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Abstract
We study rational surfaces having an even set of disjoint (�4)-curves. The prop-

erties of the surfaceS obtained by considering the double cover branched on the
even set are studied. It is shown, that contrarily to what happens for even sets of
(�2)-curves, the number of curves in an even set of (�4)-curves is bounded (less
or equal to 12). The surfaceS has always Kodaira dimension bigger or equal to
zero and the cases of Kodaira dimension zero and one are completely characterized.
Several examples of this situation are given.

1. Introduction

Let X be a smooth surface. A set of� disjoint smooth rational curvesN1, : : : , N� is
called aneven setif there existsL 2 Pic(X) such that 2L � N1C � � � C N� . In this note
we study even sets of curvesN1, : : : , N� where eachNi is a (�4)-curve (i.e. a smooth
rational curve with self-intersection�4) on rational surfaces. We prove that, contrarily to
what happens for even sets of (�2)-curves (cf. [6]), the number of curves in an even set
of (�4)-curves is bounded. More precisely we show that the maximalnumber of curves
in such a set is 12.

Given an even set of smooth rational curves one can consider the double cover
branched on these curves. For even sets of (�2)-curves on rational surfaces, such a double
cover is again a rational surface (see [6]). In contrast again the double cover of a rational
surface branched on an even set of (�4)-curves has always Kodaira dimension� 0. In
this paper we characterize completely the even sets of (�4)-curves on rational surfaces,
such that the corresponding double cover has Kodaira dimension 0 or 1. More precisely
we show that any even set of (�4)-curves on a rational surface, whose corresponding
double cover has Kodaira dimension 0 or 1, are components of fibres of a not relatively
minimal elliptic fibration. We give examples for all the possible numbers of the (�4)-
curves when the Kodaira dimension is 0. We do not know any examples for which the
Kodaira dimension of the double cover is 2 and we conjecture this should not occur.

NOTATION. We work over the complex numbers. All varieties are projective al-
gebraic. All the notation we use is standard in algebraic geometry. We just recall
the definition of the numerical invariants of a smooth surface X: the self-intersection

2000 Mathematics Subject Classification. 14J26, 14J17.



676 M. MARTÍ SÁNCHEZ

number K 2
X of the canonical divisorKX, the geometric genus pg(X) WD h0(KX) D

h2(OX), the irregularity q(X) WD h0(�1
X) D h1(OX) and theholomorphic Euler charac-

teristic �(X) WD 1C pg(X) � q(X).
A (�r )-curve on a surfaceX is a smooth irreducible rational curve with self-

intersection�r . An even set of(�r )-curvesis a disjoint union of (�r )-curvesC1,:::,Cn

such that the divisorC1C � � � C Cn is divisible by 2 in Pic(X).
We do not distinguish between line bundles and divisors on a smooth variety. Lin-

ear equivalence is denoted by� and numerical equivalence by�.

2. General facts

Throughout this section we make the following

ASSUMPTION 1. X is a smooth projective rational surface andC1, : : : , Cn is an
even set of disjoint (�4)-curves onX. We denote byL the divisor satisfyingC � 2L,
whereC WD C1C � � � C Cn.

From now on to the end of this chapter, we denote byX a surface in the condi-
tions of Assumption 1.

REMARK 2. We can contract the curvesCi obtaining a rational surface withn
quotient singularities of type (1=4)(1, 1).

Proposition 2.1. The divisor L satisfies the following:
(i) h0(X, L) D 0;
(ii) KX L C L2 D 0;
(iii) ( KX C L)2 D K 2

X C n;
(iv) 1 � h0(X, 2KX C C) � n;
(v) 1� h0(X, KX C L) � n.

Proof. Assertion (i) is obvious, because 2L � C, h0(X, C) D 1 andC is reduced.
By assumption 1, we haveL2 D �n and KX L D n, this proves (ii) and (iii). Finally,
by the Riemann–Roch theorem, one hash0(X, KX C L) � 1 and thus the left side of
inequalities (iv) and (v). On the other hand by the long exactsequence obtained from
the exact sequence:

0! OX(2KX)! OX(2KX C C)! OC((2KX C C)jC)! 0,

one hash0(X, 2KX C C) � n (and so alsoh0(X, KX C L) � n) becauseX is rational,
OC(2KX C C) D OC and h0(C, OC) D n.

