
Title The reversible measures of multi-dimensional
Ginzburg-Landau type continuum model

Author(s) Funaki, Tadahisa

Citation Osaka Journal of Mathematics. 1991, 28(3), p.
463-494

Version Type VoR

URL https://doi.org/10.18910/12466

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



Funaki, T.
Osaka J. Math.
28 (1991) 463-494

THE REVERSIBLE MEASURES OF MULTI-DIMENSIONAL
GINZBURG-LANDAU TYPE CONTINUUM MODEL

TADAHISA FUNAKI

(Received June 2, 1990)

1. Introduction

In this paper we investigate a stochastic dynamics for continuum fields on
Rd with interactions prescribed by Ginzburg-Landau type Hamiltonian. The
main problems discussed here are to clarify the structure of the family of re-
versible measures (r.m.'s) of this dynamics, especially, we are interested in
(1) the characterization, (2) the construction and (3) showing the uniqueness
of r.m.'s. For the characterization problem the classical notion of Gibbs states
(e.g., for the lattice systems) is extended to the continuum fields. In our pre-
sent situation Gibbs states are Markovian random fields over Rd and they are
given as local perturbations from Gaussian fields, which is determined by the
so-called DLR equation. Then the answer to the first problem will be given
by establishing the equivalence between reversibility and Gibbs property.
The r.m.'s and therefore the Gibbs states will be constructed for a wide class
of potentials, while for the uniqueness we require the strict-convexity for the
self-potential appearing in the Hamiltonian. In this uniqueness domain, we
also verify the strong mixing property of the Gibbs states. This is one of exam-
ples which show stochastic dynamics is useful for the study of properties of
Gibbs states.

Now let us explain the dynamics we shall discuss in this paper more explic-
itly. It is described by the so-called time-dependent Ginzburg-Landau equa-
tion (TDGL eq.) of non-conservative type:

(1.1) dSt(x) = - — DM{x, St) dt+dwt{x), f>0, x(ΞRd ,

where wt is a cylindrical Brownian motion (c.B.m.) on L2(Rd), see [7, 8]. The
solution St determines a random time evolution of real-valued continuum field
on Rd. The Hamiltonian M is formally given as the sum of two terms, local-
interaction and self-interaction:

(1.2) M{S) = \ {i- JlS(x)-S(x)+V(x, S(x))} dx, S:Rd-^R.
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Here Jl is a symmetric differential operator of order 2m having the form

(1.3) Jlf(x)= Σ (-1)'-'/>"{«.,.„/>"/}(*),
β

with coefficients aΛβ=aβtΛ^Cf(Rd) and F G F ; the class of all measurable func-

tions V=V(x,s) on RdxR such that F(#, -JeC^Λ) for a.e. x^Rd and their

derivatives V'= in s are bounded and Lipschitz continuous (i.e., esssup
ds *»*

I V{xy s) I < oo and | V'(x, s)- V (*, S) \ £ const | j - s | , x e R\ s, SZΞR). We

adopt the usual notation: | α | = Σ ί - i ah D"=(^)Λl'- (^-)*d and f=ff1.-.
\dxι/

 ydxd/

ξ«d for α = ( α ! , - , α r f ) e Z i = { 0 , 1 , 2, ...}rf and £eΛ*. In (1.1), DJl(x9 S) is

the (formal) functional derivative of Jί(S) and therefore, in more mathematical

terminology, we consider instead of (1.1) the following stochastic partial differen-

tial equation (SPDE):

(1.4) dSt(x) = - — JlSt(x) d t ~ V'(x, St(x)) dt+dwt(x).

We assume that m>dβ and Jl is uniformly strongly elliptic, i.e.

(1.5) Σ αΛ,β{x)ξ

and strictly positive, i.e.

(1.6) 7=inf{( JJίfdx; \ f2dx = l,
JRd JRd

Then it is more convenient to regard the following function U= Uv as the sub-

stantial self-potential function for the dynamics instead of V:

(1.7) U{xys) = ^

The results in [8] give the existence, uniqueness and some regularity prop-

erties of solutions St of the SPDE (1.4). Indeed, fix a positive symmetric func-

tion X^C°°(Rd) satisfying X(x)= \x\ for x; \x\ > 1 and introduce Hubert spaces

L2

r—L2(Rd

y e~2rx{x) dx), r^R, having inner products defined by

(1.8) <5, S'>, = \ S(x)-S'(x) e-*"<*> dx, S,
jRd

The corresponding norms are denoted by | | r . The space C(Rd) with the usual

topology determined from uniform convergence on all bounded sets is denoted

by C. Then, it is one of the consequences of Theorem 2.1 in [8] that the

SPDE (1.4) has a unique solution St satisfying

(1.9) ^GC([0, OO), L2) Π C((0, OO), C) a.s.
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if the initial data S0^L2

r,r>0. We set L2

β=f)r>QL2

r, a countably Hilbertian

space.

The first part (Sect.'s 2,3,4) of this paper is devoted to the characterization

problem of r.m.'s. The form of the TDGL eq. (1.1) suggests that its r.m. might

be given by

(1.10) e~M(S) "^"/normalization,

where "dS"=ϊ[xfΞRd dS(x) is the Feynman's measure ("Lεbesgue measure" on

the space of functions on Rd). The measure like (1.10) would be understood as

the local perturbation from the Gaussian measure on C with covariance opera-

tor <Jl"1. However, in order to localize the problem, it turns out to be necessary

to know the boundary data of the random fields. For this purpose important

roles will be played by the weak Cm~ι property for the random fields, which

determines m generalized random fields Y={Yi}fZo on the smooth boundary

dG of bounded region G. Then the regularity condition (RC)lG, s<m, for Y

enables us to reconstruct the fields inside G (see Sect. 2).

The second part consists of Sect.'s 5, 6, 7 and 8. The uniqueness of r.m.'s

of the SPDE (1.4) is shown by assuming the strict convexity (in s) of the potential

U=UV:

(1.11) U(x,-)<=C2(R) for a . e . x G ^ and essinf — (x, s)>jo>O.

An effective tool is the energy estimate for (1.4), cf. [4]. Moreover, by using this

estimate, it is possible to construct the r.m.'s for sufficiently wide class of poten-

tials V. We shall also discuss the TDGL eq. of conservative type:

(1.12) dSt(x) = A- ADSί(xy St) dt+i-A)1'2 dwt(x),

or, more mathematically saying, the SPDE:

(1.13) dSt(x) = -1 A(JLSt(x)+V'(xy St(x))} dt+d{άiv wt(x)} ,

where Δ=Σy=i is the Laplacian on Rd and div wt(x)=Σdj"i wJt(%)> wt(x)

dx2 dxj

= {w{(x)}d

=1 being a c.B.m. on the space L2(Rd

yR
d). Note that the process

(—A)1/2wt(x) is equivalent in law to divu;^). See [8] for the existence and

uniqueness of solutions St of (1.13) satisfying (1.9). Since the eq. (1.12) is

unchanged (at least formally) under the replacement of Si by another Hamiltoni-

a n i A :

(1.14) Sίλ(S) = Sί(S)-\ \{x) S(x) dx
J R
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with \=χ(χ) satisfying Δλ—0, the SPDE (1.13) might have a family of reversi-

ble measures (i.e., the Gibbs states corresponding to Sίλ)y see Sect. 7 for details.

Finally in Sect. 8 the uniform mixing property of the Gibbs states is analyzed

by using the dynamics (1.4). The result will be applied in another paper [9]

to discuss the hydrodynamic limit for the TDGL eq. (1.13) of conservative

type.

2. Gibbs states on Rd

In this section we shall define the Gibbs states associated with the Hamil-

tonian Si determined by (1.2) and then formulate the result which gives the

equivalence between reversibility and Gibbs property.

2.1. Stochastic Dirichlet problem

Let ^V be the family of all bounded open sets in Rd with boundaries being

(d— l)-dimensional C°°-manifolds. Assume a family of m generalized random

fields (g.r.f.'s) y = { y i ( ψ ) ; ψeL2(Γ)}ΓΓo on T=dG, Ge^Ctf, is given and satis-

fies the regularity condition (RC)S

Γ with some s: —\J(m——)<s<tn; namely, Y

is supposed to fulfill the following bounds

£[Y, (ψ)2]<const |hHI!-.+ί+i/2(Γ), ψGL2(Γ), 0<i<m-\ ,

where HS(T) is the Sobolev space of order s on Γ [14], see also Definition 3.1 in

[8]. (When d=l, we interpret || ψΊ||r*(r) = Σ3βer'Ψl(Λ)2> s^R, as usual.) Let us

consider the following stochastic Dirichlet (SD) problem:

(JlX=0 inG
( > ) \dtX=Yi o n Γ ,

Q*' .
where df= :; n(x) is the inner normal unit vector at #£ΞΓ.

