Osaka University Knowledge Archive

Title	On generalization of Asano's maximal orders in a ring
Author(s)	Harada, Manabu
Citation	Osaka Journal of Mathematics. 1964, 1(1), p. 61- 68
Version Type	VoR
URL	https://doi.org/10.18910/12481
rights	
Note	

Osaka University Knowledge Archive : OUKA
https://ir. library.osaka-u.ac.jp/

ON GENERALIZATION OF ASANO'S MAXIMAL ORDERS IN A RING

Manabu HARADA

(Received March 26, 1964)

As an extension of maximal orders in a central simple algebra Σ over K of finite dimension, the arthor has studied structure of hereditary orders in Σ in [4], [5]. On the other hand in [1], [1'] the theory of maximal orders in Σ was extended to the theory in any ring by Asano. Following the method given by Asano in [1], [1'] we shall generalize the notion of hereditary order in Σ.

Let S be a ring with unit element 1 and Λ a subring in S containing 1 such that S is the right and left quotient ring of Λ with respect to $\Lambda \cap S^{*}$, where S^{*} consists of all non zero-divisors in S. We call Λ an order in S. Asano showed in [1], [1'] that Λ is a maximal order which satisfies two conditions $\left(\mathrm{A}_{2}{ }^{\prime}\right)$, $\left(\mathrm{A}_{3}\right)$ (see below) if and only if the set of two-sided ideals is a group with respect to multiplication. In this case
(H) every two-sided ideal ${ }^{1)}$ is finitely generated Λ-projective as a right and left Λ-module.

Thus, we shall generalize the notion of the Asano's maximal order to orders which satisfies (H).

In this note we shall show that many results of hereditary orders in a central simple algebra in [4], [5] and [6] are valid in the above generalized orders.

We shall call briefly an order Λ in S which satisfies (H) an H-order. Furthermore, we call elements in S^{*} regular.

1. Definitions and lemmas

Definition 1. Let Λ be an order in S. A subset \mathfrak{N} of S is called left (right) ideal of Λ if \mathfrak{A} satisfies the following conditions:

1) \mathfrak{Y} is a left (right) Λ-module,
2) \mathfrak{U} contains a regular element,
3) See Definition 1 ,
4) there exists a regular element $\lambda(\in \Lambda)$ such that $\mathfrak{X} \lambda \equiv \Lambda(\lambda \mathfrak{N} \sqsubseteq \Lambda)$. If \mathfrak{A} is a right and left ideal of Λ, we call \mathfrak{A} a two-sided ideal of Λ.

Definition 2. Let Λ and Γ be orders in S. If there exist regular elements $\alpha, \alpha^{\prime}, \beta$ and β^{\prime} such that $\alpha \Lambda \alpha^{\prime} \subseteq \Gamma$ and $\beta \Gamma \beta^{\prime} \subseteq \Lambda$ then we call Λ and Γ are similar and we denote by $\Lambda \sim \Gamma$.

Lemma 1. ([4], Lemma 1.2). Let Λ be an order in S and $\mathfrak{Z}, \mathbb{E}^{\prime}$ left ideals of Λ. Then $\operatorname{Hom}_{\Lambda}^{l}\left(\mathcal{R}, \mathbb{R}^{\prime}\right)=\left\{x \mid \in S, \mathcal{R} x \subseteq \mathfrak{R}^{\prime}\right\}$.

Proof. It is clear that $\left\{x \mid \in S, \mathcal{R} \subseteq \subseteq \mathfrak{R}^{\prime}\right\} \subseteq \operatorname{Hom}_{\Lambda}^{l}\left(\mathcal{Z}, \mathfrak{R}^{\prime}\right)$. Since $S \mathbb{R}=S$, we have, for any element x in S, that $x=\Sigma s_{i} l_{i}, s_{i} \in S, l_{i} \in \mathcal{Q}$. We define $\bar{f}(x)=\Sigma s_{i} f\left(l_{i}\right)$ for $f \in \operatorname{Hom}_{\Lambda}^{l}\left(\Omega, \Omega^{\prime}\right)$. Let $x=\Sigma s_{i}^{\prime} l_{j}^{\prime}$ be another expression, then there exists a regular element γ in Λ such that $\gamma s_{i}, \gamma s_{i}^{\prime} \in \Lambda$ for all i by [$\left.1^{\prime}\right]$. Hence, $\gamma \Sigma s_{i} f\left(l_{i}\right)=\Sigma f\left(\gamma s_{i} l_{i}\right)=\Sigma \bar{f}\left(\gamma s_{i}^{\prime} l_{i}^{\prime}\right)=\gamma \Sigma s_{i}^{\prime} f\left(l_{i}^{\prime}\right)$. Therefore, \bar{f} is well defined and $\bar{f} \in \operatorname{Hom}_{S}(S \mathbb{R}, S \mathbb{R})=S$. Hence, $\bar{f}(x)=x y$ for some $y \in S$. It is clear that $\bar{f} \mid \mathfrak{Q}=f$.

