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Abstract
It is known that a2-knot has the triple point number less than two if and only

if it is of ribbon-type. We prove that there is no2-knot of triple point number two
or three. Hence the2-twist-spun trefoil, which is known as a2-knot of triple point
number four, is one of the simplest non-ribbon2-knots.

1. Introduction

In classical knot theory, the knot table is usually made according to the crossing
number of a knot, which is the minimal number of crossings among all possible pro-
jections into the plane. There is no classical knot of crossing number one or two, and
the trefoil of crossing number three is the simplest non-trivial knot in this sense. It is
natural to consider a similar tabulation in surface-knot theory. A surface-knotmeans
a (possibly disconnected or non-orientable) closed surface embedded in 4-spaceR4

smoothly. In particular, a surface-knot is called a 2-knot if it is a knotted 2-sphere
in R

4. One remarkable table is made by Yoshikawa [17] by introducing a certain kind
of quantity, which he calls the “ch-index” of a surface-knot. In this paper, we use an-
other criterion, thetriple point numberof a surface-knot, which has a natural analogy
to the crossing number of a classical knot. Precisely, it is defined to be the minimal
number of triple points among all possible projections of a surface-knot R

4 into
3-spaceR

3, and is denoted by t( ). The aim of this paper is to prove the following.

Theorem 1.1. There is no2-knot with 0 t( ) 4.

Let be a surface-knot. We say that is apseudo-ribbonsurface-knot if it sat-
isfies t( ) = 0 (cf. [7]), and aribbon surface-knot if it is obtained from a split union
of trivial 2-knots by surgeries along some 1-handles connecting them (cf. [6]). It is
known that these families are coincident in the case of 2-knots (cf. [5, 16]). Hence
Theorem 1.1 implies that if is a non-ribbon 2-knot, then it holds that t( ) 4.

For the import of Theorem 1.1, it is reasonable to refer to some open problems on
triple point numbers. In [10], it is proved that any surface-knot satisfies t( ) = 1.
This result holds regardless of the genus, orientability, or connectivity of . The only
known example of t( ) = 2 is given in [11], which is a 2-component surface-link with
non-orientable components.
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Question 1.2. Is there anorientablesurface-knot with t( ) = 2?

In the case of t( ) = 3, we have no examples even if is non-orientable, or
disconnected. More generally, we have no examples of odd triple point numbers.

Question 1.3. Is there a surface-knot such that t( ) 1 isodd?

As an orientable surface-knot whose triple point number t( )0 is concretely
determined, we have the 2-twist-spun trefoil (and its connected sum with an arbitrary
orientable pseudo-ribbon surface-knot) which satisfies t() = 4 (cf. [13]). Hence it fol-
lows by Theorem 1.1 that the 2-twist-spun trefoil is one of the simplest non-ribbon
2-knots according to the triple point number. From the viewpoint of tabulation, the fol-
lowing is an important problem to be considered in future.

Question 1.4. Is there a 2-knot with t( ) = 4except the connected sum of
the 2-twist-spun trefoil with an arbitrary ribbon 2-knot?

It is proved in [14] that the 3-twist-spun trefoil satisfies t( ) = 6; however,
nothing on t( ) = 5 follows from this result.

This paper is organized as follows. In Section 2, we review the definition of a di-
agram of a surface-knot, which is a projection image inR

3 with crossing information.
In Sections 3 and 4, we prove t( ) = 3 (Theorem 3.3) and t( ) = 2 (Theorem 4.5)
for any 2-knot , respectively. This paper is motivated from Shima’s result [15] that
if a 2-knot has a diagram with two triple points andno branch points, then is
a ribbon 2-knot. Hence, to prove t( ) = 2, it is sufficient to consider a diagram with
two triple points andsomebranch points.