(jft ( X )

The mathematical meaning to this equation is given in the following man-

ner: Let f=f*<=H2m(G)f)HZ(G)) ψ£ΞL2(G), be the solution of the dual prob-

lem to (2.1):

(2-2) r ; ; = ψ i n G

[dΐf=O onΓ, 0<i<m— 1,
in other words,/XP=CJIG1 Ψ- Here JlG is the Friedrichs extension on the space

L\G) of the operator Jl with domain CQ(G), the space of C°°-functions on G

vanishing near Γ. We shall use in Sect. 3 the fact that H2m{G) Π H%(G)=H2m(G)

nff?+ 1 / 2(G), [14, Theorem 11.5, p 62]. Let {S,-}?^1 be a system of boundary

differential operators of order 2m—i— 1, respectively, determined by the Green's

formula [2, 14], i.e.,
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(2.3) </, oϊ/'>β = 2

for every /,/'eC~(G), where < / , / % = ( / / ' «&, <g,g'>Γ=[ gg'd<r{x) and

dσ=dσv is the volume element on Γ. By the solution of SD problem (2.1) we

mean the g.r.f. X on G defined by

(2.4) <X,Ψ>e = ΣYι(S,f*), ψeL2(G).

Note that, if the functions {FJfΓo1 on Γ are smooth enough, then X determined
by this relation actually solves the Dirichlet problem (2.1). We have extended
the notion of solutions through this relation to the case with random data
Y={Yi} which take values in the space of generalized functions (a.s.).

Lemma 2.1. It holds X( . )<ΞC°°(G) (a.s.) for the solution X of (2.1).

Proof: First we note that the map

is continuous, where the space H S(G) is introduced as follows: Let
be a function which is positive on G, = 0 on Γ and satisfies ρ(x)<^'dis (x> dG) as
x>—dG and let ΞS(G), SEΞZ+, be a Hubert space consisting of all u such that
p(x)]Λl D*u^L2(G) for every a; \a\ <s. This space is equipped with the natu-
ral inner product. Then ΞS(G) is defined for .?>0 by using interpolation tech-
nique and finally Ξ~5(G) is introduced as its dual space, see [14, p 188] for detail.
Now the regularity condition (RC)^ on Y implies a bound:

This proves that X\G^HS~W)-\G') (a.s.) for every δ>0 and G'<=C[? such that
G ' c G and therefore Z G L ? 0 C ( G ) (a.s.); use Minlos-Gross-Sazonov's theorem.
However, it is easy to see <JSΓ, <J?<p>G=0(a.s.) for every φ^C^(G) and conse-
quently (X, <Jl<pyG=0 for every φ^C%(G) with probability one. This shows
Xe=C"(G) (a.s.), see e.g. [1, p 66]. Q

Let vo be a centered Gaussian measure on L2(G) with covariance operator
JJ 1 f*

<—/!' G j 1 . 1 . ,

£ v° [\-^, 9?/G \-^> 9̂  / G ] ^^ S9̂ > <^?G 9̂  /G > 9̂> 9^

Note that VQ(L2(G)) = 1 since JlG

Λ is a trace-class operator on L\G). In fact, it
is well-known that JlG has eigenfunctions {φn}n=ι being complete in L2(G) and
corresponding eigenvalues {0<λM/r}Γ=i such that Xn~cn2mfd, £>0, as w->oo, see
[1]. We can regard vo as a probability measure on the space C{G) by the fol-
lowing lemma.
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Lemma 2.2. For z^-a.e. X^L2(G), there exists a version X^C{G) of X

in the sense that X(x)=X(x) holds for a.e. Λ

Proof. Consider a stochastic process Xt on L\G) defined by

X, = Tt Xo+ Γ Tt_u dwu, X
Jo

where Tt is the semigroup on L2(G) generated by —— <JLG and wt is a c.B.m. on

L\G). Clearly Tt Xoeί£)(<IG)c:C(G) for XQ(=L\G) and t>09 while the second
term of the RHS has a version also belonging to C(G) (a.s.); see [7]. We there-
fore obtain the conclusion since if the distribution of Xo is v$ then it is also true
for Xt (to see this, e.g., use the Fourier series expansion of Xt based on {φn}).

D

2.2. Two definitions of the Gibbs states

Set Ω=C and denote X(x, ω)=ω(x) for x&Rd and ω^Ω. Let <£ be the
Borel field of Ω, $(G)=σ{X(x); x<=G} if G is open in Rd and -S(C)= Π {^(G);
G is open, Gz)C} if C is closed. For Γ=3G, G e φ , we also introduce
J2.(Γ)= n {^(On(Gc)°); O is open, O^9G}.

We give the notion of weak Cm~1 property of r.f.'s, see [8] and also [15].
For a real-valued r.f. X={J£(x); x^Rd}, set

ψ(x) X(x+h-n(x)) dσ(x),

for Ih\ <h0J ho>O, and ψGL 2(Γ)=L 2(Γ, dσ).

DEFINITION 2.1. The r.f. J?is called weakly C"1"1 at Γ if there exists A0>0
such that JPχ( , ψ; T)<=Cm-\(-h0, h0)) a.s. for every <ψ>(ΞL2(Γ).

Now we introduce the definition of Gibbs states. We denote by 3ib(Rd X R)
the class of all bounded and measurable functions on Rd X R and assume the fol-
lowing condition on the potential V=V(x> s):

(2.5) VϊΞ$b(RdXR).

DEFINITION 2.2. We call μeίP(Ω), the family of probability measures on
(Ω, i3), a F-Gibbs state if it satisfies the following two conditions for every

(1) The r.f. X distributed by μ is weakly Cm"1 at T=dG and

satisfies the regularity condition (RC)r for every s<m.
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(2) For every ^(G)-measurable bounded function Ψ on Ω and IB((Gc)0)-

measurable bounded function Φ on Ω, μ satisfies the so-called DLR equa-

tion:

In this definition the finite-volume Gibbs distribution μ% is defined as fol-

lows: Consider the solution X'(ω)={X'(x> ω), x^G} of SD problem (2.1) with

γ.= y.(. Γ) given in (1). Note that X1 is ^(Γ)-measurable and even -2L(Γ)-

measurable. Define v%( )=vo( —X'(ω)) and then

(2.6) dμ°{X( )) = Z~!a exp {- ί V(x, X(x)) dx} dv2(X( )),
J G

where ZωG is a normalization constant.

We introduce another definition of Gibbs states. Let z>eίP(Ω) be a cen-

tered Gaussian measure with covariance operator <Jί~ι, where <Jl is the Friedri-

chs extension of (<Jί, C%(Rd)) on the space L2(Rd), see [2]. Similar notion of

Gibbs states was introduced and studied by Frϋhlich [5].

DEFINITION 2.3. We call μeίP(Ω) a z -l.a.c. (locally absolutely continuous

with respect to v) F-Gibbs state if, for every G G Φ , μ is absolutely continuous

w.r.t. v on £B(G) and the condition (2) holds with μ% constructed by the formula

(2.6) with v% replaced by the regular conditional probability distribution

i/( |-3((GC)°)) of v w.r.t. $((GC)°). Note that μ% is defined for μ-a.s.ω.

We fix r > 0 and denote by 3{V) and Q\V) the families of all Γ-Gibbs

states and z -l.a.c. F-Gibbs states, respectively, satisfying E*[\S\ΐ]<oo.

2.3. Formulation of the result

Let Lb(L2

r) be the class of all b=b(x> S), x^Rd, S^L2

n being bounded

(i.e., |ό | r > ( o o)=sup s |δ( , *S)|r<oo) and Lipschitz continuous as functions of

L2r-+L2

r. For V=V(x,s) we set bv(x,S)=~ V'(x,S(x)),

where V'= , and assume the following condition:
ds

(2.7) V(x, . )eC 1 (Λ)inj fora.e. x^Rd and bv(Ξ Γ\r>oLb(L2

r).

Then, under this slightly milder condition than " 7 e F " , the TDGL eq. (1.4)

has a unique solution satisfying (1.9), see [8], Let 3) be the class of all func-

tions Ψ on L2

r having the form:

(2.8) Ψ(S) =

with k=\, 2, •••, ψ=ψ(av ~, ak)^C2(Rk) and 9?,, , ^ G C ? ( ^ ) , where
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A probability measure μ^S(p f)L2

r) is called a reversible measure of the

SPDE(1.4), if it satisfies

(2.9) E»[Φ(S0) Ψ(St)] = E»[Ψ(S0) Φ(St)]

for every t>0 and Φ, Ψ G 5 ) , where the superscript μ in both sides of (2.9)
means that μ is the initial distribution of the solution St. Note that 3) is a de-
termining class of measures on the space C{\L\. We denote by 3i(V) the fam-
ily of all reversible probability measures of (1.4). We can now formulate
the theorem which is one of our main results in this paper.

Theorem 2.1. Assume the conditions (2.5) and (2.7) on the potential V.
Then, we have Q{V)=S\V)=2l(y).

