<table>
<thead>
<tr>
<th>Title</th>
<th>Certain invariant subrings are Gorenstein. I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Watanabe, Keiichi</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 11(1) P.1–P.8</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1974</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/12434</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/12434</td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/repo/ouka/all/

Osaka University
CERTAIN INVARIANT SUBRINGS ARE GORENSTEIN I

KEICHI WATANABE

(Received April 20, 1973)

Introduction

Let \(R = k[X_1, \ldots, X_n] \) be a polynomial ring over a field \(k \) and \(G \) be a finite subgroup of \(GL(n, K) \). We assume that \(|G| \), the order of \(G \), is not zero in \(k \). Then \(G \) acts on 1-forms of \(R \) and thus \(G \) can be considered as an automorphism group of \(R \). We want to investigate the invariant subring \(R^G \). We have two theorems concerning \(R^G \) already.

Theorem ([4], Théorème 1) \(R^G \) is again a polynomial ring if and only it \(G \) is generated by pseudo-reflections. (We call \(g \in G \) a pseudo-reflection if rank \((g - I)^{1} \leq 1 \), where \(I \) is the unit matrix).

Theorem ([2], Proposition 13) \(R^G \) is a Macaulay ring.

After these theorems, we ask:

“When is \(R^G \) a Gorenstein ring?”

We prove in this paper the following theorems.

Theorem 1. If \(G \subset SL(n, k) \), then \(R^G \) is a Gorenstein ring.

We apply this theorem to the case of regular local rings. If \((R, m) \) is a regular local ring and if \(G \) is a finite subgroup of Aut \((R) \), then \(G \) acts linearly on \(m/m^2 \). Thus we have the canonical homorphism \(\chi: G \to GL(m/m^2) \). We also assume that \(|G| \) is a unit in \(R \). Then applying Theorem 1, we get the following theorem.

Theorem 3. If \(\chi(G) \subset SL(m/m^2) \), then \(R^G \) is Gorenstein.

To reduce the case of regular local rings to the case of polynomial rings, we use the following theorem.

Theorem 4. Let \((A, m) \) be a local ring. (We assume always the Noetherian property.) We suppose that \(A \) has a filtration \(F = (F_i)_{i \geq 0} \) satisfying the following conditions.

(i) \(F_0 = A \) and \(F_i = m_i \).

(ii) \((F_i)_{i \geq 0} \) defines the same topology as the \(m \)-adic topology on \(A \). We put \(R = Gr(A) = \bigoplus_{i \geq 0} F_i/F_{i+1} \) the associated graded algebra and \(M = R_+ = \bigoplus_{i \geq 1} F_i/F_{i+1} \) the
canonical maximal ideal of R. Then,

1. Preliminaries

The contents of this section can be found elsewhere. But for the convenience of the readers, I put the proofs. As for the definition and the fundamental properties of Gorenstein rings, see [1].

In this section, R is a Noetherian ring and G is a finite group acting on R. We assume that $|G|$, the order of G, is a unit in R. We denote by R^G the invariant subring of R by G and by ρ the Reynolds operator $R \to R^G$ defined by $\rho(r) = \frac{1}{|G|} \sum_{g \in G} g(r)$ for $r \in R$.

Lemma 1. If f_1, \ldots, f_s are elements in R^G which form an R-regular sequence, then they form also an R^G-regular sequence and $R^G/(f_1, \ldots, f_s) \cong (R/(f_1, \ldots, f_s))^G$.

Proof. It suffices to show the latter part. Let's put $a = (f_1, \ldots, f_s)R$. If $h \in R$ and $h-g(h) \in a$ for all $g \in G$, $h^{-1}(h) \in a$ and $\rho(h) \in R^G$ obtaining that $R^G/(f_1, \ldots, f_s)R^G \to (R/(f_1, \ldots, f_s))^G$ is surjective. Since injectivity is clear, we are done.

Lemma 2. If R is Macaulay, then R^G is Macaulay.

Proof. If (f_1, \ldots, f_s) is a parameter system of R^G, it is also a parameter system for R. Since R is Macaulay, (f_1, \ldots, f_s) forms an R-regular sequence and by Lemma 1, it forms an R^G-regular sequence. So R^G is Macaulay.

