

Title	On simple groups related to permutation-groups of prime degree. I
Author(s)	Nagai, Osamu
Citation	Osaka Mathematical Journal. 1956, 8(1), p. 107- 117
Version Type	VoR
URL	https://doi.org/10.18910/12443
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

On Simple Groups Related to Permutation-Groups of Prime Degree I

By Osamu NAGAI

1. Let ⁽³⁾ be a group which satisfies the following two conditions:

(*) $\$ contains an element P of prime order p which commutes only with its own powers P^{i} ,

(**) & coincides with its own commutator-subgroup &'.

Obviously the transitive permutation-group of degree p satisfies the condition (*).

Using his brilliant theory of modular representations, R. Brauer investigated the structure of \mathfrak{G} and proved the following interesting theorem ([2], Theorem 10): The order of \mathfrak{G} is expressed as g = p(p-1)(1+np)/t where 1+np is the number of subgroups of order p in \mathfrak{G} and t is the number of classes of conjugate elements of order p in \mathfrak{G} . Furthermore, if n < (p+3)/2, then either (1) $\mathfrak{G} \simeq LF(2, p)$, or (2) p is a Fermat prime $2^{\mu}+1>3$ and $\mathfrak{G} \simeq LF(2, 2^{\mu})$. If $n \ge (p+3)/2$, then n has the form

$$n = F(p, u, h) = (uhp + u^2 + u + h)/(u + 1)$$

where u and h are positive integers.

Recently R. Brauer studied \mathfrak{G} for the case $n \leq p+2^{10}$ and W. F. Reynolds extended these considerations to the case $p+2 < n \leq 2p-3^{20}$. Their results are as follows: If $n \leq p+2$, then (1) $\mathfrak{G} \simeq LF(2, p)$, or (2) $p=2^{\mu}\pm 1$ and $\mathfrak{G} \simeq LF(2, 2^{\mu})$, or (3) $\mathfrak{G} \simeq LF(3, 3)$, or (4) $\mathfrak{G} \simeq \mathfrak{M}_{11}$ (Mathieu group of order 7920). If $p+2 < n \leq 2p-3$, then 2p-1 is a prime power and $\mathfrak{G} \simeq LF(2, 2p-1)$.

Our purpose is to study the general nature of \mathfrak{G} . In the present note we extend Reynolds' enumerations to the case $2p-3 < n \leq 2p+3$ as follows:

Theorem. If $2p-3 < n \le 2p+3$, $t \equiv 0 \pmod{2}$ and t > 1, then (1) 2p+1 is a prime power: $2p+1 = l^a \ge 23$, where l=3 for a > 1, and (2) $\mathfrak{G} \simeq LF(2, l^a)$.

¹⁾ This result is not published yet. Cf. Math. Rev. 14, p. 843 (1953).

²⁾ This was reported in [4] without proof.

We shall prove Theorem step by step. In Section 2 we examine the case 2p-3 < n < 2p+3 under the condition $t \equiv 0 \pmod{2}$ and show that such a group does not exist. In Section 3 we treat the case n=2p+3 under conditions $t\equiv 0 \pmod{2}$ and t>1. By a theorem of Brauer ([2], Theorem 7), we can determine all the degrees of the characters of \mathfrak{G} belonging to the first p-block $B_1(p)$. In Section 4 we investigate the structure of \mathfrak{G} . By calculating the number of elements whose order is divisible by a prime divisor of 2p+1, we show that 2p+1 is a prime power l^a and the index of the normalizer of an l-Sylow subgroup in \mathfrak{G} is equal to $l^a + 1$. Therefore \mathfrak{G} will be represented as a doubly transitive permutation-group on $l^{a}+1$ symbols in which each element is determined uniquely by the images of three symbols. By a method of Zassenhause [5], we can prove $\mathfrak{G} \simeq LF(2, l^{a})$. In Section 5 we shall show that the assumptions in above Theorem can be replaced by the assumptions n=2p+3 and t=(p-1)/2. In this case LF(2, 7) and LF(2, 11) may exist besides above $LF(2, l^{a})$.