The proof for Ω(V)=!R(V) will be given in the next two sections. We
notice finally in this section that S(V)=Q\V) follows easily by assuming
5(0)=5ί(0) and vEΞ$l(0) (see Proposition 6.1). In fact, v£Ξβ(0) implies
v{ |i3((Gc)0)) (ω)=ρ£, v—a.s.ω, where vf is the shifted measure of vo by the
solution X'ω of the SD problem (2.1) with boundary fields {Ϋf } which are de-
termined based on the measure μ(i.e., $% denotes the measure p% defined es-
pecially based on v instead of μ). Take an arbitrary G ' e ^ such that G ' c G .
Then, since X^C°°(G), v—a.s.ω, we have ζ<-A(Xύ <p), ^ # 9 > > G < ° ° > V—a.s.ω,
for every φ^C%(G) satisfying φ=ί on G'. This verifies v^^vt on -S(G'), v—
a.s.ω, (see [12, p 118]) and therefore V~VQ on -S(G'), where ~ means the equiva-
lence of two measures.

Now suppose μ^S(V). Then, the same argument as above implies V^^JVQ

on 13(G')y μ—a.s.ω, where z/f is the measure defined from μ as described just
after Definition 2.2. This shows μ~vo on ^ ( G r ) . Therefore we obtain μ^->v
on <B{Gf) and consequently μ is z>-l.a.c. Especially, we see that vf is defined for
μ—a.s.ω and vZ=v%, μ—a.s.ω. Hence we get μ^£'(V). The converse asser-
tion is easy; notice that, since z;G5(0), the condition (1) of Definition 2.2 holds
for v and therefore for every

3. The proof of Theorem 2.1; reversible => Gibbs

In this section μ^Sl{V) is given and fixed. The potential V= V(x, s) satis-
fies the conditions (2.5) and (2.7). First we notice the following integrability
property of μ> whose validity will be shown in Sect. 5 using coupling method,
see Proposition 5.1 and note | 5 | r < | S | r / if 0 < r < r ' .

Lemma 3.1. Eμ[eβιS[']<oo with some β=β(r)>0for every r>0 .

Let us introduce the (formal) generator X=XV of the process St deter-
mined by the TDGL eq. (1.4): For Ψ 6 S having the form (2.8),
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, Ψιy,

(3.1) X KS, Jlφ{

+\ Σ

2 i,.'=i 9αr,

We denote for
(3.2) DΨ(x, S) = ±^t «S,Ψλy,.... <5, Ψky)Ψi{x)

Lemma 3.2. For every Φ,Ψε5),

(3.3) E»[ I i

Proof. Noting the integrability of μ (Lemma 3.1), we have

j- £*[Φ(S0) Ψ(St)] = E^(S0) -£Ψ(St)]
at

as U O ,

and therefore the reversibility condition (2.9) on μ implies

(3.4) Eμ'[Φ'XΨ] = Eμ[Ψ'XΦ]y Φ,ΨG5).

However this verifies (3.3) with the help of a trivial equality

(3.5) Λ{Φ.Ψ)-ΦXΨ-ΨJ;Φ = <DΦ( , S), DΨ( , S)> . •

Let 3) be the completion of the space 3) with respect to the norm || | | | | de-
fined by

(3.6) HIΦIH2 = l lΦlli^+llβΦllίw^,. Φe5).

Notice that DΦ^L2(dxXdμ), Φ e J , is determined uniquely by the procedure

of this completion. The formula (3.3) still holds for Φ G ^ and ΨGfl) or even

for Ψ of the form (2.8) with ψ which may be unbounded but satisfies \ψ(ά) \ <

const {1+ I a \} note Lemma 3.1.

DEFINITION 3.1. Let i ί b e a subspace of C and Λ a real-valued measurable
function on KxC. A probability measure wzG^fC) is called i£-quasi-invariant
with cocycle A(<py S) iff m(φ-\-') and m are mutually equivalent and it holds
m(<p+dS)=eW's) m{dS) for every <p(ΞK.

Lemma 3.3. μ is Q?(Rdyquasi-invariant with cocycle defined by
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[V(χ, S(x))-v(x, φ(χ)+S(x))

-{S(x)+±φ(x)}Jl<p(x)] dx,
(3.7) i R

Proof. Fix φ^Co(Rd) and put Ft(S)=A{tφy S-tφ) for tt=R and

Then we see Ft^3) and moreover

£ F,(S) = -<D^( , S),
or

where Ψ1=<^Sy φ}. Hence, for every

(3.8) 9

 9

= A j φ(S-tφ) e-W μ(dS) = 0 .

Here the formula (3.3) has been used by taking Φ = Φ l y which is defined by

Φι(S)=Φ(S—tφ) e-Fί(s\ and Ψ=ΨX note that ΦX^S). The conclusion follows
immediately from (3.8). •

The following lemma is a consequence of Theorems 3.1 and 3.2 in [8].
Indeed we apply these results by considering the TDGL eq. (1.4) with initial
distribution μ; note that its solution St, t>0, is always ^-distributed and also
that Lemma 3.1 guarantees the integrability £ i μ [ |5 | r ]<° ° , r>0, which is re-
quired for using these results. We say a r.f. S={S(x); x^Rd} satisfies the
regularity condition (RC)S

G, s>0y G G Φ , if

E[<S, ^>2

G]<Cconst \\ψ\\2

ff-s(Gh ψ e L 2 ( G ) .

Lemma 3.4. Take G<=cv. Then a μ-distributed r.f. S={S(x); x^Rd}
is weakly Cm~ι at T=3G. Moreover the family of g.r.f.'s Y={Yi(ψ) =

-^T Fs(h,ψ; Γ) I A-O}^1 on Γ and the r.f. S satisfy the regularity conditions {RC)S

Vdti
and (RC)S

G, respectively, for every s: 0<.s<Ctn.

We shall sometimes denote the Friedrichs extension JlG introduced in
Sect. 2 simply by Jl when there is no afraid of confusion. The domain of
this operator is given by £>(Jl)=H2m(G)f)HV+1<2(G). We define a function
AG(<p, S;ω)by

AG(φ, S; ω) = Σ Yi(Siφ) {ω)-\ \\VJLφWh(G)
(3.9) <=0 ^

+ ( [V(x, S(x))-V(xy φ(x)+S(x))-S(x)-Jlφ(x)] dx ,
JG

for φ^a){Jl\ .SeC, ωεfl(=C), where {Ff (ψ )= Y^ψ) (ω)}^1 is a family of
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g.r.f.'s on Γ appearing in Lemma 3.4. Note that AG(φy S; ω) is JS(G)-measurable
in S and J2L(Γ)-measurable in ω. The regular conditional probability distribu-
tion μ(- \<B((GC)°)) (ω) of μ given <B((GC)°) will be occasionally regarded as a prob-
ability measure on C(G) instead of C for μ-a.s. ω.

Proposition 3.1. μ( \B{(GC)°)) (ω) is Q(JL)-quasi-invariant with cocycle
AG(φ, S'y ω) for μ-a.s. ω.

Proof. Lemma 3.3 shows with the help of [16, Proposition 3] that
μ(- \$((GC)0)) (ω) is Csr(G)-quasi-invariant with cocycle AG(φy S) μ-a.s. ω, where

ΛG(<p, S) = f [V(xy S(x))-V(x, φ(x)+S(x))-S(x) Jlφ(x)] dx
(3.10) j G i _

~\WJLφ\\\\GU φ<=C?(G),SϊΞC.

This means

\φ(S-φ)μ(dS\<B((GΎ))(co)

(3.H) J

 r

= J Φ(5) eW>v μ(dS\$((Gc)°)) (ω), /ft-a.8. ω ,
for every ΦeC^(Ω) and <p^C%(G). The goal is, however, to prove the quasi-
invariance for the space 3)(<JL), To this end, for φ^ίD{Jΐ), we take an ap-
proximating sequence {φn^C^(G)}^1 in such a manner that \\φn—φ\\H'n+i/2(G)->
0 as n->oo. This is certainly possible because W{JL)C:HQ+1/2{G). We shall
verify that AG(φny S) converges to AG(φ, S; S) as n-*oo in a proper sense. It is
easy to see

(3.12) ( V(x, φn(x)+S(x)) dx -> ( V(x, φ(x)+S(x)) dx, n -> oo ,

for every S e C and, using Garding's inequality [1],

(3.13) \WZA<Pn\\L*(G) — I I \ / ^ I I Λ G ) > n->oo .

The limit of the remainder term in AG(φny S) is given by the next lemma.

Lemma 3.5. As n->ooy fG S(x)Jlφn(x)dx converges to fG S(x) <Aφ(x) dx—

Σf-Ί)1 Yiiδtφ) (S) in the space L2(dμ).

Proof. Take a non-negative function η^Co(Rd) satisfying η{—χ)=η(χ)y

JRdV(χ)dx=l and v = 0 on {\x\>l}. We set v\x)=S"d η(x/ε) and S\x)=
S*η*(x) for SeC. Then, since φ^3){Jί) implies δ, <p=0 for ί>w, Green's for-
mula (2.3) shows

ε, JUp>G = <JLS\ φ>G+
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while it is clear that

for φn^Co(G). Therefore the proof can be completed by combining the
following four assertions:

(3.14) ]imEμ[<JlS9,φn-φyG] = 0,

(3.15) Urn sup £"[<S-5 S , JLφ^l] = 0 ,

(3.16) lim E^S-S*, Jlφ>2

G] = 0,

(3.17) lim £"[{<9f S s , δ < 9 > > Γ - Γ,.(δ,<p)}2] = 0 ,
ε joε jo

The first (3.14) is easily shown. Indeed, since lim^^ \\φn—<P\\L\G)=®> w e m a Y
only notice £fA[||c_^?*Ss|||2(G)]< oo, which follows from the integrability condition
of μ and an equality JlS2(x)= {(<Jlη*)*S}(x).