REMARK 3. In what follows, we can assume thatKX C L is nef. Otherwise,
sinceKXCL is effective, there is an irreducible curveE such thatE2 < 0 andE(KXC
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L) < 0. Since each curveCi satisfiesCi (KX C L) D 0, E is not one of the curvesCi .
So E L � 0 and thusE KX < 0. SinceE is irreducible andE2 < 0, the only possibility
is that E is a (�1)-curve disjoint fromC and so we can contract it, without changing
the initial assumptions.

REMARK 4. Nefness ofKX C L implies that for each (�1)-curve� , there exists
at least one (�4)-curveCi such that�Ci > 0.

Our next goal is to describe the double cover ofX branched alongC D 2L. Let

� W S! X

be a double cover branched alongC. Then S is a smooth surface and by the double
cover formulas ([1]), we have
• KSD ��(KX C L);
• X (OS) D 2.

REMARK 5. The surfaceS, havingX (OS)D 2 has Kodaira dimension� 0. Since
we are assuming thatKX C L is nef andKSD ��(KX C L), also KS is nef and thus
S is minimal.

Lemma 2.2. Let X be a rational surface with an even set C of(�4)-curves.
Then h0(X,�2KX) � 1. Furthermore h0(X,�2KX) ¤ 0 if and only if the double cover
S! X is a K3 surface.

Proof. Notice thath0(X,C)D 1 andh0(X,2KXCC) � 1 by Proposition 2.1. Thus
we conclude that eitherh0(�2KX) D 0 or h0(X,�2KX) D 1 andh0(X, 2KX CC) D 1.
Since KXCi D 2, if h0(�2KX)D 1, then eachCi is a component of�2KX. So we can
write �2KX D C C 0, where0 is an effective divisor and letting1 D 2KX C C we
obtain1CCC0 � C. Hence1D 0 D 0 namelyC D �2KX . SinceX, being rational,
has no 2-torsion, alsoL D �KX and soKSD OS. Thus S having pg D 1, � D 2 is a
K3 surface. Conversely, ifS is a K3 surface,KSD OS and the result follows.

Next, we apply the above results to the following proposition.

Proposition 2.3. Let X be a rational surface with an even set C of n(�4)-curves
and such that KX C L is nef. Then�n � K 2

X � �1. Furthermore
(i) if K 2

X D �n, then
(ia) �(S) D 0 ) S is a K3 surface, or
(ib) �(S) D 1 ) S is an elliptic surface;

(ii) if K 2
X > �n, then K2

S � 2 and S is a surface of general type.
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Proof. SinceKX C L is effective and nef one has (KX C L)2 � 0. So by Prop-
osition 2.1 (iii) K 2

X � �n. As we have seen, one hash0(X, KX C L) � 1 and so since
h0(X, L) must be 0 we conclude thath0(�KX) D 0, otherwise the map

H0(X, �KX)
 H0(X, KX C L)! H0(X, L)

would have nonzero image. So by the Riemann–Roch theorem necessarilyK 2
X � �1.

The rest of the proposition is clear, by the classification ofminimal surfaces (see
e.g. [2]) andK 2

S D 2(K 2
X C n).

Finally we recall an important result due to Miyaoka.

Proposition 2.4 ([11]). The number n of disjoint(�2)-curves on a surface W
with KW nef satisfies3c2(W) � K 2

W � (9=2)n.

With this result we obtain:

Lemma 2.5. If X is a rational surface with an even set C of n(�4)-curves, then

n � 16.

Furthermore, if equality holds, then K2
S D 0.

Proof. SinceX (OS) D 2, one hasc2(S) � 24. On the other hand, for each curve
Ci , ��1(Ci ) is a (�2)-curve inS. Finally, applying Proposition 2.4 we obtain the result.

We will start by studying the caseK 2
X D �n, this is the K3 and the elliptic case.

3. The elliptic fibration

In this section we want to prove the following:

Proposition 3.1. Let X be as inAssumption 1and let S be the associated double
cover of X. Then�(S) � 1 if and only if X has an elliptic fibration containing the
(�4)-curves.

Before proving the above result, we will need various facts that we now establish.
Suppose thatX has an elliptic fibration

p0 W X ! P1

with general fibreF 0 such that every (�4)-curve is contained in a fibre.
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Since F 0Ci D 0 and F 0C D 0, OF 0 (C) D OF 0 and so eitherOF 0 (L) D OF 0 or
OF 0 (L) ¤ OF 0 .

In the first case for a general fibreF 0, ��(F 0) is disconnected. More precisely��(F 0) is the union of two fibres of an elliptic fibration onS. In the second case��(F 0) is connected and, by the Hurwitz formula, again elliptic.
So we have

Lemma 3.2. With the above notation, ��F 0 gives an elliptic fibration on S and
we have the following commutative diagram:

S
p K

� K
B

� 0K
X

p0 KP1.