If $\mathfrak{R}=\mathbb{Z}^{\prime}$, then $\operatorname{Hom}_{\Lambda}^{l}(\mathcal{R}, \mathfrak{R})$ is a similar order to Λ by [$\left.1^{\prime}\right]$, Theorem 4.4 and we call it the right order of \mathcal{B} and denote it by $\Lambda^{r}(\mathcal{R})$. Similarly, we can define the left order of \mathfrak{Z} and denote it by $\Lambda^{l}(\mathbb{Z})$.

Definition 3. Let Λ be an order in S. If there exist regular elements α, β in Λ for x in S such that $x \Lambda \alpha \subseteq \Lambda, \beta \Lambda x \subseteq \Lambda$, then Λ is called regular.

Lemma 2. Let Λ be a regular order in S and Γ a similar order to Λ. Then there exist regular elements α, β in Λ such that $\alpha \Gamma \subseteq \Lambda$ and $\Gamma \beta \subseteq \Lambda$, and Γ is also regular.

It is clear (cf. [1'] pp. 163-165).
Corollary. Let Λ be a regular order and $\overline{\mathrm{I}}$ an order containing Λ. If Λ is a finitely generated left or right Λ-module, then $\Gamma \sim \Lambda$. Hence, Γ is a two-sided ideal of Λ and is regular.

It is clear by [1'] and [2].
Lemma 3. Let Λ be an order and \mathfrak{R} a left ideal. Then $\mathfrak{R Q}^{-1}=\Lambda^{\prime}(\mathcal{Q})$ if and only if \mathfrak{Q} is a finitely generated projective $\Lambda^{r}(\mathbb{Q})$-module, where $\mathbb{Z}^{-1}=\{x \mid \in S, \mathbb{Z} x \subseteq \mathbb{Z}\}$.

Proof. We put $\Gamma=\Lambda^{r}(\mathcal{Z})$. We define $\mathscr{P}: \mathcal{Z} \otimes_{\Gamma} \operatorname{Hom}(\mathcal{Z}, \Gamma)=\mathcal{Z} \otimes_{\Gamma} \mathbb{R}^{-1} \rightarrow$ $\operatorname{Hom}_{\Gamma}(\mathfrak{R}, \mathfrak{R})=\Lambda^{\prime}(\mathbb{R})$ by setting $\varphi(l \otimes f)\left(l^{\prime}\right)=f\left(l^{\prime}\right) l$, where $l, l^{\prime} \in \mathbb{Z}$ and $f \in \mathbb{R}^{-1}$. Then the lemma is clear by [3], Proposition A. 1.

Lemma 4. Let Λ be an order and \mathfrak{A} a two-sided ideal of Λ which is
finitely generated as left, right module. If \mathfrak{A} is a projective left Λ-module, then $\Lambda^{r}(\mathfrak{H})$ is a right finitely generated Λ-projective module.

Proof. The operation of Λ on $\Lambda^{r}(\mathfrak{H})$ from the right side coincides with the operation of Λ on $\operatorname{Hom}_{\Lambda}^{l}(\mathfrak{A}, \mathfrak{Y})$ with respect to the second \mathfrak{A}. Since \mathfrak{Y} is left Λ-projective, $M=\Sigma \oplus \Lambda u_{i} \rightarrow \mathfrak{Q} \rightarrow 0$ splits. Hence, $\operatorname{Hom}_{\Lambda}(M, \mathfrak{X})=$ $\Sigma \oplus \mathfrak{H} \leftarrow \operatorname{Hom}_{\Lambda}^{l}(\mathfrak{A}, \mathfrak{H}) \leftarrow 0$ splits as a usual right Λ-module. Since \mathfrak{A} is a finitely generated right Λ-module, so is $\Lambda^{r}(\mathfrak{H})$.

2. \boldsymbol{H}-orders

We shall quote here Asano's axioms. Let Λ be an order in S.
$\left(\mathrm{A}_{2}{ }^{\prime}\right) \quad \Lambda$ satisfies a minimal condition for two-sided ideals in Λ which contains a fixed two-sided ideal.
$\left(\mathrm{A}_{3}\right)$ Every prime ideal in Λ is a maximal two-sided ideal.
Proposition 1. If a regular order Λ satisfies $\left(\mathrm{A}_{2}{ }^{\prime}\right)$ and $\left(\mathrm{A}_{3}\right)$ and Λ is maximal among similar orders to it, then Λ is an H-order.

Proof. By [1], [1'] we know that the set of two-sided ideals is a group with respect to multiplication. Hence, Λ satisfies (H) by Lemma 3.

