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1. Introduction and results

By a surface-link, we mean a closed oriented immersed surface F in the 4-space

R4 whose singularities are transverse double points. An embedded surface-link is said

to be unknotted if it bounds mutually disjoint handlebodies (possibly including 3-balls)

in R4. We define a surface-link with double points to be unknotted if it is obtained

from an unknotted embedded surface-link by adding several pieces of trivial posi-

tive/negative kink, as illustrated in Fig. 1.

A 3-ball h in R4 is called a 1-handle attached to F if F Π h is a pair of 2-disks

on dh that is disjoint from the singularities of F; the surgery results an orientable sur-

face, say F' (cf. [3, 9, 20]). We assign F' the orientation induced from that of F and

consider it a surface-link. It is known that every embedded surface-link is transformed

into an unknotted one by surgery along 1-handles (cf. [9]). (There are interesting re-

searches on 1-handle surgeries for embedded surface-links in [3, 9, 10, 17, 18, 23].)

This result is generalized to surface-links, which are not necessarily embedded.

Theorem 1.1. Every surface-link is transformed into an unknotted one by surge-

ry along 1-handles.

We notice that the proof of the above result given in [9] is not applied to our

situation, which surface-links may have double points. In order to prove Theorem 1.1,

we use 2-dimensional braids and their chart descriptions. (A 2-dimensional braid and

its related topics are found in [4, 5, 8, 11, 13, 19, 21, 22, 24].) Viro's theorem [24]

states that every embedded surface-link is ambient isotopic to a closed embedded 2-

dimensional braid (cf. [13]). This is generalized to surface-links in our sense:

Theorem 1.2 ([16]). Every surface-link is ambient isotopic to the closure of a

singular 2-dimensional braid.

We introduce the notion of unknottedness of a singular 2-dimensional braid, which
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Trivial negative kink

Fig. 1.

is a generalization of an unknotted embedded 2-dimensional braid defined in [11], and

prove the following two theorems.

Theorem 1.3. A surface-link is unknotted if and only if it is ambient isotopic to

the closure of an unknotted singular 2-dimensional braid.

Theorem 1.4. Every singular 2-dimensional braid is transformed into an unknot-

ted one by surgery along 1-handles.

Theorem 1.1 is a direct consequence of Theorems 1.2-1.4. Our argument in this

paper gives an explicit procedure to find 1-handles along which one can transform a

given surface-link into an unknotted one by surgery. (The proof of Theorem 1.2 giv-

en in [16] gives a procedure to deform a surface-link into a closed braid. The proofs

of Theorems 1.3 and 1.4 given here are very simple algorithm.) These theorems are

announced in [16] without proofs. The purpose of this paper is to give the postponed

proofs.

For a surface-link F (resp. a singular 2-dimensional braid 5), Theorem 1.1 (resp.

Theorem 1.4) enables us to define the unknotting number u(F) (resp. u(S)) by the

minimum number of 1-handle surgeries used for transforming F (resp. S) into an un-

knotted one. If F is ambient isotopic to the closure of a singular 2-dimensional braid

5, then by Theorem 1.3 we have

u(F) < u(S).

From the proof of Theorem 1.4, we see the following.

Proposition 1.5. Let S be a singular 2-dimensional braid of degree m and Γ a

chart description of S. Then

u(S) <w(Γ)+m- 1,
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where w(S) is the number of white vertices ofT.

Although the inequality above may not give an accurate relation between the two

invariants, its right hand term is explicitly calculated from the chart description.

This paper is organized as follows. We expound singular 2-dimensional braids and

their chart descriptions in §2. In §3, the notion of an unknotted singular 2-dimensional

braid is introduced and we prove Theorem 1.3. Theorem 1.4 is proved in §4. In §5,

some examples are given.

