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1. Introduction

In this paper we consider the parallel translations of the normal bundles of the
orbits of Hermann actions on compact symmetric spaces and represent such parallel
translations by the group actions (Theorem 2.1). Using this we can show that their
mean curvature vectors are parallel (Corollary 2.8), moreover those of hyperpolar ac-
tions are parallel (Corollary 2.13).

We first review some definitons and previous results concerning isometric group
actions on compact symmetric spaces. L@t K;) and G, K,) be compact symmetric
pairs. Thenk, acts isometrically orG/K;, which is a compact symmetric space. This
action of K, on G/K; is called aHermann action

The Hermann actions are examples of hyperpolar actions, which is defined in the
following. Let G be a Lie group acting isometrically on a Riemannian manifgld . A
closed submanifold& oM is called section if all orbits of the action ofG meek
perpendicularly. The action af oM is said to bgperpolar if there exists a sec-
tion which is flat with respect to the induced Riemannian metric. The codimension of
the orbit of highest dimension is called tltehomogeneityThe isometric actions on
compact symmetric spaces of cohomogeneity one are another examples of hyperpolar
actions. Recently Kollross [8] proved that the hyperpolar actions on compact symmet-
ric spaces are Hermann actions or cohomogeneity one actions.

We next review previous results concerning geometry of orbits of isometric group
actions on symmetric spaces. The linear isotropy representations of symmetric pairs
have sections which are maximal Abelian subspaces, so they are hyperpolar ac-
tions. All of their orbits have parallel mean curvature vectors, which was proved by
Kitagawa-Ohnita [6]. Ohnita [9] considered the parallel translations of the normal bun-
dles of the orbits of the linear isotropy actions on compact symmetric spaces and rep-
resent such parallel translations by the group actions. One can prove the result of
Kitagawa-Ohnita mentioned above by this. Heintze-Olmos [1] also considered such
parallel translations and described the normal holonomy groups of the orbits. For com-
pact symmetric spac& /K, Hirohashi-Song-Takagi-Tasaki [4] and Hirohashi-lkawa-
Tasaki [3] considered some geometric properties of orbits of the linear isotropy action
on T,(G/K) and the isotropy action o5 /K.
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2. Orbits of Hermann actions

Let 8, and 6, be two involutive automorphisms of a compact connected Lie group
G furnished with a biinvariant Riemannian metric, ). We denote byG,, (i = 1, 2)
the closed subgroup consisting of all fixed pointsépfin G. For a closed subgroup
K; (i =1, 2) of G which lies betweeityy, and the identity component @¥y,, (G, K1)
and G, K,) are Riemannian symmetric pairs. We consider the Hermann a&toan
a compact symmetric spadd; = G/K; with the induced Riemannian metric from the
biinvariant Riemannian metri¢, ) on G. We denote by, ¢ and ¢, the Lie algebras
of G, K; and K, respectively. The involutive automorphisriig and 6, of G induce
involutive automorphisms of;, also denoted by; and 6,, respectively. Sinc#; and
0, are involutive, we have

g=t +my =t +my,
where we put
m ={Xeg|bi(X)=-X} ((=12)

We can identifym; with 7,(M;) in a natural manner. FoH € mj, we consider the
K»-orbit Ko,ExpH C M;, where Exp is the exponential mapping fram into M.
The tangent space &€, ExpH at ExpH is given by

Texprt (K2 Exp H ) = (expH ) (Ad(exp(—H))t2)m,

where (Ad(exptH))E)m, is the mi-component of Ad(exp{H))t;. We define a
closed subgroupV [Ki] in K by

N K1) = {k € K, | exp(—H)kexpH € Ki}.
Then we have the following diffeomorphism froii, ExpH onto Kg/N,?Z[Kl]:
K, ExpH — Kp/NZ [K1l; kKExp H — kNg [Ka].
We denote byn;'[t1] the Lie algebra ofN{ [K1]. Then we have
ni'[61] = {X € & | Ad(exp(— H))X € t1}.

We denote by r(g[kl])L the orthogonal complement ofg[él] in £¢,. We can iden-
tify (n’;‘;[El])l with T,,(KZ/N}Q’Z(Kl)) in a natural manner. The above diffeomorphism
K,EXpH ¥ Kg/N,’g’z[Kl] induces a linear isomorphism frofiex, (K2 ExpH) onto
(ne[ea]) -

Theorem 2.1. LetY be in(ng[fel])% We define a curve(r) in K,ExpH by

c(t) = exptY EXpH.
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Let & be in (Ad(exp(—H))t2)m,. We define a normal vector fielg(r) of K,ExpH
along ¢(z) by

§(r) = (exprY ).(expH ).€.

Then&(z) is parallel with respect to the normal connection.
In order to show the theorem we prove the lemmas below.

