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1. Introduction

In this paper we investigate a stochastic dynamics for continuum fields on
R? with interactions prescribed by Ginzburg-Landau type Hamiltonian. The
main problems discussed here are to clarify the structure of the family of re-
versible measures (r.m.’s) of this dynamics, especially, we are interested in
(1) the characterization, (2) the construction and (3) showing the uniqueness
of rm.’s. For the characterization problem the classical notion of Gibbs states
(e.g., for the lattice systems) is extended to the continuum fields. In our pre-
sent situation Gibbs states are Markovian random fields over R? and they are
given as local perturbations from Gaussian fields, which is determined by the
so-called DLR equation. Then the answer to the first problem will be given
by establishing the equivalence between reversibility and Gibbs property.
The r.m.’s and therefore the Gibbs states will be constructed for a wide class
of potentials, while for the uniqueness we require the strict-convexity for the
self-potential appearing in the Hamiltonian. In this uniqueness domain, we
also verify the strong mixing property of the Gibbs states. 'This is one of exam-
ples which show stochastic dynamics is useful for the study of properties of
Gibbs states.

Now let us explain the dynamics we shall discuss in this paper more explic-
itly. It is described by the so-called time-dependent Ginzburg-Landau equa-
tion (TDGL eq.) of non-conservative type:

(1.1) dS,(x) = —% D(x, S,) di+dw(x), >0, xcR’,

where w, is a cylindrical Brownian motion (c.B.m.) on L¥ R?), see [7,8]. The
solution S, determines a random time evolution of real-valued continuum field
on R?. The Hamiltonian 4 is formally given as the sum of two terms, local-
interaction and self-interaction:

(12)  9US)= SRd {% AS(x)-S(®)+V (x, S(x))} dv, S:R'—R.
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Here / is a symmetric differential operator of order 2m having the form

(1.3) Af(x) :mn%s (—1)'* D*{a, g D f}(x),

with coefficients a, g=a, ,€C7(R?) and V € V; the class of all measurable func-

tions V=V (x,s) on R?XR such that V(x, -)€CYR) for a.e. x&R? and their

v
s

derivatives V'= in s are bounded and Lipschitz continuous (i.e., esssup
x,8

|V’ (%,5)| <oo and |V'(x, s)—V'(x, §)| < const |s—3§|, xER?, 5s,5&R). We
adopt the usual notation: |a|=3_; a;, D"Z(—a—)al---(—a—)% and g*=§g"...
axl 6xd !
g for a=(a,, -+, ) €25=1{0,1,2,---}¢ and E€R?. In (1.1), DH(x, S) is
the (formal) functional derivative of 4{(S) and therefore, in more mathematical

terminology, we consider instead of (1.1) the following stochastic partial differen-
tial equation (SPDE):

(1.4) dS,(x) = —% AS,(%) dt——% V' (x, S(x)) dt-+duwy(3) .

We assume that m>d/2 and 1 is uniformly strongly elliptic, i.e.

(1.3) 3D a,p(x) E¥ EP>c|E|™, x, EER?, ¢} >0,
101=1Bl =m

and strictly positive, i.e.
(1.6) = inf{g JJAS dx; S frdx=1,fECT(R)}>0.
R R

Then it is more convenient to regard the following function U= Uy as the sub-
stantial self-potential function for the dynamics instead of V:

(1.7) U(x, s) = % #+V(x,5), x*R‘sER.

The results in [8] give the existence, uniqueness and some regularity prop-
erties of solutions S, of the SPDE (1.4). Indeed, fix a positive symmetric func-
tion X & C~(R?) satisfying X(x)= |x| for x; |x| >1 and introduce Hilbert spaces
L}=L*R*, e=*® dx), r& R, having inner products defined by

(1.8) S, 87, = S | S(x)+8'(x) e7r%® dx, S, S'€LE .
R

The corresponding norms are denoted by |- |,. The space C(R?) with the usual
topology determined from uniform convergence on all bounded sets is denoted
by €. Then, it is one of the consequences of Theorem 2.1 in [8] that the
SPDE (1.4) has a unique solution S, satisfying

(1.9) S,&C([0, ), L) N C((0, ), C) a.s.
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if the initial data S,eL? r>0. We set L?=,5, L%, a countably Hilbertian
space.

The first part (Sect.’s 2,3,4) of this paper is devoted to the characterization
problem of r.m.’s. The form of the TDGL eq. (1.1) suggests that its r.m. might
be given by

(1.10) ¢~ ¥ “48” [normalization

where “dS”=T],cgs dS(x) is the Feynman’s measure (‘“Lebesgue measure” on
the space of functions on R?). The measure like (1.10) would be understood as
the local perturbation from the Gaussian measure on C with covariance opera-
tor A~ However, in order to localize the problem, it turns out to be necessary
to know the boundary data of the random fields. For this purpose important
roles will be played by the weak C”~! property for the random fields, which
determines m generalized random fields Y={Y;} 7=/ on the smooth boundary
8G of bounded region G. Then the regularity condition (RC)js, s<m, for Y
enables us to reconstruct the fields inside G (see Sect. 2).

The second part consists of Sect.’s 5, 6,7 and 8. The uniqueness of r.m.’s
of the SPDE (1.4) is shown by assuming the strict convexity (in s) of the potential
U=U,:

82

(1.11) U(x, -)eC¥R)  for a.e.x=R* and essinf ag (%, §)=7,>0.

:ERd,aER
An effective tool is the energy estimate for (1.4), cf. [4]. Moreover, by using this
estimate, it is possible to construct the r.m.’s for sufficiently wide class of poten-
tials V. We shall also discuss the TDGL eq. of conservative type:

(1.12) dS,(x) = % ADJY(x, S,) dt-+(— A2 dw,(x) ,
or, more mathematically saying, the SPDE:

(1.13) dS,(x) = % A{AS (%) V' (x, Sx))} dt-+d {div w,(x)} ,

where A=34_, 66—22 is the Laplacian on R? and div w,(x)=3)%., 61 wi(x), wy(x)
x5 x

J ]
= {w{(x)}4., being a c.B.m. on the space L%(R* R’). Note that the process
(—A)2w,(x) is equivalent in law to divw,(x). See [8] for the existence and
uniqueness of solutions S, of (1.13) satisfying (1.9). Since the eq. (1.12) is
unchanged (at least formally) under the replacement of 4 by another Hamiltoni-

an H,:

(1.14) J(S) = Jl(S)-—-SRd Mz) S(x) dx
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with A=2\(x) satisfying AA=0, the SPDE (1.13) might have a family of reversi-
ble measures (i.e., the Gibbs states corresponding to 4,), see Sect. 7 for details.
Finally in Sect. 8 the uniform mixing property of the Gibbs states is analyzed
by using the dynamics (1.4). The result will be applied in another paper [9]
to discuss the hydrodynamic limit for the TDGL eq. (1.13) of conservative

type.

2. Gibbs states on R?

In this section we shall define the Gibbs states associated with the Hamil-
tonian 4 determined by (1.2) and then formulate the result which gives the
equivalence between reversibility and Gibbs property.

2.1. Stochastic Dirichlet problem

Let €I/ be the family of all bounded open sets in R with boundaries being
(d—1)-dimensional C~-manifolds. Assume a family of m generalized random

fields (g.r.f.’s) Y={Y,(y); v €L T)}7=% on I'=0G, GECY, is given and satis-
fies the regularity condition (RC); with some s: %V(m—%)<s<m; namely, Y
is supposed to fulfill the following bounds

E[Y;(y)] < const ||| |f-s+i+1/2(, Y ELAT), 0<i<m—1,

where H(T") is the Sobolev space of order s on T" [14], see also Definition 3.1 in
[8]. (When d=1, we interpret ||vr||ksmy=Deer ¥(@)’, SER, as usual.) Let us
consider the following stochastic Dirichlet (SD) problem:

2.1) {JZX =0 inG

* 9:X=1Y; onT, 0<i<m—1,

where 6;‘=—6'——.; n(x) is the inner normal unit vector at x&T".
on(x)

The mathematical meaning to this equation is given in the following man-
ner: Let f=f*eH*(G)N H{(G), v+ L*G), be the solution of the dual prob-
lem to (2.1):

22) {Jlf=1p in G

7f=0 onT, 0<i<m—1,

in other words, f*=Jg'r. Here J; is the Friedrichs extension on the space
L%G) of the operator 4 with domain Cg(G), the space of C=-functions on G
vanishing near I'.  We shall use in Sect. 3 the fact that H**(G) N H3(G)=H*"(G)
N H§Y%G), [14, Theorem 11.5, p 62]. Let {§;}?”5* be a system of boundary
differential operators of order 2m—i—1, respectively, determined by the Green’s
formula [2, 14], i.e.,
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(2.3) Ly Af'Ye = <AL Yo+ 23401 f 8. e

for every f,f'€C=(G), where {f, f’>G=$G ff dx, <g,g’>p=gp g8 do(x) and

do=dor is the volume element on I". By the solution of SD problem (2.1) we
mean the g.r.f. X on G defined by

(24) X, 96 = 3 Y8, "), weIXG).