Moreover,

Lemma 3.3. In the above situation one of the following holds
• h0(�2KX) D 1, �(S) D 0 and S is a K3 surface;
• h0(�2KX) D 0, �(S) D 1 and S is an elliptic surface.

Proof. The proof follows by Proposition 2.3 and Lemmas 2.2 and 3.2.

Having established the properties above we now examine the converse situation.
Let X be as in Assumption 1 andS the double cover ofX branched inC.

If �(S) D 0, then S is a K3 surface, soKX C L � 0 and X is a Coble surface,
this is, a nonsingular rational surface with empty anticanonical linear systemj�KXj but
nonempty bi-anticanonical systemj�2KXj. By the results in [7], in this case, there is
a birational morphismX! P2 such that the image ofC 2 j�2KXj in P2 is a member
of j�2KP2j, whence a plane sextic, that will be called a Coble sextic.

Lemma 3.4. The classification in([7], Section 5)yields:
(i) If n D 1, the image of the irreducible(�4)-curve C onP2 is an irreducible mem-
ber of a pencil of sextics with nine distinct double base points and having an extra
singular double point.
(ii) If n > 1, then the image of C is the union of two members(both singular) of a
pencil of cubics.

We are ready to prove Proposition 3.1

Proof of Proposition 3.1. IfX has an elliptic fibration containing the (�4)-curves
the result follows by Lemma 3.2.
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Conversely, assume that�(S) � 1. By Proposition 2.3, we have two possibilities:�(S) D 0 or 1.
For �(S) D 0, S is a K3 surface and applying Lemma 3.4 we obtain the result. In

fact, if n D 1, then X is a rational elliptic surface with one multiple fibre of multipli-
city 2 whilst, if n > 1, X is a rational elliptic surface without multiple fibres.

For �(S) D 1, S is an elliptic surface and so there is a smooth curveB and a
surjective morphismp W S! B whose generic fibre is a nonsingular elliptic curveF .
It is well known that:X (OS) D 2 implies

(3.1) KS � 2g(B)F C rX
iD1

mi � 1

mi
F,

wherem1F1, : : : , mr Fr are the multiple fibres ofp W S! B.
Note that KS��Ci D 2(KX C L)Ci D 0. Since the elliptic fibration ofS must be

invariant under the involution associated to the double cover � W S! X, it induces a
fibration of X, p0 W X ! P1, whose general fibre we denote byF 0. Since F��Ci D 0,
also F 0Ci D 0 and F 0C D 0. Using the same reasoning as in Lemma 3.2, we see that
also p0 W X ! P1 is an elliptic fibration and we are done.

REMARK 6. Recall that aHalphen pencil of index mis an irreducible pencil of
plane curves of degree 3m with 9 base points of multiplicitym (some of them may
be infinitely near). By [3], the minimal resolution of a Halphen pencil of indexm is
a rational elliptic surface with a multiple fibre of multiplicity m.

Conversely, again by Theorem 5.6.1 in [3], iff W X0 ! P1 is a rational elliptic
surface with a multiple fibre of multiplicitym (m D 1 if it does not have multiple
fibre), then there exists a birational morphism� W X0 ! P2 such that the composition
of rational mapsf Æ ��1 W P2 Ü P1 is given by a Halphen pencil of indexm.

So, if X is a surface as in Assumption 1, then�(S) � 1 if and only if there is a
Halphen pencil of indexm in P2 corresponding to the elliptic fibration. In particular
for �(S) D 0, mD 1 or mD 2.

4. The K3 case

In this section we assume thatKS� OS, thus one has�KX � L and�2KX � C.
Notice thatS is a smooth K3 surface with an involution� such that� �!D�! for

a nonzero holomorphic 2-form. Zhang in [15] classified the quotients of K3 surfaces
modulo involutions. In particular, with the approach top-down, he proved the following

Proposition 4.1 ([15]). Assuming that X is a rational surface with an even set of
n disjoint (�4)-curves. If the double cover S is a K3 surface, then we can conclude that

1� n � 10,

and n can take any value in this range(see examples below).
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REMARK 7. It is possible to give another proof of the previous proposition using
similar arguments to those used in the following sections.