2. Preliminaries

2.1. Double, triple, and branch points. Throughout this paper, we always as-
sume that all surface-knots are oriented. Let us fix an orthogonal projection :R4

R
3. We can isotope a surface-knot R

4 slightly so that the projection image
( ) R

3 has only double points and triple points as its multiple points, and has
only branch points as its singular points missing multiple points (cf. [3]). See Fig. 1.
We denote by 2, 3, and ( ) the sets of double points, triple points, and
branch points, respectively. Then3 and appear as discrete sets, while2 appears
as a disjoint union of open arcs and simple closed curves. Note that the boundary
points of each arc of 2 belong to 3 . We say that such an open arc of2 is
called anedge, and in particular, abb-edge, bt-edge, or tt-edge if its boundary points
are branch points both, a branch point and a triple point, or triple points both, respec-
tively (cf. [12]). We will write double points, triple points, branch points, and edges in
capital letters such as , , , and , respectively.
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Fig. 1.

2.2. Alexander numbering. We fix an Alexander numberingfor the comple-
ment R

3 ( ), which is a numbering of the set of connected regions ofR
3 ( )

with integers such that (i) two regions separated by a sheet of ( ) are numbered
consecutively, and (ii) the orientation normal to the sheetpoints toward the region
with larger number (see [8], for example). The Alexander numbering induces a map

: 2 3 Z such that, for each point 2, 3, or , the integer ( )
is the minimal Alexander number among the four, eight, or three regions around ,
respectively. In other words, ( ) is the Alexander number of the specific region
where all orientation normals to the bounded sheets point away from . See Fig. 1
again, where the orientation normals to the sheets are depicted by small arrows, and
the specific regions are shaded. For an edge and a double point , since the
Alexander number ( ) is independent of the choice of , we use the extended nota-
tion ( ) = ( ).

2.3. A diagram of a surface-knot. For a double point 2, let U L

denote the preimage of by ( )1 such that ( U) ( L), where :R4
R

is the height function orthogonal to . Let W (W = U LS) be a sufficiently
small regular neighborhood of the pointW in . Then we say that (U) and

( L) are upper and lower sheetsat , respectively.
Similarly, for a triple point 3, let T M B denote the preimage

of by ( ) 1 such that ( T) ( M) ( B). Let W (W = T, M, B)
be a sufficiently small regular neighborhood ofW in . Then ( T), ( M), and

( B) are calledtop, middle, and bottom sheetsat , respectively.
A diagram of is a projection image ( ) with crossing information speci-

fied by breaking under-sheets at double points and middle andbottom sheets at triple
points in a similar way to classical knot diagrams (see [3], for example). Hence, in a
diagram, the lower sheet is divided into two pieces, and the middle and bottom sheets
are divided into two and four pieces, respectively. See Fig.2(i) and (ii). In this paper,
we use the Greek letter to stand for a diagram of a surface-knot.

2.4. Signs and orientations. The sign of a branch point , denoted by ( )
1 , is defined according to crossing information along the edge incident to . More
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Fig. 2.

Fig. 3.

precisely, the branch point illustrated in Fig. 2 (iii) has the sign ( ) = +1, and its
mirror image with opposite crossing information has ( ) = 1. This definition does
not depend on the particular choice of an orientation of the sheet near a branch point
(cf. [2]).

Near a double point 2, we take orientation normals~ U and~ L to the upper
and lower sheets, respectively. We define a vector~ at such that the ordered triple
(~ U ~ L ~ ) matches the fixed right-handed orientation ofR

3. For an edge 2, the
set of vectors at the double points on defines an orientation of . If the boundary
points of are and 3 such that the orientation of points from
toward , we use the notation = . If or is a branch point , then it holds
that ( ) = ( ). Moreover, we have ( ) = +1 if = , and ( ) = 1 if =

. See Fig. 3 (i), where the case of ( ) = +1 is depicted.
Near a triple point 3, we take orientation normals~ T, ~ M , and~ B to

the top, middle, and bottom sheets, respectively. We define the sign of , denoted
by ( ) 1 , such that ( ) = +1 if and only if the ordered triple~ T ~ M ~ B

matches the fixed right-handed orientation ofR
3.
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Fig. 4.