In order to prove (3.15) and (3.16), we notice

?-S 8 , JLψyi] = E[<S,

(3.18) < const \\Jl(ψ-v'*ψ)\\2H-s(Gl)

< c o n s t \\Λ]T—978*ψi|||r2»«-*(G1) >

for every r. 0<s<my where G1={y^Rd; dis (j>, G)<1} and we regard ψ = 0
on G\ We have used (RC)Gv 0<s<m, for the first inequality in (3.18) and the
result of [14, p 195, Th. 8.3] by noting dΐlψ-η**ψ} | θ G l = 0 , 0<i<tn-l, for
the second. Therefore (3.15) and (3.16) can be established by showing

(3.19) lim sup \\φn—rf*cpn\\H2m-s{G) == 0

and

(3.20) lim \\φ—η**φ\\H2m-s(Gi) = 0 , φ^S){Jΐ) ,
εψo

respectively, for every s\ m—\β<:s<m\ the details are omitted since the argu-
ment is standard.

Finally, to prove (3.17), we put ψ=δiφ<=Hi+1/2(Γ)c:L2(Γ) and notice that

Y^ψ) = — Fs(h, ψ;Γ)\ A=odti

and

where T̂ ,, y^Rd, is the shift operator on C defined by (τy S) (χ)=S(x— y)y

However, Theorem 3. l-(iii) in [8] proves
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lim sup E*[\-^-Fs(h,ψ;Γ)\ ^ ~ , FTyS(h, ψ Γ) | M | 2 ] = 0 ,
β*o r,\y\<s dh% dh%

and this implies (3.17). •

Now we continue the proof of Proposition 3.1. We can find a subsequence
{n'} of {n} such that AG{φn>, S)->AG(φ, S; S) as n'-^oo μ-a.s. S and therefore
AG(<pn', S)->AG(φ, S; ω) as w'-> oo μ,(. \£B((GC)°)) (ω)-a.s. S, μ-a.s.ω; combine
Lemma 3.5 with (3.12) and (3.13). Noting that the equality (3.11) holds with φ
replaced by <pn, we take the limit /z—>oo of both sides. Since Sobolev's imbed-
ding theorem guarantees that φn->φ in C, we see that the LHS of (3.11) with
<p = φn converges as«->oo to J Φ(S—<p) μ(dS\^((Gc)°)) (ω). On the other
hand, assuming Φ > 0 , we can use Fatou's lemma to see

lim {the RHS of (3.11) with φ = φA > [ Φ(S) eΔ<^'S;ω)

 μ(dS \ ${{GC)°)) (ω).

Therefore we obtain

J Φ(S-φ) μ(dS I ®{(GC)°)) (ω) > j Φ(S) eA^>s'>ω> μ(dS \ ^((Gc)°))(ω), μ-a.s.ω ,

for every non-negative ΦeCj(Ω) and φ^S){Jΐ). This proves the conclusion,
namely (3.11) holds for all Φ G φ ) and φ^S){Jΐ)\ see [11, Lemma (3.5)]. •

Let X'=X'(x, ω), x e G , ωeΩ, be the solution of SD problem (2.1) with
the boundary data Y^iY^)}™^, which is determined by Lemma 3.4. We
define a function AG(φy S; ω) by

A'G(φ, S; ω) = - 1 1 | V ^ l l h β ) - ^ . ^ > G

+ ί [V(x, S(x)+X'(x, ω))-V(x, φ{x)+S(x)+X'(x, ω))] Λ ,
JG

_ ) , 5ECω(G), fi,GΩ(=C). Here Cω(G) = {SεΞC(G); S+X'(ω)£Ξ
C(G)} and we set <5, oϊ^>G = <S+J¥'/(ω), Jlφ>G—<X'(ω), Jlφ>G, where the
first term is defined by the usual integral and the second by (2.4).

Lemma 3.6. μ(> +X\ω) \B{{GC)°)) (ω) is W(Jΐ)-quasi-invariant with co-
cycle AG(φ, S; ω)for /x-a.s. ω.

Proof. From Proposition 3.1, we have

γ μ(φ+dS+X'(ω)\$((GT))(a>)
μ(dS+X'(ω)\<B((Gγ))(ω)

= AG(φ, S+X'(ω); ω), φ^3){Jl), μ—a.S. ω .

However the RHS coincides with A'G(φ, S; ω). Indeed φG.3){Jί) implies

Jlφ<=L\G) Άndf-Λ9=φ, so that <Z', Jlφ>G=Σl?=<> Yt%φ) from (2.4). •
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Define vlωe&(Cu(G)), for μ-a.s. ω , by

vS,ω(dS) = Z- 1 exp {( V(x9 S(x)+X'(x, ω)) dx} μ(dS+X'(ω) |^((Gc)°)) (ω),
J G

where Zω is the normalization constant. Now the proof of Theorem 2.1 revers-
ible =Φ Gibbs can be completed by showing the next proposition. We recall
Sect. 2.1 for the definition of v$

Proposition 3.2. votiύ=vo, μ-a.s. ω.

Proof. It is easily seen from Lemma 3.6 that vo,ω is iZ?(cJ!)-quasi-invariant
with cocycle

°o(φ S) 1 \\VJi(3.21) A°o(φ, S) = - 1 \\VJiφ\\lHG)-<S, JUp>& φ^3){Jl), SeCJG).

Let {φn}Z-i and {λΛ>0}~=i be the sets of all eigenfunctions and the correspond-
ing eigenvalues of the operator Jt, respectively. We denote by n\ G(G)f)L2(G)
3*SΊ-> {wn=ζS, ^M)}~βiG/2, the map giving the coefficients of Fourier series
expansion of S based on the CONS (complete orthonormal system) {φn}n-i of
L2(G). We also denote by β ( i V ) the class of all c=(cM)^RN such that cn=0 for
all but finitely many n's. Then the quasi-invariance of z/£ω proves that
ι/£ω(L2(G))=l, /z,-a.s. ω, (use similar argument to [16, Lemma 8]) and the image
measure vo.ω0^'1^^^2) of vo>ω is Λ(iV)-quasi-invariant with cocycle

, to) = Λ°G( Σ cn φn, f ] wn φn)
1 » 1

for ί=(c n )Giί ( J V ) and w=(«;Λ)e/2. However, this proves vo>ω°π~ι=vooπ"~1 (see
[16]) and consequently we obtain votω=i/o. •

4. The proof of Theorem 2.1; Gibbs =#• reversible

In this section we always assume μξ=β(V). The argument in the pre-
vious section can be essentially followed in the converse direction.

Lemma 4.1. The Gibbs state μ is C^{Rd)-quasi-invarίant with cocycle
A(φ, S) defined by (3.7).

Proof. We begin with observing that the Gaussian measure v$
is ,g)(c^)-quasi-invariant with cocycle A°G(<p, S) defined by (3.21). This is actu-
ally shown by transforming VQ into a measure on the space I2 by using the map
π introduced in the proof of Proposition 3.2. We especially find as a conse-
quence that v% is also CS>(G)-quasi-invariant with cocycle A%(φ> S) for μ-a.s. ω,



REVERSIBLE MEASURES OF GL MODEL 477

since <X'(ω), <J??>>G=0 μ-a.s. ω if φ^C~(G); see Sect. 2.2. for the definition of
v%. It is then easy to show that the finite-volume Gibbs state μZ^3?(C(G)) is
CSΓ(G)-quasi-invariant with cocycle AG(φ, S) defined by (3.10) for μ-a.s. ω.
Now take an arbitrary <p^Co(Rd) and a non-negative ΨeiZ) of the form (2.8).
Let G^Ci? be an open set such that it includes supp φ and supp φh φ{ appear-
ing in (2.8), for every \<>i<k. Then, by using the DLR equation, we obtain

= Eμ[Φ(S-φ)]

which concludes the proof of lemma. •

This lemma gives particularly an information on the integrability of μ:

Corollary 4.1. For every φ<ΞCo(R% E*[e*9's>]<<χ> and Eμ[e\<S,Jl<P>\]<

oo.

