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On Simple Groups Related to Permutation-Groups
of Prime Degree 1

By Osamu NAGAI

1. Let @ be a group which satisfies the following two conditions :

(%) O contains an element P of prime order p which commutes only with
its own powers P:',
() & coincides with its own commutator-subgroup & .

Obviously the transitive permutation-group of degree p satisfies
the condition ().

Using his brilliant theory of modular representations, R. Brauer
investigated the structure of & and proved the following interestjng
theorem ([2], Theorem 10) : The order of S is expressed as g=p(p—1)
(A+np)/t where 1+np is the number of subgroups of ovder p in & and
t is the number of classes of conjugate elements of order p in .
Furthermore, if n<(p+3)/2, then either (1) & =LF@2, p), or 2) pisa
Fermat prime 2¢+1>3 and S =LF@, 2. If n=(p+3)/2, then n has
the form

n=F, u, h) = whp+u*+u+h)/w+1)

where u and h arve positive integers.

Recently R. Brauer studied & for the case n<p+2" and W. F.
Reynolds extended these considerations to the case p+2<n <2p—3%.
Their results are as follows: If #<p+2, then (1) S=LF@, p), or
@ p=2*+1 and G=LF@2, 2%, or 3) G =LF(@3, 3), or ¢) &=,
(Mathieu group of order 7920). If p+2<n<2p—3, then 2p—1 is a
prime power and G = LF@2, 2p—1).

Our purpose is to study the general nature of &. In the present
note we extend Reynolds’ enumerations to the case 2p—3<n<2p+3
as follows :

Theorem. If 2p—3<n<2p+3, t==0 (mod 2) and t>1, then
1) 2p+1 is a prime power: 2p+1=1°=>23, where =3 for a_>1, and
2 ©&=LFQ2, I°.

1) This result is not published yet. Cf. Math. Rev. 14, p. 843 (1953).
2) This was reported in [4] without proof.
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We shall prove Theorem step by step. In Section 2 we examine
the case 2p—3<n<2p+3 under the condition #==0 (mod 2) and show
that such a group does not exist. In Section 3 we treat the case
n=2p+3 under conditions f==0 (mod 2) and {>>1. By a theorem of
Brauer ([2], Theorem 7), we can determine all the degrees of the
characters of & belonging to the first p-block B,(p). In Section 4 we
investigate the structure of ®&. By calculating the number of elements
whose order is divisible by a prime divisor of 2p+1, we show that
2p+1 is a prime power /° and the index of the normalizer of an /~Sylow
subgroup in & is equal to /“+1. Therefore & will be represented as
a doubly transitive permutation-group on /°+1 symbols in which each
element is determined uniquely by the images of three symbols. By a
method of Zassenhause [5], we can prove &= LF@2, /). In Section 5
we shall show that the assumptions in above Theorem can be replaced
by the assumptions #=2p+3 and ¢=(p—1)/2. In this case LF(2, 7) and
LF(2, 11) may exist besides above LF(@, [9).

» 2. The case 2p—3<n<2p+3.

If # has the form n=F(p, u, 3), then u=1 and p <7 since n< 2p+3.
For p<7, F(p, x, h) =F(p, 1, 3) does not have the positive integral
solution x for both #=2 and 2#=1. By a theorem of Brauer ([2],
Theorem 7), the possibilities of the degrees of the characters belonging
to the first p-block B,(p) are as follows :

@Bp—1) , Bp—1)
1, p+1, 822Dy, (Tp—l)/t.

By the degree-relation in B, (p), the character of degree p+1 must exist.
Then (p—1)/t=2%. Hence the character of degree p+2 must exist as an

exceptional one. This is impossible because =~ p—1== (p+2)(p—1)/2.

2.1. t==0 (mod 2) and ¢ >1.
Let us assume that » does not have the form n=F(p, u, 3). If n
has the form F(p, , 1), then u— 4+*<p<u+2 since 2p—3<n<2p+3.