Note that, if the functions {¥;} 7= on I" are smooth enough, then X determined
by this relation actually solves the Dirichlet problem (2.1). We have extended
the notion of solutions through this relation to the case with random data
Y={Y;} which take values in the space of generalized functions (a.s.).

Lemma 2.1. It holds X(-)eC=(G) (a.s.) for the solution X of (2.1).
Proof: First we note that the map

E(G) Dy > 8, fYe H++IT)

is continuous, where the space E75(G) is introduced as follows: Let peC(G)
be a function which is positive on G, =0 on I" and satisfies p(x)~dis (x, 8G) as
x~0G and let E%(G), s€Z,, be a Hilbert space consisting of all # such that
p(x)' ' D*ucs L¥G) for every a; |a| <s. This space is equipped with the natu-
ral inner product. Then E’(G) is defined for s>0 by using interpolation tech-

nique and finally 575(G) is introduced as its dual space, see [14, p 188] for detail.
Now the regularity condition (RC); on Y implies a bound:

E[<X, y>s]<const [[¥l|z-5c) -

This proves that X | ;&€ H*~@2-3G") (a.s.) for every §>0 and G’ &<V such that
G'CG and therefore XeL},.(G) (ass.); use Minlos-Gross-Sazonov’s theorem.
However, it is easy to see <X, Ap>;=0(a.s.) for every p=C7(G) and conse-
quently <X, Ap>;=0 for every p=C7(G) with probability one. This shows
XeC~(G) (as.), seee.g. [1, p66]. [

Let v§ be a centered Gaussian measure on L*G) with covariance operator
Ag, ie.,
EXKX, pdo <X, p"%] = p, A "%, @, 9 €LXG).

Note that »§(L*G))=1 since AG is a trace-class operator on L{G). In fact, it
is well-known that /4, has eigenfunctions {@,} ;. being complete in L(G) and
corresponding eigenvalues {0<<\,,”}»-1 such that A, ~cn*"¢, ¢>0, as n— oo, see
[1]. We can regard »§ as a probability measure on the space C(G) by the fol-
lowing lemma.
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Lemma 2.2. For v§-a.e. X&LXG), there exists a version X C(G) of X
in the sense that X (x)=X(x) holds for a.e. x€G.

Proof. Consider a stochastic process X; on L* G) defined by
X, = T, X+ Trudw,, XeL¥G),
0
where T, is the semigroup on L* G) generated by —% Ag and w, is a c.B.m. on

L¥G). Clearly T, X,€9D(A;)CC(G) for X, L¥G) and t>0, while the second
term of the RHS has a version also belonging to C(G) (a.s.); see [7]. We there-
fore obtain the conclusion since if the distribution of X, is »§ then it is also true
for X, (to see this, e.g., use the Fourier series expansion of X, based on {®,}).

O
2.2. Two definitions of the Gibbs states

Set Q=C and denote X (x, w)=w(x) for x€R? and 0 =Q. Let B be the
Borel field of O, B(G)=0{X(x); xG} if G is open in R* and B(C)= N {B(G);
G is open, GDOC} if C is closed. For I'=0G, GV, we also introduce
B_T)=N{BON(G)); O is open, 0D 3G} .

We give the notion of weak C”~! property of r.f.’s, see [8] and also [15].
For a real-valued r.f. X={X(x); x& R}, set

Fx(h, ) = Fx(h,r; T)
= [ ¥ Xe+hn) do),
for | k| <hy, hy>>0, and Yy LAT)=L4T, do).

DeriNiTION 2.1, The r.f. X is called weakly C~! at T" if there exists /#,>0
such that Fx(«, yr; T)C" Y((—hy, hy)) a.s. for every pLAT).

Now we introduce the definition ot Gibbs states. We denote by B,(R? X R)
the class of all bounded and measurable functions on R? X R and assume the fol-
lowing condition on the potential V="V (x, s):

(2.5) Ved,(R'XR).

DerFINITION 2.2. We call p&P(Q), the family of probability measures on
(Q, B), a V-Gibbs state if it satisfies the following two conditions for every
Gey:
(1) The r.f. X distributed by p is weakly C»~! at I'=0G and

Yy T) = ;;%Fx(h, i D) |, 0Zi<m—1,

satisfies the regularity condition (RC); for every s<<m.
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(2) For every B(G)-measurable bounded function ¥ on Q and B((G°)°)-
measurable bounded function ® on Q, p satisfies the so-called DLR equa-
tion:

E*[®-¥] = E*[® (o) B [¥]].

In this definition the finite-volume Gibbs distribution ¢ is defined as fol-
lows: Consider the solution X'(w)={X'(%, »), *&G} of SD problem (2.1) with
Y;=Y;(-;T) given in (1). Note that X’ is B(I')-measurable and even B_(T")-
measurable. Define »$(+-)=v§(- —X'(»)) and then

(2.6) duS(X () = Z3k exp {—SG V(x, X () dx} dvS(X(-)),

where Z, ; is a normalization constant.

We introduce another definition of Gibbs states. Let v P(Q) be a cen-
tered Gaussian measure with covariance operator I, where 7 is the Friedri-
chs extension of (A, C7(R?)) on the space LAR?), see [2]. Similar notion of
Gibbs states was introduced and studied by Frohlich [5].

DeFINITION 2.3. We call x€P(Q) a v-la.c. (locally absolutely continuous
with respect to ») V-Gibbs state if, for every G €€/, y is absolutely continuous
w.r.t. v on B(G) and the condition (2) holds with xS constructed by the formula
(2.6) with »$ replaced by the regular conditional probability distribution
v(+ | B((G°))) of v w.r.t. B((G)°). Note that xS is defined for y—a.s.o.

We fix >0 and denote by G(V) and &'(V) the families of all V-Gibbs
states and v-l.a.c. V-Gibbs states, respectively, satisfying E*[|.S|2]<<oo.

2.3. Formulation of the result

Let L,(L?) be the class of all b=b(x, S), xR, S&L?, being bounded
(i.e., |b|, y=sups|b(+, S)|,<oo) and Lipschitz continuous as functions of

L*—L: For V=V (x,s) we set by(x, S):—% V'(x, S(x)), xR, SeL’,

where V'=%—V, and assume the following condition:
s

(2.7) V(x, -)eCYR) in s for a.e. x€R? and b, N5, Ly(LY).

Then, under this slightly milder condition than “V & V", the TDGL eq. (1.4)
has a unique solution satisfying (1.9), see [8]. Let 9 be the class of all func-
tions ¥ on L? having the form:

(2.8) U(S) = WS, @, . <S, o), SELE,
with k=1, 2, -+, yr=r(aty, -+, ots) ECL(R*) and g, -+, @,&Cy(R?), where
S, g>={ S p(x) d.
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A probability measure y€P(C N L) is called a reversible measure of the
SPDE (1.4), if it satisfies

(2.9) E*[D(S,) W(S))] = E“T¥(Sp) D(Sy)]

for every t>0 and ®, Y9, where the superscript g in both sides of (2.9)
means that g is the initial distribution of the solution .S,. Note that 9 is a de-
termining class of measures on the space C N L:. We denote by R(V') the fam-
ily of all reversible probability measures of (1.4). We can now formulate
the theorem which is one of our main results in this paper.

Theorem 2.1. Assume the conditions (2.5) and (2.7) on the potential V.
Then, we have G(V)=G'(V)=R((V).

The proof for G(V)=R(V) will be given in the next two sections. We
notice finally in this section that G(V)=g'(V) follows easily by assuming
G(0)=R(0) and v=R(0) (see Proposition 6.1). In fact, »€G(0) implies
(- | B((G°)°)) (0)=5S, v—a.s.0, where 5S is the shifted measure of »§ by the
solution X/, of the SD problem (2.1) with boundary fields {¥;} which are de-
termined based on the measure v(i.e., 5¢ denotes the measure »S defined es-
pecially based on » instead of x). Take an arbitrary G’€Cl such that G'CG.
Then, since X,eC(G), v—as.0, we have {A(X,-p), X, -pDs<o0, v—as.o,
for every p = C5(G) satisfying =1 on G'. This verifies 55 ~v§ on B(G’), v—
a.s.0, (see [12, p 118]) and therefore v~v§ on B(G’), where ~ means the equiva-
lence of two measures.