, 2. The case 2p-3 < n < 2p+3.

If *n* has the form n = F(p, u, 3), then u = 1 and $p \le 7$ since n < 2p+3. For $p \le 7$, F(p, x, h) = F(p, 1, 3) does not have the positive integral solution *x* for both h=2 and h=1. By a theorem of Brauer ([2], Theorem 7), the possibilities of the degrees of the characters belonging to the first p-block $B_1(p)$ are as follows:

1,
$$p+1$$
, $\frac{(3p-1)}{2}p-1$, $\left(\frac{(3p-1)}{2}p-1\right)/t$.

By the degree-relation in $B_1(p)$, the character of degree p+1 must exist. Then $(p-1)/t=2^{30}$. Hence the character of degree p+2 must exist as an exceptional one. This is impossible because $\frac{3p-1}{2}p-1 \neq (p+2)(p-1)/2$.

2.1. $t \equiv 0 \pmod{2}$ and t > 1.

Let us assume that *n* does not have the form n = F(p, u, 3). If *n* has the form F(p, u, 1), then $u-4+\frac{6}{u+2} since <math>2p-3 < n < 2p+3$. For those *p*, *n* can not be integers. Therefore *n* must have the form F(p, u, 2) only. Then, since $2p-2 \le n \le 2p+2$, $u^2-u \le 2p \le u^2+3u+4$. By a theorem of Brauer [2], the possibilities of the degrees of the characters belonging to $B_1(p)$ are as follows:

1,
$$up+1$$
, $\frac{n-2}{u}p-1$, $(up+1)/t$, $\left(\frac{n-2}{u}p-1\right)/t$.

3) O. Nagai [3], p. 230.

For the sake of simplicity we denote the character of degree z by "z". If "up+1" does not exist, then $B_1(p)$ must consist of one "1", $\frac{(p-1)}{t}-1$ characters " $\frac{(n-2)}{u}p-1$ " and t "(up+1)/t". Then by a degreerelation in $B_1(p)$, $\frac{u+1}{t} = \left(\frac{p-1}{t}-1\right)\frac{n-2}{u}$. Since (p-1)/t > 1 and n = F(p, u, 2) < 2p+3,

$$\frac{u+1}{t} \ge \frac{2p+u-1}{n+1} \ge \frac{u^2-1}{u+1} + 1 = u-1.$$

This contradicts $t \ge 3$.

If $\frac{(n-2)}{u}p-1$ does not exist, then $B_1(p)$ must consist of one "1", $\frac{p-1}{t}-1$ "up+1" and t " $\left(\frac{n-2}{u}p-1\right)/t$ ". Again by a theorem of Brauer, $u\left(\frac{p-1}{t}-1\right) = \left(\frac{n-2}{u}-1\right)/t$. $\frac{p-1}{t}-1 = \frac{2(p-1)}{tu(u+1)}$. Let 2p-2 = aut(u+1). Then, since $2p \le u^2 + 3u + 4$, $atu(u+1) \le u^2 + 3u + 2$.

Let 2p-2 = aut(u+1). Then, since $2p \le u^2 + 3u + 4$, $atu(u+1) \le u^2 + 3u + 2$. $atu(u+1) \le u^2 + 3u + 2$. $atu \le u + 2$. This means n = F(p, u, 2)= p+2. This is a contradiction.

Therefore $B_1(p)$ must contain "up+1" and " $\frac{n-2}{u}p-1$ ". Since $\frac{n-2}{u}p-1$ divides $g, u+1\equiv 0 \pmod{t}$. We consider the following five cases:

1) n = 2p-2. This means $2p = u^2 + 3u + 4$. Since up+1 divides g, $(p-1)(2p+u+1) \equiv 0$ (t(u+1)). $(u^2+4u+5)(u+2) \equiv 0 \pmod{t}$. Since $u+1 \equiv 0$ (t), $(1-4+5) \cdot 1 \equiv 0$ (t). This contradicts our assumption t > 2.