From Lemma 2 and the proof of [4], Lemma 1.2, we have
Theorem 1. Let Λ be a regular H-order in S. If Γ is an order containing Λ which is similar to Λ, then Γ is an H-order.

Proposition 2. Let Λ be an H-order and \mathfrak{A} a two-sided ideal of Λ. Then $\mathfrak{Y N}^{-1}=\Lambda^{\prime}(\mathfrak{A})$ and $\mathfrak{M}^{-1} \mathfrak{A}=\mathfrak{A}^{r}(\mathfrak{A})$.

Proof. It is clear from the fact $\Lambda^{l}(\mathfrak{A})=\tau_{\Lambda} l_{(2)}(\mathfrak{H})=\mathfrak{A H}^{-1}$ and $\Lambda^{r}(\mathfrak{H})=$ $\tau_{\Lambda}{ }^{2}(\mathfrak{2 l})(\mathfrak{H})=\mathfrak{A}^{-1} \mathfrak{A}$ which is obtained by [3], Proposition A. 3.

Corollary. Let Λ be a regular H-order and maximal order among similar orders to Λ. Then Λ is a maximal order satisfying $\left(\mathrm{A}_{2}{ }^{\prime}\right)$ and $\left(\mathrm{A}_{3}\right)$.

Proof. Let $\mathfrak{A l}$ be a two-sided ideal in Λ. Since $\Lambda^{l}(\mathfrak{H}) \sim \Lambda, \Lambda^{l}(\mathfrak{H})=\Lambda$. Hence $\mathfrak{A} \mathfrak{A}^{-1}=\mathfrak{A}^{-1} \mathfrak{A}=\Lambda$. Let \mathfrak{B} be any two-sided ideal of Λ. Since $\mathfrak{B} \lambda \subseteq \Lambda$ for some regular element λ in $\Lambda, \mathfrak{B} \Lambda \lambda \Lambda \subseteq \Lambda$. By [$\left.1^{\prime}\right]$, Theorem 4. $12 \Lambda \lambda \Lambda$ is a two-sided ideal in Λ. Hence the set of two-sided ideals of Λ is a group.

We note that in the proof of [4], Proposition 1.6 we have only used the facts that \mathfrak{A} is a finitely generated projective module and $\Lambda^{l}(\mathfrak{H})$, $\Lambda^{r}(\mathfrak{H}) \subseteq S$ for a two-sided ideal \mathfrak{H} of Λ and that if an order $\Gamma \supseteq \Lambda$ is a finitely generated left Λ-module, $C(\Gamma)=\{x \mid \in S, \Gamma x \subseteq \Lambda\}$ is a two-sided
ideal in Λ. Hence, we have by Lemma 4
Theorem 2. ([4], Theorem 1.7). Let Λ be an H-order in S and Γ an order containing Λ. If $\mathrm{\Gamma}$ is finitely generated left Λ-projective, then $C(\Gamma)$ is an idempotent two-sided ideal in Λ and $\Gamma=\Lambda^{l}(C(\Gamma))$. Conversely, if \mathfrak{A} is an idempotent two-sided ideal in Λ then $\Lambda^{\prime}(\mathfrak{H})$ is finitely generated left Λ-projective and $\mathfrak{H}=C\left(\Lambda^{l}(\mathfrak{H})\right)$. This correspondence is anti-lattice isomorphic.

Corollary 1. Let Λ be a regular H-order in S. Then there exists the above one-to-one correspondence between two-sided idempotent ideals in Λ and orders Γ containing Λ which is finitely generated as a right or left Λ-module.

Proof. It is clear from Theorem 2 and Lemma 2.
Corollary 2. Let Λ be a regular H-order in S. If there exists only a finite number of maximal orders containing Λ. which are similar to Λ, then Λ is equal to the intersection of them.

Proof. Let $\left\{\Omega_{i}\right\}_{i=1}^{n}$ be the set of maximal orders in the corollary. Then $\left\{C\left(\Omega_{i}\right)\right\}_{i=1}^{n}$ is the set of minimal ones among idempotent two-sided ideals by Theorem 2. We put $\mathfrak{D}=\Sigma C\left(\Omega_{i}\right)$. \mathfrak{D} is also idempotent. Let $\Gamma=\cap \Omega_{i}=\Lambda^{l}(\mathfrak{D})$, and $\Gamma^{\prime}=\Lambda^{r}(\mathfrak{D})$. Since $C\left(\Omega_{i}\right)$ is minimal idempotent, $\Lambda^{r}\left(C\left(\Omega_{i}\right)\right)$ is also a maximal order. Hence, $\left\{\Omega_{i}\right\}_{i=1}^{n}=\left\{\Lambda^{r}\left(C\left(\Omega_{i}\right)\right)\right\}_{i=1}^{n}$ and $\Gamma=\cap \Omega_{i}=\Gamma^{\prime}$ by Theorem 2. Therefore, $\Lambda=\Gamma$ by [4], Corollary 1.9.