Now suppose u &G (V). Then, the same argument as above implies v$ ~v§
on B(G'), p—a.s.w, where vJ is the measure defined from p as described just
after Definition 2.2. This shows y~w»§ on B(G’). Therefore we obtain p~w
on B(G’) and consequently p is v-la.c. Especially, we see that 5$ is defined for
p—as.wand pS=vS, p—as.o. Hence we get x€G'(V). The converse asser-
tion is easy; notice that, since v&&(0), the condition (1) of Definition 2.2 holds
for v and therefore for every p=g'(V).

3. The proof of Theorem 2.1; reversible = Gibbs

In this section = R(V) is given and fixed. The potential V=7V (x, s) satis-
fies the conditions (2.5) and (2.7). First we notice the following integrability
property of u, whose validity will be shown in Sect. 5 using coupling method,
see Proposition 5.1 and note |S|,< | S|, if 0<<r<7'.

Lemma 3.1. E*[¢fS1]|< co with some B=[(r)>0 for everv r>0.

Let us introduce the (formal) generator .L=_[} of the process S, deter-
mined by the TDGL eq. (1.4): For ¥ &9 having the form (2.8),
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L¥S) = =5 DL (5,3, -, <5, o)

(3.1) X LS, Ap>+<V'(+, S(+)), @}
+1 5 B (8,0, S, o) < i) -

2 7= 60[,- ooty

We denote for ¥ =9

(32) DY(s, $) = 310L (S, 9>, -+, €S, ) i)

Lemma 3.2, For every ®, Y9,
(3.3) E*[®. L¥] = —% E*KDA(-, S), D¥(-, S)>]

Proof. Noting the integrability of x (Lemma 3.1), we have

L B2(S) T(S)] = E{O(S) LE(S)]
— E*[®(S,) LY(S,)], ast}0,

and therefore the reversibility condition (2.9) on x implies
(34) E'[®- L¥] = E Y- LP], ®,YVETD.
However this verifies (3.3) with the help of a trivial equality
(3.5) L(®V)—OLY -V LD = {D¥(-,S), D¥(-, S)). O

Let 9 be the completion of the space 9 with respect to the norm [||-||| de-
fined by

(3.6) NP = [|®IZ20am + DD 22z xary » PED .

Notice that D® € L¥(dx X dp), €D, is determined uniquely by the procedure
of this completion. The formula (3.3) still holds for ®€ 4 and ¥ €9 or even
for ¥ of the form (2.8) with +» which may be unbounded but satisfies |yr(a)| <
const {14 ||} ; note Lemma 3.1,

DerINITION 3.1.  Let K be a subspace of C and A a real-valued measurable
function on K XC. A probability measure me P(C) is called K-quasi-invariant
with cocycle A(p, S) iff m(p++) and m are mutually equivalent and it holds
m(p-+dS)=e* m(dS) for every p= K.

Lemma 3.3. y is C5(R?)-quasi-invariant with cocycle defined by
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Mg, 8) = |7 S@) =V (5, p()+5()

(3.7) .
—AS@)+- et Ap()] dx, @ECHERY), SEC.

Proof. Fix o= C7(R?) and put F(S)=A(tp, S—tp) for teR and S&C.
Then we see F,€9 and moreover

a% F(S) = —<DEF(-, S), p>+2LY(S),

where ¥,=<S, ¢>. Hence, for every ®= 9

2 [ (s)e279 uitgp+as)

=] 2 —_— =Fy(S) =
2 Sq:(s t) e=F® 1,(dS) = 0.

Here the formula (3.3) has been used by taking ®&=®,, which is defined by

D,(S)=D(S—1tp) 77, and W=, ; note that &, 9. The conclusion follows
immediately from (3.8). [J

(3.8)

The following lemma is a consequence of Theorems 3.1 and 3.2 in [8].
Indeed we apply these results by considering the TDGL eq. (1.4) with initial
distribution p; note that its solution S,, >0, is always p-distributed and also
that Lemma 3.1 guarantees the integrability E*[|S|Z]<<co, >0, which is re-
quired for using these results. We say a r.f. S={S(x); x&R?} satisfies the
regularity condition (RC)g, s>0, GeCY, if

E[<S, ¥e]< const |Wpllz-+c), wELXG) .

Lemma 3.4. Take GECV. Then a u-distributed r.f. S={S(x); xR’}
is weakly Cm™' at T=0G. Moreover the family of gr.f's Y={Y;(yr)=

;_;:.- Fs(h,Ap; T) | 4ot 7o on T and the r.f. S satisfy the regularity conditions (RC)j,
and (RC)g, respectively, for every s: 0<<s<<m.

We shall sometimes denote the Friedrichs extension A, introduced in
Sect. 2 simply by A when there is no afraid of confusion. The domain of
this operator is given by D (A)=H*"(G)NHy**(G). We define a function
As(p, S; w) by

Goy AP Sie)= 3 Yisip) (m)——% v Tgliee

-I—SG [V (x, S(x))—V (%, p(%)+S(x))—S(x) - Ap(x)] dx ,
for peD(A), SeC, 0= Q(=C), where {Y;(V)=Y;() (w)}?0 is a family of
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g.r.f’s on T appearing in Lemma 3.4. Note that Ag(p, S; ») is B(G)-measurable
in S and B_(T')-measurable in w. The regular conditional probability distribu-
tion (- | B((G*)°)) (@) of u given B((G°)°) will be occasionally regarded as a prob-
ability measure on C(G) instead of C for y-a.s. w.

Proposition 3.1. n(-|B((G")°)) (w) is D(A)-quasi-invariant with cocycle
Ag(p, S; o) for p-a.s. .

Proof. Lemma 3.3 shows with the help of [16, Proposition 3] that
(| B(G°)°)) (w) is C7(G)-quasi-invariant with cocycle Ag(p, S) u-a.s. w, where

A2, ) = | _[V(x S@)—V (3, o) +S(2)—S(x)- Ap(®)] d

(3.10) Lo
— 2 IVTelie, 9=C3(G), SeC.
This means
[ @(5—9) n@s18(69) (@)
(3.11)

— [ @(8) 2% u(dS1 8GN (@), 2.0,

for every @ C,(Q) and o= C7(G). The goal is, however, to prove the quasi-
invariance for the space 9(A). To this end, for pe9(A), we take an ap-
proximating sequence {p,& C7(G)} -1 in such a manner that ||@,—@||gm+1/2(6—>
0 as m—>oo. This is certainly possible because D(A)CH§**G). We shall
verify that Ag(p,, S) converges to Ag(p, S; S) as n—>oco in a proper sense. It is
easy to see

(3.12) SG V (%, @ (%)+S(x)) de — SG V(x, p(x)+S(x))dx, n— o,
for every S &C and, using Garding’s inequality [1],

(3.13) IV A@allizey = IV APz, n— oo

The limit of the remainder term in Ag(p,, S) is given by the next lemma.

Lemma 3.5. As n—oo, [ S(x)Ap,(x)dx converges to [ S(x) Ap(x) dx—
" Yi(8; ) (S) in the space L*(dp).

Proof. Take a non-negative function & C§(R?) satisfying n(—x)=n»(x),
Srin(¥)dx=1 and =0 on {|x|>1}. We set »°(x)=E"¢ n(x/€) and S*(x)=
Sxy*(x) for SEC. Then, since p & P(A) implies 8;0=0 for i >m, Green’s for-
mula (2.3) shows

(8%, Agde = CAS, Dot T<0FS", 8@dr,
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while it is clear that
<Se, Jlfpn>c = <‘-’4Se7 ¢n>G

for ¢,€C5(G). Therefore the proof can be completed by combining the
following four assertions:

(3.14)  lim E*[KASY, p,—pdi] = 0, 0<e<l,
(3.15)  lim sup E“<KS—S", Ap,>4] =0,

ego n

(3.16) lim E*[KS—S8*, Agpd2] =0,
230

(3.17) lim E*[{<0}S*, 8;p0n— Yi(8ip)}?] = 0, 0<i<m—1.
240

The first (3.14) is easily shown. Indeed, since lim, .. ||@,—®||;2¢=0, we may
only notice E*[||AS®||%2¢)]<<oc, which follows from the integrability condition
of x and an equality AS®(x)= {(A°)*S}(x).