2) n=2p-1. This means $2p=u^2+2u+3$. Let $B_1(p)$ consist of one "1", $x = \frac{n-2}{u}p-1$ ", $\frac{(p-1)}{t}-x-1 = up+1$ " and $t = \frac{(up+1)}{t}$. Then

$$u\left(\frac{p-1}{t} - x - 1\right) + \frac{u+1}{t} = (u+2)x.$$

$$2(u+1)x = \frac{u+1}{2t} \cdot (u^2 + u + 2) - u.$$

Since u+1=0 (2t) and $u^2+u+2=0$ (2), u=0 (2). This contradicts $2p=u^2+2u+3$.

Let $B_1(p)$ consist of one "1", $x \left(\frac{n-2}{u}p-1\right)$, $\frac{p-1}{t}-x-1$ "up+1" and $t \left(\frac{n-2}{u}p-1\right)/t$ ". Then

$$u\left(\frac{p-1}{t} - x - 1\right) = (u+2)x + \frac{u+1}{t}.$$

$$2(u+)x = \frac{u(u+1)^2}{2t} - \frac{u+1}{t} - u.$$

Since $u+1\equiv 0$ (2t), $u\equiv 2$ (2). This also contradicts $2p=u^2+2u+3$.

3) n = 2p. This means $2p = u^2 + u + 2$. Since up + 1 divides g, $(2p+u+1)(p-1) \equiv 0 \pmod{t(u+1)}$. $(u^2+2u+3)u \equiv 0$ (t). Since $u+1 \equiv 0$ (t), $(1-2+3) \cdot (-1) \equiv 0$ (t). This contradicts t > 2.

4) n = 2p+1. This means $2p = u^2+1$. Since up+1 divides g, $(p-1)(2p+u+1) \equiv 0 \pmod{t(u+1)}, \quad (u-1)(u^2+u+2) \equiv 0 \pmod{2t}.$ Since $u+1 \equiv 0$ (t), $(-2) \cdot (1-1+2) \equiv 0$ (t). This contradicts t > 2.

5) n = 2p+2. This means $2p = u^2 - u$. Since up+1 divides g, $(u-1)(u^2+1) \equiv 0 \pmod{2t}$. Since $u+1 \equiv 0 \pmod{t}$, $(-2) \cdot (1+1) \equiv 0 \pmod{2t}$. This contradicts t > 2.

2.2. t = 1.

As above *n* have the form F(p, u, 2) only. Therefore the possibilities of degrees of the characters belonging to $B_1(p)$ are as follows:

1,
$$up+1$$
, $\frac{n-2}{u}p-1$, where $u^2-u \le 2p \le u^2+3u+4$.

Let $B_1(p)$ contain x characters of degree $\frac{n-2}{u}p-1$. Then $B_1(p)$ contains p-x-1 "up+1" since, for t=1, $B_1(p)$ contains just p characters. We examine the following five cases separately:

1)
$$n = 2p-2$$
. This means $2p = u^2 + 3u + 4$. Then $\frac{n-2}{u}p-1 = \frac{2p-4}{u}p-1 = (u+3)p-1$. By the degree-relation in $B_1(p)$,
 $u(p-1-x)+1 = (u+3)x$.
 $u(p-1)+1 = x(2u+3)$.
 $u(2p-2)+2 = 2x(2u+3)$.
 $u(u^2+3u+2)+2 = 2(2u+3)x$.
 $u^3+3u^2+2u+2 = 2(2u+3)x$.
 $19 \equiv 0 \ (2u+3)$.
 $19 = 2u+3$. $2u=16$. $u=8$. $2p = 64+32+4 = 100$.

50 is not a prime.

2) n = 2p-1. This means $2p = u^2 + 2u + 3$. Then $\frac{n-2}{u}p-1 = \frac{2p-3}{u}up-1 = (u-2)p-1$.