For those p, » can not be 1ntegers Therefore n must have the form
F(p, u, 2) only. Then, since 2p—2<n<2p+2, u’—u <2p <u’*+3u~+4.
By a theorem of Brauer [2], the possibilities of the degrees of the
characters belonging to B,(p) are as follows :

1, wp+1, "= 2p 1, wp+1)/t, (71; 1>/t

3) O. Nagai [3], p. 230.
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For the sake of simplicity we denote the character of degree z by “z”.

If “up+1~ does not exist, then B,(p) must consist of one “1”,

@-_;ﬂ—l characters “(—n%z—)p—— 1" and ¢ “(mp+1)/¢t”. Then by a degree-

relation in B, (p), u—;—1=<p;1_1>n;2. Since (p—1)/t>1 and n=
F(p, u, 2)<2p+3,
u+122p+u——1 u'—1

t = n+l Zu+1+1:u—_1'
This contradicts ¢#>=3.
If “»”%2 p—1 does not exist, then B,(p) must consist of one “1”,

p%l—l “up+1" and ¢ “<’%2p——1>/t”. Again by a theorem of Brauer,
p—1_ )__ (n—Z_ > p—=1_4 __ 2(p—1)
“( F Y=Y e s sy
Let 2p—2=aut(m+1). Then, since 2p=<u’+3u+4, atu@w+1) <u’+3u+2.
atuu+1) <+ 3u+2. atuu+2. 3u <u+2. This means n=F(p, u, 2)

=p+2. This is a contradiction.

(‘n_z ”» .
—J\p—l . Since

’2;—2 p—1 divides g, u+1=0 (mod #). We consider the following five

Therefore B,(p) must contain “up+1" and

cases .

1) n=2p—2. This means 2p=u’+3u+4. Since up+1 divides
g p—1Cp+u+1)=0 (tm+1). @+4u+5w+2)=0 (mod #). Since
u+1=0 (t), 1—4+5-1=0 (f). This contradicts our assumption ¢ >2.

2) n=2p—1. This means 2p=u’*+2u+3. Let B,(p) consist of one
17, 2 "=2p1, PNy 1 wupi1” and £ “@p+1)/t”. Then

7
u(p%l—x—l>+u—4t'—1 = u+2)x.
2w+l =" Y b utr2—u.

2t
Since u+1=0 @¢) and #*+u+2=0 2), u=0 (2). This contradicts
2p=u*+2u+3.
. «1» “n—2 ” p—‘l « ”»
Let B,(p) consist of one “1”, x —fu—p——l , T——x—l up+1
and ¢ “<-’-1%2p—1>/t”. Then
u(lﬂ‘—l—x—l) = (u+2)x+11}1.

_um+1)® u+1
2w +)x = 5 f u.
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Since u+1=0 @2f), u=2 (2). This also contradicts 2p=wu*+2u+ 3.

3) mn=2p. This means 2p=u*+u+2. Since up+1 divides g,
@Cp+u+1)(p—1)=0 (mod tu~+1). @+2u+3)u=0 (f). Since u+1=0
(#, 1—2+3)-(—1)=0 (#). This contradicts ¢ _>2.

4) n=2p+1. This means 2p=u*+1. Since up+1 divides g,
Pp—1@Cp+u+1)=0 (mod fm+1). @—1)@+u+2)=0 @f). Since
u+1=0 (), (—2)-1—1+2)=0 (). This contradicts #>2.

5 n=2p+2. This means 2p=u*—u. Since up+1 divides g,
u—1)(@*+1) =0 (mod 2f). Since u+1=0 #), (—2)-A+1) =0 @0).
This contradicts ¢_>2.

2.2. t=1.

As above #n have the form F(p, u, 2) only. Therefore the possibili-
ties of degrees of the characters belonging to B,(p) are as follows:

1, up+1, ”_;;21)_1, where u'—u <2p<u*+3u+4.