Lemma 4.2. The Gibbs state μ satisfies the equality (3.3) for every Φ,

Proof. Notice that the LHS of (3.3) is integrable because of Corollary 4.1.
First we prove (3.3) for every Φ G 5 ) and Ψ=Ψ 0 e .2) having the form Ψ0(S)=
ψ(<S, £>» with ψ^C2

b(R), φ<=Co(Rd). Indeed this can be done by differenti-
ating the both sides of the following equality in t and then setting t=0:

E*[Φ(S) ψ'«S, φ»] = ET[Φ(S-tφ) ψ'KS-tφ, ^>» *"*<".*-">] , t^R ,

which follows from Lemma 4.1. The next remark is that if (3.3) is true for
every Φ G S and some Ψ=ΨX^<3) then this equality still holds for every ΦGfl)
and Ψ = Ψ X ΨO, where Ψo is an arbitrary function of the above form. Actually
we may just use (3.5). Therefore the recursive application of this fact verifies
(3.3) for every Φ G £ ) and Ψ G 5 ) of the form Ψ(5) = Π*-i Ψi«S, φi» with k=
1, 2, , ψi e Cl(R) and φ{ e Co(Rd). This completes the proof. •

Proof of Theorem 2.1: Gibbs =#• reversible: Take an arbitrary separable
Hubert space B in such a way that L2

rdBci{Co(Rd)} '= {Schwartz's space of
generalized functions} with the inclusion map of L2

r^>B being compact, e.g.,
take the dual space of Hm(Rd) with respect to the space L2

r. Then, μ^^B{L2

r) is
extended naturally on B and also every Φ G ί ) can be regarded as a function on
B. Let us consider a symmetric form on L2(By dμ) defined by
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(we regard < , •> as an inner product of the Hubert space L\Rd, dx)). Note

that 3) is dense in L2(B, dμ) and Lemma 4.2 implies <?(Φ, Ψ)=—(Φ, XΨ)L\Bfdμ.)

for Φ , Ψ E 5 ) . We see easily that (6,3)) is a closable Markovian symmetric
form on L2(B, dμ). Moreover, its minimal closed extension determines a diffu-
sion process zt on B, i.e., there exists a process zt with generator being the
Friedrichs extension A of (X, 3)) on the space L2(B, dμ). To this end, we rely
on the paper of Kusuoka [13]. Indeed we have only to check the condition
(C.2) of [13] and this follows from the assumption Eμ[\S \2

r]<oo since it im-
plies £ μ [ | | ^ | iy< o ° . Then it is possible to show that zt is in fact an /^-valued
diffusion process. Actually this follows by applying the same argument used for
the proof of Propositions 3.7 and 3.8 in [13] by replacing M, B and Bo there with
B, L2

r and B0) respectively, in our situation. Here BQ is a Hubert space con-
structed as follows: Fix an arbitrary CONS {en}n=i of L2

r and take l<λΛ/*°°,
n->oof such that

(4.1) Σ λ»
n = l

The space Bo is the completion of C^(Rd) with respect to the norm

From the construction the imbedding of B0-+L2

r is compact and, using (4.1), we
see that the Choquet capacity Cap (B—Bo) on B vanishes. Now, since AΨ=
XΨ μ—a.e. for Ψ e 5 ) , the similar argument given in Fukushima and Stroock
[6, Theorem (2.9)] verifies that the distribution on C([0, oo), L2

r) of the process
zt coincides with that of our process St (i.e., the solution of (1.4)) if the initial
distributions of z0 and SO are common and absolutely continuous with respect to
μ we should notice that the well-posedness of (X> ίD)-martingale problem is
established by Theorem 4.1 in [8]. The proof is therefore completed since μ is
a reversible measure of zt. •

REMARK 4.1. For a uniformly positive function c=c(S)^3), the solution
of an SPDE:

dSt(x) = - ί ί | Λ JlSt(x) dt-c-^ψ- V'(xy St(x)) dt

(4.2)
+ y Dc(x9 St) dt+^c(St) dwt(x)

can be constructed by means of the time change method. Small changes in
the proof of Theorem 2.1 show that the family of all reversible probability meas-
ures of this equation coincides with
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5. Energy inequality and stationary measures

As a slight generalization of the eq. (1.4) we consider the following SPDE

for a given b=b(x, S)& f)r>oLb(L2r)'

(5.1 b) dSt(x) = - \ JlSt(x) dt+b(x, St) dt+dwt(x),

which has a unique solution satisfying (1.9), see [8]. The purpose of the present
section is to investigate the class S(b) of all stationary probability measures

ΐ) of this equation. We introduce a norm

k | Γ t « = { Σ | | } ( n

Lemma 5.1. For every δ>0, there exist r ^ r ^ δ ) , C—C(8)>0 such that

(5.2) <σ,JUr>r^{y-h)\σ\2

r + C\σ\2r9U, σ^Co(R% \r\<rx.

Proof. Consider an operator Jl'—Jl—γ+δ, δ>0. Then Jlr is uniformly
strongly elliptic and strictly positive. Therefore, by Garding's inequality [1],
the norm \\f\\j^=zζ^fy JL'/>1/2 is equivalent to the Sobolev norm ||/IL={Σι*ι<;>»
\\D" f\\l2(Rd)}1/2 o n t h e s P a c e Co(Rd). To complete the proof, we see

<σ, JLσ\ = Σ f a«,β D«σ Dβ{σe~2r*} dx

where

R = Σ t aatβ[D*σ Dβiσe-2'*} -D«iσe~rx} Dβ{σe-™}] dx .

However, since \e"rxω D*er%{x)\ <,const \r\ holds for x<=Rd, \r\<\ and 1<
\cc\ <Ltn, we obtain by using Leibniz's rule

(5.3) I *-"« D«ie'*Mf(x)} -D«f(x) \ <£const | r \ Σ ID*'f(x) I,

for all | r | ^ l , \a\<>m 3ndf<=C?(&), where a'=(a'l9 -,aί)<a=(av - , αrf)
means that α ' ^ α ( i . e . a'i<cίi for l ^ ί < ί / ) and | α ' | < | α | . This, by taking
/=σ-£~rκ, verifies a bound:

|i? |<const | r | | | σ ^ « | | i x sup K P ( * ) | , | r | < l .

Hence, the conclusion follows since (5.3) also implies that |σ|ri>n<Iconst ||σβ""rx|L
with const independent of r | r \ <, 1. •

REMARK 5.1. The two constants r1=r1(δ) and C=C(δ) in Lemma 5.1 de-
pend on Jl only through the following four quantities: the constant c appearing
in the condition (1.5), y, sup{|aΛtβ{x)\ x^Rd, \a\, \β\ ^m} and the modulus
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of continuity of {aaβ} \Λ\=\β\=m; c.f. [1].

Corollary 5.1. (Energy inequalities) Suppose that two functions σt(x) and
vt(x) are given and satisfy

d

(5.4)
σt(x) = — J_ Jlσt(χ)+vt(x), O>0, x<=Rd

dt 2

\σt> vt/r<Z— I σt I r~j-c2

with some q < γ and c2=c2(r)>0 for every r>0. Then, for each c and r such that
0<c<γ—c X i 0<r<rι(

fγ—c1—c), we have

(5.5) \σt\
2r<e-ct\σQ\2

r+2c2lc,t>0

and

(5.6) [ \<τu\
2

r,mdu<(C(Ύ-c1-c)y1(\σ0\
2r+2c2t}>t>0.

Jo

Proof. From Lemma 5.1 and condition (5.4), we have

-j- I crt 1
2 = — <σ,, o?σ ί> r+2<σ ί, vt\at

for every δ > 0 and O o o ^ δ ) . This implies the conclusion; take 8=fγ—c1—c.
D

We show as the first application of this corollary the existence of stationary
measures of (5.1 b) and their uniform integrability.

Proposition 5.1. S(b)Φ0 for every έ e Γ[r>oLb(L2

r). Moreover, for every
sufficiently small r>0, there exists β=β(r)>0 such that

(5.7) sup {E*[e!>wt\;μtΞS(b)9 \b\rΛoo)<K}<ooyK>0.

Proof. Consider the following coupling: Let St and S, be the solutions of
the SPDE's (5.1; b) and (5.1; 0), respectively, with common c.B.m.'s wt(x). As
for the initial data, we choose an arbitrary point S^L2

e for the process Sti while
we assume So is a ^-distributed random variable (r.v.) which is independent of
{wt}. We shall denote this coupling simply by {St, St} ~{(δ, δ s), (0, v)}. Note
that v is stationary for St, see Proposition 6.1 below. The difference σt=St—St

of these two processes satisfies the condition (5.4) with vt(x)=b(x> St) and arbi-
trary 0 < ^ 1 < 7 . We denote the distribution of St on L2

r by μt and its Cesaro
1 (τ

mean by ~μτ, i.e. jzτ=— \ μt dt. Then, {μτ}τ^ι is tight on L2

r for sufficiently
T Jo

small r. In fact, the /^-valued r.v. S(t, ω) = St(ω) realized on the probability
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space (ΩTy ί Γ ) = ( Ω x [ 0 , Γ], P x — ) has the distribution μτ, where (Ω, P) is the

probability space on which the c.B.m. wt is defined. Note that S(t, ω) has a
decomposition S(t, ω)=S(£, ω)+σ(t, ω) and the r.v. S(t, ω)=St(ω) defined on
(Ω,T,PT) is always ^-distributed. Therefore, since v(L2) = ί, the tightness of
{βτ} follows if we can show the tightness of the /^-valued r.v.'s {σ(t, ω)=σt(ω)}.
However, this is verified by observing that (5.6) implies

(5.8)

with const independent of T> 1 for every sufficiently small r ' > 0 and the imbed-
ding map of H?,{Rd)-^L2

r is compact if 0 < r ' < r (see Remark 2.1 in [8] for the
definition of H?,(Rd) and the compactness of imbedding map). Now, find a
sequence {Tn/oo} and μ^3?(L2

r) such that ηzτ^μ weakly on L2

r. Then, it is
easy to prove μ^S(b) by noting that the family of distributions {PS}SGL2 of t n e

solutions of (5.1 b) starting from S^L2

r has the Feller property, or, what amounts
to the same, the map S^L2

r\-*Psej?(C([0, oo), L2

r)) is continuous (this property
is shown from the well-posedness of the corresponding martingale problem,
Theorem 4.1 in [8], by employing the usual compactness argument).