2. Singular 2-dimensional braids and chart descriptions

Let Ό\, D2 be 2-disks and Xm a fixed set of m interior points of Dι. We denote

by pri : Dι x D2 -* Di (i = 1, 2) the ith factor projection. A singular 2-dimensional

braid of degree m is a compact oriented surface S in D\ x D2 whose singularities are

transverse double points such that

(1) for an immersion / : S o -> D\ x D2 associated with S, the composition pr2 o /

is an m-fold branched covering map,

(2) the boundary dS is the trivial closed m-braid Xm x dD2 in the solid torus D\ x

dD2j and

(3) for each y G D2, jj(5 Πpr^1 (y)) = m — 1 or m.

A singular point of S means a double point of S or the image by / of a branch

point of So of the branched covering map pr2 o /. The condition (3) above implies

that each fiber pr^iy) — D\ x {y} contains at most one singular point of S and that

the branching index of each branch point is two (cf. [1, 2]). Two 2-dimensional braids

are said to be equivalent if one is transformed into the other by a fiber-preserving iso-

topy of D\ x D2 (as a D\-bundle over D2) keeping D\ x dD2 fixed. We often regard

equivalent 2-dimensional braids as the same.

Let 5 be a singular 2-dimensional braid of degree m. Identify D2 with the prod-

uct I\ x I2 of the unit intervals and put bt = SΠ (Dι x (7χ x {£})) for t e I2 = [0,1].

Then bt are m-braids in Ό\ x (7χ x {t}) = D\ x I\ for all t £ [0,1] but a finite num-

ber of fs. For each exceptional value t, the braid bt is a singular m-braid, i.e., it has

double points in its strands. We call {bt} (t G [0,1]) a braid movie of 5. (It depends

on the identification between D2 and Iχ x 72.) An example is given in Fig. 2. From

the second condition of the definition of a singular 2-dimensional braid, we see that

bo and b\ are trivial m-braids; for each t G [0,1], the boundary dbt is a pair of copies

o f X m .

Each singular point of 5 corresponds to a singular point (double point) of a sin-

gular m-braid bt for some t G [0,1] in the braid movie. If the singular point of 5 is

the image of a branch point, then in the braid movie a recombination of two strands

occurs as in Fig. 3, which is called an intercommutation in [11]. If the singular point

of S is a double point singularity, then in the braid movie a crossing change of two

strands occurs.
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Fig. 2.
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An m-chart is a (possibly empty) finite graph in the interior of D2, which may

have hoops (that are closed edges without vertices), satisfying the following conditions:

(1) Every vertex has degree one, two, four or six.

(2) Every edge is directed, and labeled an integer in {1,2,..., TO — 1}.

(3) For each vertex of degree six, three consecutive edges are directed inward and

the other three are directed opposite, or outward; these six edges are labeled i

and i + 1 alternately for some i.

(4) For each vertex of degree four, edges in a diagonal position have the same label

and are directed coherently; their labels i and j of the diagonals satisfy \i—j\ >

1.

(5) For each vertex of degree two, the two edges are labeled the same integer and

directed noncoherently.

A vertex of degree one, two, four or six is called a black vertex, a node, a cross-

ing, and a white vertex respectively. We often denote a white vertex by a fat vertex

colored white and consider a crossing vertex to be a crossing point of two edges in-

tersecting transversely, see Fig. 4. An edge attached to a white vertex is called a mid-

dle edge if it is the middle of the three consecutive edges directed either inward or
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Fig. 5.

outward; otherwise a non-middle edge.

Let Γ be an ra-chart. For a smooth path a : [0,1] —»• £>2 intersecting Γ transverse-

ly (missing all the vertices), assign an intersection a letter σ; (resp. σ" 1 ) if its inter-

secting edge of Γ is labeled i and directed from left to right (resp. right to left) with

respect to a. Reading off all these letters along α, we have a word on standard gen-

erators σ i , . . . , σ m _ i of the m-braid group Bm, and we denote this word by wr(a).