Let B,(p) contain x characters of degree ”7_2 p—1. Then B,(p) contains
p—x—1 “up+1” since, for t=1, B,(p) contains just p characters. We
examine the following five cases separately :
1) n=2p—2. This means 2p=u'+3u+4. Then ”7—21;—1 —
%;;'ép—lz(u+3)p—1. By the degree-relation in B, (p),
u(p—1—x)+1= (u+3)x.
u(p—1)+1=x2u+3).
u2p—2)+2 = 2x2u+3).
U +3u+2)+2 =2Qu+3)x.
w3 +2u+2 = 2Qu+3)x.
19=0 Qu~+3).
19 =2u+3. 2u=16. u=8. 2p=64+32+4 = 100.
50 is not a prime.
2) n=2p—1. This means 2p=u’+2u+3. Then %p—-l =
2_?;:_3up—1=(u~2)p—1.
By the degree-relation in B,(p), we have
u(p—1—x)+1= (u+2)x.
u(p—1)+1=xQ2u+2).
u@p—2)+2 =4xw~+1). wu@+2u+1)+2=4xw+1).
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W2 +u+2 = 4dxu+1).
—14+2—-14+2=0 w+1). 2=0 (®+1). u=1. 6=28mx.

Such an x can not be an integer.
3) m=2p. This means 2p=u*+u+2. Then ’%21‘)——1= w+1)p—1.
By the degree-relation,
up—1—x)+1= w+1x.
u(p—1)+1= Cu+1x.
u@p—2)+2 =2xQu+1).
u@+u)+2 =2x2u~+1).
wWHu+2 =2xQ2u~+1).
17=0 QCu+1).
17 =2u+1. u=8. p=37 and x=17.
Therefore B,(p) must consist of one “1”, 19 “8.37+1” and 17 “9.37-1".
But 8-37+1 does not divide g=2739.
4) n=2p+1. This means 2p=u’*+1. Then 7%211—1=up—1.
By the degree-relation,
u(p—1—x)+1=ux
u(p—1)+1 = 2ux.
u@p—2)+2 = 4ux.
uWw—1)+2 = 4ux.
wW—u+2 =4ux.
=0 ). u=2. 2p=0>.

5) n=2p+2. This means 2p—u’—u. Then "=2p—1=@—1)p—1.
By the degree-relation, “
u(p—1—x)+1=x@wm—1)
u(p—1)+1=xQu—1)
u@p—2)+2 =2x2u—1)
ulr—u—2)+2 =2xQ2u—1)
wW—u—2u+2 =2xQu—1).
7T=0 Cu—1). u=4. 2p=12.

Consequently, we obtain the following

Proposition. If ¢ is odd, then such group & does not exist for
2p—3<n<2p+3.
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3. The case n=2p+3, t==0 (mod 2) and ¢ >1.

In this case #» may have the forms n=F(p, 1, 4 =F(p, 2, 3)
=F(p,u,2). Then 2p=u*—2u—1. Therefore the possibilities of degrees
of characters belonging to B,(p) are as follows: 1, p+1, 2p+1, up+1,

P=1, 2 pm I =2 p— 1, @+ 1)/t o+ 1)/t (F—1)/t, (=D p—1)/t
We shall sieve these one by one.

If “p+1" exists, then (p—1)/t=2. Hence the exceptional character
must be of degree p+2. This is impossible. If “p*—1” exists, then
< np—n+1=2pP+p—-2. p>—p+2<0. So we can omit “p*—1".
Since B,(p) contains only one exceptional family, it is sufficient to be
considered the following four cases:

1) “Aw—2)p—1)/t” exists. If “@m—2)p—1” exists, then its degree
must divide g. So (#+1)(x—1)®—2)=0 @¢). This contradicts =3 (¢).