To show the uniform integrability (5.7), we use the coupling (St, St) again,
but this time we suppose the initial data So of the process St is distributed by
μG<S(δ), i.e. we consider the coupling {Sty St}~i(b, μ), (0, v)}. Then, we see
from (5.5) that

\St-St\
2r<e-ct\So-So\

2r+C,t>0,

for arbitrary 0 < c < γ with some C > 0 if r > 0 is sufficiently small. Therefore
we obtain

£qy5{!S|2ΛiV}] = β[eβ[\St\
2

rΛN)]

KElexpi

Xi?[exp {βqiNΛ^ e~<* \ So-So\ ?
a—1

for every ί>0, a>\ and >̂, q>\ such that \jp-\-\jq=\. Now use Lebesgue's
dominated convergence theorem for letting t-^oo in the RHS of (5.9) and then
apply Fatou's lemma to take the limit N->°° in the LHS of (5.9). The con-
clusion for small r follows by noticing that v is a Gaussian measure on L2

r, r>0,
so that it holds Ev[eβ'^]<oo with some βf>0. •

We introduce the so-called Vasershtein metric on 2?(L2

r): Let 3?2(Ll), r>0,
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be the class of all μG&(Lΐ) satisfying Eμ[\S\2]<oo. For μl9 μ2G&2(L2)9 we
set

where the infimum is taken over all m^3?(L2

rxL2

r) satisfying moπjι=μ0 ί = l , 2;
the maps π{ are projections defined by π{: L2-XL2

r^(Sv S2)t-+S^L2.. We
denote by ||Φ|L, r the Lipschitz constant of the functions Φ on L2

r with respect
to the norm | | r , r>0, i.e.

The second application of the energy inequalities is to give the uniqueness of
stationary measures and show an ergodic property of the process under a proper
condition on b(x> S).

Proposition 5.2. (/) Let b arid b e Π r>0 Lb(L2

r) be given and satisfy

(5.10) <£(., 5 ) - 5 ( , S), S - S > r < | - IS-S\ 2

r +c 2 , 5, St=L2

r,

with some c x <γ and c2=c2(r)>0 for every r>0 . Then, for each 0<c<γ—c x and
0<r<r1(γ—c1—c), we have

(5.11) dr(μ,-μ)£y/-2φ , μ<=S(b),μζΞS(b).

(it) / / J e n r > 0 Lb(L2

r) satisfies

(5.12) < δ ( . , 5 ) - δ ( . , S ) , S - S > r < ^ \S-S\2

nS9S<ΞL2r,

with some cx<<γ for every r>0, then #<5(6)=1. Moreover the process St has an
ergodic property in the following sense:

(5.13) \Es[Φ(St)]-E»[Φ]I ^VWS]f+WΪ\S\^\\Φ\\L,r e-<«\ μς=S(b),

for every c; 0<ic<.y—cu SξΞL2

r, Lipschitz continuous Φ on L2

r and 0 < r <

Proof. The assertion (i) follows easily by applying (5.5) for the difference
σt(x)=St(x)—St(x) of the coupling {St, St}~((b, μ), (5, μ)}, where μ^S(b)
and 7&GcS(5). The uniqueness statement jf<5(i)<l in (ii) is an immediate con-
sequence of (i). To show (5.13), use (5.5) and the coupling {St, St}~{(b, 8S),

Now we apply this result to the equation (1.4). The potential functions
V= V(xy s) and V= V(x, s) appearing in the rest of this section are assumed to
satisfy the conditions (2.7) and (1.11). Notice that these two conditions imply
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(I) The function b=bv(x, S) satisfies (5.12) with c1=
rγ—γ0 and this, in

particular, shows S(bv)=iμv} with single μv^3?(C f)L2

r).
(II) The estimate (5.10) holds for the pair of two functions b=bv and b=bψ

by taking c1=y—yQ+S and c2=—\bv—bγ\2

rΛoo) for arbitrary S: 0 < £ < γ 0 . In

fact, to see this, decompose the LHS of (5.10) into the sum of the LHS of (5.12)
and <έ( ,S)—6( ,S), S—S>r. Then, the latter is bounded from above by

— | S — S | ? + — \b-b\ltM. Therefore, we have
Δ Δi

(5.14) dr{μV) μ ^ ) ^ c o n s t \bv—by | r f
f ( e o )

for every sufficiently small r>0 . The const can be taken independently of r.
(Ill) For g^^(Rd) and λ e ϋ j , set

(5.15) Vgfλ(x, s) = g(x) V(x, s)-\(x) s .

Here Sx{Rd) is the class of all measurable functions g on Rd such that

(a.e.). Then, since Vgtλ still satisfies (2.7) and (1.11), we have f

Moreover, for given two pairs of functions (g, λ) and (g, X)^^1(Rd)xL2

e, the
following estimate holds:

(5.16) \bVeλ-bVl-JrΛ^ I ig(')-g( )} bv(; S J I ^ + i - l λ - X I ,

T h e first t e r m i n t h e R H S o f ( 5 . 1 6 ) i s b o u n d e d f u r t h e r b y — \g—g\rX
Δι

esssup I V\xy s) \ if F = F ( ^ , ί ) e F ; the class introduced in Sect. 1. These
x,s

remarks will be useful in [9].

6. Construction of reversible measures

Here we shall show the set 3ί{V) of all reversible measures of the TDGL
eq. (1.4) is nonempty for every V= V(x> s) satisfying the condition (2.7). Let
us begin with the simplest case V=0. The centered Gaussian measure on
C[\L\ with covariance operator Jl~λ is denoted by v\ see Sect. 2.2.

Proposition 6.1. 51(0) = {v}

Proof. Proposition 5.2-(ii) shows #5i(0)< 1 so that the conclusion follows
by proving v^$l(ΰ). To this end, we use Lemma 4.3 in [8] to see

(6.1) EPs[e^<s<>*>] = exp [v=l<S, ΨΪ>~ \[ \M\h du] ,

for t>0f φ^Co(Rd)y where φt=e~tJL^2φ and Ps denotes the distribution of
the solution of the SPDE (5.1 0) starting from S^L2

r. Noting that
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(6.2) E*[e"*<s>*>] = exp { - 1 <J~ι φ, φ>} ,

]

= exp { - 1 \\<3-ιn{φt+Ψ)\\h-~- \[

we obtain

E

( 6

= exp {-i-

for every φ, ψ^O%(Rd). However the RHS of (6.3) is symmetric in φ and ψ
and this proves the equality (2.9) for functions Φ and ψ of the forms Φ(*S)=

e^"^i<s,<p> a n ( j ψ(s^=e^—i<s,ψyt Therefore the standard approximation argument
concludes the proof. •

Let &bΛ(RdχR) be the family of all functions VtΞ$b{RdxR) such that
V(xf ί )=0 a.e. on {\x\ >K} xR with some K>0.

Lemma 6.1. Suppose V^£Bb0(RdxR) is given. Define
by

(6.4) dμv(X(-)) = Zy1 exp {-j V(x9 X(x)) dx} dv(X(-)),

where Zv is a normalization constant. Then, S(V)= iμv}.

Proof. It is easy to show that μv^3'(V). Conversely, suppose
is given. Then, the probability measure μ defined by

dμ = Z~ι exp {\ V(xy X(x)) dx} dμ , Z = normalization
JRd

belongs to the class S\ϋ). This verifies μ=v and consequently μ=μv. Π

Proposition 6.2. <R(V)Φ0 for every V=V(x,s) satisfying (2.7).

Proof. We construct an approximating sequence {Vn(x> ί)}Γ-i of the func-
tion V(x, s) in the following manner: For a.e. x^Rd> let <r=<rx(v)^[Q, oo], v>0,
be the right continuous inverse function of ^x(σ")=sup|s|^<r{ | V(x, s) \ -\- \ V'(x, s)\}>
cr>0. We also prepare, for each σ>0, a function φ<τ^Coo(R) satisfying that
φ<τ{s)=sy\s\<σ-l;φ<r(s)=σy\s\>σ and | ^ ( * ) | <2, \φ'J(s)\ <2, SΪΞR. Set
<Poo(s)=s. Then, we define Vu{x, s) = \{\x^n) V(x, <Pa.M(s))9 (x, s)^RdχR. The
sequence \Vn} constructed as above has the following properties: (i) FΛG
J M ( ^ X « ) , (ii) Vn satisfies (2.7) (iii) For a.e. x&Rd,Vn(x,sM)-+V(x9s) and
V'H(x,sn)-*V'(x9s) if sn-+s in R (iv) supM |δ7jr,(oo)<2|ό7 | r > ( c o )<oo. Let μn be
the unique element of £(Vn). Then, {μn}n is tight on L2

r. In fact, we use the
coupling {St, St}~iφVn, μn), (0, v)}. Since the distribution μ^ of St is μn for



REVERSIBLE MEASURES OF G L MODEL 485

every t>0, we have μn=\ μ\n) dt. Therefore, the similar argument used in the
Jo

proof of Proposition 5.1 shows the tightness of iμn}n; note that the property (iv)

of {Vn} with the help of (5.7) implies that c2 in (5.4) can be taken independently

of n and also supΛ Eμn[\S \2

r]<oo which is used to derive an estimate like (5.8).

