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Abstract

We exhibit several finite groups that are not active sums alicysubgroups.
We show that this is the case for groups withG of odd order andH,G of even
order. As particular examples of this we have the altergagroupsA, for n > 4,
some special and some projective linear groups. Our nexdfsstamples consists of
p-groups where the normalizer and the centralizer of eveeyneht coincide. We
also have an example of a 2-group where the above conditiensa satisfied; thus
we had to devise an ad hoc argument. We observe that the esmmpp-groups
given also provide groups that are not molecular.

Introduction

Given a generating family® of subgroups of a groug, closed under conjugation
and with a partial order compatible with inclusion, a newugrocalled the active sum
of F, can be constructed, taking into account the multiplicatio the subgroups and
their mutual actions given by conjugation.

In Active Sums | many examples of groups that are active sufnsydic sub-
groups are given. In the first section of the present paper vosv ghat, for a finite
group G, if H;G has odd order and?,G has even order, the is not the active
sum of cyclic subgroups. As a consequence the alternatiogpgrA,, for n > 4, some
special and some projective linear groups are not activessointyclic subgroups.

The remaining sections deal withrgroups.

Section 2 is devoted to groups such that the normalizer afyeslement coincides
with its centralizer. Among these we present Rea group, Piz@a-like groups, el
chamuco, a family with trivial center and a family with cyzlcommutator subgroup.

In Section 3 we study the group of Belana-Tasn In this 2-group normalizers
of some elements do not coincide with their centralizerst bing able to apply the
techniques of Sections 1 and 2, we have to give an ad hoc argumerove that it
is not an active sum of cyclic subgroups.

Atomic groups are defined as groups normally generated by edament, and
molecular groups as active sums of atomic groups (see Ri@n}8]). Non-molecular
groups are not exhibited in that paper. Since atomygroups are cyclic, every finite
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p-group that is not the active sum of cyclic subgroups is noteadar. Thus, the
examples in Sections 2 and 3 are not molecular. We make tlpiiciéxn Section 4.

We would like to thank J.A. Belana, M.A. Piza and F. Toras for the groups
that bear their names in this paper.

1. Homology conditions

Fix a finite groupG and a generating active famil§ of cyclic subgroups ofG.
We start with a technical lemma:

Lemma 1.1. Let F,He F,ge Gandx € H. If H < F > H® and the order
of F is even thenx~1x% € F2 (where F2 = {y? | y € F}).

Proof. Let|F|=m and assume = (a). Then H = (a*) for somek € Z,,. Since
H¢ < F, we have thatd*)¢ = a” for somer € Z,,. This means that

ak (ak)g =4k

Notice that, sinces” and «* are conjugate, they have the same order. Using the fact
thatm is even, it is not hard to see thafr2 k. This proves the lemma for a generator
a* of H. Taking now an arbitrarye € H, we have thatr = a** for somes € N. Since
F is Abelian we have

5

a ™ (a) =a ((ak)g> _ (a—k (ak)g> .

We conclude that=**(a**)¢ = a"~=*). Sincer — k is even, we are done. O

s

We use the lemma to prove:

Proposition 1.2. If the order of H1(G) is odd andF is regular, then every ele-
ment of 7 has odd order

Proof. Letr = maxn € N | 2" divides the order of some element &f}. Let's
assume that > 1. For everyF € F, let Rr be the subgroup of generated by
elements of the forme—'x¢ whereg ¢ G andx € H < F > H¢ in F. Define
Br: F — 7, as zero if 2 does not divide the order of, and as the only epi-
morphism there is if it does. We claim thag(R ) = {0}. This is clear if 8 is trivial,
and an easy consequence of Lemma 1.1 otherwise. The homloistarg: induces
then a homomorphisrﬁF: F/Rr — Zy. If H € F is such thatH < F, the inclu-
sion of H in F induces a homomorphist /Ry — F/Rg. It is not hard to see that
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the diagram

F/Rp

commutes. We can then induce a homomorphﬁmli_)mm__ F/Rp — Z; such that
the diagram

F/RF—>“—r>nFe.7~'F/RF

Z

commutes.

Let F be such thalF| = 2k, with k odd. If F = (a) thena* has order 2 Since
the order ofa*G’' € G/G’ = Hy(G) is even andH;(G) is odd, we must have* e
G'. Thusa* € F N G'. Sincek is odd we have thaBr(a*) = 1. ThereforeBy(F N
G'/Rp) is not trivial. Sinceﬁp factors throughj)n;ef F/Rr, we conclude thatF is
not regular. Ul

Theorem 1.3. If |Hy(G)| is odd and|H,G]| is even then G is not the active sum
of any active family of cyclic subgroups 6f.

Proof. LetF be a regular and independent generating active family ofjrsulps
of G. By the previous proposition, every element Bf must have odd order. Since 2
divides the order ofH,G, we can find a subgroupy of H,(G) such thatH,G/N ~
Z,. If G is a covering group forG, we have a stem extension (the short exact
sequencet = B ——= (C is a stem extension if the image df in B is contained
in Z(B) N B')

H,G>—— a — .
Dividing by N the first two factors, we obtain a stem extension of the form
Lp>——> H —> G.

According to Proposition 3.13 in [4], the active sum of thenfiy projects ontoH.
(]

ExXAMPLE (Special linear groups). Groups that satisfy the condstiafi Theo-
rem 1.3 areSL,(4), SL3(2), SL3(3), SL4(2), andSL3(4), according to [6]. Thus these
groups are not active sums of cyclic subgroups.
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ExAMPLE (Alternating groups). The alternating grougs, n > 4, are examples
of groups that satisfy the conditions of Theorem 1.3. Indesttording to [6], p.284,
the Schur multiplier ofA, is Z, if n =5 orn > 8, andZg if n = 6, 7. Furthermore,
the Schur multiplier ofA4 is Z, [6], p.278. It is well know that the Schur multiplier is
isomorphic to the second homology group. Observe thgtd, ~ Z3 and A,/A;, = 1
for n > 5. Thus we have:

Proposition 1.4. For n > 4, the group A, is not the active sum of cyclic
subgroups

ExAMPLE (Projective special linear groups). Many of the projectipedal lin-
ear groups satisfy the conditions of Theorem 1.3. Accordmd6], pp.244-246, the
groups PSL,(¢) are simple with the exception d?SLy(2) and PSLy(3). Furthermore,
the Schur multiplier is given by
e 7, for PSLy(4), PSl3(2), PSL(2), andPSLs(3);

o g for PSLy(9);

° Za X L2 for PS|_3(4),

o  Zug-1) in all other cases.
Thus we have:

Proposition 1.5. The group PSk(g) is not the active sum of cyclic subgroups
if it is one of the groups PSI4), PSLs(2), PSL(2), PSLs(3), PSLs(4), or if 2|(n, g—1).