In order to prove (3.15) and (3.16), we notice

E[KS—S°, Ayl = E[KS, A(p—n"xy)%,]
(3.18) <const || A(y—7"Y)|lz-+cy)
<const [[yp—n*spfzm-scy , YEDA), 0<E<T,

for every s: 0<<s<<m, where G,={ycsR’; dis (y, G)<1} and we regard »=0
on G°. We have used (RC)g,, 0<<s<{m, for the first inequality in (3.18) and the
result of [14, p 195, Th. 8.3] by noting 37 {yr—7"*yr} | o6,=0, 0<i<m—1, for
the second. Therefore (3.15) and (3.16) can be established by showing

(3.19) lim sup [lp, —7"*@ullg2n-s() = 0
and
(3.20) lgi?; Il?)—‘)?z*g)“ilzm—s«;l) = O , ¢Eg)(<_74) 5

respectively, for every s: m—1/2<<s<<m; the details are omitted since the argu-
ment is standard.
Finally, to prove (3.17), we put =380 € H:*V}T") C L¥T") and notice that

Yiy) = % Fs(h, A5 TY) | 4o

and

a
dh'
where 7,, yER?, is the shift operator on C defined by (7, S) (x)=S(x—y),
SeC. However, Theorem 3.1-(iii) in [8] proves

St e = | 7)o Bl 43 T lamo dy
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lim sup E“[I——Fs(h V3 T) | j=o—

240 ¥ly|<e dh ‘

and this implies (3.17). [

Frs(hy 3 T) [1=0l1 =0,

Now we continue the proof of Proposition 3.1.  We can find a subsequence
{n'} of {n} such that As(p,, S)—=Asp, S;S)asn’—co y-as. S and therefore
Ag(@w, S)— As(@, S; 0) as n'— oo u(+ | B((G)°)) (w)-a.s. S, u-a.s.0; combine
Lemma 3.5 with (3.12) and (3.13). Noting that the equality (3.11) holds with ¢
replaced by ¢,, we take the limit #—oco of both sides. Since Sobolev’s imbed-
ding theorem guarantees that ¢,—@ in C, we see that the LHS of (3.11) with
@ =@, converges as n—> oo to [ ®(S—op) p(dS|B(G))) (»w). On the other
hand, assuming >0, we can use Fatou’s lemma to see

lim {the RHS of (3.11) with ¢ = @/} 25 @(S) €265 1 (dS | B((G°))) () -

n/ oo

Therefore we obtain
S O(S—o) u(dS|B(G))) (w)ZS D(S) e*6'*5) u(dS | B((G°)%)) (@), p—as.w,

for every non-negative ®=Cy(Q) and p= 9D (A). This proves the conclusion,
namely (3.11) holds for all = C}(Q) and p = D(A); see [11, Lemma (3.5)]. [J

Let X'=X'(x, 0), x€G, 0 €, be the solution of SD problem (2.1) with
the boundary data Y={Y,(y)} 7=, which is determined by Lemma 3.4. We
define a function Az(p, S; ») by

(o, S; 0) = —% I/ Ji@ll320—<S, Apde
+| 7 S@+X @, 0) =V (5 @)+ S)+X (% )] dv,

for peD(A), S€C,(G), veQ(=C). Here C(G)={SeC(G); S+X'(o)E
C(G)} and we set {S, Ap)e=<{S+X'(0), Ap>s—<X'(0), Ap>;, where the
first term is defined by the usual integral and the second by (2.4).

Lemma 3.6. u(:-+X'(0)|B((G)°)) (@) is D(A)-quasi-invariant with co-
cycle AG(p, S; o) for p-as. o.

Proof. From Proposition 3.1, we have
plp+dS+X"(0) | B(G)°)) ()
#(dS+X'(0)| B((G)°)) (o)
= Ag(p, SHX'(0); 0), pED(A), p—as. .

However the RHS coincides with A%z(@, S; ). Indeed peD(A) implies
Ape LXG) and fAP=gp, so that (X', Ap =210 Y,(5; ) from (2.4). [

log
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Define »§ ,€ P(C,(G)), for u-a.s. w, by
v5..(dS) = Z7' exp {SG V (%, S(x)+X'(%, 0)) dx} p(dS+X'(0) | B(G*))) (@) ,

where Z, is the normalization constant. Now the proof of Theorem 2.1; revers-
ible = Gibbs can be completed by showing the next proposition. We recall
Sect. 2.1 for the definition of »§ € P (C(G)).

Proposition 3.2. »§,=»¢, p-as. o.

Proof. It is easily seen from Lemma 3.6 that v§, is 9)(A)-quasi-invariant
with cocycle

(321) A, S) = —— IV glitse—<S, Apde, peD(A), SECG).

Let {@,} .1 and {\,>0};., be the sets of all eigenfunctions and the correspond-
ing eigenvalues of the operator _, respectively. We denote by z: C(G) N L*G)
S8 {w,=<S, PO} r-1E the map giving the coefficients of Fourier series
expansion of S based on the CONS (complete orthonormal system) {®,} -, of
L¥G). We also denote by R the class of all c=(c,)&R" such that ¢,=0 for
all but finitely many »’s. Then the quasi-invariance of »§, proves that
v§ (L¥G))=1, p-a.s. w, (use similar argument to [16, Lemma 8]) and the image
measure v§ o~ € P(I?) of v§, is R™-quasi-invariant with cocycle

A*(C, w) = A(C)?( i Cy q_)m i Wy ¢_’n)

L[}
-
3

1

for c=(c,)ER™ and w=(w,)=/%. However, this proves »§ oz '=vfon™" (see

[16]) and consequently we obtain »§,=»§. []

4. The proof of Theorem 2.1; Gibbs = reversible

In this section we always assume p&EG(V). The argument in the pre-
vious section can be essentially followed in the converse direction.

Lemma 4.1. The Gibbs state u is Cy(R?)-quasi-invariant with cocycle
A, S) defined by (3.7).

Proof. We begin with observing that the Gaussian measure v§ € P (C(G))
is 9(A)-quasi-invariant with cocycle A%(p, S) defined by (3.21). This is actu-
ally shown by transforming »§ into a measure on the space /? by using the map
= introduced in the proof of Proposition 3.2. We especially find as a conse-
quence that »$ is also C§(G)-quasi-invariant with cocycle A%(e, S) for p-a.s. o,
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since <X'(w), Ap s=0 p-a.s. » if p=C7(G); see Sect. 2.2. for the definition of
v$. Tt is then easy to show that the finite-volume Gibbs state uS &P (C(G)) is
C3(G)-quasi-invariant with cocycle Ag(p, S) defined by (3.10) for u-a.s. w.
Now take an arbitrary o € C7(R?) and a non-negative ¥ &9 of the form (2.8).
Let GV be an open set such that it includes supp ¢ and supp @;, @; appear-
ing in (2.8), for every 1<¢<k. Then, by using the DLR equation, we obtain

E*O[¥] = E*¥ (S—p)]
= E'[E[¥(S—o)]]
= E*[E*[W(S) e ]]
= E"[¥(S) e2®],

which concludes the proof of lemma. []

This lemma gives particularly an information on the integrability of s:

Corollary 4.1. For every o= C7(R?), E*[e*® 9] < oo and E*[el<S.AP)1]<

Lemma 4.2. The Gibbs state u satisfies the equality (3.3) for every ®,
veg.

Proof. Notice that the LHS of (3.3) is integrable because of Corollary 4.1.
First we prove (3.3) for every ®=9 and ¥=¥,=9 having the form ¥y(S)=
(S, @) with € C}(R), p= C5(R?). Indeed this can be done by differenti-
ating the both sides of the following equality in ¢ and then setting ¢=0:

EH[@(S) ¥ (<8, p))] = B [@(S—tp) ¥ ({S—ip, pp) e 2¢7579], tER,

which follows from Lemma 4.1. The next remark is that if (3.3) is true for
every ®= 9 and some =T, =9 then this equality still holds for every &9
and ¥=W¥,.¥,, where ¥, is an arbitrary function of the above form. Actually
we may just use (3.5). Therefore the recursive application of this fact verifies
(3.3) for every @€ 9 and Y9 of the form W(S)=TI%.; ¥;(<S, ,>) with k=
1,2, -, Yy, €C}(R) and o, C5(R?). This completes the proof. []

Proof of Theorem 2.1: Gibbs = reversible: Take an arbitrary separable
Hilbert space B in such a way that LZC BC {C5(R?)} '={Schwartz’s space of
genetalized functions} with the inclusion map of L:—B being compact, e.g.,
take the dual space of H™(R?) with respect to the space L:. Then, u&P(L}) is
extended naturally on B and also every ®<=9) can be regarded as a function on
B. Let us consider a symmetric form on L*B, dy) defined by