Proposition 3. Let Λ be an H-order in S and \mathbb{Z} a left ideal of Λ such that $\Lambda=\Lambda^{l}(\mathfrak{Q})$. Then the following statements are equivalent.

1) $\Lambda^{r}\left(\ell^{-1}\right)=\Lambda$.
2) $\mathbb{R} \mathbb{Q}^{-1}=\Lambda$.
3) \mathfrak{Z} is a finitely generated $\Lambda^{r}(\mathbb{Q})$-module.

Proof. 2) is equivalent to 3) by Lemma 3. It is clear that 2) implies 1).

1) $\rightarrow 3$). We set $\Gamma=\Lambda^{r}(\mathfrak{Q})$. $\quad \operatorname{Hom}_{\Lambda}^{l}\left(\mathfrak{Q} \otimes_{\Gamma} \mathfrak{Q}^{-1}, \Lambda\right)=\operatorname{Hom}_{\Gamma}^{l}\left(\mathcal{Q}^{-1}, \operatorname{Hom}_{\Lambda}^{l}(\mathcal{Q}, \Lambda)\right)$ $=\operatorname{Hom}_{\Gamma}^{l}\left(\mathcal{Q}^{-1}, \mathcal{Q}^{-1}\right)=\Lambda$. From an exact sequence $\mathcal{R} \otimes \mathbb{R}^{-1} \rightarrow \mathbb{Q}^{-1} \rightarrow 0$ we obtain an exact sequence $0 \rightarrow \operatorname{Hom}_{\Lambda}^{l}\left(\mathbb{R} \mathbb{R}^{-1}, \Lambda\right) \rightarrow \operatorname{Hom}_{\Lambda}^{l}\left(\mathcal{R} \otimes_{\Gamma} \mathbb{R}^{-1}, \Lambda\right)=\Lambda$. Since $\& \mathbb{R}^{-1} \subseteq \Lambda$, $\operatorname{Hom}_{\Lambda}^{l}\left(\& \mathbb{E}^{-1}, \Lambda\right) \supseteq \Lambda$. Therefore, $\operatorname{Hom}_{\Lambda}^{l}\left(\mathbb{R}^{-1}, \Lambda\right)=\Lambda$, which implies $\Lambda^{r}\left(R Q^{-1}\right)=\Lambda$ and $\tau_{\Lambda}^{l}\left(8 R^{-1}\right)=R \mathbb{R}^{-1} \Lambda=8 R^{-1}$. Hence $R R^{-1}$ is idempotent by [4], Lemma 1.5. Therefore, we obtain by Theorem 2 that $\Lambda=D(\Lambda)^{2)}$ $=D\left(\Lambda^{r}\left(\mathrm{QQ}^{-1}\right)\right)=2 \mathbb{Q}^{-1}$.
2) $D(\mathbf{\Gamma})=\left\{x \mid \in S, x \mathbf{r}^{\mathbf{V}} \subseteq \Lambda\right\}$.

Corollary. Let Λ be an order in S. We assume the set of two-sided ideals of Λ is a group. Then every left ideal $\&$ of Λ is finitely generated Λ-projective and $Q^{-1}=\Lambda$.

Proof. Λ is a maximal order among similar to Λ by [$\left.1^{\prime}\right]$, Theorem 4.22. It is clear that $\Lambda \sim \Lambda^{l}\left(\mathbb{Z}^{-1}\right)$. Hence, $\Lambda^{r}\left(\mathcal{Z}^{-1}\right)=\Lambda$.

Proposition 4. ([6], Theorem 1.1). Let Λ be an H-order in S and $\mathfrak{\&}$ a left ideal of Λ. If $\Lambda^{\prime}(\mathbb{Q})=\Lambda$ and $\mathfrak{\&}$ is finitely generated Λ-projective, then $\Lambda^{r}(\mathfrak{Z})$ is an H-order and $\mathfrak{\&}$ is finitely generated $\Lambda^{r}(\mathfrak{Q})$-projective.