Lemma 2.2. We denote byv+ the normal connection ok, ExpH C M,. We
define a curveg(t) in G by

g(t) = exptY expH.
Then

Vi €(r) = g(1).[(Ad(exp(— H))Y e, €1+

Proof. Letrw be the natural projection frol& ont; = G/K;. We consider the
principal fiber bundleG ¥, K1, w). The canonical decompositiogn= ¢; + m; induces
an invariant connection o Mj, K1, 7). It is known that the Levi-Civita connection
of M; is reduced to the invariant connection. The tangent buidtlle 7 M;) ©f M,
is the vector bundle associated with M{, K, ) with standard fibem;. We denote
by A?(E) the vector space of -valued -forms ai;, and by Ax,(G) the vector
space of tensoriap —forms~ of type Ad(K;) on G, that is,g~ satisfies the following
conditions.

(1) R*E=Ad@@ Y ack;
(2) E(Xl, ..., Xp)=0 whenX, is vertical Xi,...,X,€eT,G
It is well known that the linear mapping given by

AP(E) — AR4(G) ;€€
(X1, Xp) = g HE(M Xe .., T X))

is an isomorphism. We denote By the covariant derivative ol M;). When X in
A%E) = (M) corresponds t& in AQ,(Ma) by this correspondencéy X in AL(E)
corresponds tadéo h in Az4(M1) (see [7] Chapter 1), where we denote byy ( ) the
horizontal component of  iX(G). By this relationship, we get the following expres-
sion. Let X be inX(M;), v in m; and A in¢;. Let a(s) be a curve inG such that
a(0)=e anda(0) =v +A. Then

d
Ve X = gs (%

a(s)zlgglxw(ga(x)) + [A, g*ler(g)])
s=0

For fixed ¢, we definea(s) by a(s) = g(t) tg(t +5). Thena(0) = e¢ and a(0) =
Ad(exp(—H))Y. Hence the lemma follows immediately. Ll
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Hence in order to show the theorem it is sufficient to prove
[(Ad(exp(— H))(nes[e1]) e, (Ad(EXP(H))E2)is, ] C (Ad(€XP(—H))E2)m,-
The following lemma is trivial.
Lemma 2.3. Ad(expH . "[t2] = nil[t1]

Lemma 2.4. (Ad(exp(—H))t2)m, = {X € my | Ad(expH )X € my}. In particular
(Ad(exp(fH))Eg)#11 is a Lie triple system imm;.

Proof.

(Ad(exp(—H))e)m, = {X € my | (X, (Ad(exp(—H))t2)m,) = O}
= {X e my | (X, Ad(exp(-H))E2)) = O}
= {X e my | (Ad(expH )X, &) = 0}
= {X € my | Ad(expH )X € my}.

Hence the lemma is proved. ]
The following lemma immediately follows from the lemma above.

Lemma 2.5. [(Ad(exp(—H))t2)m, . (Ad(exp(— H))E2)m,] C ng. " [E2].

Lemma 2.6. (Ad(exp(—H))(n [E1])F)e, C (ng,"[E2])*.

Proof.

((Ad(exp(—H))(ngler]) He,. ng, [E2])
= (Ad(exp(— H))(ng.[E1]) " ng, " [€2]) (by ng,"[£2] C £1)
= ((ngi[ta]) ", Ad(expH . "[€2])
= ((nd[e) " nif[e])  (by Lemma 2.3)
= {0}. O

Lemma 2.7. [(n,"[e2]) ", (Ad(exp(~H))E2)s;,] C (Ad(eXP(—H))e2)m,

Proof.

([(ng,"'[e2]) . (Ad(exp(~H))E2)i,], (Ad(exp(—H)E2)r, )
= ((ng,"[e2D)*, [(Ad(exp(—H))t2)rs, . (Ad(eXp(~H))E2);,])
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C ((ng,"[t2]) . ng,[&2])  (by Lemma 2.5)
= {0}

Hence the lemma is proved. ]

By Lemmas 2.6 and 2.7 we have
[(Ad(exp(—H))(ng,[e1]) " )e,, (Ad(EXP(—H))E2)i;,] C (Ad(€XP(—H))e2)m,

This completes the proof of Thoerem 2.1.

Corollary 2.8. The mean curvature vector &, ExpH C M, is parallel with
respect to the normal connection.

Proof. We denote byn the mean curvature vectorkefExpH C M;. Since
Mexpix Exprt = (EXPIX hmexpr (X € (nf[£1])*), we haveVym = 0 by Theorem 2.1.
Hence ¥V+m)expwn = 0. ThereforeV-m vanishes everywhere by the homogeneity of
K>EXpH. ]

The decomposition

b =nil[t] @ (nf[ead) "

defines an invariant connectioni“ of K, ExpH . We denote byx the second funda-
mental form of K; ExpH C M1 We defineVea by

(V§a)(Y, Z2) = V(Y. Z)) — (V&Y. Z) — oY, V§ Z).
Corollary 2.9. Va=0.