1

E(@, %)= >

S (DD, DY u(dz), D, VED,
B
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(we regard <+, -> as an inner product of the Hilbert space LAR?, dx)). Note
that 9 is dense in L¥(B, dy) and Lemma 4.2 implies £(®, W)= —(®, L)% )
for @, ve9. We see easily that (£, D) is a closable Markovian symmetric
form on LB, dp). Moreover, its minimal closed extension determines a diffu-
sion process 2; on B, ie., there exists a process z; with generator being the
Friedrichs extension 4 of (£, 9) on the space LA B, dy). To this end, we rely
on the paper of Kusuoka [13]. Indeed we have only to check the condition
(C.2) of [13] and this follows from the assumption E*[|S|}]<<co since it im-
plies E*[||2]|3]<<ec. Then it is possible to show that 2, is in fact an L}-valued
diffusion process. Actually this follows by applying the same argument used for
the proof of Propositions 3.7 and 3.8 in [13] by replacing M, B and B, there with
B, L? and B, respectively, in our situation. Here B, is a Hilbert space con-
structed as follows: Fix an arbitrary CONS {e,} -1 of L? and take 1<, oo,
n—> oo, such that

(4.1) 320 BHKS, el <o

The space B, is the completion of C7(R?) with respect to the norm
“S”;, = 'Z-:I \/7\,~”<S’ en>§} ¢

From the construction the imbedding of By—L? is compact and, using (4.1), we

see that the Choquet capacity 6;[; (B—B,) on B vanishes. Now, since A¥=
LY p—ae. for <9, the similar argument given in Fukushima and Stroock
[6, Theorem (2.9)] verifies that the distribution on C([0, o), L) of the process
2, coincides with that of our process S, (i.e., the solution of (1.4)) if the initial
distributions of 2, and .S, are common and absolutely continuous with respect to
w; we should notice that the well-posedness of (£, 9)-martingale problem is
established by Theorem 4.1 in [8]. The proof is therefore completed since y is
a reversible measure of 2,. [

ReMARK 4.1.  For a uniformly positive function c=¢(S)€9), the solution
of an SPDE:

dS,(x) = —‘(TSJ AS,() dt—f% V'(x, Si(x)) dt
(4.2)

+% Dc(x, S,) dt-++/2(S;) dwy(x)

can be constructed by means of the time change method. Small changes in
the proof of Theorem 2.1 show that the family of all reversible probability meas-
ures of this equation coincides with (V).
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5. Energy inequality and stationary measures

As a slight generalization of the eq. (1.4) we consider the following SPDE
for a given b=>b(x, S)E N> Ly(L?):

(5.1; ) S(x) = —% AS|(x) di-+b(x, S;) dt+duw,(x) ,

which has a unique solution satisfying (1.9), see [8]. The purpose of the present
section is to investigate the class S(b) of all stationary probability measures
uwEP(C N LE) of this equation. We introduce a norm

lo'lr,m = {'2 IDaa.lg}l/Z, O'ECSQ(Rd), reR .
®|<m
Lemma 5.1. For every §>0, there exist ry=r,(8), C=C(8)>0 such that
(5-2) (o, Ao>,2(v—=8)|o|i+Clo|in, oECT(RY), |r|<r,.

Proof. Consider an operator A'=A—vy+38,8>0. Then A’ is uniformly
strongly elliptic and strictly positive. Therefore, by Garding’s inequality [1],
the norm || f]|_p=<f, A’ f>¥* is equivalent to the Sobolev norm || f|l,= {4 1<m
1D® fl|%2¢p4y} V2 on the space C5(R?). To complete the proof, we see

(oy Aod, = 3 Ld ta p D% - DP{ge%} dx

la],1BI<m

= llee™ |2y +(y—8)lo|+R,

where

R= 3 Skda¢,ﬂ[D~a-Dﬂ{ae-2rx}—Dw{ae-m} DP{oe}] dx .

la!,'BI<m
However, since |e~"® D%e*®| <const |7| holds for x&R?, |r|<1 and 1<
|| <m, we obtain by using Leibniz’s rule
(5.3)  |e7™® D*{e*® f(x)} —D* f(x)| <const |7| 3 |D* f(x)],

o <
for all |7| <1, |a| <m and feC7(R?), where a'=(ai, -+, ab)<a=(ay, **+, &)
means that a'<a (ie. ai<a; for 1<i<d) and |a’|<|a|. This, by taking
f=oe "%, verifies a bound:

|RIconst I7] lloe™™I2X__sup |ana(s)], 7] <1.

*ER® ; |@l,1B|

Hence, the conclusion follows since (5.3) also implies that |a |, ,,<const ||ce™"*|,,
with comst independent of 7; |7| <1. [

REMARK 5.1. The two constants 7,=7,(8) and C=C(8) in Lemma 5.1 de-
pend on A only through the following four quantities: the constant ¢ appearing
in the condition (1.5), 7, sup{|aa g(x)| ; *€R?, ||, | B8] <m} and the modulus
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of continuity of {a, g} 141=1g1-m; C.f. [1].

Corollary 5.1. (Energy inequalities) Suppose that two functions o,x) and
vy(x) are given and satisfy

6%0',(90) — —% Ao (x)+ox), >0, xR
(5.4)

C
{op Ty 5”217 lo 3‘}“'2

with some ¢, <<ty and c,=c,(r)>0 for every r>0. Then, for each c and r such that
0<c<y—e, O<r<r(vy—c,—c), we have

(5.5) o |26t | 24264/, £>0
and
(5.6) [[ loulm du(Cr—a—a)Hl ol 42681, £>0.
Proof. From Lemma 5.1 and condition (5.4), we have
4101l = —Co Ao+ Ko 0,

<—(v—8—a)lo:|7—C(d)|o|7mt+2¢,

for every §>0 and 0<<r<<r,(8). 'This implies the conclusion; take §=94—¢,—c.
O

We show as the first application of this corollary the existence of stationary
measures of (5.1; b) and their uniform integrability.

Proposition 5.1. S(b)%0@ for every b& N ,5o Ly(LE). Moreover, for every
sufficiently small r>0, there exists 3=8(r)>0 such that

(5.7) sup {E*[¢9%]; weS®), |b], <K} <oo, K>0.

Proof. Consider the following coupling: Let S, and S, be the solutions of
the SPDE’s (5.1; b) and (5.1; 0), respectively, with common c¢.B.m.’s w,(x). As
for the initial data, we choose an arbitrary point S&L? for the process S,, while
we assume S, is a v-distributed random variable (r.v.) which is independent of
{w}. We shall denote this coupling simply by {S,, S;} ~{(®, ), (0, »)}. Note
that v is stationary for S,, see Proposition 6.1 below. The difference o;=S,—S,
of these two processes satisfies the condition (5.4) with v,(x)=b(x, S;) and arbi-
trary 0<¢,<7y. We denote the distribution of S, on L? by u, and its Cesaro

T
mean by 7, i.e. ,T/,T=—]11—S widt. Then, {@r} >, is tight on L? for sufficiently
0

small 7. In fact, the L}-valued r.v. S(t, »)=S,(w) realized on the probability
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space (O, Pr)=(Qx[0, T], PX d—;‘) has the distribution 77, where (Q, P) is the

probability space on which the c.B.m. w, is defined. Note that S(¢, w) has a
decomposition S(t, ©)=S(t, w)+o(t, ®) and the r.v. S(t, 0)=S,(») defined on
(O, Py) is always vp-distributed. Therefore, since »(LZ)=1, the tightness of
{z1} follows if we can show the tightness of the LZ-valued r.v.’s {o(t, 0)=0(w)}.
However, this is verified by observing that (5.6) implies

- 1 €7
EWM@@WA=T&HMﬁMﬁ

<const {1+E[|ao|7/]} <oo

(5.8)

with const independent of T'>1 for every sufficiently small »'>0 and the imbed-
ding map of H(R?)—L? is compact if 0<r'<<r (see Remark 2.1 in [8] for the
definition of H7/(R?) and the compactness of imbedding map). Now, find a
sequence {7, oo} and p& P(L?) such that @ = weakly on L. Then, it is
easy to prove u & S(b) by noting that the family of distributions {Pg}scr, of the
solutions of (5.1; b) starting from S & L? has the Feller property, or, what amounts
to the same, the map S € L?— Pse P(C([0, o), L?)) is continuous (this property
is shown from the well-posedness of the corresponding martingale problem,
Theorem 4.1 in [8], by employing the usual compactness argument).