Proof. Let $\Gamma=\Lambda^{r}(\mathbb{Q})$. Since \mathfrak{E} is finitely generated Λ-projective, we have $\Gamma=\mathbb{R}^{-1} \mathbb{R}$ by Lemma 3, and $\tau_{\Lambda}^{l}(\mathbb{R}) \mathbb{R}=\mathbb{R}$ by [3], Proposition A. 5. Hence, $\tau_{\Lambda}^{l}(\mathbb{R})=\mathbb{R Q}^{-1}=\tau_{\Lambda}^{l}(\mathbb{R}) \mathbb{R}^{-1}=\tau(\mathbb{R})^{2}$. We obtain $\Lambda^{l}\left(\tau_{\Lambda}^{l}(\mathfrak{R})\right)=\Lambda$ from the facts $\Lambda^{l}(\mathfrak{R})=\Lambda$ and $\tau_{\Lambda}^{l}(\mathfrak{R}) \mathfrak{R}=\mathfrak{R}$. Therefore, $\mathfrak{R Q}^{-1}=\tau_{\Lambda}(\mathfrak{R})=\Lambda$ by Theorem 2. We can easily check that a correspondence $\mathfrak{H} \leftrightarrow \mathfrak{Z}^{-1} \mathfrak{Y R}$ of two-sided ideals \mathfrak{A} of Λ and those of Γ is one-to-one and preserves projectivity and finiteness, because $\mathcal{E}^{-1} \mathfrak{A R} \approx \mathbb{R}^{-1} \otimes \mathfrak{H} \otimes \mathcal{R}$.

From the similar regument to [4], Lemma 2.1 we have
Proposition 5. ([4], Proposition 2.2). Let Λ be an H-order in S. If $S=S_{1} \oplus \cdots \oplus S_{n}$, then $\Lambda=\Lambda_{1} \oplus \cdots \oplus \Lambda_{n}$ and Λ_{i} is an H-order in S_{i}, where the S_{i} 's are subring of S.

3. Inversible ideals in an \boldsymbol{H}-order

Finally we shall consider two-sided ideals $\mathfrak{\Re}$ in Λ such that $\mathfrak{A X}^{-1}=\mathfrak{A}^{-1} \mathfrak{A}=\Lambda$. We call those ideals inversible ideals of Λ.

Proposition 6. Let Λ be a regular H-order in S satisfying $\left(\mathrm{A}_{2}{ }^{\prime}\right)$. If every maximal two-sided ideal in Λ is inversible, then Λ is a maximal on der.

Proof. We assume that there exists an ideal in Λ which is not inversible. Let \mathfrak{c} be a maximal one among ideals in Λ which are not inversible, and \mathfrak{R} be a maximal two-sided ideal containing \mathfrak{C}. Since Λ satisfies $\left(\mathrm{A}_{2}{ }^{\prime}\right)$, $\mathfrak{C} \nsubseteq \mathfrak{R}^{n}$ for some n. Then $\mathfrak{C} \subseteq \mathfrak{R}^{-1} \mathbb{C} \subseteq \Lambda$, because if $\mathfrak{N C}=\mathfrak{C}$, $\mathfrak{C}=\mathfrak{R}^{n} \subseteq \subseteq \mathfrak{R}^{n}$. Thus, $\mathfrak{R}^{-1} \mathbb{C}$ must be inversible, which is a contradiction.

Lemma 5. Let Λ be an H-order in S and \mathfrak{M} a maximal two-sided ideal. Then \mathfrak{M} is either inversible in Λ or idempotent.

Proof. Since $\mathfrak{C}\left(\Lambda^{l}(\mathfrak{M})\right) \supseteq \mathfrak{M}, C\left(\Lambda^{l}(\mathfrak{M})\right)=\Lambda$ or $=\mathfrak{M}$. If $C\left(\Lambda^{l}(\mathfrak{M})\right)=\Lambda$, then $\Lambda=\Lambda^{l}(\mathfrak{M})$. Hence, \mathfrak{M} is not idempotent by Theorem 2. Therefore, $D\left(\Lambda^{r}(\mathfrak{M})\right)=\Lambda$, which implies $\Lambda^{r}(\mathfrak{M})=\Lambda$. Hence, \mathfrak{M} is inversible by Pro-
position 2. If $C\left(\Lambda^{l}(\mathfrak{M})\right)=\mathfrak{M}$ then \mathfrak{M} is idempotent by Theorem 2.
Remark 1. Let Ω be a maximal order among similar orders to Λ and satisfy $\left(\mathrm{A}_{2}{ }^{\prime}\right)$ and $\left(\mathrm{A}_{3}\right)$. If Λ is an H-order in Ω which is similar to Λ, then the above idempotent and maximal two-sided ideals divide a unique maximal one among two-sided ideals of Ω in Λ by [2], Lemma 1.

Lemma 6. Let Λ be a regular H-order in S and \mathfrak{M} a maximal and idempotent two-sided ideal in Λ. Then $C\left(\Lambda^{r}(\mathfrak{M})\right.$) is also a maximal and idempotent two-sided ideal in Λ.