Let {Ps}s<=ι* a n d iPns}se=L? be the distributions on C([0, oo), L2) of the solutions

of the SPDE (1.4) and the same SPDE with V replaced by Vny respectively,

which start from S. The next remark is that Pn

Sn=$>Ps weakly on C([0, oo), L2

r)

if Sn->S in L2

r. To this end, we first prove the tightness of {Pn

s }„ on

C([0, oo),Z,^). This, however, follows from the property (iv) of {Vn} by using

Remark 2.1-(ii) in [8]. Then, noting the property (iii), it is shown that every

limit point of {Pnsn} solves the martingale problem (m.p.) associated with the

SPDE (1.4). Since this m.p. is well-posed (see Theorem 4.1 in [8]), we obtain

the convergence Pn

Sn=$>Ps. Now it is easy to show that every limit point of {μn}

belongs to the class 2ί{V). D

We obtain the following by combining this proposition with the final remark

in the previous section.

Corollary 6.1. // V=V(x, s) satisfies (2.7) and (1.11), then #3i(V)=l.

We finally summarize the result for the TDGL eq. (1.4) by assuming that

V(=V.

Theorem 6.1. (i) 3i(V)Φ0.

(it) If V satisfies (1.11), then #3l(V)=l. Moreover, the solution St of (1.4) has

an ergodicproperty in the sense of (5.13) for every 0 < £ < γ 0 and 0<r<r 1 (γ 0 —c).

The unique reversible probability measure μ is given by the (thermodynamic) limit of

μ)~+0 as fl-»oo.

7. Reversible measures of the TDGL eq. of conservative type

Here we discuss the reversible measures of the TDGL eq. (1.13) of conserva-

tive type under the assumption that V satisfies (2.7). For this purpose, we use

the cut-off method so that we consider the SPDE (1.13) with Vgιλ in place of

V for each g<Ξ$λ{Rd) and

(7.1) dSt(x) = ±-AiJLSt(x)+VM*> st(*))} dt+d\divwt(x)} ,

where Vgtλ is the function defined by (5.15) and F £ t λ = — Vgfλi see [8] for the
OS

existence and uniqueness of solutions satisfying (1.9). Let us denote by

<Rc(V;g, λ) and Slc{V) the classes of all reversible measures of the SPDE's

(7.1) and (1.13), respectively.
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Lemma 7.1. v<=&c(V; 0, 0)

This lemma is shown similarly to Proposition 6.1. Indeed, the RHS of

(6.1) is now replaced by exp-fv^KS, £>*>——\ l lV^l l i 2 ^}, where φt=
e-ta'φy Ji'=-AJl/2. 2 J o

Denote by S30(Rd) the class of all g^S{Rd) (i.e., measurable functions on
Rd) having compact supports, namely, g(x)=0 a.e. on { | # | > i Q with some
K>0. We suppose g<=Ξ$λ(Rd){\%(Rd) and \<=ΞL2

e(\%(Rd)> Let veCf{Rd)
be a symmetric and non-negative function satisfying η = 0 on { |# |>1} and

dη(x) dx=\. We introduce probability measures μg^ and μgt\;η on C f]L2

e by
R

(7.2) dμt,x(S) = Z X exp {-Ψ,,λ(S)} dp(S), Ψ,.A(S) = j ^ Vttλ(x, S(x)) dx,

and

(7-3) dμgtλiJI(S) = Z - U exp ^ _ ψ f

where Z^>λ and Zgλ;Ύj are normalization constants and * means the convolution.
Note that μgλ is the unique element of £(Vgtλ); see Lemma 6.1. Let us con-
sider the SPDE:

(7.4) dSt(x) = Δ | i JlSt{x)+bgtλn{x, St)} dt+d {div wt(x)} ,

where

(7.5) 6ΛXί,(*, S) = i- j ^ ,(*-y) V't.λ(y, S*v(y)) dy .

Lemma 7.2. μgtλ;v is reversible for the eq. (7.4).

Proof. Let us denote by {Qs}seL* a n d \Ps}se-L? the distributions on the
space β=C([0, oo),£^ o f t h e s o i u t i o n

r

s of t h e SPDE's (7.4) and (7.4) with
£ = λ = 0 , respectively, starting from S^L2

r. Then, the Cameron-Martin-
Girsanov's formula (infinite-dimensional version) shows

= *< o n

Here SFt=σ{Su; u<t}, t>0, is a usual family of cr-fields on Ω, Rt is a martingale
defined on (β, P s , {2"̂ }) by

= exp {-^<^λ;η(., su), dmuy-±

and mt=St—SQ— \ AJISU du is a {CSΓ(/2rf)}'-valued process. The process
2 Jo

flίj has a representation ^ = d i v α?, with a c.B.m. α?f on L2(Rd, Rd), which is
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realized on the probability space (Π, PSy {£?*}), cf. Lemma 4.2 in [8]. However,
by using Itδ's formula, we have

Γ <*,.*,( . S.), dmuy = 1 Ψt,US,)~ Vg,US0)+ [ F(SU) du,

where

F(S) = l .<5, oϊΔftΛ»;,( , 5)>+i- ||V*||i ( , Γ;fA(*, S*,(*)) dx,

and this verifies the conclusion with the help of Lemma 7.1. •

Proposition 7.1. // g<=Ξ&x(Rd) Π-0o(Λrf) rarf ^ G ^ Π$*{R% then μgtλ<

Proof. Set μn=μgtλ;vn> where ^Λ(Λ?)=^(WΛI), Λ = 1 , 2, —, x^Rd. We de-
note by {PS}5GL2 and {PHseL? the distributions on Ω=C([0, oo),L2

r) of the
solutions of the SPDE's (7.1) and (7.4) with η replaced by ηn> respectively.
Then, noting that supJδ,fAϊ1|jι( , *Sf)|r>(oo)<oo, the tightness of {μn}n on L2

r is
shown; see the proof of Proposition 6.2. This estimate also gives the tightness
of {Pn

s} for {Sn} such that Sn->S in L2

r. It is therefore verified that Pns/^PS

weakly on fi, see the proof of Proposition 6.2 again and the results of [8] as well.
This limiting procedure completes the proof since μn converges weakly on L2

r to
μ^λasw-»oo. •

Set / ^ ^ i π ^ . i o ^ j . λ for λeJErJ. Then, the family {μ^}n is tight, be-

cause supn|όn(#, -)\rtM<oo holds for i ^ , S ) = | l { I , ω VΊ9λ(x,S(x)). The

following theorem can be verified similarly to the proof of Proposition 7.1 (or
Proposition 6.2). Note that the eq. (7.1) with £ = 1 and λ satisfying Δ λ = 0 is
just the same equation as (1.13). We use Theorem 6.1-(ii) (note that the con-
clusion of this theorem is true even if V is replaced by Vuλ) to show the assertion
(ii) below.

Theorem 7.1. (i) Suppose X^L2

e Π C\Rd) satisfies Δ λ = 0 . Then, every
limit point of {μ£n)} n belongs to the class 3lc(V).
(ii) Suppose F 6 F and the strict-convexity condition (1.11). Then, the convex-
hull of i$l(Vuλ); ΛEΞLl Π C\Rd), Δλ=0} is in the set 3ίc(V).

8. Uniform mixing property of Gibbs states

Under the strict-convexity condition (1.11) of U, there exists a unique
stationary (and reversible) probability measure μ^λ, geiS^/ί'*), X^L2

e, of the
TDGL eq. (1.4) with V=Vgy, the function defined by (5.15). We assume
in this section that the EidePman-type estimate holds for the fundamental solu-
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r) 1

tion q(t, x,y) of the parabolic operator \-— Jl globally in time:
dt 2

(8.1) Iq(t, x,y)I £ # , r"^ e - « g ( r ^ > \ x - y \ ) , ί>0, *,

where % K{>0 and ?(r)=exp{—K2r
2m/(2m-1)}, K2>0; see Appendix for this con-

dition. For GcRd and ^(G)-measurable ΦeC(C), we set

The goal is to prove the following theorem which gives the decay, valid uniform-
ly in g and λ, of the correlations of functional with respect to μgtλ.