Lemma 3. If (A, m) is an Artinian local ring, the following conditions are equivalent.

(a) A is Gorenstein.

(b) $\text{length}_A(0; m) = 1$.

(c) There exists an element z in A, $z \neq 0$, such that for every $x \neq 0$ in A there exists an element y in A satisfying $xy = z$.

Proof. (a)\Rightarrow(b) is almost the definition itself. (b)\Rightarrow(c) is straightforward.

Lemma 4. Let (A, m) be an Artinian local Gorenstein ring, G a finite group acting on A. We assume that $|G|$ is a unit in A and we denote by z an element in A satisfying the condition (c) of Lemma 3. If z is invariant under G, then A^G is Gorenstein.

Proof. We check the condition (c) of Lemma 3 for A^G. Take $x \neq 0$ in A^G. By assumption, there exists y in A satisfying $xy = z$. Then $\rho(y) = z$ and $\rho(y)$
Lemma 5. Let \(A \) be a ring which contains a field \(k \) and let \(k' \) be an extension field of \(k \). If a group \(G \) acts on \(A \) and \(G \) acts trivially on \(k \), we can extend the action of \(G \) to \(A' = A \otimes_k k' \) naturally. Then \((A')^G = A^G \otimes_k k'\). Thus \((A')^G\) is faithfully flat over \(A^G \) and if \((A)^0 \) is Gorenstein, \(A^G \) is Gorenstein.

Proof. We write elements of \(A' \) in the form \(x' = \sum x_i c_i \) where \(x_i \in A \), \(c_i \in k' \) and \(c_i \)'s are linearly independent over \(k \). For any \(g \in G \), \(g(x') = \sum g(x_i) \otimes c_i \) and if \(x \) is \(G \)-invariant, all \(x_i \)'s are \(G \)-invariant. Thus we have \((A')^G = A^G \otimes_k k'\) and so \((A')^G\) is faithfully flat over \(A^G \). The latter part holds by [5], Theorem 1'.

2. The case when \(G \) is cyclic

In this section, we use the following notations.
\(R = k[X_1, \ldots, X_n] \), the polynomial ring over a field \(k \).
\(G \) is finite cyclic subgroup of \(GL(n, k) \). We assume that \((\text{ch}(k), |G|) = 1\).
\(g \) is a generator of \(G \). We put \(|G| = m \) and we denote by \(\varepsilon \) a primitive \(m \)-th root of unity. We write \(e_i = \varepsilon^{a_i} \).

Lemma 6. If \(\det(g) = 1 \), then \(\mathcal{O} \) is Gorenstein.

Proof. \(X_1^m, \ldots, X_n^m \) are in \(R^G \) and by Lemma 1, we have \(\mathcal{O}/(X_1^m, \ldots, X_n^m)\mathcal{O} \cong (R/(X_1^m, \ldots, X_n^m)R)^G \). \(A = R/(X_1^m, \ldots, X_n^m)R \) is an Artinian local ring. As \(A \) is a complete intersection, \(A \) is Gorenstein. In \(A \), \(z = (X_1 \cdots X_n)^{m-1} \) satisfies the condition of Lemma 3 (c). If \(\det(g) = 1 \), \(z \in A^G \) and by Lemma 4, \(A^G \) is Gorenstein. Thus \(\mathcal{O} \) is Gorenstein.

Before proving the converse of Lemma 6, we need to fix some terminology.

Definition 1. \(m \) and \(a_i \) are as in the beginning of this section. We put \(I = \{(r_1, \ldots, r_n) | r_i \)'s are integers and \(0 \leq r_i < m \) for \(i = 1, \ldots, n \} \)
\(J = \{(r_1, \ldots, r_n) \in I | \sum_{i=1}^n r_ia_i \equiv 0 \pmod{m}\} \).

We define an order in \(I \) and \(J \). Namely, \((r_1, \ldots, r_n) \geq (s_1, \ldots, s_n) \) if \(r_i \geq s_i \) for \(i = 1, \ldots, n \). We call an element of \(J \) minimal if it is minimal among the elements of \(J \) which are not \((0, \ldots, 0)\).