To show the uniform integrability (5.7), we use the coupling (S,, S;) again,
but this time we suppose the initial data S, of the process S, is distributed by
pES(b), i.e. we consider the coupling {S,, S;} ~{(b, r), (0, »)}. Then, we see
from (5.5) that

|S,—S; <™ | Sy—S,|:4C, t>0,

for arbitrary 0<<c<<y with some C>0 if »>0 is sufficiently small. Therefore
we obtain

E“[eﬁ(m?/\zv)] — E[eﬂuS,l‘,'Am]
<Efexp {8a(Cit 1S 1)+ A2 %4 S,= 5ol D} ]
< E"[exp {Bap(C,+ | S| %)}V
X E[exp {Bg(IN A—2— e ¢2t| Sy— S,| )} ¢

a—1

(5.9)

for every t>0, a>1 and p, ¢>1 such that 1/p+1/g=1. Now use Lebesgue’s
dominated convergence theorem for letting {—oco in the RHS of (5.9) and then
apply Fatou’s lemma to take the limit N—oo in the LHS of (5.9). The con-
clusion for small r follows by noticing that » is a Gaussian measure on L}, >0,
so that it holds E¥[?"517]<<oo with some 8'>0. [

We introduce the so-called Vasershtein metric on P(L}): Let Py(L?), r>0,
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be the class of all y&P(L?) satisfying E*[| S|%]<oo. For p,, p, & Py(L?), we
set

a1 w2) = igf \/Fm“ S,—S,17]

where the infimum is taken over all me P(L; X L) satisfying morni'=p,, i=1, 2;
the maps z; are projections defined by =;: LIXL;3(S,, S;)—~ S, L. We
denote by ||®||;, the Lipschitz constant of the functions @ on L? with respect
to the norm |- |,, r>0, i.e.

|&(S)—@(S)| <Dl | S—S], -

The second application of the energy inequalities is to give the uniqueness of
stationary measures and show an ergodic property of the process under a proper
condition on b(x, S).

Proposition 5.2. (i) Let b and b N ,5q L,(L?) be given and satisfy
(5.10) <b(+, 8)—b(-, ), S—s'>,g% |S—S|2+c, S, SeL?,

with some ¢, <<7y and c,=c,(r)>0 for every r>0. Then, for each 0<c<vy—c, and
0<r<r,(y—c,—c), we have

(5.11) A BV 2sfe, pESD), BESED).

(@) If b€ N ;50 Ly(L7) satisfies

(5.12) <b(-, S)—b(-, S), S—§>,s% |S—S12, 8, SeL?,
with some ¢, <ty for every r>0, then $S(b)=1. Moreover the process S; has an
ergodic property in the following sense:

(5.13) | Es[@(S)]—E*[@]I <V 2{| STZHE* | S[ZHIDlz,, 7, neS(®),

for every ¢; 0<<c<ty—c,, SEL?, Lipschitz continuous & on L} and 0<r<
ry(vy—c,—c).

Proof. The assertion (i) follows easily by applying (5.5) for the difference
oo(2)=S,(x)—S,(x) of the coupling {S,, S;} ~{(b, ), (B, @)}, where pecS(b)
and z€8(b). The uniqueness statement #S(b)<1 in (ii) is an immediate con-
sequence of (i). To show (5.13), use (5.5) and the coupling {S,, S;} ~{(b, 8s),
(b’ wi. O

Now we apply this result to the equation (1.4). The potential functions
V=V(x,s) and V="V(x, s) appearing in the rest of this section are assumed to
satisfy the conditions (2.7) and (1.11). Notice that these two conditions imply
Y=
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(I) The function b=by(x, S) satisfies (5.12) with ¢;=vy—, and this, in
particular, shows S(by)={u,} with single p, € P(C N LZ).
(IT) The estimate (5.10) holds for the pair of two functions b=b, and b=by

by taking ¢,=v—,+& and c2=Elé[bV—b‘7|f,<w) for arbitrary &: 0<€<v, In

fact, to see this, decompose the LHS of (5.10) into the sum of the LHS of (5.12)
and <b(-,S)—b(-,S), S—S>,. Then, the latter is bounded from above by

%IS—S-l f+-2-1~6~[b—5 |7 =y Therefore, we have

(5.14) d,(py, pv)<const |by—by |, () ,

for every sufficiently small #>>0. The const can be taken independently of 7.
(III) For g B, (R?) and AL, set

(5.15) Vo, s) = g(x) V(x, s)—n(x) s .

Here B,(R?) is the class of all measurable functions g on R? such that 0<g<1
(a.e.). Then, since V,, still satisfies (2.7) and (1.11), we have #S(b,, ,)=1.
Moreover, for given two pairs of functions (g, A) and (g, X)EB,(R?) X L?, the
following estimate holds:

(5.16) by, x—byzzli < 1{8(-)—2 ()} by(-, S)I,,<w>+%l7\—xl, :

The first term in the RHS of (5.16) is bounded further by %I g—Z|.X
esssup | V'(x,5)| if V=V(x,s)eV; the class introduced in Sect. 1. These

remarks will be useful in [9].

6. Construction of reversible measures

Here we shall show the set R(V) of all reversible measures of the TDGL
eq. (1.4) is nonempty for every V=7V /(x,s) satisfying the condition (2.7). Let
us begin with the simplest case V=0. The centered Gaussian measure on
C N L? with covariance operator A~! is denoted by »; see Sect. 2.2.

Proposition 6.1. R(0)={v}

Proof. Proposition 5.2-(ii) shows #R(0)<1 so that the conclusion follows
by proving v& R(0). To this end, we use Lemma 4.3 in [8] to see

(6.1) E"5[e"71P] = exp {\/ —1<5, ¢,>‘% S: llpallZe d"} ,

for >0, o= C5(R?), where <p,=e_t"q/ 2<p and P, denotes the distribution of

the solution of the SPDE (5.1; 0) starting from S€L]. Noting that
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(62) B[ Tm] = exp {—— (T 9, 93},

we obtain

EY[e" K ¢S]
— t
= exp {2 1Tyl (. llpull du)

= ep {2 T 90— LT T 99

(6.3)

for every @, Y& C5(R?). However the RHS of (6.3) is symmetric in ¢ and
and this proves the equality (2.9) for functions @ and ¥ of the forms ®(S)=
e"=K8® and W(S)=¢"~K$¥,  Therefore the standard approximation argument
concludes the proof. []

Let B, (R*X R) be the family of all functions V' €B,(R*XR) such that
V(x, s)=0 a.e. on {|x| >K} X R with some K>0.

Lemma 6.1. Suppose VEB, (R°XR) is given. Define p,&P(CNLE)
by

64 du(X() = Z exp (=] Vi X() dnh du(X (1),
where Zy, is a normalization constant. Then, G(V)={uy}.

Proof. It is easy to show that u,&G'(V). Conversely, suppose u=Z(V)
is given. Then, the probability measure 2 defined by

dii = Z ' exp {Skd V(x, X(x)) dx} du, Z = normalization
belongs to the class G'(0). This verifies Z=v and consequently p=pg,. [
Proposition 6.2. R(V)=Q for every V=V(x,s) satisfying (2.7).

Proof. We construct an approximating sequence {V,(x, s)} -1 of the func-
tion V(x, ) in the following manner: For a.e. xR’ let o=0,(v)€]0, 0], v>0,
be the right continuous inverse function of v,(c)=sup <. {| V(x, s)| + | V'(x, s) |},
o>0. We also prepare, for each >0, a function @, C=(R) satisfying that
?(5)=s, |s| <o—1; p.(s)=0, [s| >0 and [@i(s)| <2, |p,/(s)|<2,s€R. Set
@(s)=s. Then, we define V,(x, $)=1(;1<n * V(®, @oy)(5)), (¥, ) ER?*XR. The
sequence {V,} constructed as above has the following properties: (i) V,&
B, (R*XR), (ii) V, satisfies (2.7) (iii) For a.e. x&R?, V (%, s,)—>V(x, s) and
Vix, s,)—=>V'(x, ) if s,~sin R (iv) sup, |by, |, <2|by|, <oo. Let u, be
the unique element of G(V,). Then, {u,}, is tight on L?. In fact, we use the
coupling {S,, §:}~{(bv,,, &), (0,2)}. Since the distribution ux{® of S, is p, for
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1
every £>0, we have [J,,,=S u$” dt. Therefore, the similar argument used in the
0

proof of Proposition 5.1 shows the tightness of {u,},; note that the property (iv)
of {V,} with the help of (5.7) implies that ¢, in (5.4) can be taken independently
of n and also sup,, E**[|.S'|?]<<co which is used to derive an estimate like (5.8).
Let {Pg}serz and {P%} sz be the distributions on C([0, o), L7) of the solutions
of the SPDE (1.4) and the same SPDE with V replaced by V,, respectively,
which start from S. The next remark is that P% = Ps weakly on C([0, o), L?)
if S,»Sin L. To this end, we first prove the tightness of {P%}, on
C([0, =), L?). 'This, however, follows from the property (iv) of {V,} by using
Remark 2.1-(ii) in [8]. Then, noting the property (iii), it is shown that every
limit point of {P% } solves the martingale problem (m.p.) associated with the
SPDE (1.4). Since this m.p. is well-posed (see Theorem 4.1 in [8]), we obtain
the convergence P% =P;. Now it is easy to show that every limit point of {u,}
belongs to the class R(V). [J

We obtain the following by combining this proposition with the final remark
in the previous section.