EXAMPLE 8. Let us give an example of each possible case:
(i) For nD 1, as we have seen above, take a sextic curve inP2 with ten double points.
After blowing them up, we obtain a rational surface with a (�4)-curve. See also ([15],
Example 2.7).
(ii) For n D 2, in a pencil of cubics ofP2, take two singular members with one node
each, N1 and N2 respectively. Blowing up the base points,N1 and N2 we obtain the
two (�4)-curves. This example, with another point of view, can be found in [10].
(iii) For nD 3, in a pencil of cubics ofP2 take two singular members: one cubic with
a node and a conic plus a line. Blowing up the base points and the singular points of
these two singular members we obtain the result.
(iv) For n D 4, take a pencil of cubics and choose two singular cubics: three non-
concurrent linesL1, L2, L3 and one cubic,C1, with one unique singular point, a double
point N. Let

C D L1C L2C L3C C1

with the following singular points:
L i \L j D Pi j with i , j D 1,2,3, andL1\C1D {Q1,Q2,Q3}, L2\C1D {R1,R2,R3},

L3 \ C1 D {S1, S2, S3} and N.
Blowing up the thirteen singular points ofC we obtain pW X! P2 with QL2

i D �4,QC2
1 D �4 and rational.

(v) For nD 5, take a pencil of cubics andC is the sum of two singular members one
conic plus a line, and three lines.
(vi) For n D 6, Let L1, : : : , L6 be six nonconcurrent lines inP2 and C D L1C � � � C
L6 � 6H . Then C has 15 singular points, we blow up each line in 5 different points
p W X ! P2, then QL2

i D �4, this is, take a pencil of cubics with two singular cubics
L1C L2C L3 and L4C L5C L6.
(vii) For n D 7, in F0 denote byL1 and L2 the two rulings, then take seven effective
divisors R1, R2, R3, M1, M2, M3 and S where Ri � L1, Mi � L2 with i D 1, 2, 3, and
finally S � L1 C L2 without singular points. Blowing up the intersection points we
obtain seven (�4)-curves and the double cover is a K3 surface. This is, inP2 take a
pencil of cubics and the two singular cubics are one nonsingular conic C plus a line
L1 and three nonconcurrent linesL2, L3, L4 with these intersection pointsC\ L i D Pi 1

and Pi 2 such thatL1\ L2 D P11D P21 and L3\ L4 D P31D P41, the other intersection
points are all different.
(viii) For nD 8, in F0, with the same notation as above, takeR1 � R2 � R3 � R4 � L1

and M1 � M2 � M3 � M4 � L2. As before, inP2 we take a pencil of cubics with these
two singular members:L1C L2C L3, three concurrent lines, writeL1 \ L2 \ L3 D P
and L3 C L4 C L5 three concurrent lines as well, writeL3 \ L4 \ L5 D Q, such that
P ¤ Q and the other intersection points are all different.



682 M. MARTÍ SÁNCHEZ

(ix) For nD 9,10, inP2 take six linesL1,: : : ,L6 with this configuration:L1,L2 and L3

with a common pointP; L1, L4 and L5 with a common pointQ1; L2, L4 and L6 with
a common pointQ2; L3, L5 and L6 with a common pointQ3; finally L1 \ L6 D R1,
L2\ L5 D R2 and L3\ L4 D R3, all different points. First of all, we blow upP, thenQL1, QL2, QL3 are fibres ofF1 and denote byL the exceptional curve lying over the point
P; now we blow up each fibre six times and we obtain ten (�4)-curves, two of them
in each fibre, plus the strict transform ofQL1, QL2, QL3 and L.

We can obtainn D 9 in a similar way, see for instance Example 2.10 of [7].

5. The elliptic case

Now we examine more closely the case whenS is an elliptic surface with�(S)D 1.
Let F be a general fibre of the elliptic fibrationp W S! B.

Since the Kodaira dimension ofS is 1 there are effective nonzeron-canonical div-
isors. These are supported on the fibres of the elliptic pencil (see Equation (3.1)) and
so the elliptic pencil is unique. Thus it is necessarily invariant under the involution
associated to the double cover and we have a commutative diagram:

(5.1)

S
p K

� K
B

� 0K
X

p0 KP1

where p0 W X ! P1 is also an elliptic fibration.
We want to prove:

Theorem 5.1. In the above situation we have:
(i) 1 � n � 12;
(ii) if F 0 is the general fibre of p0, then��(F 0) D F1C F2 is disconnected.

The proof will be given throughout this section.
As we have seen in the proof of Proposition 3.1, we can write

KS � 2g(B)F C rX
iD1

mi � 1

mi
F,

wherem1F1, : : : , mr Fr are the multiple fibres ofp W S! B.
First of all we are going to describe the singular fibres ofp0 containing (�4)-curves.