By the degree-relation in $B_1(p)$, we have

$$u(p-1-x) + 1 = (u+2)x.$$

$$u(p-1) + 1 = x(2u+2).$$

$$u(2p-2) + 2 = 4x(u+1). \quad u(u^2+2u+1) + 2 = 4x(u+1).$$

On Simple Groups Related to Permutation-Groups of Prime Degree I

$$u^{3}+2u^{2}+u+2 = 4x(u+1).$$

-1+2-1+2 $\equiv 0$ (u+1). 2 $\equiv 0$ (u+1). u=1. 6=8x.

Such an x can not be an integer.

3) n=2p. This means $2p=u^2+u+2$. Then $\frac{n-2}{u}p-1=(u+1)p-1$. By the degree-relation,

$$u(p-1-x) + 1 = (u+1)x.$$

$$u(p-1) + 1 = (2u+1)x.$$

$$u(2p-2) + 2 = 2x(2u+1).$$

$$u(u^{2}+u) + 2 = 2x(2u+1).$$

$$u^{3}+u+2 = 2x(2u+1).$$

$$17 \equiv 0 \quad (2u+1).$$

$$17 = 2u+1. \quad u = 8. \quad p = 37 \text{ and } x = 17$$

Therefore $B_1(p)$ must consist of one "1", 19 "8.37+1" and 17 "9.37-1". But 8.37+1 does not divide g=2739.

4) n=2p+1. This means $2p=u^2+1$. Then $\frac{n-2}{u}p-1=up-1$. By the degree-relation,

> u(p-1-x) + 1 = ux u(p-1) + 1 = 2ux. u(2p-2) + 2 = 4ux. $u(u^{2}-1) + 2 = 4ux.$ $u^{3}-u+2 = 4ux.$ $2 \equiv 0 (u). u = 2. 2p = 5.$

5) n=2p+2. This means $2p=u^2-u$. Then $\frac{n-2}{u}p-1=(u-1)p-1$. By the degree-relation,

$$u(p-1-x) + 1 = x(u-1)$$

$$u(p-1) + 1 = x(2u-1)$$

$$u(2p-2) + 2 = 2x(2u-1)$$

$$u(u^{2}-u-2) + 2 = 2x(2u-1)$$

$$u^{3}-u^{2}-2u+2 = 2x(2u-1).$$

$$7 \equiv 0 \quad (2u-1). \quad u = 4. \quad 2p = 12$$

Consequently, we obtain the following

Proposition. If t is odd, then such group \otimes does not exist for 2p-3 < n < 2p+3.

3. The case n=2p+3, $t \equiv 0 \pmod{2}$ and t > 1.

In this case *n* may have the forms n = F(p, 1, 4) = F(p, 2, 3) = F(p, u, 2). Then $2p = u^2 - 2u - 1$. Therefore the possibilities of degrees of characters belonging to $B_1(p)$ are as follows: 1, p+1, 2p+1, up+1, p^2-1 , $\frac{n-2}{u}p-1 = (u-2)p-1$, (up+1)/t, (2p+1)/t, $(p^2-1)/t$, ((u-2)p-1)/t.

We shall sieve these one by one.

If "p+1" exists, then (p-1)/t=2. Hence the exceptional character must be of degree p+2. This is impossible. If " p^2-1 " exists, then $tp^2 \le np-n+1=2p^2+p-2$. $p^2-p+2 \le 0$. So we can omit " p^2-1 ". Since $B_1(p)$ contains only one exceptional family, it is sufficient to be considered the following four cases:

1) "((u-2)p-1)/t" exists. If "(u-2)p-1" exists, then its degree must divide g. So $(u+1)(u-1)(u-2) \equiv 0$ (2t). This contradicts $u \equiv 3$ (t). Thus $B_1(p)$ consists of one "1", $\frac{p-1}{t}-x-1$ "2p-1", x "up+1" and t "((u-2)p-1)/t". Then

$$ux + 2\left(\frac{p-1}{t} - x - 1\right) = \frac{u-3}{t}$$

x(u-2)t = (u-1-2p)+2t.
x(u-2)t = -u(u-3)+2t.

