| Title | Evaluation of Composite TiO2-FeTiO3 Coatings
Prepared by Plasma Spraying Technique(Materials,
Metallurgy & Weldability) | |--------------|---| | Author(s) | Ye, Fuxing; Ohmori, Akira | | Citation | Transactions of JWRI. 2004, 33(1), p. 39-44 | | Version Type | VoR | | URL | https://doi.org/10.18910/12480 | | rights | | | Note | | ### Osaka University Knowledge Archive : OUKA https://ir.library.osaka-u.ac.jp/ Osaka University # Evaluation of Composite TiO₂-FeTiO₃ Coatings Prepared by Plasma Spraying Technique[†] YE Fuxing*, OHMORI Akira** #### Abstract The composition and photocatalytic activity of plasma sprayed $FeTiO_3$, TiO_2 -30% $FeTiO_3$ and TiO_2 -50% $FeTiO_3$ coatings were investigated. The influence of $FeTiO_3$ compound on the charge carrier separation and recombination in TiO_2 - $FeTiO_3$ coatings was clarified. The TiO_2 -30% $FeTiO_3$ coating sprayed under an arc current of 400A, and contained anatase TiO_2 , rutile TiO_2 and $FeTiO_3$, had good photocatalytic activity because the coating did not contain the unfavorable Fe_2TiO_5 phase. However, the relative deposition speed of TiO_2 -30% $FeTiO_3$ powder under an arc current of 400A approximated to $4\mu m/pass$, which was very low. Although pure $FeTiO_3$ compound nearly did not show photocatalytic performance, the existence of $FeTiO_3$ could improve the photocatalytic activity of anatase TiO_2 if $FeTiO_3$ contacts coherently with TiO_2 and this was explained using a two-steps electron transfer model. KEY WORDS: (Plasma spraying), (Photocatalytic activity), (TiO₂), (FeTiO₃), (Fe₂TiO₅) #### 1. Introduction Titanium-substituted iron oxides are widespread in nature and represent an important mineral resource for the commercial extraction of both iron and titanium¹⁾. The FeTiO₃ structure, which is of rhombohedral crystal structure, is derived from α-Fe₂O₃ by replacing every other layer of the Fe atoms in (0001) planes by a layer of Ti atoms^{2, 3)}. Ilmenite is an incongruently melting material with a melting point of approximate 1683K⁴⁾. Although the high temperature electrical conductivity and magnetic properties of ilmenite FeTiO₃ have been investigated in detail²⁻⁶⁾, very little work has been done on its performance as a chemical catalyst and photocatalyst⁷⁾. Characterization of the photocatalytic performance of TiO₂-FeTiO₃ composites has not been reported until now. To elucidate the influence of FeTiO₃ on the photocatalytic activity of plasma sprayed TiO₂-Fe₃O₄ coatings, FeTiO₃ and TiO₂-FeTiO₃ powders were used. The phase composition, microstructure and photocatalytic activity of plasma sprayed FeTiO₃, TiO₂-30%FeTiO₃ and TiO₂-50%FeTiO₃ coatings were examined in detail. The photocatalytic activity of TiO₂, TiO₂-30%FeTiO₃ and FeTiO₃ powders was also evaluated. #### 2. Materials and experimental procedures #### 2.1 Feedstock powders and substrate FeTiO₃ particles with average size of 1.4µm were agglomerated to FeTiO₃ feedstock powder with an average size of $32.5 \mu m$. To manufacture TiO₂- $30\% FeTiO_3$ and TiO₂- $50\% FeTiO_3$ feedstock powders, TiO₂ particles with an average size of $0.2 \mu m$ were mechanically and uniformly mixed with $1.4 \mu m$ FeTiO₃ particles and corresponding weight ratios. The average sizes of TiO₂- $30\% FeTiO_3$ and TiO₂- $50\% FeTiO_3$ powders were $30.4 \mu m$ and $28.9 \mu m$, respectively. The X-ray diffraction patterns of the TiO₂, FeTiO₃, TiO₂- $30\% FeTiO_3$ and TiO₂- $50\% FeTiO_3$ feedstock powders are shown in Fig.1. The morphology of TiO₂- $30\% FeTiO_3$ powder is given in Fig.2, and was very similar to the FeTiO₃ and TiO₂- $50\% FeTiO_3$ powders. The substrate was stainless steel (JIS SUS304). #### 2.2 Plasma spraying equipment The thermal spraying equipment was a plasma spraying system (Plasmadyne-Mach1 manufactured by Plasmadyne Company). Argon was applied as primary gas, and helium was applied as secondary gas. The thermal spraying