Proof. According to [6], p.245PSLy(3) >~ A4, and we know thatd, is not the
active sum of cyclic subgroups. The other possibilities @eered by Proposition 1.3.
U

2. When the centralizer and the normalizer of any element caicide

2.1. Conditions on the family. For groupsG, such thatNg(x) = Cg(x) for
every x € G, there is a strong condition of which cyclic groups can bglém a regu-
lar generating active family of cyclic subgroups 6f Namely:

Proposition 2.1. Let G be a finite group such thaNg(x) = Cg(x) for every
x € G. If F is a regular generating active family of cyclic subgroups@f then for
everyF € F, FNG' is trivial.

Proof. AssumeF = (F;);, with F; cyclic for everyi. As in Section 1.2 in [4],
define R; to be the normal subgroup df; generated by elements of the formmix?,
where eitherx,g € F; orx € F; and F; < F; > Ff in F. Since F; is Abelian,
x,g € F; implies x~1x¢ is trivial. Assumex € F; and F; < F; > F{ in F. Since
F; is cyclic we must haveF; = Ff. If F; = (h), theng € Ng(h) = Cg(h). Now,
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x is some power of:, thereforex—1x¢ is trivial. We have shown thag; is the trivial
group.

Let p be any prime number, and let be the largest number such thett divides
the order of G. We construct a family of morphisms; — Z,. in two steps. First
definep;: F; — S,(F;) as the projection, wher§,(F;) denotes the Sylovwp-subgroup
of F;. We will follow p; by w;: S,(F;) = Z,.. However, we will defineu for all the
cyclic subgroups ofG.

Let H be the active family of all the cyclic subgroups @. We define
wr: S,(H) — Z,- recursively on the order of, such that everyuy is a mono-
morphism, and that they are compatible with inclusions amjugations. IfH is triv-
ial definepy: S,(H) — Z,« as the trivial homomorphism. Assume now that for every
H € H with o(H) < n we have definedvy: S,(H) — Z,~ mono, and compatible
with inclusions and conjugations. Assunie € H has ordem. If n is not a power of
p, theno(S,(H)) < n. In this case defingty = s, ). Assume now thah = p*L
Choose a transversdl for H, and for everyr € T chooseH, a representative. Let
t € T be such thab(H,) = p**'. Since H, is cyclic, it has a unique subgrouf of
order p*. Then chooseuy,: S,(H,) = H, — Z,- mono such that the diagram

KA H,

Z

P*

commutes. Now, ifL is in the same class thdf,, chooseg € G such thatL® = H;,,
and defineu; as the composition

L iH, &Zpu.

If h € G is such thatL" = H,, then we have thaL®" " = L. Since L is cyclic,
we must have thagh~! acts trivially on L, otherwise we would contradict that the
normalizer and the centralizer of a generatorLotoincide.

Let f; = ur, 0o pi: Fi — Zpye. It is not hard to see that these morphisms induce a
morphism f: Il_)m F;/R; = I|_r)n F; = Zpe.

Assume that there is ahsuch thatF; N G’ is not trivial. Let p be a prime such
that plo(F; N G"). We must then have a subgroup € F; N G’ of order p. Then the
monomorphismuy : H — Zp,« factors as

H—> F, NG F, —>lim F;, > 7.

We conclude thatF is not regular. ]
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2.2. Pizda’'s group. We use Proposition 2.1 in the group defined below to
reduce the number of active families of cyclic subgroups ¢ocbnsidered. Then we
show that it is not the active sum of cyclic subgroups.

DEFINITION 2.2 (Pizdia's group). LetP be the following group. As a sep =
Z4 X Ly x Zg. Given @, b,c) and (, y, z) in P, we define their product as

(a,b,c)(x,y,z)=(a+x+2cy,b+y+2cx +2cy,c+z+2bx +2x),
where the sum is modulo 4 in all the coordinates.

We want to show that the group is not the active sum of cyclic subgroups. We
start with some basic properties 8f We calculate explicitly the inverse of an element
in P.

Lemma 2.3. Let (a,b,c) € P. The inverse ofa, b, c) in P is given by
(a,b,¢)™t = (3a + 2bc, 3b + 2ac + 2bc, 3¢ + 2ac + 2ab).

A routine calculation then shows that

b ¢
y z

a b+c
x ytz

a+tb ¢
x+y z

s

(a. b, c). (x. v, 2)] = (2‘

Conversely, there are eight elements finof the form (2, 2k, 2). It is easy to see
that each one of them can be expressed as the commutator afpée aof elements.

For example (00, 2) =[(1,0,2),(1,1,0)] and (22,2) =[(1, 3,1),(2,1,0)]. We have
thus shown:

Lemma 2.4. The commutator P’ of P consists of those elements of the
form (2h, 2k, 21).

The next lemma describes the centeraf

Lemma 2.5. The centerZ(P) of P is equal to the commutatoP’.

Proof. For the not so easy part, assume thab(c) € Z(P). Then @, b,c+1) =
(a,b,c)(0,0,1) = (0,0,1)a, b,c) = (a +2b,3b + 2a,1 +c + 2a) means thatz and b
are even. That is to say:,(b, ¢) = (2h, 2k, ¢). Using that this element commutes with

(1,0, 0), we can see that is also even. [

In particular, P is a class 2 group. Another formula fat:
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).

Proof. Assumed, b, ¢)? = (0,0, 0). Since &, b, ¢)? = (2a+2bc, 2b+2ac+2bc, 2c+
2ab + 2ac) we conclude that

Lemma 2.6. If (a,b,¢),(x,y,z) € P

a b+c
ytz

atbh c

,b+2
xty

(@b, ) = <a+2‘ ly) (z: ,c+2

Proposition 2.7. If (a,b,c) € P has order2, then (a, b, c) € P.

2|a + bc,
2|b+ac+bc,

2|c+ab +ac.

If a is odd, then since|2+bc we have thab, ¢ are odd. This contradicts|2+ac+bc.
Thereforea is even. Since 2 +ab +ac, we conclude that is also even. Thereforg
is even as well. U

We now show:
Proposition 2.8. For everyw € P, Np(w) = Cp(w).

Proof. Observe that the statement of the proposition isvatpnt to showing that,
if [(a, b, ¢), (x, y,z)] is a power of g, b, ¢) then [@, b, ¢), (x, y,z)] = 0.

If (a,b,c) has order 2, we have that,(p,c) € Z(P). Therefore the commuta-
tor of (a, b, ¢) with any other element is trivial, and we are done. Assunen tthat
(a, b, ¢) has order 4. This means on the one hand that at least onelot is odd,
and on the other that the only non-trivial power af &, ¢) that [, b, ¢), (x, y, z)] can
be is 2. The seven possible cases are listed in the follovéhtgt The first element in
every row is the elementa(b,c), the second element is the commutator
[(a,b,c), (x,y,2)], and the third element isa(b, c)?. It is very easy to see that it is
not possible in any case to solve the equatian §( c), (x, v, 2)] = (a, b, ¢)>.