Recall that, if \((A, m) \) is an \(n \)-dimensional local Macaulay ring, the 'type' of \(A \) is defined by the number \([\text{Ext}_A^n(A/m, A)/A/m]\). To say that \(A \) is Gorenstein
is equality to say that A is Macaulay and $\text{type}(A) = 1$. We denote by $\text{emb}(A)$ the embedding dimension of A. $\text{emb}(A) = [m/m^2: A/m]$.

Lemma 7. If the number of minimal element of J is E and the number of maximal element of J is r, then $\text{emb}(\mathcal{O}/(X^n_1, \ldots, X^n_n)) = E$ and $\text{type}(\mathcal{O}) = r$.

Proof. $X^n_1 \cdots X^n_n \equiv 0 \pmod{(X^n_1, \ldots, X^n_n)} \Rightarrow (r_1, \ldots, r_n) \in I$, and $X^n_1 \cdots X^n_n \in R^G \Rightarrow (r_1, \ldots, r_n) \in J$, and $\text{type}(\mathcal{O}) = \text{type}(\mathcal{O}/(X^n_1, \ldots, X^n_n))$. From these facts, the conclusion is immediate.

Definition 2. We call an element g of $GL(n, k)$ a pseudo-reflection if the order of g is finite and $\text{rank}(g-I_n) = 1$. (Where I_n denotes the unit matrix).

Proposition 1. If R^G is Gorenstein and if G does not contain any pseudo-reflections other than the unity, then $G \subset SL(n, k)$.

Proof. It is clear that $(m, a_1, \ldots, a_n) = 1$. Since type $(\mathcal{O}) = 1$, J must have unique maximal element (r_1, \ldots, r_n). It is sufficient to prove that $(r_1, \ldots, r_n) = (m-1, \ldots, m-1)$. If this is not the case, we may assume that $r_1 < m-1$. Since (r_1, \ldots, r_n) is the unique maximal element of J, for any s_i, $0 \leq s_i \leq m-1$ $(i=2, \ldots, n)$, $(m-1, s_2, \ldots, s_n) \in J$. If $(a_1, \ldots, a_n, m) = 1$, this can not happen and so $d = (a_2, \ldots, a_n, m) > 1$. Then if we put $m' = m/d$, $g^{m'} \neq 1$ and $g^{m'}$ is a pseudo-reflection. This contradicts the hypothesis that G does not contain any pseudo-reflections other than the unity.

Example 1. If ξ is a primitive 6-th root of unity and if we put $g = \begin{bmatrix} \xi & \xi^2 \\ \xi^2 & \xi \end{bmatrix}$, R^G is Gorenstein but $\det(g) \neq 1$. This is due to the fact that $g^3 = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$ is a pseudo-reflection. If we put $H = \{1, g^2\}$, $R^G = (R^H)^G/H$, $R^H = k[X^2, Y, Z]$. The action of $g = g \mod H$ on $k[X^2, Y, Z]$ is represented by $\begin{bmatrix} \xi^2 & \xi^2 \\ \xi^2 & \xi^2 \end{bmatrix}$ and $\det(g) = 1$.

More generally (we don’t suppose that G is cyclic), let H be the subgroup of G generated by all its pseudo-reflections. Then H is a normal subgroup of G and R^H is again a polynomial ring over k (Serre [4], Théorème 1). Thus the hypothesis “G does not contain any pseudo-reflections” is quite natural.

3. R^G is Gorenstein at the origin

Theorem 1a. If a finite group $G \subset SL(n, k)$ acts on $R = k[X_1, \ldots, X_n]$ naturally and if $(|G|, \text{ch}(k)) = 1$, then R^G is Gorenstein ‘at the origin’. Namely, if we put $n = R^G \cap (X_1, \ldots, X_n)$ and $\mathcal{O} = (R^G)_n$, then \mathcal{O} is Gorenstein.

Proof. We take a parameter system (f_1, \ldots, f_n) of \mathcal{O} as follows;
1. Each f_i is homogenous of the same degree m.
2. m is a multiple of $|G|$.

We put $A = R/(f_1, \ldots, f_n)R$ and we want to apply Lemma 4. For this purpose we notice the following fact.