" Thus B,(p) consists of one “1”, P—;—l—x—l “2p—1", x “up+1" and ¢

“W(—2)p—1)/t”. Then

p—1__ )__u—3
ux+2<At x—1 =5

x(u—2)t = u—1—2p) +2¢.
xuUu—2)t = —uw—3)+2¢t .
This is a contradiction.

2) “(p*—1)/t” exists. If “(u—2)p—1" exists, then (u+1)(u—1)u—2)
=0 (2f). Since p—1=(@wu+1)@m—3)/2 is divisible by ¢, we can set
t=t-t, such that u+1=0 (), u—3=0 (¢,). 4-2-1=0 (¢,). This means
t,=1 and #+1=0 (f). In this case “up+1” does not exist since
w—3)uu—1)=0 2¢). Hence we can assume that B,(p) consists of one

«yr, Vl}”-xq “2p+17, x “w—2)p—1" and ¢ “(p—1)/t”. Then

2(p—1)/t—x—1= w—2)x+ (p—1)/t.
Pp—1D/t—2=ux.

p—1=1t (ux+2) .

wu+1)w—3) =2tux+2) .

—3=4t@) .

Let 4t+3=qu and u+1=2kt. Then we have 4{+3=2akt—a. 2t(ak—2)
=a+3. 6@k—2)=a+3. al6k—1) <15. Hence we have k=2, a=1 or
k=1, a=3. Neither of them gives an integral solution x.

If “w@—2)p—1" does not exist, then B,(p) consists of one “17,
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p*; —x—1 “2p+1", x “up+1” and ¢ “(p—1)/t”. We have ux+2<1_"';_l
—x— 1>_ﬁ_;_1_ X—2) =2— (p—1)/t. This means x—0 and p—1=2¢.
Hence in this case B,;($) consists of one “1”, one “2p+1” and (p—1)/2

“2(p+1)”. We shall discuss this case in 4.
3) “@p+1)/t” exists. This means #=3.
If “(w—2)p—1" does not exist, then B, (p) must consist of one “1”,

p—;—l—x—l “2p+17, x “up+1” and 3 “(2p+1)/3”. Then we have

-1 B
2<T—x-—1)+ux =1.

3xw—2)+2p—11=0.
This can not hold since 2p=u*—2u—1.
If “—2)p—1” exists, then we can assume B,(p) consists of one
«1n 21 Ly 1 «2p—1” % “w—2p—1" and 3 “@p+1)/¢”. Then we
have
(p 1 —x— 1>=ux——2x+1.
2p—2 =3wux+3) .

u—2u—3 = 3ux+9.
12=0 ().

Since # is odd, # must be equal to 3. This contradicts 2p =u*—2u—1.

4) c¢=@wp+1)/t. In this case “up+1” does not exist, as in 2.1. 1),
since u+1=0 (). B,(p) consists of one “17”, ptl x—1 “2p+17,
“w—2)p—1” and ¢ “@p+1)/t”. Then

<p—1-—x—1> = ux— 2x+“—"’tl1 .

2p—3—2t = uxt .
w+1)(u—4) = (ux+2)t.
As u is odd, we can put t+2=qau and u+1=2kt. Then ¢+2=2akt—a.

Qak—1)t=a+2, 3Qak—1) <a+2. a(6k—1) <5. Hence we have wu=1,
k=1. This does not give an integral solution x.

4. Continuation: The case n=2p+3 and B,(p) consists of one
character A, of degree 1, one character A, of degree 2p+1 and
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t (=(p—1)/2) p-conjugate characters C*™ of degree (p—1)/t (=2(p+1)).
In this case the order of & is expressed as g=p@Pp—1)1+np)/t
=2p2p+1)(p+1). Since @2p+1, 2p+2)=1, the character A, is of
highest kind for any prime / dividing 2p+1. Hence A,(L)=0 for
elements L of & whose order divisible by /. For the prime m dividing
2p+2, the character C® is of highest kind. Hence C*(M) =0 for
elements M of & whose order divisible by m. Of course such elements
L and M are p-regular by the condition (x). Therefore A,(G)+ A,(G)
=C(G) holds for G=L and G=M. Thus A,(M)=—1, C*(L)=1. From
above relation, there is no such element G which is L and M at the
same time. Therefore the elements of & are distributed into four
disjoint sets: (I) The unit element, (I) the elements of order p, (III)
the elements of type L whose order is divisible by at least one prime
factor / of 2p+1, (IV) the elements of type M whose order is divisible
by at least one prime factor m of 2p+2.

