dx + \int_a^\infty \{g'(x+a_n^{-1}t)\}^2 f(x) dx \\ &= J_1 + J_2, \quad \text{say.} \end{aligned}$$

Condition (v) implies that $J_2=O(1)$. Divide J_1 into J_{11} , J_{12} , J_{13} and J_{14} as follows:

$$\begin{aligned} J_{11} &= \int_{a_n^{-1}}^a (x+a_n^{-1}t)^{-2} \alpha x dx, \\ J_{12} &= \int_{a_n^{-1}}^a (x+a_n^{-1}t)^{-2} (f(x)-\alpha x) dx, \\ J_{13} &= \int_{a_n^{-1}}^a 2(x+a_n^{-1}t)^{-1} \{g'(x+a_n^{-1}t)-(x+a_n^{-1}t)^{-1}\} f(x) dx, \\ J_{14} &= \int_{a_n^{-1}}^a \{g'(x+a_n^{-1}t)-(x+a_n^{-1}t)^{-1}\}^2 f(x) dx. \end{aligned}$$

Then, by (3.5), we have

$$J_{11} = \alpha \log a_n (1+t)^{-1} + O(1),$$

$$J_{12} = O(1),$$

$$J_{13} = O(1)$$

and

$$J_{14} = O(1),$$

so that (3.3) is established.

Finally, we shall establish (3.4). Let

$$\begin{aligned} E\{|Y_{n1}|^3\} &= \int_{a_n^{-1}}^a |g'(x+a_n^{-1}t)|^3 f(x) dx + \int_a^\infty |g'(x+a_n^{-1}t)|^3 f(x) dx \\ &= K_1 + K_2, \quad \text{say.} \end{aligned}$$

By condition (v), we have $K_2=O(1)$. Also by (3.5) we have

$$\begin{aligned} K_1 &\leq \int_{a_n^{-1}}^a \{(1+(2a)^r c_0) (x+a_n^{-1}t)^{-1}\}^3 f(x) dx \\ &= O(a_n(1+t)^{-1}). \end{aligned}$$

This implies (3.4).

From (3.2), (3.3) and (3.4), we have

$$\begin{aligned} (3.6) \quad E\{Z_{n1}^2\} &= \alpha \log a_n (1+t)^{-1} + O(1), \\ E\{|Z_{n1}|^3\} &= O(a_n(1+t)^{-1}). \end{aligned}$$

Now, the assertion of Lemma 3 follows from the Berry-Esseen theorem ([5], Theorem 12.4).

In the rest of this section, we shall study the conditional distribution of

$a_n^{-1} \sum_{i=1}^n g'(X_i - a_n^{-1}t)$ given $M_n > a_n^{-1}t$ for $0 < t \leq (\log n)^{1/2}$. The conditional distribution of X_1, \dots, X_n , given $M_n > a_n^{-1}t$, is that of independent random variables with common density

$$\begin{aligned} f_n^*(x) &= c_n f(x), & x > a_n^{-1}t \\ &= 0 & \text{otherwise} \end{aligned}$$

where

$$c_n = \left[\int_{a_n^{-1}t}^{\infty} f(x) dx \right]^{-1}.$$

For $i=1, \dots, n$ and $0 < t \leq (\log n)^{1/2}$ let

$$Z_{ni}^* = Z_{ni}^*(X_i, t) = Y_{ni}^* - E^*\{Y_{ni}^*\}$$

where

$$\begin{aligned} Y_{ni}^* &= Y_{ni}^*(X_i, t) = g'(X_i - a_n^{-1}t), & \text{if } X_i > a_n^{-1}(1+2t), \\ &= 0 & \text{if } X_i \leq a_n^{-1}(1+2t). \end{aligned}$$

Here E^* denotes conditional expectation given $M_n > a_n^{-1}t$. It is easily seen that $c_n = 1 + O(n^{-1})$ for $0 < t \leq (\log n)^{1/2}$. Thus, in a similar way to Lemma 3, we obtain

$$\begin{aligned} E^*\{Y_{n1}^*\} &= t \alpha a_n^{-1} \log a_n(1+t)^{-1} + O(a_n^{-1}(1+t)), \\ E^*\{Z_{n1}^{*2}\} &= \alpha \log a_n(1+t)^{-1} + O(1) \end{aligned}$$

and $E^*\{|Z_{n1}^*|^3\} = O(a_n(1+t)^{-1})$,

which lead to the following lemma.

Lemma 4. *Let conditions (i)–(iii), (v) and (vi) be satisfied. Then there exists a constant c such that for all $x \in R$, $n \geq 1$ and $0 < t \leq (\log n)^{1/2}$*

$$|P\{(nb_n^*(t))^{-1/2} \sum_{i=1}^n Z_{ni}^*(X_i, t) < x \mid M_n > a_n^{-1}t\} - \Phi(x)| \leq c(\log n)^{-1},$$

where $b_n^*(t) = E^*\{Z_{n1}^*(X_1, t)\}^2$.