(Ch+1,2k+1,20+1) Qe +y),2(x +y),2(z+y)) 0,2,2)
2h+1,2k+1,2]) (22,0,2(x +y +z)) (2,2,2)
(2h + 1,2k, 20 +1) (2y,2(x +y +2),2(x +y +2)) (2,2,0)
(2h, 2k +1,2[ +1) 2k + ), 2(x +y+2),0) (20,2)
(2h, 2k, 21 + 1) 2y, 2(x +y), 2x) 0,0,2)
(2h, 2k + 1, 2I) (22, 2z, 2x) (0,2,0)

(2h + 1, 2k, 21) 0,2z, 2(y +2)) (2,0,0) U
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Theorem 2.9. The groupP is not the active sum of cyclic subgroups

Proof. LetF = (F;);c; be a generating active family of cyclic subgroups Pf
Since Np(w) = Cp(w) for everyw € P, we must haveF; N P’ = {e} if we want F to
be regular. However, every non-trivial cyclic subgroup PfintersectsP’ non-trivially.
ThereforeF is not regular. ]

2.3. Pizdia-like groups. Let p be a prime numberp # 2, andr > 2. Con-
sider the following groupP = P(p,r). As a setP(p,r) = Zy, X Zy x Zyn. The
multiplication is given by

@ b.o)x,y.2)=(a+x+prey,b+y+pre(x+y).ctz+ px(b+c)),

where the first and second entries are modpflo and the third is modulg’*!. The
inverse of &, b, ¢) is (—a+p"tbc, —b+p"lc(a+b), —c+p a(b+c)). This group is not
an active sum of cyclic subgroups if 5 is not a squareéZjn We do not know what
happens when 5 is a square i, Observe that by the reciprocity law we
have that

(%) (;) = ()P DG4 = (—qyp-t=1

for every primep > 2, where 5) is Legendre’s symbol. This means that 5 is a
square inZ, if and only if p is a square inZs. Since the only squares ifis are
0, 1 and 4, we have that 5 is a squareZp if and only if p is congruent to 0, 1 or
4 modulo 5. This is equivalent tp being +1 modulo 10 orp = 5. What this means
is that P(p, r) is not the active sum of cyclic subgroups if the last digit;ofs 3 or
7.

We will show on the one hand thaip(x) = Cp(x), for everyx € P, and on the
other, that any generating family of cyclic subgroups fcontains an element that
intersectsP’. By Proposition 2.1, this suffices to show th&tis not an active sum of
cyclic subgroups. We need then some facts abut

A routine calculation shows that, fou,(b, c), (x, y, z) € P, we have

b+c a
ytz x

c a+tb
Z x+ty

-1
D

r

(. b, ), (x. v, )] = (p'-l

)

Next we determine the center and the commutato of

Lemma 2.10. P’ = {(p" Y%, p"~Y,p'm) | 0 < k,I,m < p —1} and Z(P) =
{(pk, pl, pm) |0<k, I <p~t—1and0<m < p" —1}.
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Proof. By the above formula of the commutator, it is cleart theery element
of P’ is of the form (", p"’~11, p’m). It is also very easy to see that every element
of the form (pk, pl, pm) is in Z(P).

Assume §, b,c) € Z(P). Then @, b,c)(0,1,0) = (0,1, 0)(a, b, ¢). That is to say
(@+p~te,b+1+p~tc,c) = (a,b+1 c+ pa). Thereforepla and p|c. Similarly,
using that &, b, ¢)(1,0,0) = (1, 0, 0)(a, b, ¢) we conclude thatp|b. Therefore &, b, ¢)
is of the required form.

Now, to generate all the elements Bf all we need is

[(1,0,0).(0,1,0)]= (0,0, —p").
[(1’ 0’ 0)’ (O’ 0’ l)] = (0’ _prilv —Pr) )
[(0,1,0),(0,0,1)] = (—p"*, —p"7,0). O

It is clear then, thatP is a class 2 group. We want to show that every element
of order p is in P’. An inductive argument proves:

Lemma 2.11. For everyn € N and every(a, b, c) € P we have that(a, b, )" is
equal to

-1 -1) .
(na + n—(n )p’ “be, nb + an )p' 7lc(a +b),nc+

n(n —1)
2 2

pra(b+ c)) .
In particular, since p # 2, we have that(a, b, ¢)” = (pa, pb, pc).
Lemma 2.12. If an element ofP has order p then it belongs toP’.

We have shown in particular that every non-trivial cyclidgroup of P intersects
P’ non-trivially.

It remains to show that for every € P we have thatNp(u) = Cp(u) if 5 is not
a square inZ,. Observe that if{, b, c) 7 (0,0, 0) is an element of?, then the only
powers of it that belong ta?’ are those of the forma( b, ¢)<@>9)/P with 1 < k <
p — 1. What we have to show then, is that the equation

(1) [(a, b, ), (x,y,2)] = (a,b, C)ko(a.b.c)/p

has a solution for some:(b, ¢) # (0, 0, 0) if and only if 5 is a square itZ,.

Now, if pla and p|b and p|c then @, b, ¢) is in the center ofP and the commu-
tator of @, b, ¢) with any element is trivial. Therefore we must have tpatioes not
divide all of a,b andc.

Assume first thatp does not dividec. In this caseo(a, b, ¢) = p"*1. We have that
(a, b, c)ke@blr = (0,0, kp’c). Using the formula for the commutator we have that
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equation (1) is

b+c a

0,0,kp'c)=(p*
©.0.47)= (s e

c b r—1
.y

c a+b -
zZ Xty

That is to say, we must solve the system

¢y =bz mod (p),
cx+cy=az+bz mod (p),

bx +cx —ay —az =kc mod (p).

It is not hard to transform this system into

cy =bz mod (p),
cx =az mod (p),
bx —ay =kc mod (p).

If we multiply the third one byc and use the first and second equations we obtain
0 = abz — abz = bex —acy = ke mod (p).

since p and ¢ are relatively prime, and ¥ k < p—1, we see that there is no solution
in this case.

Assume then that = pc’. Since we can not havela and p|b, we have that the
order of @, b, c) is p”. In this case equation (1) is

pc b
<y

r—1

)

(kprfla’ kprflb’ kprc/) - <prl

pc a+b S| b+pc a
z xty y+tz x

The system we obtain now is

ka = —bz mod (p),
kb = —az — bz mod (p),
k¢’ =bx —ay —az mod (p).

It is not hard to see that if the equations are satisfied, {henimplies p|b, and that
plb implies pla. We conclude thatp does not dividea nor . Then, from the first
equation we obtainr = —b~tka mod (p). If we substitute this value on the second
equation we obtairkh = b~*ka? + ka. Since 1< k < p — 1 and p does not dividep,
we can cancek and multiply byb to obtain

a’?+ab—b*>=0 mod ().