Let 7 denote the number of elements of type L in &. Then by
the well-known character-relations,

S PO+ CP@+ - + 2 CPEG) =0.

By the relation A,(G)+ A,(G) = C™®(G) for p-regular G, we have C®(1)
=2(p+1), CPWL) =1, CPM) =0 and 3ICP@G) = —1. From these,

it follows

=D+ +=DH-1DCp+1)(p+1) +7-(p—1)/2=0.
r=4p(p+1).

For any element L* whose order divides 2p+1, let us denote the
normaliser of L* in & by (L*) and its order by n(L*). If N(L*) con-
tains an element M* of type M, then there exists such an element L*M*
of type L and of type M at the same time. Of course #n(L*) does not
contain the prime p. Hence #(L*) must contain the factors of 2p+1
only. If n(L*)<2p+1, then n(L*)<@2p+1)/3. Therefore the number
of elements conjugate to L* is greater than 4p(p+1). But g/n(L*) <r.
This is a contradiction. Therefore we have n(L*)=2p+1. This means
that the number of elements in the conjugate class containing L* is
equal to 2p(p+1). If 2p+1 is divisible by a prime // different from /,
then the element of order // must exist. Therefore r=2p(p+1) +2p(p+1)
+2p(p+1). This is a contradiction.

Therefore 2p+1 must be a prime power: 2p+1=I[°. For p=7,
2p+1 is not a prime power. For p< 7, we have ¢t=0 ) or ft=1.
Therefore we can assume p>11, that is, 2p+1=17°>23. For its ex-
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ponent a_>1, such / must be equal to 3, because 2p=((—1) (“ '+ ---
+/+1). Denote the normaliser of an /-Sylow group £ by (¥ and its
order by #(®). By a theorem of ‘Sylow, g/n(@) =1 (mod /). Let g/n(®
=1+/x. Of course © is represented as a transitive permutation-group
of degree 1+/x. Denote this character by II. We decompose II into
the irreducible characters of &. As is well known II contains A,
exactly once.
The following three cases must be considered.

1) 1II contains C. Then all p-conjugate C® must be contained
in II, since II(G) is integral. Therefore 1+/x>=1+ (°+1)(°—3)/4=

(*~1*/4. Hence n(® <2I'+4+,~. Since n®=0 () and /=23,

n®) is either /° or 2/°. If n(®=1/7% then & must have an /~Sylow com-
plement®. Therefore the commutator-subgroup ® does not coincide with
S, contrary to (xx). Hence #n(®) =2/°. So (1+Ix)20°=1°("+1)("—1)/2.
4(1+/x)=((“—1)(°+1). Thus 5=0 (mod /). This is a contradiction.

2) 1II contains only the characters of highest kind for p besides A,.
Then we have 1+/x>1+(°—1)/2=("+1)/2. Hence n(®) < (“—1)/"
Since 1+Ix=0 (("—1)/2), n(®) =0 ((°—1)/2). Therefore #(®) is either
(=12 or (=11 If n@®=(@"—1)7°/2, then 1+/x=1+[° is not
congruent modulo (“—1)/2. If n@)=(*—1)/° then 1+/x=(1+/%/2==1
(mol /).