Proof. LetX,Y andZ be in t(é’i[él])L. The vector fields (expX .JexpH )Y
and (expX )(expH )Z of K;ExpH along a curve exqX Exf  ar&‘-parallel.
Thus we get

(vfepo)*Xa)(Y’ Z)
= Viepn ), x (@((€Xpr X ).(expH ).Y, (expt X ).(expH ). Z))
= Viewn). x(€xpr X ).(a((expH ).Y, (expH ). Z))
=0 (Theorem 2.1)

Hence we have\‘a)expn = 0. By homogeneity we hav&“a = 0. OJ

By Corollary 2.9, for any vector fieldX,Y and d&,ExpH we have

(V¥ (Y, 2))), € spaf{a(Y, Z) | Y, Z € T,(K2 ExpH)}.



928 O. kawA, T. SakAl AND H. TASAKI

In another words we get:
Corollary 2.10. The degree oK, ExpH C M; is at most2.

We consider the normal holonomy representationKefExp H C M;. By Lemma
2.4, we can define an actignof N [K1] on (Ad(exp(-H))t2)x% by

p(k)X = Ad(exp(— H)k expH )X

for k € N,?Z[Kl], X e (Ad(exp(—H))Ez)ﬁl. This action is equivalent to the differential
representation oN,’g’z[Kl] on TElXpH(Kz ExpH).

Corollary 2.11. The normal holonomy representation &,ExpH <C M;
is equivalent to the(effectively made action of a subgroup of N [Ki] on
(Ad(exp(— H))to),

Proof. Every geodesie ¢ () oKz/N,?z[Kl] through the origin Ex@  with re-
spect to the normal homogeneous Riemannian metric is given by

c(t) = exptY ExpH for some Y € (nf [t])*.

By Theorem 2.1, the parallel translation along () with respect to the normal con-
nection is given by (expV .) Now any curve inK,ExpH can be approximated by
broken geodesics with respect to the normal homogeneous Riemannian metric. It fol-
lows that the normal holonomy representation is equivalent to the actiaki/éf on
(Ad(exp(—H))tz)q, where

L={ke Ng[Ki]l|pk)=1 on (Ad(exp{-H))t2)y,}

and whereK is a subgroup (N,?l[l(g] with L C K. O

We shall prove that the mean curvature vector of any orbit of any hyperpolar ac-
tion is parallel with respect to the normal connection. In order to do this we review a
result of Hsiang.

Let G be a compact, connected Lie group of isometries of a Riemannian manifold
M. We denote byG, the isotropy subgroupat M. Two orbitsG (p ) andG { ) are
said to beof the same typé there existsg € G such thatG, =¢G,g . Each orbit
of G has a well defined volume by the induced metric as a submanifold. The volume
of an orbit No = G(po) is said to beextremal among nearby orbits of the same tyfpe

d
— | =
T vol(N,) =0

=0

for all smooth familiesN, || < e, of G-orbits of the same type oM
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Theorem 2.12(Wu-Yi Hsiang [5]). Let G be a compact connected Lie group of
isometries of a Riemannian manifold . Then any orbitbf = whose volume is ex-
tremal among nearby orbits of the same type is a minimal submanifold of . In par-
ticular if there exists a neighborhood @, in which there are no other orbits of the
same typethen Ny is a minimal submanifold oM

Corollary 2.13. The mean curvature vector of any orbit of any hyperpolar ac-
tion on a compact symmetric space is parallel with respect to the normal connection.

Proof. Kollross [8] showed that hyperpolar actions on compact symmetric spaces
are either cohomogeneity one actions wequivalent to Hermann actions. Here two
actions arew-equivalent if all of their orbits coincide. We have already proved that
the mean curvature vector of any orbit of any Hermann action is parallel in Corollaly
2.8, so it is sufficient to consider the case of cohomogeneity one actions.

We assume that the cohomogeneity of the action is equal to one. When a compact,
connected Lie groups; acts a Riemannian maniféfd isometlically, an @rbjit ()
through p € M is said to beof the principal typeif for any ¢ € M there exists
g € G such thatG, Cc gG,g ' Since the codimensions of orbits of the principal
type are equal to one, they have parallel mean curvature vectors. It is known that the
set of all orbits of the principal type is open and dense in the orbit space. Since the
cohomogeneity is equal to one, the set of orbits which are not of the principal type
does not include any nonempty open set. Hence we have the conclusion by Theorem
2.12. ]
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