parameters are given in **Table 1**. #### 2.3 Characterization of powders and sprayed coatings An electron probe surface roughness analyzer (ERA-8800FE, Elionix Co. Ltd., Japan) and energy dispersive spectroscopy (EDS) were used to examine the structural characteristics of the feedstock powders and the sprayed coatings. The phase composition of the feedstock Transactions of JWRI is published by Joining and Welding Research Institute of Osaka University, Ibaraki, Osaka 567-0047, Japan [†] Received on July 8, 2004 ^{*} Designated Researcher ^{**} Professor #### Evaluation of Composite TiO₂-FeTiO₃ Coatings powders and the sprayed coatings was investigated by x-ray diffraction using Cu-K α radiation (λ =1.5406Å) and a graphite crystal monochromator (M03XHF, MAC Science Co. Ltd.). To evaluate powder deposition efficiency, the relative deposition speed of powder was calculated using Equation (1). $$RDSP = \frac{T_{Thickness}V_{Traverse}W_{Step}}{nV_{Rotation}} \tag{1}$$ where RDSP is Relative Deposition Speed of Powder, $V_{Rotation}$ relative rotation speed of powder feeder, $V_{Traverse}$ relative traverse speed of plasma gun, W_{Step} relative step width of up-down moving equipment, $T_{Thickness}$ thickness of sprayed coating, n spray pass of the coating. The photocatalytic activity of sprayed coatings was evaluated using an acetaldehyde degradation set-up, and the τ value was calculated using Equation (2). $$\ln\left(\frac{C}{C_0}\right) = -t/\tau$$ (2) where C is the reactant concentration, C_{θ} the initial concentration of reactant, t reaction time and τ photocatalytic activity constant. #### 3. Results and discussion ## 3.1 Typical microstructures of FeTiO $_3$ and TiO $_2$ -FeTiO $_3$ coatings **Figure 3** shows the cross sections of TiO₂- 30%FeTiO₃ coatings sprayed under the arc current of 400A, 600A and 800A. It indicates that the coating became denser with increasing arc current. As clearly shown in **Fig.4**, many primary particles existed in the coating sprayed under the arc current of 400A for the low energy transfer from plasma jet. The relative deposition speed of TiO₂-30%FeTiO₃ powder, which was approximate to 4μm/pass, had no significant variation compared to that of the TiO₂ powder as shown in **Fig.5**. With an increase of arc current to 600A or 800A, the relative deposition speed of the TiO₂-30%FeTiO₃ powder (RDSP) clearly increased. **Figure 6** shows the cross sections and surface morphologies of FeTiO₃ and TiO₂-50%FeTiO₃ coatings sprayed under an arc current of 400A. It indicates that the FeTiO₃ powder is more melted than the TiO₂-50%FeTiO₃ powder, which also can be inferred from **Fig.5**. #### 3.2 Composition of FeTiO₃ and TiO₂-FeTiO₃ coatings The x-ray diffraction pattern of plasma sprayed FeTiO₃ coating under an arc current of 400A is illustrated in Fig.7(a). The FeTiO₃ coating consisted of rutile TiO₂, FeTiO₃, Fe₂TiO₅, Fe₂Ti₃O₉ and γ -Fe₂O₃ (maghemite). Y. Chen et al. 9, 10) reported that the thermal oxidation process of FeTiO₃ by high energy ball milling in air consists of reactions (3)~(5). The Fe₂Ti₃O₉ and γ -Fe₂O₃ are thermally Table1 Plasma spraying parameters. | Argon gas pressure (MPa) /flow (slpm) | 0.42/58 | | |--|-------------|--| | Helium gas pressure (MPa) /flow (slpm) | 0.21/9 | | | Arc current (A) | 400,600,800 | | | Arc voltage (V) | 28~30 | | | Spraying distance (mm) | 70 | | Fig.1 X-ray diffraction patterns of the TiO₂ (a), FeTiO₃ (b), TiO₂-30%FeTiO₃ (c) and TiO₂-50%FeTiO₃ (d) feedstock powders. **Fig.2** The morphology of TiO₂-30%FeTiO₃ powder. metastable products, which are normally difficult or impossible to produce by conventional thermal equilibrium processes. These metastable phases were also observed in plasma sprayed FeTiO₃ coatings. $$4\operatorname{FeTiO}_{3} + \operatorname{O}_{2} \rightarrow \operatorname{Fe}_{2}\operatorname{Ti}_{3}\operatorname{O}_{9} + \operatorname{TiO}_{2} + \operatorname{Fe}_{2}\operatorname{O}_{3}$$ (3) $$Fe_2O_3 + TiO_2 \rightarrow Fe_2TiO_5$$ (4) $$Fe_2Ti_3O_9 \rightarrow Fe_2TiO_5 + 2TiO_2$$ (5) $1 \mu m$ FeTiO3 Fig.3 Cross sections of TiO₂-30%FeTiO₃ coatings sprayed under the arc current of 400A(a), 600A(b) and 800A(c). (c) TiO2-30%FeTiO3 TiO2-50%FeTiO3 deposition speed TiO₂, Fig.5 of TiO₂-30%FeTiO₃, TiO₂-50%FeTiO₃ and FeTiO₃ powder (RDSP) under the arc current of 400A, 600A and 800A. T102 #### Evaluation of Composite TiO₂-FeTiO₃ Coatings Fig.6 Cross sections and surface morphologies of FeTiO₃ (a, b) and TiO₂-50%FeTiO₃ (c, d) coatings under the arc current of 400A. Fig.7 X-ray diffraction patterns of FeTiO₃ (a), TiO₂-30%FeTiO₃ (b) and TiO₂-50%FeTiO₃ (c) coatings plasma sprayed under an arc current of 400A and spraying distance of 70mm. Fig.8 τ values of plasma sprayed TiO₂-30%FeTiO₃, TiO₂-50%FeTiO₃ and FeTiO₃ coatings under the arc currents of 400A, 600A and 800A. Fig.9 A proposed two-steps electron transfer model for the good photocatalytic activity of TiO₂-30%FeTiO₃ coating. The TiO_2 -30%Fe TiO_3 coating under the arc current of 400A consisted of anatase TiO_2 , rutile TiO_2 and $FeTiO_3$ as illustrated in Fig.7(b). Under the arc current of 400A, large part of anatase TiO_2 and $FeTiO_3$ still existed, and Fe_2TiO_5 and $Fe_2Ti_3O_9$ phases were undetectable. With an increase of arc current to 600A or 800A, Fe_2TiO_5 , $Fe_2Ti_3O_9$ and Fe_2O_3 phases appeared in the sprayed coatings. With the increase of the weight content of FeTiO₃ to 50% in the TiO₂-FeTiO₃ feedstock powder, Fe₂Ti₃O₉ and Fe₂TiO₅ phases appeared in spite of the low arc current of 400A as illustrated in Fig.7(c). Fig.10 Decomposition characteristics of the acetaldehyde by agglomerated TiO₂ (a), TiO₂-30%FeTiO₃ (b), and FeTiO₃ (c) feedstock powders. ## 3.3 Photocatalytic activity of FeTiO₃ and TiO₂-FeTiO₃ coatings The photocatalytic activity of prepared coatings was evaluated by a decomposition experiment using acetaldehyde, and the τ values of the coatings are shown in **Fig.8**. The results reveal that the FeTiO₃ coatings had almost no photocatalytic activity. The photocatalytic activity of the TiO₂-30%FeTiO₃ coating (τ =1872s) sprayed under an arc current of 400A was better than that of the TiO₂ coating (τ =2484s)¹¹⁾ sprayed under the same conditions. Because the TiO₂-30%FeTiO₃ coating sprayed under the arc current of 400A consisted of TiO₂ and FeTiO₃ only, and did not contain the unfavorable phase of Fe₂TiO₅ as discussed in **Section 3.2** and a large part of the PVA combusted at the high temperature of the plasma jet according to the EDAX analysis results, the photocatalytic activity was better than that of the other sprayed coatings. Furthermore, the band gap of bulk FeTiO₃, which is 2.85eV ¹²⁾, is lower than that of TiO₂. A possible explanation shows in **Fig.9**. When the semiconductor is irradiated, the electron possibly transfers (moves) to the conduction band in two steps. First step: the electron is initiated from the valence band to the conduction band of TiO₂, and in second step the electron in the conduction band of TiO₂ transfers to the conduction band of FeTiO₃. For this two-steps transfer mechanism, the lifetime of the excited hole and electron pair was prolonged. Perhaps the improved efficiency of the photon is another reason for the higher photocatalytic activity of the TiO₂-30%FeTiO₃ coatings prepared under the arc current of 400A. **Figure 10** illustrates the decomposition characteristics of the acetaldehyde by TiO_2 , TiO_2 -30%Fe TiO_3 and $FeTiO_3$ feedstock powders. Although FeTiO₃ can absorb visible light, the initiated electron may easily recombine with a hole generated in #### Evaluation of Composite TiO₂-FeTiO₃ Coatings FeTiO₃. Thus the pure FeTiO₃ powder did not show photocatalytic activity. The photocatalytic activity of TiO₂ powder was higher than that of TiO₂-30%FeTiO₃ powder. Because the TiO₂-30%FeTiO₃ powder was