Lemma 8. Let $A = \bigoplus_{i \geq 0} A_i$ be a graded ring. We assume that $A_0 = k$ is a filed and that each A_i is a finite dimensional vector space over k. If f is a homogenous element of A which is not a zero-divisor of A, then $\dim_k(A/fA)_n$ depends only on A, n and $\deg(f)$.

Proof. If $\deg(f) = d$, $\dim_k(A/fA)_n = \dim_k(R/(X^n, \ldots, X^n))_d$. If we take $z \in A$ satisfying the condition of Lemma 3 (c) (A is Gorenstein), $\deg(z) = n(m-1)$. Then we take an element $g \in G$ and assume that g is in a diagonal form. We put H the cyclic subgroup of G generated by g. Applying Lemma 8 to R^H, $\dim_k(R^H/(X^n, \ldots, X^n))_d = \dim_k(A^H)_d = \dim_k(R^H/(f_1, \ldots, f_n))_d$. As we have $(X^n, \ldots, X^n)_{m-1} \in R^H (g$ is in a diagonal form and $\det(g) = 1)$, $\dim_k(A^H)_{m-1} = 1$. As $\dim_k A_{m-1} = 1$, z is invariant under H. As g is arbitrary, $z \in A^G$. By Lemma 4, $A^G = \mathcal{O}(f_1, \ldots, f_n) \mathcal{O}$ is Gorenstein. Thus \mathcal{O} is Gorenstein.

4. R^G is globally Gorenstein

Theorem 1. If a finite subgroup G of $SL(n, k)$ acts naturally on $R = k[X_1, \ldots, X_n]$ and if $(|G|, \text{ch}(k)) = 1$, then R^G is Gorenstein.

Proof. By Lemma 5, we may assume that k is algebraically closed. If we take a maximal ideal n' of R^G, we can write $n' = (X_1-a_1, \ldots, X_n-a_n)R \cap R^G (a_1, \ldots, a_n \in k)$. We put $H = \{g \in G \mid g(a_1, \ldots, a_n) = (a_1, \ldots, a_n)\}$. We consider the diagram $R^G \rightarrow R^H \rightarrow R$. Then it is known that $R^G \rightarrow R^H$ is étale in a neighbourhood of n' (Raynaud [3], P. 103, Th. 1). Thus $(R^G)_{n'} \rightarrow (R^H)_q$ is flat (where $q = (X_1-a_1, \ldots, X_n-a_n) \cap R^H$). If $(R^H)_q$ is Gorenstein, then $(R^G)_{n'}$ is Gorenstein ([5], Theorem 1). But by the coordinate transformation $(X_1, \ldots, X_n) \rightarrow (X_1-a_1, \ldots, X_n-a_n)$, H can be regarded as a subgroup of $SL(n, k)$ and $q = (X_1, \ldots, X_n) \cap R^H$. By theorem 1a, $(R^H)_q$ is Gorenstein and we are done.

Question 1. Is the converse of Theorem 1 true? Let G be a finite subgroup of $GL(n, k)$ and let us assume that $(|G|, \text{ch}(k)) = 1$ and that G contains no pseudo-reflections other than the unity. If R^G is Gorenstein, then $G \subset SL(n, k)$?

1) Added in proof. The statement in Question 1 has been proved by the author. The proof will appear in [6].
Question 2. Is the following statement true? Let \(A = \bigoplus_{i \geq 0} A_i \) be a Noetherian graded ring with \(A_0 \) a field. We put \(M = A_+ = \bigoplus_{i \geq 1} A_i \). If \(A_M \) is Gorenstein, is \(A \) globally Gorenstein?

5. Base extensions

Theorem 2. Let \(A \) be a Noetherian ring and \(G \) be a finite subgroup of \(SL(n, A) \). We assume that \(|G| \) is a unit in \(A \). Then \(G \) acts naturally on \(R = A[X_1, \cdots, X_n] \). Then \(R^G \) is Gorenstein if and only if \(A \) is Gorenstein.

Lemma 9. Under the assumptions of Theorem 2, \(R^G \) is faithfully flat over \(A \).

Proof of Lemma 9. (i) If \(a \) is an ideal of \(A \), then \(a(R^G) = (aR)^G \). (If \(\sum a_i f_i \in (aR)^G \) with \(a_i \in a \) and \(f_i \in R \), \(\sum a_i f_i = \rho(\sum a_i f_i) = \sum a_i \rho(f_i) \) and we have \((aR)^G \subset aR^G \). The converse inclusion is clear).