ACTIVE Suwms I 381

Solving for a we obtain

_ —b=+b/5
= 5 .
We conclude that if the system has a solution then 5 is a squafg,. Conversely,

if 5 is a square irZ, then it is easy to see that the system has a solution taking,
a = (—1++/5)/2. Thus we have shown:

a

Theorem 2.13. Let p be a prime numberp 7 2. If 5is not a square inZ,,
then the groupP(p, r) in not an active sum of cyclic subgroups

Though the equations are a little bit different, it can bevahdhat P(2, r) with
r > 2 is not an active sum of cyclic subgroups.

2.4. El chamuco. We follow the same strategy with the following group. The
group in question is group (xv) in [2], p.146. The preseptatgiven there is

(a,b,c | a®=p3=c%= [a,b] =1, a° =ab, b° :a6b>.
Alternatively, it can be defined a6 = Zg x Z3 x Z3 as a set, with multiplication
(k, 1, m)(x, y,2) = (k+x +6kz +6lz + 3kz® kg + 1 +y,m+2z),

where the sum is modulo 9 in the first entry, and modulo 3 on #wred and third.
Then a corresponds to (10,0), » to (0,1,0) andc to (0, 0,1). Notice however that
(1,1, 1) corresponds t@eba, not to abc.

In the second presentation, the inverse of the elemverit 1) is (6km + 6km? +
8k + 6lm, km + 2/, 2m). We also have

[(k, I, m), (x,y,2)] = (3(2z +kz? + 2kz + 2mPx + mx + ym) , 2mx +kz, 0) .
It is not hard to see that’ is generated by (3, 0) and (Q1, 0).
Lemma 2.14. For every(k,l,m) € G we have(k,l,m)® € G'.
Proof. Observe thatk(1, m)® = (3k + 6km?, 0, 0). O
Proposition 2.15. For everyw € G we have thatNg(w) = Cg(w).
Proof. Let &,/,m) € G. We want to show that, ifk( [, m)*>2 e ((k,[, m)),
then &, [, m)®>3 = (k, 1, m).

Assume first thatk(, [, m) is in G'. Then &, [, m) is of the form (%', 1, 0). Observe
that (3/, 7, 0)*»-3) = (3K’ +6lz, [, 0), and that (8,1, 0) = (3k'r, Ir, 0). For these last to
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be equal, we must have thir—1) =0 mod 3. If 3/ then (', [, 0)*>-3) = (3k’, , 0).
Assume then that£ 0 mod 3. We must then have= 1 mod 3. Since we also must
have &'+ 6/z = 3k'r mod 9, we conclude that/2= k'(r — 1) mod 3. Since B — 1,
we conclude that ;. Therefore &. We have then (@,/,0)*¥9 = (3k/,1,0). We
conclude thatNg(w) = Cg(w) if w € G'.

Assume now thatk(l,m) ¢ G'. If (k,I,m) has order 3, andk(l, m)®*>3 =
(k,1,m)", then [k, 1,m), (x,y,2)] = (k,I,m). Since ,1,m)> ¢ G’, we conclude
that r = 1. Suppose that the order of,(,m) is 9. Thenr — 1 can only be 3 or 6.
We do the case = 3 and leave the other to the reader. With- 1 = 3 we have that
Wk, 1, m), (x,y,2)] = (k,l,m) s

(3 (ZZZ +kz? + 2kz + 2m%x + mx + ym) ,2mx +kz, O) = (3k +6km?, 0, 0) .

Since the order ofk( I, m) is 9, we have that B+ 6km? = 3k(1+2n?) % 0 mod 9. We
conclude thatt # 0 mod 3, andn = 0. The above equation is then

(3(20z +kz® + 2kz) , kz, 0) = (3, 0,0).
Then 3z, and the equation becomes
(0,0,0) = (3,0,0),
that has no solution, since== 0 mod 3. L]

We concluded in the above proof thakt, (, m) has order 9 if and only ik # 0
mod 3 andm = 0. Then the elements of order 9 are of the form’ 31,1, 0) or (3k'+
2,1,0). There are 18 elements of order 9 ¢h G’ has 8 elements of order 3. That
leaves us with 54 elements of order 3 that are not elements’,0br 27 subgroups of
order 3 whose intersection wit’ is trivial. All these 27 groups are represented by a
generator in the following table:

(0,01) (1,01 (2,01)
(30,1) (4,01) (50,1)
(6,0,1) (7,01) (8,0,1)
©11) (1,11) (21,1
G11) (411 (51,1
6,11 (7,.1,1) (8,1,1)
021) (1,21 (221)
(B21) (421 (521)
6,21) (7,21 (821)

each column of it is a conjugacy class @ It is not hard to see that the elements
of a single column do not generate. However, the elements of two columns do gen-
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erate. If we consider all the groups above as an active faofilgubgroups ofG and
form the active sunt, it is not hard to see tha§/S’ is isomorphic t0Z3 @ Zz ® Zs3.
SinceG/G’ = 73 @ Z3 we can not haves = G.

Therefore, if we still have some hope of gettifg= G then we can only include
two of the columns in our active family. To see that it does nwitter which two
columns we include, we define an automorphismGthat sends the first column to
the second, the second to the third, and the third to the fitst. automorphism fixes
a and b and sends to ca. Sincea, b and ca generateG, to see that this is indeed
an automorphism it suffices to see thatbs and ¢ satisfy the same relations as b
and ca, but this is easy.

Assume then that we take as our active family of cyclic subgsoof G the first
two columns. We want to show that the active sSnof the family is not isomorphic
to G. We show this by exhibiting an epimorphism frofhto the group

He=(wox,yz|wi=x*=y3=2=[z, J=[x,y] =L x" =xy, y" = yz).

This suffices sinceH has the same order a3, but is not isomorphic to it. Ther§
can not be isomorphic t6;, since there can not be an epimorphism fréhmo H.

To define the epimorphisn§ — H, we use the universal property of the active
sum S, defining the images il of the elements in the first two columns of the table
above. This is what we have in the following table, where thp €lement in each
column is sent to the bottom element of the column.

¢ | ca® | ca®| cb | cba® | cba® | cb? | cb%a® | cb%ab

w | wz? | wz | wyz | wy | wyz? | wy? | wy?z? | wy?z

4 7

ca | ca* | ca’ | cha | cba®

cha’ | cb?a | cb2a* | cb?a”

x | x x | xy | xy xy | xy%z | xy%z | xy%z

To show that we get a homomorphism, we must check that thgrassint behaves
well with respect to conjugation. This we leave to the rea8émcew andx generate
H, we do get an epimorphisfi — H.

H is isomorphic to group (xi) of [2], p.145, and indeed not ismphic to G.

2.5. A family with trivial center. Let p be a prime number. Multiplying by

the matrix
_ 0 1
L U |

produces an automorphisp: 212: — 71312, of order 3. We are interested in the family
of groupsG = G(p) := Zz < Z3. \We show
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Proposition 2.16. If p is a prime numberand —3 is not a square inZ,, then
the groupG(p) is not an active sum of cyclic subgroups

We work with the following presentation af':
G :=(a,b,c | a? =pP =% = [a,b]=1,a¢ =p~1 p° :ab_1>.