manufactured by agglomeration of TiO2 particles with FeTiO₃ particles using polyvinyl alcohol (PVA) as binder, the TiO₂ was separated from the FeTiO₃ particle by binder. Therefore, it is inferred that the initiated electron in the conduction band of TiO2 can not transfer to the conduction band of FeTiO₃, which results in the relatively low photocatalytic activity of TiO₂-30%FeTiO₃ feedstock powder compared with that of the agglomerated TiO₂ powder. However, the PVA (C, H, O organic substance) has little influence on the properties of the sprayed coating, because PVA vaporizes over 550K and decomposes in the plasma spraying processes. As a result, the compositions of the sprayed coatings have a great influence on the photocatalytic activity. Although pure $FeTiO_3$ compound has no photocatalytic property, the existence of $FeTiO_3$ could improve the photocatalytic activity of anatase TiO_2 if $FeTiO_3$ contacts coherently with TiO_2 . #### 4. Conclusions The composition and photocatalytic activity of plasma sprayed FeTiO₃, TiO₂-30%FeTiO₃ and TiO₂-50%FeTiO₃ coatings were investigated. The influence of FeTiO₃ compound on the photocatalytic activity of TiO2 coating was clarified. The TiO₂-30%FeTiO₃ coating sprayed under an arc current of 400A had good photocatalytic activity because the coating did not contain the unfavorable Fe₂TiO₅ phase. However, the relative deposition speed of TiO₂-30%FeTiO₃ powder under the arc current of 400A, which was approximate to 4 µm/pass, was very low. Although pure FeTiO₃ compound nearly did not show photocatalytic performance, the existence of FeTiO₃ could improve the photocatalytic activity of anatase TiO₂ if the FeTiO₃ contacts coherently with TiO₂, and this was explained using a two-steps electron transfer model. #### References 1) W. Q. Guo, S. Malus, D. H. Ryan, and Z. Altounian, Crystal structure and cation distributions in the FeTiO₃-Fe₂TiO₅ solid solution series, Journal of - Physics Condensed Materials, Vol. 11 (1999) 6337-6347. - 2) R. W. Taylor, Phase equilibria in the system FeO-Fe₂O₃-TiO₂ at 1573K, The American Mineralogist, Vol. 49 (1964) 1016-1030. - 3) Y. Ishikawa and S. Akimoto, Magnetic properties of the FeTiO₃-Fe₂O₃ solid solution series, Journal of the Physical Society of Japan, Vol. 12(10) (1957) 1083-1098. - 4) F. Zhou, S. Kotru, and R. K. Pandey, Pulsed laser-deposited ilmenite-hematite films for application in high-temperature electronics, Thin Solid Films, Vol. 408 (2002) 33-36. - 5) P. F. McMonald, A. Parasiris, R. K. Pandey, B. L. Gries, and W. P. Kirk, Paramagnetic resonance and susceptibility of ilmenite, FeTiO₃ crystal, Journal of Applied Physics, Vol. 69 (2) (1991) 1104-1106. - 6) Y. Ishikawa and S. Sawada, The study on substances having the ilmenite structure, physical properties of synthesized FeTiO₃ and NiTiO₃ ceramics, Journal of Physical Society of Japan, Vol. 11(5) (1956) 496-835. - 7) Y. Ishikawa and S. Akimoto, Magnetic property and crystal chemistry of ilmenite (FeTiO₃) and hematite (Fe₂O₃) system, crystal chemistry, Journal of the Physical Society of Japan, Vol. 13(10) (1958) 1110-1118. - 8) D. S. Ginley and M. A. Butler, The photoelectrolysis of water using iron titanate anodes, Journal of Applied Physics, Vol. 48(5) (1977) 2019-2021. - 9) Y. Chen, Low-temperature oxidation of ilmenite (FeTiO₃) induced by high energy ball milling at room temperature, Journal of Alloys and Compound, Vol. 257 (1997) 156-160. - 10) Y. Chen, Different oxidation reactions of ilmenite induced by high energy ball milling, Journal of Alloys and Compound, Vol. 266 (1998) 150-154. - 11) F. -X. Ye and A. Ohmori, The photocatalytic activity and photo-absorption of plasma sprayed TiO₂-Fe₃O₄ binary oxide coatings, Surface and Coatings Technology, Vol.160 (2002) 62-67. - 12) D. S. Ginley and M. A. Butler, The photoelectrolysis of water using iron titanate anodes, Journal of Applied Physics, Vol. 48(5) (1977) 2019-1021.