Proposition 5.2. There exists a birational morphism� W X ! X0, where X0 is a
relatively minimal elliptic surface with the following property: for i D 1, : : : , n, the
curve C0i WD �(Ci ) is an irreducible component of a fibre of typeII, III, IV or mIr with
1� r � 9 and m� 1.
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Proof. Notice first that, sinceK 2
X D �n, X is not relatively minimal and so there

exists a (�1)-curve�1 such that�1 is a component of one of the fibresF 0 of the elliptic
fibration of X. Besides, by Remark 4, there exists a (�4)-curveC1, with �1C1D � � 1.
As we have seen aboveC1 is contained in some fibreF 0 and so also (�1C C1) � F 0.
As a consequence, by Zariski’s lemma

(�1C C1)2 D �1C 2� � 4� 0

and so� � 2.
If � D 2, 2�1 C C1 � F 0 and (2�1 C C1)2 D 0 mean thatm(2�1 C C1) D F 0 for

somem 2 N, m � 1. Contracting�1, �1 W X ! X1, we obtain a fibre of type I1, mI1

or II in X1 and K 2
X1
D �nC 1.

If � D 1, since�1L � 1, one has�1C � 2 and so�1 meets, at least, another (�4)-
curve C2. As in the precedent paragraph we conclude that�1C2 D 1. Let �1 W X ! X1

be the blowing down of�1 and �1(Ci ) D QCi . Then QC1 and QC2 are curves with self-
intersection�3 and QC1 QC2 D 1. As before, we have in this fibre a (�1)-curve Q�2. Hence
either Q�2 comes from a (�2)-curve in S, or Q�2 comes from a (�1)-curve in S.

If Q�2 comes from a (�2)-curve�2, then it is easy to see that 4�1C 2�2CC1CC2

is a fibre. Contracting�1 and �2 we obtain a fibre of type III.
If Q�2 comes from a (�1)-curve, there are three possibilities:

(i) �2C1 D �2C2 D 1. Then we have (2�1 C 2�2 C C1 C C2)2 D 0 and so we have a
fibre or a rational multiple of a fibre. Contracting�1 and �2, we obtain that an integer
multiple of the image of 2�1C 2�2C C1C C2 is a fibre of type I2.
(ii) �2C1 D �2C2 D 0. First of all, let us point out that every (�4)-curve Ci meets,
at most, three (�1)-curves (possibly infinitely near). In fact ifCi meets four (�1)-
curves, it is not very difficult to see that contracting thesethe image ofCi is a smooth
rational curve with self-intersection 0. This is impossible because the fibres of an el-
liptic fibration have alwayspa D 1. Thus, sinceQC2

1 D �3, there exists a (�2)-curve Æ
with ÆC1 D 1 andÆ�2 D 1. There are also two, and only two, (�4)-curvesC3 and C4

intersecting�2, this is �2C3 D �2C4 D 1. Then we haveC3CC4C 4�2C 2ÆCC1C � � �
in the fibre, but as we have seen beforeC3C C4C 4�2C 2Æ is a fibre, and we obtain
a contradiction.
(iii) �2C2 D 0 and�2C1 D 1.

If there is another (�1)-curve � 02 such that� 02C1 D 1, we have� 02C2 D 0; if not,� 02C2D 1 and then (2�1C2� 02CC1CC2)2D 0, but we have 2�1C2� 02CC1CC2C�2 � f ,
which is absurd. We have seen above that there existC3 andC4, different (�4)-curves,
such that�2C3D 1 and� 02C4D 1. Then we have 4�1C4�2C4� 02C3C1CC2CC3CC4 �
f and (4�1C 4�2C 4� 02C 3C1C C2C C3C C4)2 D 0, we get a fibre of type IV.

If there is not another (�1)-curve intersectingC1 and since�2C2 D 0, there exists
another (�4)-curveC3 with �2C3 D 1. As before, blowing down�1 and �2, QC3 and QC2

are curves with self-intersection�3, so there exists another (�1)-curve �3. Since, as
before,�3C3 D 1, then either�3C2 D 1 or �3C2 D 0. If �3C2 D 1 we have 2�1C 2�2C
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2�3CC1C C2CC3 � f and (2�1C 2�2C 2�3CC1C C2CC3)2 D 0, so we obtain a
fibre (or a rational multiple of a fibre) of type I3. In the other case,�3C2 D 0, there is
another (�4)-curveC4. . . , repeating the same argument we obtain a fibre of typemIr ,
r � 4 andm� 1.
In conclusion, sincen is a finite number andK 2

X D �n there aren (�1)-curves in
the fibres and after contracting them by� W X ! X0, one obtains a relatively minimal
rational elliptic surfaceX0 with these singular fibres.