Lemma 2.17. If p is a prime numbgrand —3 is not a square inZ,, then for
everyw € G we have thatCg(w) = Ng(w).

Proof. Notice that every element @ can be written asi’b/c* with 0 < i, j <
p—1 and 0< k < 2. Assume first thaiv = a’b/. Then we have that

(aibj)axb»"c: - (aibj)(‘:.

We want to show that, it* € Ng(w) thenc* € Cg(w). Clearly, it suffices to show this
for z = 1. Assume then that:(b’)° = (a’b’)* for somes € Z,. With a little calculation
this equation becomes

al b~ = gsipsi
This means that

si=j mod (p),
sj+i+j=0 mod (p).

Substitutingj on the second equation, we obtain
i(s+s+1)=0 mod (p).

Since —3 is not a square iZ,, we have that?+s+1=0 mod (p) has no solution
in Z,. Thereforei = 0. Thenj =0 as well, andw = e.

Next consider the case where=a'b’c. It is not hard to show that this element
has order 3, and that the exponent@fwhen w? is written of the forma*h¥c?, is
2. Furthermore, given any € G, the exponent ot when w" is written in the form
a*b’c* is 1. Therefore, the equatiom” = w? can not be solved for thisy. Similar
considerations apply ifv is of the formw = a’b/c?. O

It is easy to see that’ = (a, b). According to Proposition 2.1, any regular gen-
erating family of cyclic subgroups off can only contain groups of the forta!b/c).
As we said before, all these groups have order 3. Since ativE@-groups ofG are
conjugate, we have that all these groups are conjugate)toObserve that and ac
generateG. Thus, the only regular generating active family of cyclidgroups ofG
is F={(a'bic)li, j € Z,}. Let S be the active sum of this family.



ACTIVE Suwms I 385

We will show that there is an epimorphism fromto the groupH, constructed
in the following way. First consider the group

M(p)={x,y,z | xP =y’ =2" =z, ]=1,y" = yz).

We have an automorphisny of M(p) defined on the generators as(x) = y3,
¥ (y) = xy~! and y(z) = z. It is not hard to see thay has order 3. LetH = Zz ¥

M(p).

Using the universal property of the active sumto define a homomorphisrsi —
H, we have to find, for every elementb’/c, an element inH, in such a way that
the correspondence is compatible with conjugation. We wark with the following

presentation ofA:
H=(x,y.zw|x" =y =2 =w =[w, ]=1,[x,y] = w,x" =y~ y* =xy7Y).
We will need the following lemma

Lemma 2.18. For everyi, j € Z, there exists a unique (i, j) € Z, such that
x'y/wz?@) has order3.

Proof. First we list some useful formulas satisfiedAnfor everyi, j € Z,:

yixl = xiylw

oyl =x7iz,
i = xfiyizwi(i+l)/2

23 = )y g2y~ ICIDL2,

7y
22x = y7ig2,
Then
(xiyiz)3 = WD +i+2ij =),
Define y (i, j) = —(1/6)(( +j)? +i +2ij — j). O

Then the element irH corresponding tai'b’c is x'y/zw?@/). Observe that the
conjugation relations are preserved since the exponentsaoid y behave with respect
to w, in H, in the same way that the exponentsaofind » behave with respect to
in G. We have thus shown Proposition 2.16.

2.6. A family with cyclic commutator subgroup. Let p # 2 be a prime num-
ber. We consider the following group

2 2 2
_ PP _ PP _ PP — P
G = <a1, az, az ‘ aj =a, =az =[as, ]=1,[az, a1] = a3>.
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The following construction produces the same groGp= (Zl,z)3 as a set, with
multiplication

(@, b,¢) - (x,y,2)=(a+x,b+y, c+z+ pbx),

where the operations are modutd in each coordinate.
It is easy to see that, for any.,(,c) € G

(a, b, c)_1 = (—a, —b, —c + pab)

and for anyk € Z

k(k —1
(a,b,c)k:(ka,kb,kc+ (2 )pab).

In particular @, b, ¢)? = (pa, pb, pc). ThereforeG? = {(pa, pb, pc) | a,b,c € {0,
1,..., p —1}}. Furthermore, if £, y, z) is another element of;, we have

(a, b, )™ = (a, b, c + p(bx — ay)).
We also have

[(a’ b’ C)’ (.X', Y, Z)] = (O’ 0’ p(bx - ay))

From this equation, it is easy to see th@t = {(0,0, pn) | n = 1,..., p} = Z,. We
have thatG/G" = Z,. @ Z,» ® Z,. It is not hard to see thaZ(G) = {(pa, pb,c) |
a,b,ce{0,...,p—1}}.

Lemma 2.19. The normalizer of any element ifi is equal to its centralizer
Lemma 2.20. ®(G) = G? with ®(G) Frattini subgroup ofG.

Proof. It is well known that for finitep-groups ®(G) = G’G?. But in this case
G' C GP. [

REMARK 2.21. We have thatG/cb(G)E(Z,,)3. According to Theorem 1.1,
p.173, [5], a subsetX Cc G generatesG if and only if the image of X
generates; /O(G).

It is clear that every element of orderis of the form (pa, pb, pc) with a, b, c €
{0,..., p—1)} not all zero. There ar@®—1 elements of ordep. Therefore, there are
(p® —1)/(p — 1) = p?+ p + 1 subgroups of ordep. It is easy to see that for every
element of orderp, (pa, pb, pc), there arep® elements %, y, z) such that £, y, z)” =
(pa, pb, pc). Indeed, ¢, y, z) must be of the formd + pl, b + pm, ¢ + pn). Therefore
(pa, pb, pc) belongs top? subgroups ofG of order p2.
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A picture of the cyclic subgroups afi looks as follows, where the labels on the
arrows represent the number of arrows coming out of the node.

(1, pb, c + pn)
P
(p, 0, pc)
V4

,2
(pa, pb, 1) <~ (0.0, p) <;— (0.0,0) —> (0, p. pc) —> (pa. 1, c + pn)
P

r(p—1)
(p, pb, pc)
pAb

xz

(L. b+ pm, c+ pn)

Observe that for ang, n € G we have that g")” = g”.
We want to show:

Theorem 2.22. The groupG is not the active sum of cyclic subgroups

Proof. We begin by showing that if an active generating fardil of cyclic sub-
groups ofG is regular, then every member @ intersectsG’ trivially.
SupposeF = (F;);. Recall that the condition for regularity involves the oaili

2 |I_an Fi/R;

in Abelian groups, whereR; is the normal subgroup of; generated by elements of
the form x~1x¢ with x,y € F; or x € Fj,ge G, andF; < F; > Fjg. Assume now
that F; N G’ is non-trivial. We have two cases, eith&f = G’ or F; is of the form
((pa, pb,1)). In both casesF; Cc Z(G). Therefore, in both case®; = {1}. Observe
furthermore that the diagram over which the colimit (2) iketa, has arrows given by
either contention or conjugation, and the colimit is theedirsum of the colimits taken
over the connected components of the diagram. Sicis central inG, the only pos-
sible arrows in the diagram can come from conjugation. Teee the connected com-
ponent to which thisF; belongs can only be one of:

F;
ZFA
F,,G—F o G =F,.