Proof. We set $\Gamma_{1}=\Lambda^{l}(\mathfrak{M})$ and $\Gamma_{2}=\Lambda^{r}(\mathfrak{M})$. From Corollary 1 to Theorem 2 we know that $\mathfrak{C}=C\left(\Gamma_{2}\right)$ is idempotent and that there are no orders between Γ_{2} and Λ which is a finitely generated Λ-module. Hence, $\complement^{〔}$ is a maximal one among idempotent two-sided ideal. We assume that \mathfrak{C} is not a maximal ideal. Let $\mathfrak{R} \ddagger \mathbb{C}$ be a maximal two-sided ideal in Λ. Then \mathfrak{N} is inversible by the above observation and Lemma 5. If $\mathfrak{R}^{-1} \mathfrak{C}=\mathfrak{C}$, then $\mathfrak{N}^{-1} \subseteq \Gamma_{2}$ by Theorem 2. Hence $\mathfrak{M} \subseteq \mathbb{M}^{-1} \subseteq \mathbb{M}^{-} \Gamma_{2}=\mathfrak{M}$. Therefore, $\mathfrak{M}=\mathfrak{M} \mathfrak{R} \subseteq \mathfrak{R}$, which implies $\mathfrak{M}=\mathfrak{R}$. It is a contradiction. Thus, we know $\mathfrak{C} \subseteq \mathfrak{R}^{-1} \mathfrak{C} \subseteq \Lambda$, and $\Lambda^{l}\left(\mathfrak{R}^{-1} \mathscr{C}\right)=\Lambda^{r}\left(\mathfrak{R}^{-1} \mathbb{C}\right)=\Lambda$. Therefore, $\mathfrak{R}^{-1} \mathfrak{C}$ is inversible in Λ and hence, so is \mathbb{C} which is a contradiction.

By using the same argument as [4], Theorem 5.3 we shall prove
Proposition 7. Let Λ be a regular H-order in S and $\left\{\mathfrak{M}_{i}\right\}_{i=1}$ a set of maximal and idempotent two-sided ideals in Λ such that $\Lambda^{r}\left(\mathfrak{M}_{i}\right)=\Lambda^{l}\left(\mathfrak{M}_{i+1}\right)$ for all i. If all the \mathfrak{M}_{i} 's are distinct then $\Lambda^{l}\left(\mathfrak{M}_{i}\right)=\Lambda^{l}\left(\mathfrak{M}_{1}\right), \Lambda^{r}\left(\mathfrak{M}_{i}\right)=\Lambda^{r}\left(\mathfrak{M}_{i}\right)$ for $\mathfrak{R}_{i}=\mathfrak{M}_{1} \cap \mathfrak{M}_{2} \cap \cdots \cap \mathfrak{M}_{i}$. If $\mathfrak{M}_{1}=\mathfrak{M}_{n}$ for some $n>1$, then $\mathfrak{R}_{n-1}=$ $\mathfrak{M}_{1} \cap \cdots \cap \mathfrak{M}_{n-1}$ is an inversible two-sided ideal. Furthermore, if \mathfrak{M} is an inversible two-sided ideal in Λ, which is contained in \mathfrak{M}_{i} for some i, then $\mathfrak{A} \subseteq \mathfrak{M}_{i} \cap \cdots \cap \mathfrak{M}_{r}$ for any $r>i$.

Proof. We denote $\Lambda^{l}\left(\mathfrak{M}_{i}\right)$ and $\Lambda^{r}\left(\mathfrak{M}_{i}\right)$ by Γ_{i} and Γ_{i+1}. Let $\mathfrak{M}=\mathfrak{M}_{1} \cap \cdots \cap \mathfrak{M}_{i}$. We know from argument of [4], Corollary 1.9 that $\mathfrak{M}_{i} \Gamma_{i}=1_{i}, \Gamma_{i+1} \mathfrak{M}_{i}=\Gamma_{i+1}$. Since \mathfrak{M}, is maximal, $\mathfrak{M}=\Sigma \mathfrak{M}_{p_{1}} \mathfrak{M}_{p_{2}} \ldots \mathfrak{M}_{p_{i}}$ where Σ runs through all elements of symmetric group S_{i}.

$$
\begin{equation*}
\Lambda \supseteq \mathfrak{M}_{j-1} \Gamma_{j} \supseteq \mathfrak{M r}_{j} \supseteq \mathfrak{M}_{p_{1}} \mathfrak{M}_{p_{2}} \cdots \mathfrak{M}_{j-1} \mathfrak{M}_{j} \Gamma_{j}=\mathfrak{M}_{p_{1}} \cdots \mathfrak{M}_{p_{i-2}} \mathfrak{M}_{j-1} \text { if } j \neq 1 \tag{*}
\end{equation*}
$$