There exists a unique, up to equivalence, singular 2-dimensional braid λ(Γ) of degree

m having the following properties (cf. [4, 5, 11, 12, 15, 16]):

(1) The restriction of λ(Γ) to Dλ x (D2\N(Γ)) is the product Xm x (D2\N(Γ))

for a regular neighborhood N(Γ) of Γ.

(2) For any smooth path a : [0,1] -» D2 such that α(0),α(l) G D2\N(Γ) and it

intersects Γ transversely, the geometric m-braid b C D\ x [0,1] determined by

pn(bΠ{Dι x {£})) = pri(λ(Γ)n(£>i x {a(t)})) for ί G [0,1] is presented by the

word wr(a), where pr\ are projections Ό\ x [0,1] -> £>i and Dι x D2 -+ Dι.

Conversely any singular 2-dimensional braid 5 of degree m is equivalent to λ(Γ) for

some Γ. Then we say that Γ presents S. For example, the singular 2-dimensional braid

of degree 4 whose braid movie is illustared in Fig. 2 is presented by a 4-chart depicted

in Fig. 5.

Operations listed below (and their inverses) are called a C\-, CΉ-, Cm-, Cry- and

Cy-move respectively. Two m-charts are C-move equivalent if they are related by a

finite sequence of such C-moves and ambient isotopies.
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(Ci) For a 2-disk E on D2 such that Γ Γ\ E has neither black vertices nor nodes,

replace Γ Π E with arbitrary chart that has neither black vertices nor nodes.

(Qi) Suppose that an edge e connects a crossing vertex υ4 and a black vertex υ1.

Remove e and υ4, attach v1 to the edge of v4 opposite to e, and connect the

other two edges naturally.

(Cm) Let a black vertex v1 and a white vertex υ6 be connected by a non-middle edge

e of v6. Remove e and υ6, attach v1 to the edge of v6 opposite to e, and con-

nect other four edges in a natural way.

(Civ) Let a vertex υ4 of degree four and a node υ2 be connected by an edge. Transfer

v2 to its opposite side across v4.

(Cy) Let a node v2 and a white vertex υ6 be connected by a non-middle edge of υ6.

Transfer v2 to its opposite side across υ6.

We illustrate examples of Q-moves in Fig. 6 and Cπ-Cy-moves in Fig. 7. The second

move in Fig. 6 is called a channel change. J. S. Carter and M. Saito [6] proved that

any Q-move is a consequence of the Q -moves depicted in Fig. 6.
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Lemma 2.1 ([15, 16]). Two m-charts are C-move equivalent if and only if their

presenting singular 2-dimensional braids are equivalent.

Let 5 be a singular 2-dimensional braid of degree ra. Embed D\ x D2 into R4

and assume that 5 is in RA. Then the boundary of S bounds naturally ra trivial disks

in i?4 - i n t ( D i x D2). The union of S and the m trivial disks form a surface-link. We

call it the closure of 5.

Theorem 1.2 ([16]). Every surface-link is ambient isotopic to the closure of a

singular 2-dimensional braid.

If a surface-link F is ambient isotopic to the closure of a singular 2-dimensional

braid presented by a chart Γ, then we say simply that Γ presents F.

Let Γ be an m-chart. Consider an m-chart which is obtained from Γ by adding

some hoops parallel to dD2 surrounding Γ. We say that the chart is obtained from Γ

by a conjugation. The inverse operation is also called a conjugation.

Let Γ be an m-chart and Γ' an (ra + l)-chart which is the union of Γ (regarded

as an (ra +1)-chart naturally) and a single edge labeled ra whose endpoints are black

vertices. Then we say that Γ' is obtained from Γ by a stabilization.

A singular 2-dimensional braid 5 ' is said to be obtained from another 5 by a con-

jugation (resp. a stabilization) if they have chart descriptions Γ ; and Γ such that Γ' is

obtained from Γ by a conjugation (resp. stabilization). The notion of a conjugation and

a stabilization defined here is equivalent to that in [14]. Thus we have the following

lemma, which is also verified directly by considering braid movies.
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Lemma 2.2. Suppose that a singular 2-dimensional braid S' is obtained from

another S by a conjugation or a stabilization. Then their closures are ambient iso-

topic in i ϊ 4 .