U

F:

Ji

In any of these cases, it is clear that the arrgw F;/R;, — Ii_n)1j F;/R; does not
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satisfy B;(F; N G'/R;) = 0. ThusF can not be regular.

In the picture of the cyclic subgroups ¢f above, this means that any regular
can not contain groups from the left branch.

Assume now thatF is an active regular generating family of cyclic subgroups
of G. We want to show thatF can not be independent. To do this, recall that
independence involves a colimit of the form

) lim A,
teT

where T is a transversal and, = F,G’/G’. This colimit is required to be isomorphic
to G/G’.

Since F is generating, by Observation 2.21, we need at least threkccgub-
groupsA, B, C in F that generate5/®(G). On the one hand, this means that these
three subgroups have ordgf, and on the other, thad N B=ANC =B NC = {1}.
AssumingA, B, C are part of the transversdl, what we said above means that they
belong to three different connected components of the diagdefining colimit (3).
Since |AG’/G’| = p? and similarly for B and C, examining the possible shapes of
the connected components of the corresponding diagram,oweludle that the size of
colimit (3) is at leastp®. Since|G/G’| = p°, F can not be independent. [

3. Belana-Tonas’ group

Here is another example of a group that is not the active sunyafc subgroups.

DEFINITION 3.1 (Belana-Toras’ group). LetB be the following group. As a set
B =716 x Zg x Z4. Given (r, y, z) and ¢, v, w) in B, we define their product as

(x’ysZ)(UsUsw):(x+U+82U,y+v+4zu,z+w+2yu),

where the sum is modulo 16 in the first coordinate, modulo &a gecond and mod-
ulo 4 in the third.

Belana and Toms [1] showed that the group is not the active sum of any dis-
crete family of proper normal subgroups. The whole sectisndevoted to the
proof of:

Theorem 3.2. The groupB is not the active sum of cyclic subgroups

We start with some basic properties 8f We calculate explicitly the inverse of
an element inB.
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Lemma 3.3. Let (x, y, z) € B. The inverse ofx, y, z) in B is given by
(x,y,2)7 = (—x +8yz, —y + 4xz, —z + 2x).
A routine calculation then shows that
[(x. v, 2), (u, v, w)] = (Byw +2v), 4lxw + zu), 2(xv + yu)).

On the other hand, there are eight elementsBirof the form (8, 4m, 2n), and it is
easy to see that each one of them can be expressed as the edomnofita couple of
elements. For example (8,2) =[(1,1,0),(0,1,1)] and (04, 2) =[(1,0,0),(1, 1, 1)].

We have thus shown:

Lemma 3.4. The commutatorB’ of B consists of those elements of the
form (81, 4m, 2n).

The next lemma describes the centerBkf

Lemma 3.5. The center Z(B) of B consists of those elements of the
form (2x, 2y, 2z).

Proof. For the not so easy part, assume that(z) € Z(B). Then {,y,z+1) =
(x,y,2)(0,0,1) = (0,0, 1)(x, y, z) = (x +8y, y+4x, z+ 1) means thak andy are even.
Similarly, using (10, 0) we can see that is also even. ]

This means thaB is a class 2 group. Some more formulas f#r
ot 2)
w u v

(x,y,2)" = (rx + 8[%] yz, ry + 4[%] Xz, rz + 2[%] xy) .

X
u

Lemma 3.6. (x,y,z)®v®) = <x + Si 5)

,yt4a

Lemma 3.7. For everyr > 0, we have

Proof. Assume first that = 2z with n > 0. Then we have thatx(y, z)?" =
(2x+8yz, 2y+4xz, 2z+2xy)". This last one is easy to calculate since all the components
are even. Thus we have (y, z)?" = (2nx + 8nyz, 2ny + 4dnxz, 2nz + 2nxy). Now, for
r=2n+1 we have

(. 3,2 = (x, 3, 2" (x, ¥, 2)
= (2nx + 8nyz, 2ny + 4nxz, 2nz + 2nxy)(x, y, 2)
=((2n + 1)x +8nyz, (2n + 1)y + 4nxz, (2n + 1)z + 2xy). N
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Proposition 3.8. If (x, y,z) € B has order2, then (x, y,z) € B'.

Proof. Assumex, y, z)? = (0,0,0). Since §, y, z)? = (2x+8yz, 2y+4xz, 2z+2xy)
we conclude that

8lx +4yz,
4y + 2xz,

2|z +xy.

From the first two we conclude that and y are even. Using this and the third we
conclude that; is also even. Using again the first two and the fact tha even, we
have that 8 and 4y. ]

The elements we define next will be very important in whatciol

DEFINITION 3.9. An elementr in a groupG is calledtwistedif the normalizer
of x in G is different from the centralizer of in G, otherwise it is callechot-twisted
A cyclic subgroupH of G generated by one elemehtis calledtwistedor not-twisted
according to whether is or not-twisted. (This is independent of the choice of the
generatorh.)

We will need a characterization of the twisted elementBin

Lemma 3.10. An elementh = (x,y,z) € B is twisted if and only ifx = 2
mod 4,y is even and; is odd and this happens if and only if # (0, 0, 0) and there
is a g € B such thath—ths = p(1/2)e),

Proof. Assume thak is of the form (4 + 2, 2v, 2w + 1). Then the order ofi is
8 and @) = p*. Thush is twisted.

Assume now thath =(x,y,z) is twisted. Clearly # #(0,0,0). Let ge
Ng(h)\Cg(h). Then i, g] = h~th® is an element inB’ N ((x, y, z)). Since every non-
trivial element of B’ has order 2, we conclude that?has = h/2e0) |t follows that
o(h) # 2 sinceo(h?) = o(h) # o(h?).

Now let » = o(h) and assume = 4. Then (00,0) = (x, y, z)* = (4x, 4y, 0). This
means that & and 2y. Therefore £, y, z)? = (2x, 2y, 27). On the other hand, ig =
(u, v, w), thenh=the = (8(yw + zv), 4(xw + zu), 2(xv + yu)) = (8zv, 4zu, 0). Therefore
2|z and h~th¢ = (0, 0, 0), a contradiction.

Assume next that = 16. Thenx must be odd and?® = (8,0,0). On the other
hand,2=1h8 = (8(yw +zv), 4(xw + zu), 2(xv + yu)) = (8(yw + zv), 4w + zu), 2(v + yu)).
Therefore

21 yw +zv,
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2w + zu,

2lv + yu.