4. Proof of Theorem. As the left sides of (2.1) and (2.2) are uniformly bounded for $\theta \in R$ and $t \in R$, it suffices to prove the assertion for all sufficiently large n . To simplify our notations we shall use n_0 as a generic constant instead of the phrase “for all sufficiently large n ”. In the same manner we shall use c as a generic constant to denote factors occurring in the bounds.

We shall use ideas related to Woodroffe [1]. It follows from Lemma 1 and Lemma 2 that

$$(4.1) \quad P\{a_n \hat{\theta}_n \leq -t\} = P\{a_n^{-1} \sum_{i=1}^n g'(X_i + a_n^{-1}t) \geq 0\} + O(n^{-1}),$$

where $O(n^{-1})$ is uniform in $t \in [0, a_n \varepsilon]$. Here $\varepsilon > 0$ is chosen sufficiently small so that (3.1) of Lemma 1 holds. Similarly, it follows from Lemma 1 and Lemma 2 that

$$\begin{aligned} (4.2) \quad P\{a_n \hat{\theta}_n > t\} &= P\{a_n^{-1} \sum_{i=1}^n g'(X_i - a_n^{-1}t) < 0, M_n > a_n^{-1}t\} + O(n^{-1}) \\ &= P\{a_n^{-1} \sum_{i=1}^n g'(X_i - a_n^{-1}t) < 0 \mid M_n > a_n^{-1}t\} P\{M_n > a_n^{-1}t\} \\ &\quad + O(n^{-1}), \end{aligned}$$

where $O(n^{-1})$ is uniform in $t > 0$.

We shall first show the validity of (2.1). By condition (iii)'

$$\begin{aligned} (4.3) \quad |P\{a_n^{-1} \sum_{i=1}^n g'(X_i + a_n^{-1}t) \geq 0\} - P\{a_n^{-1} \sum_{i=1}^n Y_{ni} \geq 0\}| &\leq \sum_{i=1}^n P\{X_i \leq a_n^{-1}\} \\ &\leq c(\log n)^{-1} \end{aligned}$$

for all $n \geq n_0$ and $0 \leq t \leq (\log n)^{1/2}$. Since

$$P\{a_n^{-1} \sum_{i=1}^n Y_{ni} \geq 0\} = P\{(nb_n(t))^{-1/2} \sum_{i=1}^n Z_{ni} \geq x_n(t)\},$$

where

$$x_n(t) = -n^{1/2}(b_n(t))^{-1/2}E\{Y_{n1}\},$$

it follows from Lemma 3 that

$$(4.4) \quad |P\{a_n^{-1} \sum_{i=1}^n Y_{ni} \geq 0\} - \Phi(-x_n(t))| \leq c(\log n)^{-1}$$

for all $n \geq 1$ and $0 \leq t \leq (\log n)^{1/2}$. According to (3.2) and (3.6)

$$\begin{aligned} -x_n(t) &= (na_n^{-1}E\{Y_{n1}\})(na_n^{-2}b_n(t))^{-1/2} \\ &= \{-t + 2t \log(1+t)(\log n)^{-1} + O((1+t)(\log n)^{-1})\} \\ &\quad \times \{1 - 2 \log(1+t)(\log n)^{-1} + O((\log n)^{-1})\}^{-1/2} \\ &= -t + t \log(1+t)(\log n)^{-1} + O((1+t)(\log n)^{-1}). \end{aligned}$$

Hence, for $n \geq n_0$ and $0 \leq t \leq (\log n)^{1/2}$

$$\begin{aligned} (4.5) \quad |\Phi(-x_n(t)) - \Phi(-t)| &\leq \frac{1}{\sqrt{2\pi}} |t - x_n(t)| \max \left\{ \exp\left(-\frac{t^2}{2}\right), \exp\left(-\frac{x_n(t)^2}{2}\right) \right\} \\ &\leq c(\log n)^{-1}. \end{aligned}$$

From (4.1), (4.3), (4.4) and (4.5), there exists a constant c such that

$$(4.6) \quad |P\{a_n \hat{\theta}_n \leq -t\} - \Phi(-t)| \leq c(\log n)^{-1}$$

for all $n \geq n_0$ and $0 \leq t \leq (\log n)^{1/2}$. For $t > (\log n)^{1/2}$ we have

$$|P\{a_n\hat{\theta}_n \leq -t\} - \Phi(-t)| \leq P\{a_n\hat{\theta}_n \leq -(\log n)^{1/2}\} + \Phi(-(\log n)^{1/2}).$$

Using (4.6) and Feller ([6], p. 166, Lemma 2), we obtain

$$(4.7) \quad |P\{a_n\hat{\theta}_n \leq -t\} - \Phi(-t)| \leq c(\log n)^{-1}$$

for $n \geq n_0$ and $t > (\log n)^{1/2}$. Hence (4.6) and (4.7) imply (2.1).