2.5. Edges at a triple point. There are six edges incident to , which are dis-
tinguished by the orientations of top, middle, and bottom sheets; the edges are denoted
by 1( ) 2( ) 6( ) such that
(i) 1( ) 4( ), 2( ) 5( ), and 3( ) 6( ) form straight paths across ,
which are transverse to the top, middle, and bottom sheets, respectively, and
(ii) the orientation normal to the sheet points from+3( ) toward ( ) for =
1 2 3.
Then the Alexander number of each edge ( ) satisfies

( ) =
( ) + 1 for = 1 2 3
( ) for = 4 5 6

Moreover, if ( ) = +1, then the orientation of ( ) points away from for =
1 3 5 and toward for = 2 4 6. Similarly, if ( ) = 1, then the orientation of

( ) is opposite (cf. [1]). See Fig. 3 (ii), where a positive triple point is depicted,
and the Alexander numbers of edges with black and white big arrows are ( ) and
( ) + 1, respectively.

2.6. A minimal diagram. Let be a diagram of a surface-knot . We denote
by ( ) the number of triple points of , that is, ( ) = 3 . The triple point num-
ber of , denoted by t( ), is the minimal number of ( )’s for all possible diagrams
of . We say that is aminimal diagram if ( ) = t( ) holds. It is known that if

has a triple point 3 such that at least one of the four edges1( ), 3( ),

4( ), or 6( ) is a bt-edge, then is not a minimal diagram (see [11], for exam-
ple). Fig. 4 shows a deformation of eliminating a triple point along a bt-edge 1( )
or 4( ). This deformation is realized by a finite sequence of Roseman moves [9],
which are sufficient to connect any two diagrams of a surface-knot.

2.7. Numbers of triple points. Assume that is a minimal diagram. Then the
triple points of are divided into four classes according to whether 2( ) or 5( ),
or both are bt-edges. (Recall that2( ) and 5( ) are transverse to the middle sheet.)
We say that thetype of a triple point 3 is
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0 if both of 2( ) and 5( ) are tt-edges,
2 if 2( ) is a bt-edge and 5( ) is a tt-edge,
5 if 2( ) is a tt-edge and 5( ) is a bt-edge, and
25 if both of 2( ) and 5( ) are bt-edges.

For each 1 , 0 2 5 25 , and Z, we denote by ( ) the number of
triple points of with the sign , type , and Alexander number . Moreover, we
put ( ) = +1( ) 1( ), which is equal to the sum of signs for all triple points of
type with Alexander number . Then it is proved in [12] that

0( ) + 2 2( ) + 5( ) + 2 25( )

= 0( + 1) + 2( + 1) + 2 5( + 1) + 2 25( + 1)
(1)

for any Z.

2.8. Double point curves. Let be a (not necessary minimal) diagram of a
surface-knot . By connecting diagonal edges ( ) and+3( ) for = 1 2 3 at
each triple point of , the set 2 3 is regarded as a union of oriented curves
(circle and arc components) immersed inR

3. More precisely, if there is a sequence of
tt-edges

1 = 0 1 2 = 1 2 1 = 2 1 = 1

where 0 1 = 0 3, such that and +1 are diagonal at for =
1 2 ( +1 = 1), then they form a circle component. Similarly, if there is a
sequence of bt- and tt-edges

1 = 0 1 2 = 1 2 1 = 2 1 = 1

where 1 2 1 3 and 0 , such that and +1 are diagonal at
for = 1 2 1, then they form an arc component. We call such oriented curves
the double point curves.

2.9. Decker curves. Let be a double point curve of a diagram of a
surface-knot . For each edge contained in , let ( )1( ) = U L be a
pair of open arcs on such thatW = W for W = U and L. Then the curve

W = Cl W on is called theupper decker curveof for W = U, and
the lower decker curvefor W = L, where Cl stands for the closure. If is a circle
component, then the corresponding decker curveW (W = U, L) is a circle immersed
in . On the other hand, if is an arc component, thenW is an immersed arc such
that the union U L forms a circle by connecting their boundary points (cf. [3]).