(ii) As \(R \) is \(A \)-flat, \((aR)^G \cong (a \otimes_A R)^G \).

(iii) \((a \otimes_A R)^G \cong a \otimes_A R^G \) (The isomorphisms is given by \(\sum a_i \otimes f_i \rightarrow \sum a_i \otimes \rho(f_i) \)). By (i), (ii), (iii), \(aR^G \cong a \otimes_A R^G \) and \(R^G/aR^G \cong (R/aR)^G \). Thus \(R^G \) is faithfully flat over \(A \).

Proof of Theorem 2. The fiber of the map \(f: \text{Spec}(R^G) \rightarrow \text{Spec}(A) \) at \(p \in \text{Spec}(A) \) is the Spec of \(R^G \otimes_A k(p) \cong (k(p)[X_1, \cdots, X_n])^G \) which is Gorenstein by Theorem 1. Thus \(f \) is a Gorenstein morphism in the sense of [5], Definition (1.7). The conclusion follows from [5], Theorem 1'.

Remark. In Lemma 9, the assumption "\(|G| \) is a unit in \(A \)" is essential. For example, let \(A = k[e] \), \(k \) be a field of characteristic 2, \(e^2 = 0 \), \(G = \langle g \rangle \), \(g = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \). If we put \(a = eA \), then \(eX_i \in R^G \) and \(e \otimes eX_i \neq 0 \) in \(a \otimes_A R^G \), while \(e.eX_i = 0 \). Thus \(a \otimes_A R^G \rightarrow aR^G \) is not injective and \(R^G \) is not flat over \(A \).

6. A theorem on the associated graded algebra of a local ring

Theorem 3. If \((A, m) \) is a Noetherian local ring and \((F_n)_{n \geq 0} \) be a filtration on \(A \) satisfying the two conditions.

1. \(F_0 = A \) and \(F_1 = m \).
2. \((F_n)_{n \geq 0} \) defines the same topology as the \(m \)-adic topology on \(A \).

We put \(R = \text{Gr}(A) = \bigoplus_{i \geq 0} F_i/F_{i+1} \) the associated graded algebra and \(M = R_+ = \bigoplus_{i \geq 1} F_i/F_{i+1} \) the canonical maximal ideal of \(R \). Then,

(i) if \(R_M \) is Macaulay, then \(A \) is Macaulay.

(ii) if \(R_M \) is Gorenstein, then \(A \) is Gorenstein.

Proof. The proof follows immediately from the two lemmas below.
Lemma 10. Let \(f_1, \ldots, f_s \) be homogenous elements of \(R \) which make an \(R \)-sequence. If \(x_1, \ldots, x_s \) are elements of \(A \) with \(\text{In}(x_i) = f_i (i = 1, \ldots, s) \), then \((x_1, \ldots, x_s)\) form an \(A \)-regular sequence and \(\text{Gr}'(A/(x_1, \ldots, x_s)) = R/(f_1, \ldots, f_s) \). (If \(x \in A, x \in F_n \) and \(x \equiv F_{n+1} \), then \(\text{In}(x) = x \mod F_{n+1} \in \text{Gr}'(A) \). The filtration of \(A/(x_1, \ldots, x_s) \) is the one induced from \((F_n)\).)

Proof. We note the fact that if \(x, y \in A \) and \(\text{In}(x) \text{In}(y) \neq 0 \), then \(\text{In}(xy) = \text{In}(x) \text{In}(y) \).

Case 1. \(s = 1 \) (we omit the subscript 1).

If \(y \in A \) and \(\text{In}(y) \neq 0 \), by assumption \(\text{In}(x) \text{In}(y) \neq 0 \). Thus \(\text{In}(xy) = \text{In}(x) \text{In}(y) \neq 0 \) and \(xy \neq 0 \). On the other hand, \(\text{Gr}'(A/xA) \approx R/\text{Gr}'(xA) \) where \(\text{Gr}'(xA) \) is the homogenous ideal of \(R \) generated by \(\text{In}(x) \), \(z \in xA \). But if \(z = xy \in xA \), then \(\text{In}(z) = \text{In}(x) \text{In}(y) \) and so \(\text{In}(z) \in fR \). Thus we have \(\text{Gr}'(A/xA) \approx R/fR \).