Corollary 6.1. If V=V(x, s) satisfies (2.7) and (1.11), then $R(V)=1.

We finally summarize the result for the TDGL eq. (1.4) by assuming that
vev.

Theorem 6.1. (1) R(V)=*0.
(@) If V satisfies (1.11), then $R(V)=1. Moreover, the solution S, of (1.4) has
an ergodic property in the sense of (5.13) for every 0<c<v, and 0<r<<r,(y,—c).
The unique reversible probability measure p. is given by the (thermodynamic) limit of
pn€ R(Lsigm + V), te. d(ppn, p)—0 as n—oo.

7. Reversible measures of the TDGL eq. of conservative type

Here we discuss the reversible measures of the TDGL eq. (1.13) of conserva-
tive type under the assumption that V" satisfies (2.7). For this purpose, we use
the cut-off method so that we consider the SPDE (1.13) with ¥, , in place of
V for each g€ B,(R?) and NE L::

(1) dS() = 3 MASE+ V(e S} di-+d div o, (9}

where V,, is the function defined by (5.15) and Vé'*:aﬁ o see [8] for the
s

existence and uniqueness of solutions satisfying (1.9). Let us denote by
Re(V;g,\) and R(V) the classes of all reversible measures of the SPDE’s
(7.1) and (1.13), respectively.
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Lemma 7.1. »=QR(V;0,0)
This lemma is shown similarly to Proposition 6.1. Indeed, the RHS of

(6.1) is now replaced by exp{\/—1<S, <p,>——l St |V, ll22 du}, where o=
et @, A'=—AA/2. 2

Denote by B,(R?) the class of all g=B(R?) (i.e., measurable functions on
R?) having compact supports, namely, g(x)=0 a.e. on {|x|>K} with some
K>0. We suppose g€ B,(R*)N By(R?) and AEL:N B(R?). Let n=CF(R%)
be a symmetric and non-negative function satisfying =0 on {|x|>1} and

S ,7(¥)dx=1. We introduce probability measures p,» and gy 0n CN L by
R

(7.2) dpga(S) = Zzx exp {—T,\(S)} dv(S), ¥, A(S)= SR" Vea(x, S(x)) dx ,
and

(7.3) dl"g,h;n(s) = Zs:}\:n €xp {_\I’g,)\;v(s)} dv(S), ‘I’g.xzn(S)=‘I’g.A(S*77) >

where Z, , and Z, ,,, are normalization constants and * means the convolution.

Note that y, , is the unique element of G(V,,); see Lemma 6.1. Let us con-
sider the SPDE:

(7.4) dS,(x) = A{% ASY(%)-Lbgnin(%, SO} dt-+d {div w,(x)} ,
where
(75) boain(®s S) = 2§ n5=9) Vials, Sen(o) dy

Lemma 7.2. pu, .., is reversible for the eq. (7.4).

Proof. Let us denote by {Qs}serz and {Ps}se 2 the distributions on the
space O=C([0, =), L?) of the solutions of the SPDE’s (7.4) and (7.4) with
g=A=0, respectively, starting from Se&L. Then, the Cameron-Martin-
Girsanov’s formula (infinite-dimensional version) shows

d
dIQJ:=R, on &,.

Here F,=c{S,; u<t}, t>0, is a usual family of o-fields on Q, R, is a martingale
defined on (8, Ps, {Z,}) by

¢ 1 (¢
Rt = €Xp {_So <bg,7\:71(') Su)7 dmu>—? So ”ng,l;ﬂ('r Su)HZLz(Rd) du}

and m,=S,—So—% St AJS, du is a {C5(R?)}’'-valued process. The process
0

m, has a representation m,=div w, with a c.B.m. w, on L¥R? R?), which is
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realized on the probability space ($3, Ps, {&,}), cf. Lemma 4.2 in [8]. However,
by using It6’s formula, we have

Jl <Beins S0, > = 2 W pn(S) =+ W S+, F(S)
where

F(S) = 5 S, Abganl s SVl § Vit S dv,
and this verifies the conclusion with the help of Lemma 7.1. []

Proposition 7.1. If g=.B,(R*) N By(R®) and A& LiN ByR?), then p, &
RC(V; & 7\')'

Proof. Set p,=pgzan,, Where n,(¥)=n'y(nx),n=1,2, .., xeR?. We de-
note by {Ps}serz and {P%}sezz the distributions on O=C([0, o), L}) of the
solutions of the SPDE’s (7.1) and (7.4) with % replaced by 7,, respectively.
Then, noting that sup,|b, xn(*, S)|,, <00, the tightness of {w,}, on L} is
shown; see the proof of Proposition 6.2. This estimate also gives the tightness
of {P%,} for {S,} such that S,—S in L. It is therefore verified that P% =Pg
weakly on Q, see the proof of Proposition 6.2 again and the results of [8] as well.
This limiting procedure completes the proof since u, converges weakly on L? to

Mg a8 N—>00. U

Set u =t cn1m<a f0r NELL  Then, the family {u{}, is tight, be-
cause sup,|b,(x, «)|, y<<co holds for b,(x, S)=—;— Lizi<m Via(®, S(x)). The

following theorem can be verified similarly to the proof of Proposition 7.1 (or
Proposition 6.2). Note that the eq. (7.1) with g=1 and A satisfying AA=0 is
just the same equation as (1.13). We use Theorem 6.1-(ii) (note that the con-
clusion of this theorem is true even if V is replaced by V,,) to show the assertion
(it) below.

Theorem 7.1. (i) Suppose A& L:N CYR’) satisfies AN=0. Then, every
limit point of {ui}, belongs to the class R (V).
(%) Suppose V.V and the strict-convexity condition (1.11). Then, the convex-
hull of {R(V,,); MELIN CYR?), AN=0} is in the set Re(V).

8. Uniform mixing property of Gibbs states

Under the strict-convexity condition (1.11) of U, there exists a unique
stationary (and reversible) probability measure u, ,, g€B,(R%), NEL?, of the
TDGL eq. (1.4) with V=V, ,; the function defined by (5.15). We assume
in this section that the Eidel’man-type estimate holds for the fundamental solu-
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tion ¢(¢, %, y) of the parabolic operator %—l—% A globally in time:

81 gt %) | <KtV g(e e |x—y]), 1>0,%,yER’,

where 4, K,>0 and g(r)=exp{—K, r*"/®"~V}, K,>0; see Appendix for this con-
dition. For GCR* and B(G)-measurable = C(C), we set

lIDlle = sup {|D(S)—D(S) | /IIS—Sllz,an5 Sle*Sle} -

The goal is to prove the following theorem which gives the decay, valid uniform-
ly in g and A, of the correlations of functionals with respect to u, ,.

Theorem 8.1. Assume (1.11) on the potential U and (8.1) on the operator
A. Then, if r>0 is sufficiently small, we can take for every M>1 positive con-
stants ¢ and C in such a way that

| E*eA[®) @,] — E*eA[@,] E*eA[D,]|
<C T AlI®ls, 4/ EFex [BF} exp {—clm—x]},

for every B(B;)-measurable ,;,i=1, 2, B,=B(x;, a) being balls with centers x;E R*
and radius a, whenever |\|,<M and 0<a<M. The constants ¢ and C may
depend on r, M but not on x,, x,, g, \, D, and D,.

We denote by S;,~{g, A, w,} if S, is the solution of the SPDE (1.4) with
V=V, and c.B.m. w,. Before starting the proof of the theorem, we prepare
an estimate on the difference between two solutions of (1.4) with different
c.B.m.’s. Namely, we assume that a bounded open set G in R? and c.B.m.’s w,,
W, are given and satisfy the following two conditions:

(8.2) w,(x) = w,(x) on G, ie. {w,, @) = <W,, > for @eCF(G),

(8.3) {w(x); xG°} and {w,(x); x=G*} are independent of each other, i.e. two
systems {<w,, ¢>; p€ C7(G*)} and {w,, p)>; p€ Cy(G°)} are mutually in-
dependent.

Consider two solutions S;~{g, A, w;} and S;~{g, A, W} starting from the same
point; Sy=S,=L?. In the following lemma, G is always an open set satisfying
GcG. Similar method of coupling was used by [10].