By [8] a connected fibre on a relatively minimal rational elliptic surface has at
most nine irreducible components, and so in particular formIr we have 1� r � 9.

Denote byF 0
j the elliptic fibres inX containing (�4)-curves and by

J D {F 0
j , j D 1, : : : , n0}

the set of these fibres. Also denote byJ 0 D {�(F 0
j ), j D 1, : : : , n0} the image ofJ

in X0.
Keeping this notation:

Corollary 5.3. The number n of(�4)-curves in C is at most12. In particular, if
n D 12 the singular fibres of the elliptic fibration of X0 are all in J0.

Proof. Since X0 is a relatively minimal rational elliptic surface we have that
c2(X0) D 12 and by ([2], Lemma VI.4), we know that

c2(X0) DX
s

Xtop(F
0
s),

with F 0
s the singular fibres.

Also, noticing thatXtop(In) D n, Xtop(II) D 2, Xtop(III) D 3 andXtop(IV) D 4, the
result follows by Proposition 5.2.

REMARK 9. The pull-back��(F 0
j ), whereF 0

j 2 J , will be one of following types:

• If �(F 0
j ) is of type mIr , this is F 0

j D m
�Pr

1 Ci C 2�i
�
, then��(F 0

j ) D m
�Pr

1 2
i C
2O�i
� D 2m

�Pr
1 
i C O�i

�
, therefore��(F 0

j ) D 2mI2r with 1� r � 9 andm� 1.

• If �(F 0
j ) is of type II, then��(F 0

j )D ��(2�1CC1)D 2(O�1C
1), therefore��(F 0
j )D

2III.
• If �(F 0

j ) is of type III, then F 0
j D 4�1C 2�2C C1C C2 with �2 a (�2)-curve such

that �2C D 0, hence��(F 0
j ) D 2(2O�1C �1

2 C �2
2 C 
1C 
2), so ��(F 0

j ) D 2 QD4.

• Finally, if �(F 0
j ) is of type IV, then��(F 0

j ) D 2(2O�1C 2O�2C 2O�3C 3
1C 
2C 
3),

so ��(F 0
j ) D 2 QE6.



EVEN SETS OF (�4)-CURVES 685

We want now to understand��(F 0). So, we begin by supposing that��(F 0) D F .
In this caseB D P1 and we can consider the commutative diagram:

S
p K

� K
P1

� 0K
X

p0 KP1.

Lemma 5.4. If ��(F 0) D F , every fibre�(F 0
j ) 2 J 0 is a fibre of type mIr . In

particular,

F 0
j D m j

 r jX
1

Ci C 2�i

!
,

with n (�1)-curves�i , 1� r j � 9 and mj � 1.

Proof. If ��(F 0) D F , by Remark 9 the pull-back of any fibre containing a (�4)-
curve is a double fibre of the elliptic fibration inS. Since for every multiple fibremF0

in a elliptic fibrationF0 cannot be simply-connected (cf. [1]), looking at the description
of the fibres in Proposition 5.2 we obtain the statement.

It is well known (see [3]) that every relatively minimal rational elliptic surface has
at most one multiple fibre.

We analyse the different possibilities for the multiple fibres to prove the next
proposition:

Proposition 5.5. The elliptic fibration F0 of p0 W X! P1, Diagram (5.1),satisfies

��(F 0) D F1C F2.

Proof. Under the assumption that��(F 0) D F , let mD be the unique multiple
fibre in X0, if it has any, otherwise letmD 1 and D be any fibre.

First of all assume thatmD � J 0, then m j D 1 in F 0
j for all j D 1, : : : , n0. The

multiple fibres inS are ��(mD) of multiplicity m, and��(F 0
j ) of multiplicity 2, j D

1, : : : , n0. Thus, sinceX (OS) D 2, and the elliptic fibration has baseP1,

KS� (m� 1)

m
F C n0

2
F .

On the other hand, since

KX � �F 0 C (m� 1)

m
F 0 C �1C � � � C �n,
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by the double cover formulas we obtain

KS� �F C (m� 1)

m
F C O�1C � � � C O�n C 
1C � � � C 
n D (m� 1)

m
F C �n0

2
� 1

�
F,

a contradiction.
Now, assume thatm> 1 andmD2 J 0. Then the multiple fibres inS are��(mD)

of multiplicity 2m and ��(F 0
j ) of multiplicity 2, with j D 1, : : : , n0 � 1. Thus

KS� (2m� 1)

2m
F C (n0 � 1)

2
F .

As before,KX � �F 0C ((m�1)=m)F 0C�1C� � �C�n and by the double cover formulas
we obtain

KS� �F C (m� 1)

m
F C O�1C � � � C O�n C 
1C � � � C 
n

D (m� 1)

m
F C � (n0 � 1)

2
� 1

�
F C 1

2m
F,

sincem is a natural number we have a contradiction again and the result follows.