If u were even, thenw and v would be even, this in turn implies thatyav + zv,
contradicting the first condition above. Thusmust be odd. Assume is even. Then
y must be even by the third condition above, this in turn meaas & yw +zv, which

is not the case. We conclude that bothand v are odd. If we assume even, then
the second condition above tells us thas even, concluding [2w+zv again. Thus we
conclude that, v, andw are odd. Therefore and y are also odd. We again conclude
2|yw + zv. Thereforer # 16.

Assume nowr = 8. Thereforex must be even. If &, thenh* = (0, 4y, 0), con-
cluding thaty is odd. On the other hanbd=1#8 = (8(yw +zv), 4(xw +zu), 2(xv + yu)) =
(8(yw + zv), 4zu, 2u). We conclude that: is simultaneously odd and even. Therefore
x =2 mod 4. Assume now that is odd. Under these conditiornig = (4x, 4y, 0) and
h=th® = (8(yw + zv), 4zu, 2u). We conclude again that must be simultaneously odd
and even. Thereforg is even. Sincex and y are both evenz cannot be even, since
then/ would be in the center oB and thens1h% = (0, 0, 0). Thereforez is odd. [

In the groupB a conjugate of a twisted element is twisted and an odd power of
a twisted element is twisted.

Fig. 1 represents all the cyclic subgroups Bf The group({(l, m,n)) is repre-
sented in the figure bymn. Numbers with a bar on top mean the negative of the
number, so for exampld0l represents the grouf§—4, 0, 1)). The arrows represent
group inclusions. Notice that there are eight twisted sobygs of B, they are at the
bottom center of the figure.

Let 7 = (F;);c; be a family of pairwise different cyclic subgroups &f, close
under conjugation and such th&t generatesB. Assume furthermore, that has an
order < compatible with group inclusion and conjugation. L®t %<7 /R be the active
sum of the familyF. We will show thatS is not isomorphic toB. It suffices to show
that §/S’ is not isomorphic toB/B’. Notice thatB/B’ >~ Zg ® Z4 ® Z, as a group.

For everyi € I, let R; be the normal subgroup of; generated by elements of
the form h~th& where there is g € I such thath € F; < F > Fjg.

Lemma 3.11. R; is non-trivial only if F; is twisted

Proof. AssumeF; = ((x, y, z)) and takeh~1h® e R;. Assume that F;| = 2" with
r > 0. If o(h) < 2" thenh is a square. It is not hard to see that in such a case we
haveh~th¢ = 0 for any g € B. If, on the other handy(h) = 2" thenh*h8 € F; = (h).
If »~1h¢ is not trivial, then Lemma 3.10 tells us thatis twisted. O
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Fig. 1. Belana-Toras’ group

We consider first the case whefé does not contain a twisted group. Consider the
biggest possible such family. L&t = {H | H is a non-twisted cyclic subgroup df},
ordered by inclusion.

Lemma 3.12. There is a family(py : H — Z1s)ncg that satisfies the following
conditions
1. For every H € G the homomorphisnpy is mono
2. For every pairH, K € G with H C K, we havepg|y = ¢g.
3. If HHK € G and g € B is such thatH® = K, then the diagram

commutes

Proof. We define thevy’s by induction on the order off € G. If |H| =1 there
is nothing to do.
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If |H| =2, then definepy : H — 715 as the only non-trivial homomorphism there
is. It is clear that conditions 1, 2 and 3 of the lemma are fadisfor the elements
of G of order at most 2.

Assume now that we have defineg; for all the elementsH € G of order at
most 2 with 1 < r < 3, satisfying the conditions 1, 2 and 3 above. We want to define
ox on the elements of order*2. Consider a transversdl for G, and for everyt € T
choose a representativié, € ¢. Let r be such thaiH,| = 2. Now, H, has a unique
subgroupk of order Z. Define ¢y, in such a way that the diagram

K— > H,

PNEZS
Z16

commutes, where the top arrow is the inclusion. It is not hardee that such ap,
always exists and it is mono. For evekye r chooseg € B such thatL¢ = H,. Define
¢L: L — Zy such that the diagram

L — 9 g

commutes.

We show now thaty, does not depend on the choice gf If 2 € B also satisfies
L" = H,, then we show that_J¢ = ()": L — H,. Indeed, ifL = (k) andk® #k", then
klksh™ e (k) and it is non-trivial. This means thatis twisted, a contradiction since
L is not-twisted.

Conditions 1 and 3 above are clear now for the elements;obf order at
most 2+,

As for condition 2, notice that it is enough to prove it in thase whereM C L
with |[M| =2 and|L| = 2*1. AssumeL ¢ t and thatL¢ = H,. Then M¢ is the only
subgroup ofH, of order 2. We have the following commutative diagram:

)*

L——H,

S

M —"> M > g

(273

where the vertical arrows are inclusions. O
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An application of the previous lemma is:

Proposition 3.13. If the family 7 does not have a twisted groughen S/S’ is
not isomorphic toB/B’.

Proof. Notice that if we can construct an epimorphism— Z;s then we are
done. By the universal property of the active sum this is\aant to finding a family
of homomorphismsy; : F; — Zie)ic; Satisfying the following properties:

1. There is an € I such thaty; is epi.

2. |fE§FI thenwj'h:i:lﬂ,‘.

3. If F; = Ff for someg € B, then the diagram
()¢

FF———— = F}

N

Z16

commutes.

Consider a family(¢y — Zie)meg built as in Lemma 3.12. Defing/; = ¢p.
Then the family(y;: F; — Zig)ic; Satisfies conditions 2 and 3 of the proposition.
Since everyy; is a monomorphism, to prove condition 1 it suffices to show thare
is ani € I with |F;| = 16. Since the familyF generates, we can find elements
81,82, ..., & € U;o; Fi such thatgig,--- g, has order 16 inB. It is easy to see that,
if the product of two elements i has order 16, then one of them has order 16. It
follows that one of thegy, go, ..., g, has order 16. O

Our next step is to show that, if there is a group in the fanfilythat does not
contain the element (®, 0) then S/S’ is not isomorphic toB/B’. For this we need
the following lemma:

Lemma 3.14. Let H be the family of all the cyclic subgroups 8f There exists
a family of homomorphism&py : H — Zie)yen Satisfying the following conditions
1. g is mono if(8,0,0) ¢ H.
2. ¢y is zero if(8,0,0) € H.
3. fHCK IiInH, then<pK|H=<pH.
4. If HS =K with H, K € H and g € B, then the diagram
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commutes.

Proof. We proceed along the same lines as the proof of Lemmha ¥ H is
trivial there is only one homomorphisgy, : H — Zie. If |H| =2 we definepy: H —
Z16 as the only non-trivial homomorphism there is if, 80) ¢ H. We definegpy as
zero if H =((8, 0, 0)). It is clear that the conditions of the lemma are satisfiedaior
the elements of{ of order at most 2.