Let Cm denote the set of ra-charts in D2. For non-negative integers a and 6, we

define a natural injection

la : ^m "^ Cm+a+b

such that ^α(Γ) is an (m + α + b)-chart obtained from Γ by adding the integer a to

each label in Γ and regarding it as an (m + a + 6)-chart naturally.

Lemma 2.3 (Split sum and Knot sum). Let F\ and F2 be surfaces-links present-

ed by an m-chart Γi and an n-chart Γ2. Then the (ra + n)-chart

presents a split sum of JF\ and F2, and an (m + n — l)-chart

presents a knot sum {connected sum) of them.

Proof. Let {bt} and {bf

t} be braid movies of the 2-dimensional braids Si and

52 presented by Γi and Γ2. The braid movies depicted as (1) and (2) in Fig. 8 cor-

respond to # ( Γ i ) U ^ ( Γ 2 ) and ^ ( Γ i ) II ^ _ i ( Γ 2 ) respectively. Let D be a 3-

ball in D\ x D2 — D\ x (Iχ x I2) such that for each t G [0,1], the £-level section
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Fig. 9.

D Π (Dι x (h x{t})) is a 2-disk indicated by the dotted line in Fig. 8(1). In R4, the

3-ball D is extended to a 3-sphere which separates the closures of S\ and 52. Thus

the closure of the braid movie depicted in Fig. 8(1) is a split sum of Fi and F 2 . Sim-

ilarly we see that the closure of the braid movie depicted in Fig. 8(2) is a knot sum

of Fi and F 2 . D

3. Unknotted singular 2-dimensίonal braids

Let Γ be a chart. A quasi-free edge means a smooth arc lying on Γ whose end-

points are black vertices and the other vertices on it are nodes (see Fig. 9). A free

edge is a single edge whose endpoints are black vertices. A positive (resp. negative)

elementary quasi-free edge is a quasi-free edge with a single node such that the two

edges of it are directed outward (resp. inward). A quasi-hoop is a simple loop on Γ

such that every vertex on it is a node.

DEFINITION. A singular 2-dimensional braid is unknotted if it is presented by a

chart that is empty or the union of some quasi-free edges.

Let Uo, To, t/+ and U- denote a standard 2-sphere, a standard torus, a Whitney

2-sphere of positive type, and of negative type in R4 respectively (Fig. 10).

EXAMPLE 3.1.

(1) The empty m-chart presents a trivial 2-dimensional braid of degree m whose

closure is an unknotted surface, in R4, that is m parallel copies of the standard

2-sphere UQ.

(2) Let Λn (n = 1,2,...) be a 2-chart consisting of n free edges. It presents an

unknotted embedded surface in R4, which is a connected surface of genus n— 1

(cf. [11]). In particular, the standard torus To is presented by Λ2.

(3) Let Λ+ (resp. Λ_) be a 2-chart consisting of a single positive (resp. negative) el-
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ementary quasi-free edge. The Whitney 2-spheres ί7+ and U- are presented by

Λ+ and Λ_ respectively. (The closure of a singular 2-dimensional braid present-

ed by Λ+ is illustrated in Fig. 11, which is ambient isotopic to [/+.)

If an (m + l)-chart Γ' is obtained from an m-chart Γ by a stabilization, then by

definition

By Lemma 2.3, a surface-link presented by Γ ; is a knot sum of surface-links presented

by Γ and Λi. Since Λi presents an unknotted embedded 2-sphere in JR4, we see that

a stabilization does not change the ambient isotopy class of the presenting surface-link

(Lemma 2.2).

We notice that a surface-link is unknotted if and only if it is obtained from some

copies of Uo, To, U+ and [/_ by knot sum and split sum operations. Thus the only if

part of Theorem 1.3 follows from Lemma 2.3 and Example 3.1.