Hence $\Gamma^{\prime} \subseteq \operatorname{Hom}_{\Lambda}^{l}(\mathfrak{N}, \Lambda)$ and $\tau_{\Lambda}^{l}(\mathfrak{R}) \supseteq \mathfrak{N L} \Gamma_{j} \supseteq \mathfrak{M}_{p_{1}} \cdots \mathfrak{M d}_{p_{i-2}}{ }^{j} \mathfrak{M P}_{j-1}{ }^{3)}+\mathfrak{N}$ for $j \neq 1$. Therefore, if $\mathfrak{M}_{n}=\mathfrak{M}_{1}$, then $\Lambda / \mathfrak{R}=\Lambda / \mathfrak{M}_{1} \oplus \cdots \oplus \Lambda / \mathfrak{M}_{n-1} \equiv \tau(\mathfrak{R}) / \mathfrak{R}=$ $\Lambda / \mathfrak{M}_{1} \oplus \cdots \oplus \Lambda / \mathfrak{M}_{n-1}=\Lambda / \mathfrak{M}$, and hence $\tau_{\Lambda}^{l}(\mathfrak{R})=\Lambda$. Similarly, we obtain $\tau_{\Lambda}^{r}(\mathfrak{R})=\Lambda$. Therefore, \mathfrak{N} is inversible. Let \mathfrak{A} be the ideal in the

[^0]proposition. We may assume $\mathfrak{A} \subseteq \mathfrak{M}_{1}$. $\mathfrak{A} \Gamma_{2} \mathfrak{A} \subseteq \mathfrak{M}_{1} \Gamma_{2} \mathfrak{A} \subseteq \mathfrak{M}_{1} \mathfrak{A} \subseteq \mathfrak{A}$. Hence $\Gamma_{2} \mathfrak{Y} \subseteq \Lambda^{r}(\mathfrak{H})=\Lambda$, which implies $\mathfrak{A} \subseteq C\left(\Gamma_{2}\right)=\mathfrak{M}_{2}$. Therefore, $\mathfrak{A} \subseteq \bigcap_{i=1}^{n} \mathfrak{M}_{i}$. Finally we assume that all the \mathfrak{M}_{i} 's are distinct. From the fact (*) we obtain $\tau_{\Lambda}^{l}(\mathfrak{R}) \supseteq \mathfrak{M}_{1}$. If $\tau_{\Lambda}^{l}(\mathfrak{R}) \neq \mathfrak{M}_{1}$, then $\tau_{\Lambda}^{l}(\mathfrak{R})=\Lambda$. By replacing \mathfrak{A} by \mathfrak{R} in the above argument, we obtain $\cap \mathfrak{M}_{i}=\mathfrak{N} \subseteq D\left(\Gamma_{1}\right)$. On the other hand, $D\left(\Gamma_{1}\right)$ is a maximal two-sided ideal by Lemma 6. Hence, $\mathfrak{M}_{i}=D\left(\Gamma_{1}\right)$ for some i. Then $\Lambda^{r}\left(\mathfrak{M}_{i}\right)=\Gamma_{1}=\Gamma_{i+1}$ and hence, $\mathfrak{M}_{1}=\mathfrak{M}_{i+1}$, which is a contradication. Therefore, $\tau_{\Lambda}^{l}(\mathfrak{R})=\mathfrak{M} \boldsymbol{R}_{1}$. Thus, we obtain $\Lambda^{l}(\mathfrak{M})=\Lambda^{l}\left(\mathfrak{M} \boldsymbol{r}_{1}\right)$ by the similar argument to [4], Proposition 1.6,2). Similarly, we have $\Lambda^{r}(\mathfrak{R})=\Lambda^{r}\left(\mathfrak{M}_{i}\right)$.

Lemma 7. Let Λ be a regular H-order in S which satisfies $\left(\mathrm{A}_{2}{ }^{\prime}\right)$. Then every inversible two-sided ideal in Λ is contained in one of the following ideals : 1) maximal non-idempotent two-sided ideals, 2) $\mathfrak{R}=\mathfrak{M}_{1} \cap \mathfrak{M}_{2} \cap \mathfrak{M}_{n}$, where \mathfrak{M}_{i} 's are as in Proposition 7 and $\Lambda^{r}\left(\mathfrak{M}_{n}\right)=\Lambda^{l}\left(\mathfrak{M}_{1}\right)$.

Proof. Let \mathfrak{X} be an inversible ideal in Λ and \mathfrak{M} a maximal ideal containing \mathfrak{A}. If \mathfrak{M} is not idempotent, then $\mathfrak{M}_{2}=C\left(\Lambda^{r}(\mathfrak{M})\right)$, $\mathfrak{M}_{3}=C\left(\Lambda^{r}\left(\mathfrak{M}_{2}\right)\right), \cdots$ are maximal. By Proposition 5 we know $\mathfrak{A} \subseteq \mathfrak{M} \cap \mathfrak{M}_{2} \cap \cdots \cap \mathfrak{M}_{r}$. Since Λ satisfies $\left(\mathrm{A}_{2}{ }^{\prime}\right)$, we can find n such that $\mathfrak{M}_{n}=\mathfrak{M}_{n^{\prime}}$ for some $n \neq n^{\prime}$.