So ��(F 0) is disconnected and there is a natural 2�1 map� 0 W B! P1. By using
the Hurwitz formula we get

g WD g(B) D degR

2
� 1,

where R is the ramification divisor. Let us recall the commutative diagram (5.1)

S
p K

� K
B

� 0K
X

p0 KP1.

Then keeping the above notation:

Corollary 5.6. One has

n0 � degR� n0 C 1

Proof. SinceS is branched alongC D C1 C � � � C Cn, eachF 0
j 2 J corresponds

to a ramification point of� 0, so n0 � degR. Also, sincep0 W X0 ! P1 has at most one
multiple fibre, there is at most one more ramification point corresponding to a multiple
fibre (necessarily of even multiplicity) of the elliptic fibration of X0, hence the result.
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Corollary 5.7. The singular fibres of p coming from fibres F0
j 2 J of X are of

type mI2r (1� r � 9, m� 1), III, QD4D4 and QE6E6.

Proof. Using Remark 9, notice that if�(F 0
j ) is a fibre typemIr , then ��(F 0

j ) D
2m
�Pr

1 
i C O�i
�
. Therefore we obtain inS a fibre of typemI2r with 1 � r � 9 and

m � 1. If �(F 0
j ) is type II, III, or IV, then ��(F 0

j ) D 2F , with F a fibre of type III,QD4 and QE6 respectively.

EXAMPLES. – We take a pencil of cubics with 12 nodal cubics, blowing up the
base points and these 12 double points we will obtain a rational elliptic surface with
K 2

X D �12 andn D 12. The double coverS will be an elliptic surface. In a similar
way, we can obtain examples forn � 4 even.
– Using the program Magma, we can find a pencil of sextics with 4 nodal sextics.
Blowing up these double points and the base points, we get examples fornD 2,3 or 4.

6. Some remarks on the case of general type

Suppose now thatS is a surface of general type. From [12],K 2
S � 9X (OS) and

so K 2
S � 18.

Recalling thatK 2
S D 2(K 2

X C n) and�n < K 2
X � �1, so

(6.1) 2� K 2
S � 2(n� 1), 2� h0(2KX C C) � n and n � 2.

We do not know if this case can happen unlike in the previous cases we know
examples. Below we give some properties for this situation.More precisely, throughout
this section we will prove:

Proposition 6.1. Suppose that S is a surface of general type. One of the follow-
ing holds:
• if S is regular, then 2� K 2

S � 8 and 2� n � 9;
• if S is irregular, then q(S) D 1. Also, 6� K 2

S � 10 and 4� n � 9.

Proof. We divide the proof into steps.
STEP 1: h0(2KX C C) D h0(2KX C L) D K 2

X C nC 1.
By the Riemann–Roch theorem

h0(2KX C C) D K 2
X C nC 1C h1(2KX C C).

The projection formulah1(2KS)D h1(2KXCC)Ch1(2KXCL), together withh1(2KS)D
0, givesh1(2KXCC)D 0 and soh0(2KXCC)D K 2

XCnC1. SinceKXCL is effective,
nef and big, thenh1(�KX � L) D 0 (see [13]) and thush0(2KX C L) D K 2

X C n C 1
as asserted.
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STEP 2: The canonical divisor satisfies2� K 2
S � 10 and 2� n � 14.

If K 2
S D 18, by the Noether’s formula one hasc2(S) D 6 and applying Miyaoka’s

formula (Proposition 2.4), we obtainn D 0: also for K 2
S D 16 we obtainn D 1. Then

K 2
S � 14.