Lemma 3.2. If \i - j \ = 1, then each local operation illustrated in Fig. Mis

C-move equivalence.

Proof, (a) A Cm-move transforms the left hand to the right hand with a hoop.

Eliminate the hoop by a Ci-move.
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(b) See Fig. 13, where the Step 1 is an operation as in (a); the Step 2 is a chan-

nel change; the Step 3 is a Cy-move; the Step 4 is a Cm-move and the Step 5 is a

Q-move.

(c) This is similar to (b). For (d), see Fig. 14, where the Step 1 is (a); the Step

2 and 3 are channel changes; and the Step 4 is (a) again. D

Proof of Theorem 1.3. As mentioned before, the only if part follows from Lem-

ma 2.3 and Example 3.1. We prove the if part. Suppose that a surface-link F is p-

resented by an m-chart Γ which is empty or the union of some quasi-free edges. If

there exists an integer z i n { l , . . . , r a — 1} such that there is no edge of Γ labeled

z, then by Lemma 2.3 the surface-link F is the split sum of two closed singular 2-

dimensional braids of degree πi\ and m^ (with m = πi\ + πi2) presented by πi\-

charts I\ and m2-charts Γ2 respectively such that each I\ is empty or the union of

some quasi-free edges. Thus, it suffices to prove that F is unknotted in a special case
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Fig. 14.

that all 1,. . . , m — 1 appear as labels of the edges of Γ (equivalently F is connected).

If m = 1, then Γ is empty and presents an unknotted 2-sphere. Assume that m > 1.

In the case Γ has no nodes, by Lemma 3.2(d) we change Γ so that it is the union

of n free edges each labeled 1 (for some n > 0) and m — 2 free edges each la-

beled 2, . . . , m — 1. The chart is obtained from Λn by iteration of m — 2 stabilizations.

Thus F is an unknotted surface-link, which is a connected surface of genus n — 1.

Assume that Γ has s (φ 0) nodes. Let Γ' be an (m -f s)-chart obtained from Γ by

stabilization s times, and then Γ' is LQ(T) together with s free edges whose labels are

ra,m+l,... ,ra-f s — 1. By Lemma 3.2(b) and (c), all nodes are transferred from LQ(T)

to the additional free edges such that they become positive/negative elementary quasi-

free edges. The result is an (m + s)-chart obtained from Γo by knot sum operation s

times as in Lemma 2.3 with Λ+ or Λ_, where Γo is obtained from Γ by removing its

all nodes. Since Γo presents an unknotted surface-link (by the previous argument) and

Λ+, Λ_ present [/+, ί/_ (Example 3.1), we see that F is an unknotted surface-link.

D

4. Unknotting procedure for surface-links

Lemma 4.1 ([12]). Let S and S' be singular 2-dimensional braids presented by

m-charts Γ and Γ'. If V is obtained from Γ by inserting a free edge, then S' is ob-

tained from S by surgery along a 1-handle.

Lemma 4.2. By C-moves and insertion of free edges, every non-empty chart is

transformed into one that is the union of some quasi-free edges.

Proof. For a white vertex W, let e be a non-middle edge of W. Insert a free

edge / near e whose label is the same with e. Apply a channel change between / and
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e so that the new edge e has a black vertex as the endpoint opposite to W. Delete

the white vertex by a Cm-move. Remove each white vertex by repeating this proce-

dure. By Q-, Cπ- and Civ-moves, change Γ to the union of some quasi-free edges

and quasi-hoops. Insert m — 1 free edges / i , . . . , fm-i with labels 1, . . . , m — 1 far

from Γ. Let a be an outermost quasi-hoop of Γ. We apply a channel change to a

and fi, where i is the label of α. The result is a quasi-free edge labeled i, which we

denote by fo again. In thi^ way, all quasi-hoops are removed and we have a desired

chart. (This trick is used in [12] on embedded 2-dimensional braids.) D

REMARK. If there is a non-middle edge of a white vertex W whose endpoint op-

posite to W is a black vertex, then we can remove I f by a Cπi-move, without insert-

ing a free edge. When we remove quasi-hoops from a chart Γ that is the union of

some quasi-free edges and quasi-hoops, it is sufficient to insert free edges whose la-

bels are the same with the quasi-hoops. Moreover, we can often use quasi-free edges

of Γ to remove the quasi-hoops.