By \mathfrak{Q} we shall denote either the maximal and non-idempotent ideals or \mathfrak{R} as in the Lemma 7, 2).

Theorem 3. ([4], Theorem 7.5). Let Λ be a regular H-order in S which satisfies $\left(\mathrm{A}_{2}^{\prime}\right)$. Then the set of inversible two-sided ideals in Λ is uniquely written as a product of maximal ones among inversible ideals in Λ, which are commutative.

Proof. First we shall show that $\mathfrak{R}_{1} \mathfrak{S}_{2}=\mathfrak{N}_{2} \mathfrak{N}_{1}$. We may assume $\mathfrak{\Omega}_{1} \neq \mathfrak{\Omega}_{2} . \quad \mathfrak{\Omega}_{1} \mathfrak{N}_{2}=\mathfrak{Q}_{2} \mathfrak{N}_{2}^{-1} \mathfrak{Q}_{1} \mathfrak{\Omega}_{2} . \quad$ It is clear that $\mathfrak{\Omega}_{2}^{-1} \mathfrak{\Omega}_{1} \mathfrak{\Omega}_{2}$ is an inversible ideal in Λ. If $\mathfrak{\Omega}_{1}$ is maximal, then $\mathfrak{\Omega}_{1} \ddagger \mathfrak{\Omega}_{2}$ since if $\mathfrak{\Omega}_{2}=\mathfrak{M}_{1} \cap \ldots \cap \mathfrak{M}_{i}$ $\subseteq \mathfrak{\Omega}_{1}$, then $\mathfrak{M l}_{j}=\mathfrak{\Omega}_{1}$. However \mathfrak{M}_{j} is not inversible, which is a contradiction. Since $\mathfrak{\Omega}_{1}$ is prime, $\mathfrak{\Omega}_{1} \supseteq \mathfrak{\Omega}_{2}^{-1} \mathfrak{Q}_{1} \mathfrak{Q}_{2}$. Therefore, $\mathfrak{\Omega}_{2} \mathfrak{N}_{1} \supseteq \mathfrak{\Omega}_{1} \mathfrak{N}_{2}$. If $\mathfrak{\Omega}_{1}=\mathfrak{M}_{1} \cap \cdots \cap \mathfrak{M}_{i}$, then $\mathfrak{\Omega}_{1} \nsupseteq \mathfrak{N}_{2}$. Because if $\mathfrak{N}_{1} \supseteq \mathfrak{N}_{2}$, then $\mathfrak{\Omega}_{1}=\mathfrak{N}_{2}$ by Proposition 5. Hence, we have as above that $\mathfrak{\Omega}_{2} \mathfrak{Q}_{1} \supseteq \mathfrak{\Omega}_{1} \mathfrak{N}_{2}$. Similarly we obtain $\mathfrak{\Omega}_{1} \mathfrak{Q}_{2} \supseteq \mathfrak{Q}_{2} \mathfrak{Q}_{1}$. Since the set of \mathfrak{Q}_{i} 's consists of maximal ones among inversible ideals in Λ and Λ satisfies $\left(\mathrm{A}_{2}{ }^{\prime}\right)$, we can easily show that $\mathfrak{U}=\Pi \mathfrak{N}_{i}{ }^{e}$ i for an inversible ideal \mathfrak{Y}. The uniqueness of this expression is easily proved by making use of the same argument as above.

Remark 2. We may replace ($\mathrm{A}_{2}{ }^{\prime}$) in Theorem 3 by a condition that Λ satisfies a minimal condition with respect to two-sided ideals in Λ con-
taining an inversible ideal.
Osaka City University

References

[1] K. Asano: Arithmetische Idealtheorie in nichtkommutativen Ringen, Japanese J. Math. 16 (1936).
[1'] :Theory of rings and ideals, (Japanese), Kyoritu Press, Tokyo, 1949.
[2] K. Asano and T. Ukegawa: Ergenzende Bemerkungen über die Arithmetik in Schiefringen, J. Inst. Polyt. Osaka City Univ. 3 (1952) 1-7.
[3] M. Auslander and O. Goldman: Maximal orders, Trans. Amer. Math. Soc. 97 (1960), 1-24.
[4] M. Harada: Hereditary orders, Trans. Amer. Math. Soc. 107 (1963), 272290.
[5] : Structure of hereditary orders over local rings, J. Math. Osaka City Univ. 14 (1963) 1-25.
[6] : Multiplicative ideal theory in hereditary orders, J. Math. Osaka City Univ. 14 (1963) 82-106.

[^0]: 3) ${ }_{v}^{j}$ means that the j th factor is omitted.