Throughout this paper, we use the notation defined in this section.
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3. Diagrams with three triple points

It is proved in [10] that any surface-knot satisfies t( ) = 1. Hence, to prove
Theorem 1.1, it is sufficient to study the cases t( ) = 2 and 3. The proof of t( ) = 3
for any 2-knot is divided into Lemma 3.1 and Proposition 3.2.We first consider the
types of triple points in a minimal diagram with ( ) = 3.

Lemma 3.1. Assume that there is a surface-knot witht( ) = 3. Let be
a minimal diagram of whose triple points are1, 2, and 3. Then after suitable
changes of indexes, 1 and 2 are of type 0 , and 3 is of type 25 . Moreover, it
holds that ( 1) = ( 2) = ( 3) and ( 1) = ( 2) = ( 3).

Proof. We put = ( ) and = ( ) for = 1 2 3. We may assume that

1 2 3. Since there is no triple point of whose Alexander number is less
than 1 1, or greater than 3, we obtain

0( 1) + 2( 1) + 2 5( 1) + 2 25( 1) = 0 and(2)

0( 3) + 2 2( 3) + 5( 3) + 2 25( 3) = 0(3)

by putting = 1 1 and 3 in the equation (1), respectively. If1 2, then it
follows by definition that

0( 1) 2( 1) 5( 1) 25( 1) = 1 0 0 0

which contradicts to the equation (2). Here, we use the notation for a multi-set,
so that the above equality means that one of0( 1) 25( 1) is equal to 1, and the
others are zeros.

Similarly, if 2 3, then it holds that

0( 3) 2( 3) 5( 3) 25( 3) = 3 0 0 0

which contradicts to the equation (3). Hence, we have1 = 2 = 3. We put = ( )
regardless of ( = 0, 2, 5, 25), which is the algebraic number oftriple points of type

. It is sufficient to consider the following three cases.
• 0 2 5 25 = 1 + 2 + 3 0 0 0 . Since 1 + 2 + 3 = 0, we have a contradiction
to (2) clearly. Hence this case does not happen.
• 0 2 5 25 = 1 + 2 3 0 0 . If 1 = 2, then it reduces to the the previous
case. If 1 = 2, then we have 1 + 2 = 2. Since 2 = 5 by (2) and (3), we obtain

0 = 1 + 2 = 2, 2 = 5 = 0, and 25 = 3 = 1. This is the desired solution.
• 0 2 5 25 = 1 2 3 0 . If 0 = 0, we have 0 + 2 +2 5 +2 25 2 1 (mod 2),
which contradicts to (2). If2 = 0 or 5 = 0, it contradicts to2 = 5. If 25 = 0, we have

0 + 3 2 = 0 by (2) and (3). However, this contradicts to0 = 1 and 32 = 3.
Thus we have the conclusion.
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Fig. 5.

The following proposition is proved by counting the number of intersections be-
tween decker curves on . In [4] Hasegawa generalizes this proposition without the
condition “no triple points of type 2 or 5 .”

Proposition 3.2. Let be a minimal diagram of a surface-knot . If has at
least one triple point of type25 and no triple points of type2 or 5 , then the
genus of is positive.

Proof. Let be the double point curve containing ( ) +3( ) for =
1 2 3. Since has no triple points of type 2 or 5 ,1 and 3 are circle com-
ponents. On the other hand, since is of type 25 ,2 is an arc component consist-
ing of 2( ) and 5( ). Consider the decker curves corresponding to as shown
in Fig. 5, where we draw upper and lower decker curves by dotted and solid lines,
respectively. Then the circle U

2
L
2 intersects the circles L

1 and U
3 at B and

T, respectively. Since L
1 and U

3 are upper and lower decker circles, respectively,
it holds that L

1 = U
3 by definition. Hence there is a pair of circles on , such as

U
2

L
2

L
1 , with a single intersection. This is possible only if the genus of is

positive.

Theorem 3.3. There is no2-knot with t( ) = 3.

Proof. Assume that there is a 2-knot with t( ) = 3. Then any minimal dia-
gram of has three triple points of type 0 , 0 , and 25 by Lemma 3.1, which
contradicts to Proposition 3.2.