Proof of Theorem 1.4 and Proposition 1.5. Let 5 be a singular 2-dimensional

braid presented by a chart Γ. If Γ is empty, then S is unknotted by definition. Other-

wise, by Lemma 4.2 the chart is transformed into the one that is the union of some

quasi-free edges by C-moves and by insertion of w(Γ) + m — 1 free edges. Recall that

insertion of a single free edge corresponds to surgery along a 1-handle (Lemma 4.1)

and that C-moves do not change the equivalence class of the singular 2-dimensional

braid (Lemma 2.1). Thus we have the results. D



46 S. KAMADA

Fig. 16.

5. Examples

EXAMPLE 5.1. Let Γ be a 3-chart illustrated in Fig. 15 and F a surface-link pre-

sented by Γ. If the number q of the hoops is an odd integer, then F is a 2-knot which

is the spun (2,^)-torus knot [11]. Insert a free edge with label 2 at the asterisk; apply

a channel change to the free edge and the outermost hoop. This changes the hoop to a

free edge with label 2 again. Inductively all hoops are removed and the result consists

of three free edges with labels 1, 1 and 2. By the inverse of a stabilization, it changes

to Λ2, which presents a standard torus TQ.

EXAMPLE 5.2. The 2-twist spun trefoil knot [25] is presented by a 4-chart as in

Fig. 16, [11]. Insert a free edge with label 2 at the asterisk; apply a channel change to

the free edge and an edge close to it, as shown in Fig. 17. Then there are two white

vertices that are removed by Cm-moves. The result has such vertices again. We finally

have a 4-chart consisting of four free edges labeled 1, 1, 2 and 3 (Fig. 17). It presents

To.

EXAMPLE 5.3. The Fenn-Rolfsen 2-link [7] is a 2-component surface-link that is

not homotopically trivial, and its components are Whitney 2-spheres U- and U+. This

surface-link is presented by a 4-chart illustrated in Fig. 18, [16]. Insert a free edge

with label 1 at the asterisk in the figure. Then the given surface-link is transformed

into a chart presenting an unknotted surface-link. Verifying this is left to the readers

as an exercise.
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Fig. 18.

EXAMPLE 5.4. Let Γ be a 2-chart illustrated in Fig. 19(1), which presents a

surface-link called a Montesinos twin (cf. [16]). Insert a free edge with label 1 and

apply a channel change. By the proof of Theorem 1.3, we see that the result presents
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(i)

(2) 66-O
Fig. 19.

an immersed 2-sphere that is the knot sum of {/+ and [/_. Let Γ n be an (n-bl)-chart

illustrated in Fig. 19(2) and Sn the singular 2-dimensional braid of degree n + 1 pre-

sented by Γ n . This singular 2-dimensional braid presents a surface-link, say Fn, that

is a knot sum of n copies of the Montesinos twin (Lemma 2.3). By an insertion of n

free edges with labels 1,. . . , n and C-moves, the chart Γ n changes to an (n + l)-chart

presenting an unknotted singular 2-dimensional braid. Thus u(Fn) < u(Sn) < n. On

the other hand, u(Fn) > n. (Let F' be any surface-link obtained from Fn by surgery

along less than n 1-handles. Then there are at least two components, say K\ and K2,

of F' such that K\ intersects with K2. Thus F1 is not unknotted.) Therefore we have

u(Fn) = u(Sn) = n. This implies that the estimation in Proposition 1.5 is best possi-

ble.
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