Similarly, if K 2
SD 14, thenn� 3. Then we have a contradiction by the inequalities

(6.1). The same argument proves thatK 2
S ¤ 12. ThenK 2

S � 10.
If K 2

S D 10 thenn � 7. From Proposition 2.3, one getsK 2
X � �1, whence the

only possibility is 6� n � 7. For n D 7 we haveK 2
X D �2 and for n D 6 we have

K 2
X D �1. In the same way, ifK 2

SD 8 then 5� n � 8, if K 2
SD 6 then 4� n � 10, if

K 2
S D 4 then 3� n � 12, and finally if K 2

S D 2, then 2� n � 14.
From now on, we are going to analyse separately the cases whenS is regular

and irregular.
STEP 3: If S is a regular surface of general type, then2� K 2

S� 8 and 2� n� 9.
The hypothesisq(S) D 0 implies b2(S) D c2(S)� 2 and pg(S) D 1, henceb2(S) D

22� K 2
S. Since� W S! X is an holomorphic map of degree 2, then

�� W H2(X, R)! H2(S, R)

is an injective ring homomorphism. We haveb2(X) D h1,1(X) and

b2(S) D h2,0(S)C h1,1(S)C h0,2(S),

whereh2,0(S) D h0,2(S) D 1. Sinceh1,1(X) � h1,1(S), one has

b2(X) � b2(S) � 2.

Note that, sinceX is a rational surface,b2(X)D 10�K 2
X. If K 2

SD 2, thenb2(S)D
20 and that impliesK 2

X � �8. In conclusion,K 2
X � �8 and from K 2

S D 2(K 2
X C n),

n � 9.
Likewise, for K 2

SD 4 one hasK 2
X � �6 andn � 8; for K 2

SD 6 one hasK 2
X � �4

and n � 7; for K 2
S D 8 one hasK 2

X � �2 andn � 6; finally K 2
S ¤ 10.

STEP 4: If S is an irregular surface of general type, then S is not of Albanese
general type and the genus of a general fibre of the Albanese fibration is > 2.

Suppose thatq(S) � 1. Then pg(S) D q C 1 � 2 and, since an irregular surface
satisfiesK 2 � 2pg by ([4]), K 2

S � 4.
Since S is a double covering of a surface withpg(X) D q(X) D 0 andq(S) > 0,

by the de Franchis theorem ([5])S is not of Albanese general type, and so we can
consider the Albanese fibration

f W S! B,

whereq(S) is the genus ofB. We denote byg the genus of a general fibre off and
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write q WD q(S). We have the following commutative diagram:

S
f K

� K
B

� 0K
X

f 0 KP1

where� 0 is a 2W 1 map with degRD 2qC 2, whereR is the ramification divisor.
By the appendix of [4]

K 2
S � 8(g� 1)(q � 1).

Since, by Step 2,K 2
S � 10, the only possibilities areq D 1, g � 2 and degRD 4,

or q D 2, g D 2 and degRD 6. In this last case the slope inequality ([14])

4(g� 1)

g
� K 2

S� 8(g� 1)(q � 1)

X (OX) � (g� 1)(q � 1)
� 12

yields K 2
S D 10 and thus 6� n � 7.

Assume in either case thatg D 2. Then f and f 0 are fibrations of genus 2 with
2qC2 fibres of f 0 corresponding to the ramification points of� 0. Denote byF1,:::,F2qC2

those fibres of f 0 and let��(Fi ) D 2 QFi , where QFi is a fibre of f . Since a fibration
of genus 2 does not have multiple fibres all the fibresF j , j D 1, : : : , 2q C 2, have
to contain some of the (�4)-curves and all its other components will appear with even
multiplicity. So we can writeF j D C1 C � � � C Cs C 2D, whereC1, : : : , Cs are (�4)-
curves inC appearing with odd multiplicity inF j and D is an effective divisor. Since
KX(C1C � � � CCs) D 2s and KX F j D 2, by the assumptiong D 2, thenKX D D 1� s.
Now, Ci F D 0 impliesCi D D 2, and so fromDF D 0, one obtains 2D2 D �2s, this is
D2 D �s. But thenKX D C D2 D 1� 2s, and this contradicts the adjunction formula.
So we can conclude thatg > 2.

STEP 5: If S is irregular, then q(S) D 1. Also, 6� K 2
S � 10 and 4� n � 9.

By the previous stepg > 2, whenceq D 1.
Notice that a surface with an Albanese fibration withg¤ 2 satisfiesK 2 � (8=3)X (O)

([9]) and thusK 2
S � 6.

Finally, as we have seen for the regular case, we haveh1,1(X) � h1,1(S) and since
q(S) D 1, one hasb2(S) D c2(S)C2; also,b2(S) D h1,1(S)C4, thenb2(X) � c2(S)�2.
Applying this inequality forK 2

S D 6, we obtainn < 10.
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