This is a contradiction.

2) " $(p^2-1)/t$ " exists. If "(u-2)p-1" exists, then $(u+1)(u-1)(u-2) \equiv 0$ (2t). Since p-1=(u+1)(u-3)/2 is divisible by t, we can set $t=t_1 \cdot t_2$ such that $u+1\equiv 0$ (t₁), $u-3\equiv 0$ (t₂). $4\cdot 2\cdot 1\equiv 0$ (t₂). This means $t_2=1$ and $u+1\equiv 0$ (t). In this case "up+1" does not exist since $(u-3)u(u-1)\equiv 0$ (2t). Hence we can assume that $B_1(p)$ consists of one "1", $\frac{(p-1)}{t}-x-1$ "2p+1", x "(u-2)p-1" and t "(p-1)/t". Then 2((p-1)/t-x-1=(u-2)x+(p-1)/t. (p-1)/t-2=ux. p-1=t (ux+2). (u+1)(u-3)=2t(ux+2). $-3\equiv 4t(u)$.

Let 4t+3=au and u+1=2kt. Then we have 4t+3=2akt-a. 2t(ak-2)=a+3. $6(ak-2) \ge a+3$. $a(6k-1) \le 15$. Hence we have k=2, a=1 or k=1, a=3. Neither of them gives an integral solution x.

If "(u-2)p-1" does not exist, then $B_1(p)$ consists of one "1",

112

< ^ _

 $\frac{p-1}{t} - x - 1 \quad (2p+1), x \quad (up+1) \text{ and } t \quad (p-1)/t.$ We have $ux + 2\left(\frac{p-1}{t} - x - 1\right) = \frac{p-1}{t}$. x(u-2) = 2 - (p-1)/t. This means x = 0 and p-1 = 2t.Hence in this case $B_1(p)$ consists of one "1", one "2p+1" and (p-1)/2 "2(p+1)". We shall discuss this case in 4.

3) "(2p+1)/t" exists. This means t=3.

If "(u-2)p-1" does not exist, then $B_1(p)$ must consist of one "1", $\frac{p-1}{3}-x-1$ "2p+1", x "up+1" and 3 "(2p+1)/3". Then we have

$$2\left(\frac{p-1}{3} - x - 1\right) + ux = 1.$$

3x(u-2)+2p-11 = 0.

This can not hold since $2p = u^2 - 2u - 1$.

If "(u-2)p-1" exists, then we can assume $B_1(p)$ consists of one "1" $\frac{p-1}{3} \cdot x - 1$ "2p-1" x "(u-2)p-1" and 3 "(2p+1)/t". Then we have

$$2\left(\frac{p-1}{3} - x - 1\right) = ux - 2x + 1.$$

$$2p - 2 = 3(ux + 3).$$

$$u^2 - 2u - 3 = 3ux + 9.$$

$$12 \equiv 0 \quad (u).$$

Since u is odd, u must be equal to 3. This contradicts $2p = u^2 - 2u - 1$.

4) c = (up+1)/t. In this case "up+1" does not exist, as in 2.1.1), since $u+1 \equiv 0$ (t). $B_1(p)$ consists of one "1", $\frac{p-1}{t} - x - 1$ "2p+1", x"(u-2)p-1" and t "(up+1)/t". Then

$$2\left(\frac{p-1}{t} - x - 1\right) = ux - 2x + \frac{u+1}{t}$$

2p-3-2t = uxt.
(u+1)(u-4) = (ux+2)t.

As u is odd, we can put t+2=au and u+1=2kt. Then t+2=2akt-a. (2ak-1)t=a+2, $3(2ak-1) \le a+2$. $a(6k-1) \le 5$. Hence we have u=1, k=1. This does not give an integral solution x.