3) Therefore II must contain character A,. Since II(P)=A,(P)
+ A,(P)>1 for p-singular element P, there exists an element P*
belonging to a conjugate of 9(¥). This means #n(L)=0 ((/“—1)/%/2).
Hence 1+/x <1+1/°. Thus we can conclude that index of (¥ in ® is
equal to 1+/° and II(G)= A,(G) + A,(G). Therefore II(1)=1+/%, II(P)=2,
II(L) =1 and II(M)=0. However, II(G) equals the number of letters
not altered by the permutation-representation of &. Since II(G)=1+/*
only for G=1, we have a (1—1) representation. From the above facts, &
is a doubly transitive permutation group on 1+/“ letters in which each
element is determined uniquely by the images of three letters. There-
fore by the method of Zassenhaus we can construct ‘almost-field”
(Fastkorper) F corresponding to M(¥) and its multiplier M corresponding
to a p—Sylow subgroup. Since M is an abelian group of order (/*—1)/2,
F is considered as a * Teilfastkoper” of Galois field GF(%. In our
case the order of M is not even, but it is prime. Therefore we can
use the method of Zassenhaus [5]. Thus we have proved & = LF2, /).

4) Cf. H. Wielandt [6].
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5. Remark

The conditions in our Theorem can be replaced by the conditions
n=2p+3, t=(p—1)/2.

Theorem. If n=2p+3 and t=(p—1)/2, then 2p+1 is a prime
power and & =LF@2, 2p+1) including LF@, 7) and LF(2, 11).

Proof. Since, as in 3, #=2p~+3, the possibilities of degrees of
of characters belonging to B,(p) are as follows:

1, p+1, 26+1, up+1, p*—1, ﬂ;—zp—1=<u+2)p—1, p—1, wp+1)/t,
Cp+1)/t, (p+1)/t, (p—1)/¢t, p°—1)/¢, (+2)p—1)/¢t, where 2p=u*—2u—1.

Let ¢#=1, then p=3. In this case # does not have the form
n=UF@3, u, 2). Therefore B,(3) must consist of one “1”, one “2p+1"
and one “p*—1”. Since this is a special case in 4, we have & = LF@2, 7).
But this group does not appear in former Theorem.

Let t>1. If “@p+1)/t” exists, then u+1=0 (mod #). Since
2p =u'—2u—1, 20p—1)=@—3)u+1l). (Pp—-1/2=wu—3)w+1)/4=

u4;3(u+1). This means 1‘4;321. We have =5 and u=7. For u=5,

p="T and wp+1)/t=12. Therefore B,(7) must contain “13”. But this
can not divide g=1736. For u=7, p=17 and (wp+1)/t=15. There-
fore B,(17) must contain “16”. But this can not divide g=17-2.35-18.

If “@p+1)/t” exists, then 3=0 (mod #). As ¢£>1, t=3 and p=7.
B,(7) must contain the character of degree x satisfying 1+ 2-7+1)/3=x.
x=6=p—1. This means =0 (mod 2).

If “(p+1)/t” exists, then 2=0 (mod #). As t >1, {=2 and p=>.
Since (p+1)/t<@p+1)/t, by a theorem of Tuan ([5], Theorem 4)
& =LF@2, p). This contradicts »=2p-+3.

If “(p—1)/t” exists, then &= LF@2, p). This contradicts n=2p+3
too.

If “(u+2)p—1)/t” exists, then #+1=0 (mod #. Since 2p =
w—2u—1, 2p—2=@-3@+1). u+l=_2_P-1 4zu—3 We have
u=5 and u=7. For u=5 p=7 and (w~+2)p—1)/t=15. Therefore
B,(7) must contain “14”. But this can not be xp+1. For u=7, p=17.
(#+2)p—1)/t=19 does not divide g=17-2-35-18.

If “(p*—1)/t” exists, then B,(p) must consist of one “1”, one
“2p+1” and ¢t “(p*—1)/t”. Since (p*—1)/t=2p+2, the proof in 4 is
valid in this case. Thus we can conclude that 2p+1 is a prime power
and &=LF?2, 2p+1).

This completes the proof of Theorem.

(Received April 11, 1956)
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