Theorem 8.1. Assume (1.11) on the potential U and (8.1) on the operator
Jl. Then, if r > 0 is sufficiently small, we can take for every M>1 positive con-
stants c and C in such a way that

<CΠ

for every 3$(B^-measurable Φ, , £ = 1 , 2, Bi=B(xi, a) being balls with centers Λ

and radius a, whenever | λ | r < M and 0<a<M. The constants c and C may

depend on r, M but not on xv x2, g, λ, Φ 2 and Φ 2 .

We denote by St~{g, λ, wt} if St is the solution of the SPDE (1.4) with
V=Vgtλ and c.B.m. wt. Before starting the proof of the theorem, we prepare
an estimate on the difference between two solutions of (1.4) with different
c.B.m.'s. Namely, we assume that a bounded open set G in Rd and c.B.m.'s wt,
ffit are given and satisfy the following two conditions:

(8.2) wt(x) = Wt(x) on G, i.e. ζwt, φ} = <Wt, φy for <p<=Co(G),

(8.3) {wt(x); x^Gc} and {wt(x); ^ G G C } are independent of each other, i.e. two
systems {ζwt) φ}\ <p&Co(Gc)} and {ζffit, qz)\ φ^C%(Gc)} are mutually in-
dependent.

Consider two solutions St~{g> λ, wt} and St~{gy λ, ffit} starting from the same
point; S0=S0^L2

e. In the following lemma, G is always an open set satisfying
GdG. Similar method of coupling was used by [10].

L e m m a 8.1. There exist positive constants C1 and C2 which are independ-

ent of G, G, g, X, So such that

(8.4) sup E[\ St(x)-St(x) Π ^ Q exp {c2 t-K2 (EpjHm)^ t > 0 f

whenever supp gaG and R = dis (G, Gc)> 1.

Proof. Recalling that the solutions of the SPDE are defined through the
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stochastic integral equation [8], we have

(8.5) St(x)-St(x) = It(x)+IIt(x),

where

IIt(x) = — 1 ̂  \Rdq(t-uy x,y)g(y)ίV'(Su(y))-V'(Su(y))} dudy .

Set /(ί)=the LHS of (8.4). Then, by using Schwarz's inequality and (8.1),
we obtain

E{IIt{xf]<,\\\V"\\l\ du \ \q{t-u,x,y)\dy
4 Jo JR

x\[du\β\q(t-u,x,y)\.E[\SJίy)-S.(y)\*\dy

£c['f(μ)du,t>0,
Jo

with C independent of (t, x) and hence, applying (8.5) with the help of Gron-
wall's inequality

/(f)^2«*» sup sup EUJxf].

Therefore (8.4) is verified, since we have for O^u^t and

< const q(Γ1/2m R) ί°° v~dI2m e^" dv . •
Jo

Proof of Theorem 8.1: The asserted estimate is trivial when |#χ—x 2 \<
8M, so that we assume \x1—x2\>SM in the sequel. Take four balls G,==

B(xi9b) and Gi=B(xhb), ί = l , 2, in such a way that a<b=—\x1—x2\<b=
8

— I xλ—x21. We construct two independent c.B.m.'s ffi^ and W{P from arbitrar-
4

ily chosen three independent c.B.m.'s wt, zv^, w^2) on L2(Rd) in the following
manner:

Then, by introducing three stochastic processes St<^>{g, λ, so,} and
{#> λ, w;(/0}, i = l , 2, we have an identity for every t>0:

ί, 5 ) ] ,

where
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I = I(t, S) = E

II=Π(t, S) =

The subscript S means the starting point of the processes. Notice the facts
that two processes S^l) and S\2) both starting from SGLL2

€ are mutually independ-
ent and also all the laws of three processes S.y S.(1) and S.(2) are the same.
The first task is to give estimates on / , so that we decompose it into

) {Φ1(St)-Φ1(S\»)}]+Es[Φ1(St)

= Λ+J 2 .

In order to give further bounds on I19 we set

where S,~{lGl g, λ, w,} and S t~{lG l £, λ, W^}. The first term IιΛ is bound-
ed as follows:

<const HΦJI^ e2" Es[ \ τXl St-τSι St \2]

where τxS is defined by τxS(y)=S(yJrx) for y^Rd. We have used (5.5) for
o t=τXl St—τXl St making similar calculations to those in (II) and (III) of Sect. 5
to derive the last inequality; r > 0 is sufficiently small. The same estimate can
be derived for /1>3. On the other hand, using Lemma 8.1, we get

where i?=dis (Gly Gι)=b—b=—\xx—x2\- These three estimates on / l f l—/ l f 3

8
can be summarized into an estimate on Iλ by using

The other term I2 can be bounded similarly. We therefore obtain, by choosing
t such that t=to-R with fixed t0: 0<tQ<(K2IC2Y

2m-1)/2m

y

(8.6)

+ I|Φ2IU2 \/E?'*[Φl]} exp {-const |^-^ 2 | } .
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Now we move to the estimate on the term //:

where

], i = i, 2

However, Proposition 5.2-(ii) can be applied to give a bound on I2ti(t). Indeed,
take Φ^φj.or^.1 which is defined by φoτj\S) =Φ(τJι 5), then we obtain

by noting (5.7) (remember | λ | r ^ M ) and llΦoTj/ll^^llΦill*,*". We there-
fore get the similar estimate to (8.6) also for Eμ*.*[\ II(t, S) \ ] by taking t:t=to R
with the same ΐ0 as before and this completes the proof. •

REMARK 8.1. Two constants cy C and possible region of r>0 in Theorem
8.1 depend on Jl and V only through the following quantities: three constants
7, Kly K2 in (8.1), four quantities listed in Remark 5.1, <γ0, | |7' | |« and | |F" |U.

Appendix

Here we prove the following global estimate on the fundamental solution
fl 1

<l(t> %>y) of the parabolic operator — + — Jl.
dt 2

Proposition A.I. The function q(ty x,y) has a bound:

i-κ2

with positive constants Kls K2 and C which depend only on the following two

quantities: c appearing in the condition (1.5) and sup {\D*'aΛβ(x)\ x^Rd

y \a\,

| / 3 | < # ^ α ' < α : or \a\ = \β\=m, \a'\=\}. In particular, if we consider an

operator Jl=Jl-]r2(C-\-y) instead of <Jty then Jl satisfies the estimate (8.1).

Proof. It is verified in [3, Theorem 2.1, p71] that (A.I) holds locally in
time, i.e., (A.I) holds for 0 < ί < l with C = 0 and K19 K2>0 which depend on
those two quantities listed above (notice that the latter quantity controls espe-
cially the Holder constants of {aΛtβ}\Λ\=\β\=n). We denote the constants Kx

and K2 appearing in this local estimate by K{ and K'2y respectively, for discrim-
ination. Let us consider the operators {Tts; 0^s<;£<oo} defined by

(A.2) TtJ(x) = j β i ψ7\x) q(t-s, x, y) ψs(y)f(y) dy,

( \v\2m \l/2(m-l) 1

W—Y }, t>0, x(ΞRd and i ζ ; = — K'2. Then,
ΐ I Zd
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{Tts} has the semigroup property: Tt/ΓTτs=Tts> 0<;ί<Ξτ<£<°o. Moreover,
we have

(A.3) Tty. L--*L~, \\TtJ\L~_

(A.4) T,y. U-*L~, \\TtJ\i}-*

for 0 £ * < ί < o o if t-s<\, where D=L\Rd), L~=L~(i?O and | | T | | £ ^ de-
notes the operator norm of T: E-*-E' for two normed spaces E and E'. Indeed,
these two estimates are consequences of

t-s, *, y)

which is shown from the local estimate on q by noting

/I r _ v | 2 m \l/(2m-l) /I v I 2m \ l/(2w-l) / I γ I 2m\ l/(2m-l)

\ t—s I \ s I \ t I

see [3, p36]. Now, by employing a similar argument to [17, p232], the semi-
group property of {Tis} combined with (A.3) verifies

(A.5) rf,.:L

for all 0<s<t<oo9 where C'=max{0, log ̂ 3}. Therefore, we obtain

(A.6) \\Tt,s\\Lu

2m
(A.4) when 0<£—^<1. On the other hand, when t—s>ίy

with Kι=msaiiKί9KίKίe-c'} and C=C'+-^. In fact, (A.6) follows from
2m

where we have used a simple inequality l<e(d/2m)t t~d/2m,t>0. The estimate
(A.6) gives a bound on the kernel of Tt s:

\ψ7\x) q(t-s, x,y) ψs(y) \ KK^t-s)-^ <f«-\ 0<s<t<oo, x,

This implies the estimate (A.I) for ̂ = 0 and then for general y^Rd by consid-
ering the operator <Jfty) with coefficients {a^β} obtained by sifting the original
{aΛtβ\ hyy. •

REMARK A.I. (1) It is possible to derive (A.I) by looking at the arguments
in [3] carefully. Nevertheless, we have exposed a simple proof based on the
local estimate for the sake of completeness.
(2) When Jl='Σl\eύ\=\β\=m(—iy*]D"{aΛtβD

β.} with constant coefficients aΛβ>
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we can take C=0 in (A.I). In fact, this is an easy consequence of the local esti-

mate combined with the scaling law of q: cdq(c?mt, ex, cy)=q(t, x,y) for every

e>0.
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