4. Continuation: The case n=2p+3 and $B_1(p)$ consists of one character A_1 of degree 1, one character A_2 of degree 2p+1 and

O. NAGAI

t = (p-1)/2 p-conjugate characters $C^{(\lambda)}$ of degree (p-1)/t = (2(p+1)). In this case the order of \mathfrak{G} is expressed as g = p(p-1)(1+np)/t = 2p(2p+1)(p+1). Since (2p+1, 2p+2) = 1, the character A_2 is of highest kind for any prime l dividing 2p+1. Hence $A_2(L) = 0$ for elements L of \mathfrak{G} whose order divisible by l. For the prime m dividing 2p+2, the character $C^{(\lambda)}$ is of highest kind. Hence $C^{(\lambda)}(M) = 0$ for elements M of \mathfrak{G} whose order divisible by m. Of course such elements L and M are p-regular by the condition (*). Therefore $A_1(G) + A_2(G) = C^{(\lambda)}(G)$ holds for G=L and G=M. Thus $A_2(M)=-1$, $C^{(\lambda)}(L)=1$. From above relation, there is no such element G which is L and M at the same time. Therefore the elements of \mathfrak{G} are distributed into four disjoint sets: (I) The unit element, (II) the elements of order p, (III) the elements of type L whose order is divisible by at least one prime factor n of 2p+2.

Let r denote the number of elements of type L in \mathfrak{G} . Then by the well-known character-relations,

$$\sum_{a} C^{(1)}(G) + \sum C^{(2)}(G) + \cdots + \sum C^{(t)}(G) = 0.$$

By the relation $A_1(G) + A_2(G) = C^{(\lambda)}(G)$ for *p*-regular G, we have $C^{(\lambda)}(1) = 2(p+1)$, $C^{(\lambda)}(L) = 1$, $C^{(\lambda)}(M) = 0$ and $\sum_{\nu} C^{(\lambda)}(G) = -1$. From these, it follows

$$(p-1)(p+1) + (-1)(p-1)(2p+1)(p+1) + r \cdot (p-1)/2 = 0.$$

$$r = 4p(p+1).$$

For any element L^* whose order divides 2p+1, let us denote the normaliser of L^* in \mathfrak{G} by $\mathfrak{N}(L^*)$ and its order by $n(L^*)$. If $\mathfrak{N}(L^*)$ contains an element M^* of type M, then there exists such an element L^*M^* of type L and of type M at the same time. Of course $n(L^*)$ does not contain the prime p. Hence $n(L^*)$ must contain the factors of 2p+1only. If $n(L^*) < 2p+1$, then $n(L^*) \leq (2p+1)/3$. Therefore the number of elements conjugate to L^* is greater than 4p(p+1). But $g/n(L^*) \leq r$. This is a contradiction. Therefore we have $n(L^*)=2p+1$. This means that the number of elements in the conjugate class containing L^* is equal to 2p(p+1). If 2p+1 is divisible by a prime l' different from l, then the element of order l'l must exist. Therefore $r \geq 2p(p+1) + 2p(p+1)$ + 2p(p+1). This is a contradiction.

Therefore 2p+1 must be a prime power: $2p+1=l^a$. For p=7, 2p+1 is not a prime power. For p<7, we have $t\equiv 0$ (2) or t=1. Therefore we can assume $p\geq 11$, that is, $2p+1=l^a\geq 23$. For its ex-

ponent a > 1, such l must be equal to 3, because 2p = (l-1) $(l^{a-1} + \cdots + l+1)$. Denote the normaliser of an l-Sylow group \mathfrak{L} by $\mathfrak{N}(\mathfrak{L})$ and its order by $n(\mathfrak{L})$. By a theorem of Sylow, $g/n(\mathfrak{L}) \equiv 1 \pmod{l}$. Let $g/n(\mathfrak{L}) = 1 + lx$. Of course \mathfrak{G} is represented as a transitive permutation-group of degree 1 + lx. Denote this character by II. We decompose II into the irreducible characters of \mathfrak{G} . As is well known II contains A_1 exactly once.

The following three cases must be considered.