Lemma 8.1. There exist positive constants C, and C, which are independ-
ent of G, G, g, \, Sy such that

— R2m\V(@m-1)
(B4 sup E[IS)—~S50)11<C exp {Co1—K, (K)o,
2EG
whenever supp g G and R=dis (G, G°)>1.
Proof. Recalling that the solutions of the SPDE are defined through the
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stochastic integral equation [8], we have

(8.5) S,(x)——g,(x) = I(x)+1I(x),

where
1) = [ | at—u x5 dwm-w0) &y,
1) = — [\ | att—1,5 ) g0)V(S.9)~ V' Eu(o))} dudy

Set f(t)=the LHS of (8.4). Then, by using Schwarz’s inequality and (8.1),
we obtain

EUL@A< I au |, lat—5,9)1dy

x{,au | lgt—u 31 -ES.)—S.0) 0 dy
c S; f(w) du, t>0,

with C independent of (¢, x) and hence, applying (8.5) with the help of Gron-
wall’s inequality

f(2)<2&C sup sup E[1,(x)]] .
<u<t ze@
Therefore (8.4) is verified, since we have for 0<u<t and xEG:
ElL@ =2 do ¢y dy
< const g(¢~"/?" R) Sw v gV gy | [
0

Proof of Theorem 8.1: The asserted estimate is trivial when |x,—x,| <
8M, so that we assume |x,—x,|>8M in the sequel. Take four balls G;=

B(x,, b) and Gi=B(x,, b), i=1,2, in such a way that a<b=% |0, — 0, | <B—
%]xl—le . We construct two independent ¢.B.m.’s w{" and w{® from arbitrar-

ily chosen three independent c.B.m.’s w,, w{", w{? on LAR?) in the following
manner:

<@k, @) = <wy, 15, > +<wi”, lge- @), pECT(RY), i = 1,2.

Then, by introducing three stochastic processes S,~{g,\,w;} and S~
{g, n, w{"}, i=1, 2, we have an identity for every t>0:

B*e[®, ;] — B*en[®;] B[] = E*sal1(t, S)]+E*a[II(t, S)],

where
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I=1(t, S) = Es[@y(S;) DS))]— Es[y(S1”) Do(S1)]
IT=11(2, §) = Es[®,(S))] Es[@(S))]—E"sA[D,] E*A [ D] -
The subscript S means the starting point of the processes. Notice the facts
that two processes S{ and S both starting from S &€ L? are mutually independ-
ent and also all the laws of three processes S., S.® and S.® are the same.
The first task is to give estimates on I, so that we decompose it into
I= Es[(IDZ(S$2)) {q)l(St)—cI)l(Sgl))}]_I_Es[q)l(st) {CIDZ(S,)—(I)Z(Sﬁz))}]
= L+1,.
In order to give further bounds on I, we set
I, = Es[{®(S)— (S},
1, = Es[{®y(S)— (S}’
Il,3 = ES[{q)l(St)—ch(Sgl))}z] ’

where S;~{1g,-g, N, w;} and S;~{l; g, N, @"}. The first term I, is bound-
ed as follows:

I, <|I@l13, Esll1S:— Sl22s,,40]
<const ||®,]|3, & Es[| 7, Si—7., Si|7]

< const ||®y[2, S 2K dy |
{12128}

where 7,8 is defined by 7,S(y)=S(y+x) for yeR?. We have used (5.5) for
oy=T4, S—7,, S; making similar calculations to those in (II) and (IIT) of Sect. 5
to derive the last inequality; »>>0 is sufficiently small. The same estimate can
be derived for I, ;. On the other hand, using Lemma 8.1, we get

II,ZS”cPl“%I Es[“gt—gt”%z(sl,dx)]
2 R2m 1/(2m=-1)
<UD, Bl X €, exp [ Gy 1K (K57

where R=dis (G,, Gi):i)—b:—é—lxl—le. These three estimates on I, ,—1I,,
can be summarized into an estimate on I, by using
S T
| LI <VESYSPI 2 VT, -

The other term I, can be bounded similarly. We therefore obtain, by choosing
t such that t=1#,- R with fixed #,: 0<t,<<(K,/C,)®@m-i2m

(8.6) EFea[|1(2, S)|]<const {||®\l5, v/ E*eA[@]]
+1@all5, v/ EFs A[DF] } exp {—const |, —,} .
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Now we move to the estimate on the term I1:

E*ar[|11(2, S)| 1<V E*sA[®F]- I, () +V EFs[®7] - 1, ,(2)
where
L,(t) = E*sa[| E[@y(S)] —E*sA[®;]1%], i = 1, 2.

However, Proposition 5.2-(ii) can be applied to give a bound on I, ;(¢). Indeed,
take @=®;o7;' which is defined by ®or;(S)=®(r: S), then we obtain

L ,(t)<const ||®,]|3, e~

by noting (5.7) (remember |A|,<M) and [|®o7Z||,,<||D;l|5, €% We there-
fore get the similar estimate to (8.6) also for E*¢.A[|II(¢, S)|] by taking ¢: t=t,-R
with the same 7, as before and this completes the proof. []

RemaRk 8.1. Two constants ¢, C and possible region of >0 in Theorem
8.1 depend on 1 and V only through the following quantities: three constants
9, K;, K, in (8.1), four quantities listed in Remark 5.1, «,, ||V’|].. and ||V"||.

Appendix
Here we prove the following global estimate on the fundamental solution

q(t, x, y) of the parabolic operator 6%—}—% A.
Proposition A.1. The function q(t, x, y) has a bound:

—d 'x_yIZrn 1/(2m-1) 4
(A1) |q(t, %, y)| <K, -%m & exp {—K, (f) }, >0, %, ye R,
with positive constants K,, K, and C which depend only on the following two
quantities: ¢ appearing in the condition (1.5) and sup {|D*a, s(x)|; xER?, ||,
|B|<m,a'<a or |a|=|B|=m, |a'|=1}. In particular, if we consider an

operator A= A-+2(C+-7) instead of A, then A satisfies the estimate (8.1).

Proof. It is verified in [3, Theorem 2.1, p71] that (A.1) holds locally in
time, i.e., (A.1) holds for 0<¢<1 with C=0 and K, K,>0 which depend on
those two quantities listed above (notice that the latter quantity controls espe-
cially the Holder constants of {a, g} |s1=1p1=m). We denote the constants K
and K, appearing in this local estimate by K{ and K}, respectively, for discrim-
ination. Let us consider the operators {7 ,; 0<s<t<oo} defined by

(A2) Ty f(%) = Snd V(%) 9=, %, 3) ¥(9) f(9) dy

lx,2m

/2(m—1)
whete v (x)=exp {—K; (IX)""7), >0, seR# and K= L Ki. Then,
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{T,,;} has the semigroup property: T}, T, ,=T,,, 0<s<7<t<oo. Moreover,
we have

A3) L L7, Tl <Ki=Ki | )y,

(AA') T,,: L'— L, “Tt.s”L"-»LwSK{(t_s)-d/zm ’

for 0<s<t<oo if t—s<1, where L'=L'R?), L>=L"(R%) and ||T||z-z de-
notes the operator norm of 7: E—E’ for two normed spaces E and E’. Indeed,
these two estimates are consequences of

[¥7(x) g(t—s, %, ¥) Y ¥) | < Ki(t—s5)"" p,_(x—y), 0<t—s<1,

which is shown from the local estimate on ¢ by noting

| 2m \ Y @m-1) 2m \Y/@m=1) 2m\1/@m=1)
(o () ) e

see [3, p36]. Now, by employing a similar argument to [17, p232], the semi-
group property of {7} combined with (A.3) verifies

(A-S) T,,s: L>— L~ ||Tt,s”1.°°—>z,°°._<_K§ PedGD]
for all 0<s<t< oo, where C’=max {0, log K4}. Therefore, we obtain

(A.6) “Tt,s”LlaLNSKl(t_‘s)~dlzm €9 0L s<t<< oo,

with K,=max{K{, K{ K} e~} and C:C’—}—E‘-l—. In fact, (A.6) follows from
m
(A.4) when 0<t—s<1. On the other hand, when t—s>1,

T ol < Ty sl ool T, sl 222
<K} ec’(f—s—n x K
<K!|Kj}e e(c’+(d/2m))(t—s)(t_s)—dﬂm ,

where we have used a simple inequality 1<e@?m* ¢=4/2m (. The estimate
(A.6) gives a bound on the kernel of T :

!‘:b'-t—l(x) Q(t—s, X, y) ‘I’s(y)l SKl(t—s)—d/zm eC(t—s)a OSS<t<00, Xy yeRd .

This implies the estimate (A.1) for y=0 and then for general ye R? by consid-
ering the operator A® with coefficients {a{%} obtained by sifting the original

{aa,ﬂ} bY y' D

RemMARk A.1. (1) Itis possible to derive (A.1) by looking at the arguments
in [3] carefully. Nevertheless, we have exposed a simple proof based on the
local estimate for the sake of completeness.

(2) When A=3,-1g1=m(—1)"*' D*{a, g D?-} with constant coefficients a, g,
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we can take C=01n (A.1). In fact, this is an easy consequence of the local esti-
mate combined with the scaling law of ¢: c?g(c®"t, cx, cy)=q(t, x, y) for every
c>0.
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