We next show the validity of (2.2). By condition (iii)'

$$\begin{aligned} & |P\{a_n^{-1} \sum_{i=1}^n g'(X_i - a_n^{-1}t) < 0 \mid M_n > a_n^{-1}t\} - P\{a_n^{-1} \sum_{i=1}^n Y_{ni}^* < 0 \mid M_n > a_n^{-1}t\}| \\ & \leq \sum_{i=1}^n P\{X_i \leq a_n^{-1}(1+2t) \mid M_n > a_n^{-1}t\} \\ & \leq cn a_n^{-2}(3t^2 + 4t + 1). \end{aligned}$$

Hence, for every s , $0 < s < 1$, there exists a constant c such that for $n \geq n_0$ and $0 < t \leq (\log n)^{s/2}$

$$(4.8) \quad \begin{aligned} & |P\{a_n^{-1} \sum_{i=1}^n g'(X_i - a_n^{-1}t) < 0 \mid M_n > a_n^{-1}t\} - P\{a_n^{-1} \sum_{i=1}^n Y_{ni}^* < 0 \mid M_n > a_n^{-1}t\}| \\ & \leq c(\log n)^{s-1}. \end{aligned}$$

Applying arguments similar to those used in (4.4) and (4.5), Lemma 4 implies

$$(4.9) \quad |P\{a_n^{-1} \sum_{i=1}^n Y_{ni}^* < 0 \mid M_n > a_n^{-1}t\} - \{1 - \Phi(t)\}| \leq c(\log n)^{-1}$$

for $n \geq n_0$ and $0 < t \leq (\log n)^{1/2}$. By (4.8) and (4.9) we have

$$\begin{aligned} & |P\{a_n^{-1} \sum_{i=1}^n g'(X_i - a_n^{-1}t) < 0 \mid M_n > a_n^{-1}t\} P\{M_n > a_n^{-1}t\} - \{1 - \Phi(t)\}| \\ & \leq |P\{a_n^{-1} \sum_{i=1}^n g'(X_i - a_n^{-1}t) < 0 \mid M_n > a_n^{-1}t\} - \{1 - \Phi(t)\}| P\{M_n > a_n^{-1}t\} \\ & \quad + \{1 - \Phi(t)\} P\{M_n \leq a_n^{-1}t\} \\ & \leq \{1 - \Phi(t)\} P\{M_n \leq a_n^{-1}t\} + c(\log n)^{s-1} \end{aligned}$$

for $n \geq n_0$ and $0 < t \leq (\log n)^{s/2}$. Using Feller ([6], p. 166, Lemma 2), we obtain

$$\begin{aligned} \{1 - \Phi(t)\} P\{M_n \leq a_n^{-1}t\} & \leq ct \exp\left(-\frac{t^2}{2}\right) (\log n)^{-1} \\ & \leq c(\log n)^{-1} \end{aligned}$$

for $n \geq n_0$ and $t > 0$. Hence, from this and (4.2) it follows that for $n \geq n_0$ and $0 < t \leq (\log n)^{s/2}$

$$|P\{a_n\hat{\theta}_n > t\} - \{1 - \Phi(t)\}| \leq c(\log n)^{s-1},$$

from which (2.2) is shown by a similar argument used in (4.7). Thus we complete the proof of the theorem.

Acknowledgment. The author wishes to express his hearty thanks to Professor Hirokichi Kudo for his valuable comments.

References

- [1] M. Woodrooffe: *Maximum likelihood estimation of a translation parameter of a truncated distribution*, Ann. Math. Statist. **43** (1972), 113–122.
- [2] R. Michel and J. Pfanzagl: *The accuracy of the normal approximation for minimum contrast estimates*, Z. Wahrsch. Verw. Gebiete **18** (1971), 73–84.
- [3] J. Pfanzagl: *The Berry-Esseen bound for minimum contrast estimates*, Metrika **17** (1971), 82–91.
- [4] A. Wald: *Note on the consistency of the maximum likelihood estimate*, Ann. Math. Statist. **20** (1949), 595–601.
- [5] R. N. Bhattacharya and R. Ranga Rao: *Normal approximation and asymptotic expansions*, New York, 1976.
- [6] W. Feller: *An introduction to probability theory and its applications*, Vol. 1, New York, 1957.

Faculty of Economics
Wakayama University
Nishitakamatsu,
Wakayama 641, Japan