1) II contains $C^{(\lambda)}$. Then all *p*-conjugate $C^{(\lambda)}$ must be contained in II, since $\Pi(G)$ is integral. Therefore $1+lx \ge 1+(l^a+1)(l^a-3)/4 =$ $(l^a-1)^2/4$. Hence $n(\mathfrak{A}) \le 2l^a+4+\frac{4}{l^a-1}$. Since $n(\mathfrak{A}) \equiv 0$ (l^a) and $l^a \ge 23$, $n(\mathfrak{A})$ is either l^a or $2l^a$. If $n(\mathfrak{A}) = l^a$, then \mathfrak{B} must have an *l*-Sylow complement⁴. Therefore the commutator-subgroup \mathfrak{B}' does not coincide with \mathfrak{B} , contrary to (**). Hence $n(\mathfrak{A}) = 2l^a$. So $(1+lx)2l^a = l^a(l^a+1)(l^a-1)/2$. $4(1+lx) = (l^a-1)(l^a+1)$. Thus $5 \equiv 0 \pmod{l}$. This is a contradiction.

2) II contains only the characters of highest kind for *p* besides A_1 . Then we have $1+lx \ge 1+(l^a-1)/2=(l^a+1)/2$. Hence $n(\mathfrak{A}) \le (l^a-1)l^a$. Since $1+lx\equiv 0$ $((l^a-1)/2)$, $n(\mathfrak{A})\equiv 0$ $((l^a-1)/2)$. Therefore $n(\mathfrak{A})$ is either $(l^a-1)l^a/2$ or $(l^a-1)l^a$. If $n(\mathfrak{A})=(l^a-1)l^a/2$, then $1+lx=1+l^a$ is not congruent modulo $(l^a-1)/2$. If $n(\mathfrak{A})=(l^a-1)l^a$, then $1+lx=(1+l^a)/2\equiv 1$ (mol l).

Therefore Π must contain character A_2 . Since $\Pi(P) \ge A_1(P)$ 3) $+A_2(P) > 1$ for *p*-singular element *P*, there exists an element P^* belonging to a conjugate of $\mathfrak{N}(\mathfrak{L})$. This means $n(L) \equiv 0$ $((l^a - 1)l^a/2)$. Hence $1+lx \leq 1+l^{a}$. Thus we can conclude that index of $\mathfrak{N}(\mathfrak{A})$ in \mathfrak{B} is equal to $1 + l^a$ and $\Pi(G) = A_1(G) + A_2(G)$. Therefore $\Pi(1) = 1 + l^a$, $\Pi(P^i) = 2$, $\Pi(L) = 1$ and $\Pi(M) = 0$. However, $\Pi(G)$ equals the number of letters not altered by the permutation-representation of \mathfrak{G} . Since $\Pi(G) = 1 + l^a$ only for G = 1, we have a (1-1) representation. From the above facts, Sis a doubly transitive permutation group on $1+l^{a}$ letters in which each element is determined uniquely by the images of three letters. Therefore by the method of Zassenhaus we can construct "almost-field" (Fastkörper) F corresponding to $\mathfrak{N}(\mathfrak{A})$ and its multiplier M corresponding to a *p*-Sylow subgroup. Since M is an abelian group of order $(l^a - 1)/2$, F is considered as a "Teilfastköper" of Galois field $GF(l^{a})$. In our case the order of M is not even, but it is prime. Therefore we can use the method of Zassenhaus [5]. Thus we have proved $\mathfrak{G} \simeq LF(2, l^{a})$.

⁴⁾ Cf. H. Wielandt [6].

5. Remark

The conditions in our Theorem can be replaced by the conditions n=2p+3, t=(p-1)/2.

Theorem. If n=2p+3 and t=(p-1)/2, then 2p+1 is a prime power and $\mathfrak{G} \simeq LF(2, 2p+1)$ including LF(2, 7) and LF(2, 11).