THE TRIPLE POINT NUMBERS OF 2-NOTS 551

4. Diagrams with two triple points

In this section, we study the case t( ) = 2. We first consider thetypes, Alexander
numbers, and signs of triple points in a minimal diagram with( ) = 2.

Lemma 4.1. Assume that there is a surface-knot witht( ) = 2. Let be a
minimal diagram of whose triple points are1 and 2. Then 1 and 2 are of the
same type with ( 1) = ( 2) and ( 1) = ( 2).

Proof. We put = ( ) and = ( ) for = 1, 2. We may assume that1 2.
By putting = 1 1 and 2 in the equation (1), we obtain

0( 1) + 2( 1) + 2 5( 1) + 2 25( 1) = 0 and(4)

0( 2) + 2 2( 2) + 5( 2) + 2 25( 2) = 0(5)

If 1 2, then it follows by definition that

0( 1) 2( 1) 5( 1) 25( 1) = 1 0 0 0

which contradicts to the equation (4). Hence we have1 = 2. We put = ( )
regardless of ( = 0, 2, 5, 25). It is sufficient to consider the following two cases.
• 0 2 5 25 = 1 + 2 0 0 0 . If 1 = 2, then we have 1 + 2 = 2, which con-
tradicts to (4). If 1 = 2, then this is the desired solution.
• 0 2 5 25 = 1 2 0 0 . By (4) and (5), we have2 = 5. If 2 = 5 = 0, then
we have 0 + 2 25 = 0. This contradicts to 0 = 1 and 225 = 2. If 2 = 5 = 0, then we
have 0 = 25 = 0, and 2 = 5 = 1. This contradicts to (4) clearly.
Hence we obtain the conclusion.

For a diagram of a surface-knot , we denote by ( ) the number of branch
points of . The following lemma is proved by a Roseman move [9].

Lemma 4.2 (cf. [2]). Let be a diagram of a surface-knot . Assume that
has two branch points 1 and 2 with ( 1) = ( 2) and ( 1) = ( 2). If there
is an embedded arc in connecting1 and 2 which misses 2 3 except
the boundary, then has a diagram with( ) = ( ) and ( ) = ( ) 2.

Proof. By assumption, the arc has a neighborhood as shown in Fig. 6 (i). Let
be a diagram obtained from by replacing the neighborhood with Fig. 6 (ii).

Since the deformation from to is a Roseman move, is a diagram of with
( ) = ( ) and ( ) = ( ) 2.

We remark that, in the assumption of Lemma 4.2, if the branch points do not sat-
isfy the condition ( 1) = ( 2), then has a neighborhood as shown in Fig. 6 (iii).
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Fig. 6.

Fig. 7.

In this case, the branch points can not be canceled without introducing a new triple
point locally.

Proposition 4.3. Let be a diagram of a surface-knot . Assume that has
a triple point with 2( ) = 3( ), which is denoted by simply. If U bounds a
2-disk in such that ( ) ( 3 ) = , where is the interior of , then
has a diagram with ( ) = ( ) 1. Also, if 1( ) = 2( ), 4( ) = 5( ), or

5( ) = 6( ), we have a similar result.

Proof. We prove the case =2( ) = 3( ); other cases are similarly proved.
Let be a sufficiently thin neighborhood ofL in . See Fig. 7 (i). First assume that

( ) 2 = . Since ( ) ( 3 ) = , we can shrink parallel to inR4 with-
out introducing new triple points, so that we have ( ) 2 = . Fig. 7 (ii) (iii)
shows this deformation schematically. [We remark that thisprocess produces new dou-
ble points near a double point on ( ), but never produce triplepoints.] Hence, we
may assume that ( ) 2 = . Then it is not difficult to see that the triple point
can be eliminated by using the deformation as in Fig. 6 (ii) (i).

The following theorem is due to Shima [15], which is our main motivation of
this paper. Note that if a diagram satisfies ( ) = 0, then the underlying surface
in R

3 (without crossing information) is an immersion. In [14] Shima and the author
studied the minimal number of triple points for all possible“immersed” diagrams of
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Fig. 8.

a surface-knot.