Case 2. General case.

We assume that the assumption is true for \(s = i \) and prove for \(s = i + 1 \). As \(f_{i+1} \) is not a zero-divisor on \(\text{Gr}'(A/(x_1, \ldots, x_i)) \approx R/(f_1, \ldots, f_i) \), Case 1 applies.

Lemma 11. If \((A, m)\) is an Artinian local ring, \((F_n)\) is a filtration on \(A \) which satisfies the conditions of Theorem 3 and if \(R = \text{Gr}'(A) \) is Gorenstein, then \(A \) is Gorenstein.

Proof. We use Lemma 3. Let \(h \) be a homogenous element of \(R \) which satisfies the condition of Lemma 3(c) for \(R(M : M \) is a homogenous ideal of \(R) \). Then if \(z \in A \) be such that \(\text{In}(z) = h \), then for any \(x \in A, x \neq 0 \), there exists an element \(f \in R \) such that \(\text{In}(x)f = h \). If we take \(y \in A \) such as \(\text{In}(y) = f \) and if \(\deg(h) = m, \text{In}(y) \text{In}(x) = h \) and \(xy \equiv z \mod F_{m+1} \). But as \(F_{m+1} = 0, xy = z \) and \(z \) satisfies the condition (c) of Lemma 3 for \(A \).

7. The case of regular local rings

The statement of Theorem 4 was indicated to me by Professor M. Miya- nishi with an outline of a proof. I wish to express my deep gratitude to him.

Theorem 4. Let \((R, m)\) be a regular local ring of dimension \(n \) and \(G \) be a finite subgroup of \(\text{Aut}(R) \) satisfying the following conditions.

1. \(|G| \) is a unit in \(R \).
2. The automorphisms of \(k = R/m \) induced by the elements of \(G \) are identities.
3. If we denote \(\lambda : G \rightarrow GL(m/m^2) \) the canonical homomorphism, then \(\lambda(G) \subset SL(m/m^2) \).

Then \(S = R^G \) is Gorenstein.

The proof is divided into several steps. First we need a lemma.
Lemma 12. ([2], Proposition 10) Let R be a commutative ring and G be a finite group acting on R. We assume that $|G|$ is a unit in R and we put $S=R^G$. Then if a is an ideal of S, then $aR \cap S=a$.

Proof. If $\sum a_ir_i \in S$, $a_i \in a$, $r_i \in R$, then $\sum a_ir_i=\rho(\sum a_ir_i)=\sum a_i\rho(r_i) \in a$. Thus we get the inclusion \subset and the converse is trivial.

We return to the proof of Theorem 4. From Lemma 12, we get

(1) S is a Noetherian local ring.

Proof. Since R is integral over S, S is local and by Lemma 12, S is Noetherian.

We put,

$A=\text{Gr}_{m}(R)\approx k[X_1, \cdots, X_n]$.

G acts naturally on A. We denote by n the maximal ideal of S and we put $F_n=S \cap m^n$. $(F_n)_{n \geq 0}$ defines a filtration on S. We denote by B the graded ring associated to this filtration. Then we have;

(2) $B \approx A^G$.

Proof. If $f=\ln(x) \in A_n$ is invariant under G, then $x-\rho(x) \in m^{n+1}$ and $\rho(x) \in F_n$. Thus $A^G \subset B$. The converse implication is trivial.

(3) The filtration (F_n) defines on S the same topology as n-adic topology.

Proof. If suffices to say that for any integer $t \geq 0$, there exists an integer t' such that $S \cap m^{t'} \subset n^t$. But as nR is m-primary, for some s, $m^s \subset nR$. Then, by Lemma 12, $m^s \cap S \subset (nR)^t \cap S=n^t$.

By (2), (3), Theorem 1 and Theorem 3, Theorem 4 is proved.

TOKYO METROPOLITAN UNIVERSITY

References

Added in proof; Question 2 in section 4 was solved affirmatively by Y. Aoyama, S. Goto, J. Matijevic and R.C. Cowsik independently and in more general forms.