Proof. Since, as in 3, n=2p+3, the possibilities of degrees of of characters belonging to $B_1(p)$ are as follows:

1, p+1, 2p+1, up+1, p^2-1 , $\frac{n-2}{u}p-1 = (u+2)p-1$, p-1, (up+1)/t, (2p+1)/t, (p+1)/t, (p-1)/t, $(p^2-1)/t$, ((u+2)p-1)/t, where $2p=u^2-2u-1$. Let t=1, then p=3. In this case *n* does not have the form n=F(3, u, 2). Therefore $B_1(3)$ must consist of one "1", one "2p+1" and one " p^2-1 ". Since this is a special case in 4, we have $\mathfrak{G} \simeq LF(2, 7)$. But this group does not appear in former Theorem.

Let t > 1. If "(up+1)/t" exists, then $u+1 \equiv 0 \pmod{t}$. Since $2p = u^2 - 2u - 1$, 2(p-1) = (u-3)(u+1). $(p-1)/2 = (u-3)(u+1)/4 = \frac{u-3}{4}(u+1)$. This means $\frac{u-3}{4} \le 1$. We have u = 5 and u = 7. For u = 5, p = 7 and (up+1)/t = 12. Therefore $B_1(7)$ must contain "13". But this can not divide g = 1736. For u = 7, p = 17 and (up+1)/t = 15. Therefore $B_1(17)$ must contain "16". But this can not divide $g = 17 \cdot 2 \cdot 35 \cdot 18$.

If "(2p+1)/t" exists, then $3\equiv 0 \pmod{t}$. As t>1, t=3 and p=7. $B_1(7)$ must contain the character of degree x satisfying $1+(2\cdot7+1)/3=x$. x=6=p-1. This means $t\equiv 0 \pmod{2}$.

If "(p+1)/t" exists, then $2 \equiv 0 \pmod{t}$. As t > 1, t=2 and p=5. Since (p+1)/t < (2p+1)/t, by a theorem of Tuan ([5], Theorem 4) $\mathfrak{G} \simeq LF(2, p)$. This contradicts n=2p+3.

If "(p-1)/t" exists, then $\mathfrak{G} \simeq LF(2, p)$. This contradicts n=2p+3 too.

If "((u+2)p-1)/t" exists, then $u+1 \equiv 0 \pmod{t}$. Since $2p = u^2 - 2u - 1$, $2p - 2 \equiv (u-3)(u+1)$. $u+1 = \frac{4}{u-3}\frac{p-1}{2}$. $4 \ge u-3$. We have u = 5 and u = 7. For u = 5, p = 7 and ((u+2)p-1)/t = 15. Therefore $B_1(7)$ must contain "14". But this can not be xp+1. For u=7, p=17. ((u+2)p-1)/t = 19 does not divide $g = 17 \cdot 2 \cdot 35 \cdot 18$.

If $(p^2-1)/t$ exists, then $B_1(p)$ must consist of one "1", one $(2p+1)^2$ and $t (p^2-1)/t^2$. Since $(p^2-1)/t=2p+2$, the proof in 4 is valid in this case. Thus we can conclude that 2p+1 is a prime power and $\mathfrak{G} \simeq LF(2, 2p+1)$.

This completes the proof of Theorem.

(Received April 11, 1956)

Bibliography

- [1] R. Brauer: On groups whose order contains a prime number to the first power, Amer. J. Math. 54, part I, 401-420, part II, 421-440 (1942).
- [2] R. Brauer: On permutation groups of prime degree and related classes of groups, Ann. of Math. 44, 57-79 (1943).
- [3] O. Nagai: Supplement to "Note on Brauer's Theorem of Simple Groups", Osaka Math. J. 5, 227-232 (1953).
- [4] W. F. Reynolds: On finite groups related to permutation groups of prime degree, Bull. Amer. Math. Soc. 61 (1955).
- [5] H. Tuan: On groups whose orders contain a prime number to the first power, Ann. of Math. 45, 110-140 (1944).
- [6] H. Wielandt: p-Sylowgruppen und p-Faktorgruppen, Crelle J. 182 (1940).
- [7] H. Zassenhaus: Kennzeichnung endlicher linearer Gruppen als Permutations gruppen, Abh. Math. Sem. Univ. Hamburg **11** (1936).