Theorem 4.4. If a 2-knot has a diagram with( ) = 2 and ( ) = 0, then
it holds that t( ) = 0.

We are ready to prove the following.

Theorem 4.5. There is no2-knot with t( ) = 2.

Proof. Assume that there is a 2-knot with t( ) = 2. Let be a minimal di-
agram of with the triple points 1 and 2. If has a bb-edge, then we replace it
with a simple closed curve by canceling the branch points as in Lemma 4.2. Hence,
we may assume that has no bb-edges; in other words, any branchpoint connects to
a triple point by an edge.

By Lemma 4.1, there are four cases according to the types of1 and 2. If 1

and 2 are of type 25 both, then we have a contradiction to Proposition 3.2. If both
of 1 and 2 are of type 0 , then it holds that ( ) = 0 by assumption that has no
bb-edge. It follows by Theorem 4.4 that t( ) = 0, which contradicts to the assump-
tion that is a minimal diagram. If both of1 and 2 are of type 5 , then this case
reduces to that of type 2 by changing the orientation of .

We consider the case that both of1 and 2 are of type 2 . We may assume that
( 1) = +1 and ( 2) = 1 by Lemma 4.1, and put = (1) = ( 2). Fig. 8 shows the

neighborhoods of 1 and 2, where we indicate orientations of the edges by white and
black big arrows whose Alexander numbers are + 1 and , respectively. It holds that
( 1) = ( 2) = + 1. Since there is no triple point other than1 and 2, it follows
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Fig. 9.

that

1( 1) 3( 1) = 1( 2) 3( 2) and(6)

5( 1) 4( 2) 6( 2) = 4( 1) 6( 1) 5( 2)(7)

First we consider the case1( 1) = 1( 2). There is an embedded curve connect-
ing 1 and 2 satisfying the assumption in Lemma 4.2. More precisely, we may take
a parallel curve along the sequence of edges

2( 1) = 1 1 1( 1) = 1( 2) = 1 2 and 2( 2) = 2 2

By applying Lemma 4.2 to , this case reduces to that of type 0 . The cases
( 1) = ( 2) for = 3 4 6 are similarly proved.

Thus we may assume that (1) = ( 2) for = 1 3 4 6. It follows by (6) that

1( 1) = 3( 2) and 3( 1) = 1( 2). Then there are three cases by (7).
• 5( 1) = 4( 1), 4( 2) = 6( 1), and 6( 2) = 5( 2). We can apply Proposi-
tion 4.3 to one of the looped edges5( 1) = 4( 1) and 6( 2) = 5( 2). To see
this, it is sufficient to check that the preimage of the neighborhood is connected as
shown in Fig. 9, where we write W = W( ); in fact, since is a 2-sphere, each of

L
5 ( 1) = L

4 ( 1) and U
6 ( 2) = U

5 ( 2) bounds a 2-disk, which does not contain triple
points and branch points. Note has no triple and branch points except 1 2 and

1 2 . Hence, this contradicts to the assumption that is a minimaldiagram.
• 5( 1) = 6( 1), 4( 2) = 5( 2), and 6( 2) = 4( 1). This case is the mirror
image of the previous one. Hence we have a similar contradiction to the assumption
that is a minimal diagram.
• 5( 1) = 5( 2), 4( 2) = 6( 1), 6( 2) = 4( 1). We have three double point
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curves 1, 2, and 3 consisting of

1 : 1( 1) = 3( 2) and 6( 2) = 4( 1)

2 : 2( 1) 5( 1) = 5( 2) and 2( 2)

3 : 3( 1) = 1( 2) and 4( 2) = 6( 1)

Then there is a pair of circles on with a single intersection;for example, the circle
U
2

L
2 intersects U

1 , L
1 , U

3 , and L
3 at T

2 , B
1 , T

1 , and B
2 , respectively. This

contradicts to the assumption that is a 2-knot.
Hence we have the conclusion.
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