Assume that we have definegl; for all the elements of{ of order at most 2
with 1 < r < 3, in such a way that the conditions of the lemma are satisfiet.T
be a transversal and choogk € r for everyr € T.

Lett € T be such thatH,| = 2"*1. Define gy, : H, — Z16 to be zero if (80,0) €
H,. Otherwise, letk be the only subgroup off, of order Z. Define ¢y, : H, — Z1¢
in such a way that the diagram

\AA

Z16

K H,

commutes, where the top arrow is inclusion. Notice that sarcharrow does exist and
it is @ monomorphism.

Given an arbitraryL € H of order 2*!, there areg € B andt € T such that
L¢ = H,. Define g, such that the diagram

— 9 g

RN

1

commutes.

If (8,0,0) ¢ L then (80,0) = (8 0,0)
we have condition 1.

If (8,0,0) e L then (80,0) =(80,0) € L® = H,. Thereforep, is zero. So we
have condition 2.

Assume now thatd C K in H. If (8,0,0) € H thengy and ¢x are both zero.
If (8,0,0) ¢ K then we proceed as in Lemma 3.12. Finally, it is not hard to see
that the situation (8),0) € K and (80,0) ¢ H happens only ifH is trivial. This
proves 3.

Condition 4 is shown along the same lines. Ll

¢ L¢ " = H,. Thereforep, is mono. So

As an application of this lemma we have:



396 A.J. DAZ-BARRIGA, F. GONZALEZ-ACUNA, F. MARMOLEJO AND L. ROMAN

Proposition 3.15. If there is a non-trivial element of the famil§ that does not
contain (8, 0, 0), then F is not regular In particular S/S" 2 B/B’.

Proof. Let{(¢py: H — Zie)yen be a family of morphisms as in Lemma 3.14.
For everyi € I definey; = ¢r: F; — Z16. By the universal property of the colimit,
we can induce a homomorphisih: Ii_nQ] F;/R; — 716 such that for every € I the
diagram

F;/R; —lim Fi/R;
Nt

commutes. Letj € I and assume thaF; is not trivial and that (80, 0) ¢ F;. Since
(8,0,0) is a member of every twisted group, we have tRatis not-twisted. Therefore
R; is trivial according to 3.11. Sinc&; must have an element of order 2, and every
element of order 2 is in the commutator Bf we have that§; N B’)/R; = F;N B’ is
non-trivial. Sincey; is a monomorphism, we have th&} N B’ has non-trivial image
under ;. Therefore, the injectionf;/R; — lim F;/R; cannot map £; N B')/R; to
zero. That is,F is not regular. ]

Assume from now on thaf contains at least one twisted group and that every
non-trivial element ofF contains (80, 0). We will show that in such a case there is
an epimorphismS — Zsg @ Zg. Let K be the family of all those cyclic subgroups of
B that contain (80, 0).

Lemma 3.16. There is a family of homomorphisnigy : K — Zg® Zg)xcxc Sat-
isfying the following properties
1. Forall K € K, kerpg ={((8,0,0)).
2. If KCH in K, then(pH|K:<pK.
3. If H K € K and g € B are such thatH¢ = K then the diagram

0

commutes
4 (Ugex IM(ex)) = Zs © Zs.

Proof. In Fig. 1, the familyC consists of those groups on the right and the
twisted ones at the bottom. We can divide the groupsCirof order bigger than 2
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in four classes, according to which of the following elensettiey contain: (44, 0),
(4,0,0),(4,4,2) and (40,2). It is not hard to construct the homomorphisms for the
first two classes, sending the first class to the first cooteimd Zg & Zg and the
second class to the second coordinateZgikp Zg. For the twisted groups notice that
(8,0,0) =h~1h8 should be mapped to zero. ]

Lemma 3.17. Given a family of elementqi,, j,, k,)) in Zg & Z4 ® Z,, the fam-
ily generates the group if and only if there exist indiogsr, and r3 such that the
determinant

irl jl‘l k)‘1
irz jl‘z k)‘z
irg jl‘3 k)‘3

is odd

Proof. The family generates the group if and only if the Alelgroup presented
by the matrix

o O
o MO
N O O

~
=
. S~
iy

ir jr kr
with integer coefficients, presents the trivial group. Thisturn holds if and only if
the 0-th elementary ideal o/ is all of Z (see [3] and [7]), that is, if and only if the

3x 3 subdeterminants of the matri¥ generateéZ. This is the case if and only if there
exist indicesry, r, and r3 such that the determinant

irl jl‘l k)‘1
irz jl‘z k)‘z
lrg .1!‘3 k)‘3

is odd. O

Lemma 3.18. If every group inF contains(8,0,0) and there is at least one
twisted group inF, then there is an epimorphis$i — Zg & Zs.

Proof. Let (px: K — Zg & Zg)kex be a family of homomorphisms as con-
structed in Lemma 3.16. For evelye I definey; = ¢g. Notice that this induces
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a homomorphismy : § — Zg®Zg. Now, to show that) is epi, it suffices to show that
there are groups of the forf{2/ + 1, 2m, n)) and ((2I’ +1,2m’ + 1, n')) in F. It is not
hard to see that this is the case if the non-twisted group$ igenerateB. Suppose
then that we need the twisted groy@, + 2, 2m1, 2n; + 1)) of F to generate all of
B. Since the second coordinate ofy(4 2, 2m1, 2n; + 1) is even, we need, to generate
B, an element with an odd entry in the middle. It is not hard te get this element
should be of the form (@ + 1, 2m, + 1, n,). We need a third element to be able to
generateB/B’. If this element had an odd entry in the middle then it wouldobehe
form (23 + 1, 2m3 + 1, n3). Notice however that the determinant

4/, +2 2mq 2n+1
2[2 +1 2777,2 +1 no
2[3 +1 2777,3 +1 ns

is even. According to Lemma 3.17, these three elements dgemtrateB/B’. There-
fore, we must have an element with an even entry in the middtsv, for the deter-
minant

411 +2 2ml 21’!1 +1
2b+1 2mp+1 no
13 Zm:; ns

to be odd, we neeé; to be odd. Therefore, we have groupsinof the desired form.
We conclude thaty: S — Zg & Zg is an epimorphism. ]

Since we have covered all the possible cases, we concluderdes.2.

4. Non-molecular p-groups

Recall that an atomic group is one that is normally generhted cyclic subgroup
and that a molecular group is one that is the active sum of iatsabgroups.

Not every group is molecular. Observe that several of thengkaes of groups that
are shown not to be active sum of cyclic subgroups agroups. Proposition 2.10 in
[4] states that forp-groups, it is equivalent to be molecular to be active sumyafic
subgroups. Thus we have:

Proposition 4.1. The following groups are not molecutar
Pizaha’'s group (Section 2.2).

Pizafia like groups(Section 2.3).

El chamuco(Section 2.4).

Belana-Toras (Section 3).

Pwbhpe
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