<table>
<thead>
<tr>
<th>Title</th>
<th>On generalization of Asano's maximal orders in a ring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Harada, Manabu</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 1(1) P.61-P.68</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1964</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/12481</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/12481</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>
ON GENERALIZATION OF ASANO'S MAXIMAL ORDERS IN A RING

MANABU HARADA

(Received March 26, 1964)

As an extension of maximal orders in a central simple algebra Σ over K of finite dimension, the author has studied structure of hereditary orders in Σ in [4], [5]. On the other hand in [1], [1'] the theory of maximal orders in Σ was extended to the theory in any ring by Asano. Following the method given by Asano in [1], [1'] we shall generalize the notion of hereditary order in Σ.

Let S be a ring with unit element 1 and Λ a subring in S containing 1 such that S is the right and left quotient ring of Λ with respect to $\Lambda \cap S^*$, where S^* consists of all non zero-divisors in S. We call Λ an order in S. Asano showed in [1], [1'] that Λ is a maximal order which satisfies two conditions (A_1'), (A_2) (see below) if and only if the set of two-sided ideals is a group with respect to multiplication. In this case

$$(H) \text{ every two-sided ideal}^{1)} \text{ is finitely generated } \Lambda \text{-projective as a right and left } \Lambda \text{-module.}$$

Thus, we shall generalize the notion of the Asano's maximal order to orders which satisfies (H).

In this note we shall show that many results of hereditary orders in a central simple algebra in [4], [5] and [6] are valid in the above generalized orders.

We shall call briefly an order Λ in S which satisfies (H) an H-order. Furthermore, we call elements in S^* regular.

1. Definitions and lemmas

Definition 1. Let Λ be an order in S. A subset \mathcal{I} of S is called left (right) ideal of Λ if \mathcal{I} satisfies the following conditions:

1) \mathcal{I} is a left (right) Λ-module,
2) \mathcal{I} contains a regular element,

$^{1)}$ See Definition 1.
3) there exists a regular element $\lambda(\in \Lambda)$ such that $\mathfrak{A}\lambda\subseteq\Lambda$ ($\lambda\mathfrak{A}\subseteq\Lambda$).

If \mathfrak{A} is a right and left ideal of Λ, we call \mathfrak{A} a two-sided ideal of Λ.

Definition 2. Let Λ and Γ be orders in S. If there exist regular elements α, α', β and β' such that $\alpha\Lambda\alpha'\subseteq\Gamma$ and $\beta\Gamma\beta'\subseteq\Lambda$ then we call Λ and Γ are similar and we denote by $\Lambda\sim\Gamma$.

Lemma 1. ([4], Lemma 1.2). Let Λ be an order in S and \mathcal{Q}, \mathcal{Q}' left ideals of Λ. Then $\text{Hom}_\Lambda^\Lambda(\mathcal{Q}, \mathcal{Q}') = \{x \mid x \in S, \mathcal{Q}x \subseteq \mathcal{Q}'\}$.

Proof. It is clear that $\{x \mid x \in S, \mathcal{Q}x \subseteq \mathcal{Q}'\} \subseteq \text{Hom}_\Lambda^\Lambda(\mathcal{Q}, \mathcal{Q}')$. Since $\mathcal{S}=S$, we have, for any element x in S, that $x=\Sigma s_i l_i$, $s_i \in \mathcal{Q}$, $l_i \in \mathcal{Q}$. We define $f(x)=\Sigma s_i f(l_i)$ for $f \in \text{Hom}_\Lambda^\Lambda(\mathcal{Q}, \mathcal{Q}')$. Let $x=\Sigma s'_i l'_i$ be another expression, then there exists a regular element γ in Λ such that γs_i, $\gamma s'_i \in \Lambda$ for all i by [1']. Hence, $\gamma \Sigma s_i f(l_i) = \Sigma f(\gamma s_i l_i) = \Sigma f(\gamma s'_i l'_i) = \gamma \Sigma s'_i f(l'_i)$. Therefore, f is well defined and $f \in \text{Hom}_S(\mathcal{S}, \mathcal{S})$. Hence, $f(x)=xy$ for some $y \in S$. It is clear that $f^\mathcal{Q}=f$.

If $\mathcal{Q}=\mathcal{Q}'$, then $\text{Hom}_\Lambda^\Lambda(\mathcal{Q}, \mathcal{Q})$ is a similar order to Λ by [1'], Theorem 4.4 and we call it the right order of \mathcal{Q} and denote it by $\Lambda^\mathcal{Q}$. Similarly, we can define the left order of \mathcal{Q} and denote it by $\Lambda_\mathcal{Q}$.

Definition 3. Let Λ be an order in S. If there exist regular elements α, β in Λ for x in S such that $x\Lambda\alpha\subseteq\Lambda$, $\beta\Lambda x\subseteq\Lambda$, then Λ is called regular.

Lemma 2. Let Λ be a regular order in S and Γ a similar order to Λ. Then there exist regular elements α, β in Λ such that $\alpha\Gamma\subseteq\Lambda$ and $\Gamma\beta\subseteq\Lambda$, and Γ is also regular.

It is clear (cf. [1'] pp. 163-165).

Corollary. Let Λ be a regular order and Γ an order containing Λ. If Λ is a finitely generated left or right Λ-module, then $\Gamma\sim\Lambda$. Hence, Γ is a two-sided ideal of Λ and is regular.

It is clear by [1'] and [2].

Lemma 3. Let Λ be an order and \mathcal{Q} a left ideal. Then $\mathcal{Q}\mathcal{Q}^{-1} = \Lambda^\mathcal{Q}(\mathcal{Q})$ if and only if \mathcal{Q} is a finitely generated projective $\Lambda^\mathcal{Q}(\mathcal{Q})$-module, where $\mathcal{Q}^{-1} = \{x \mid x \in S, \mathcal{Q}x \subseteq \mathcal{Q}\}$.

Proof. We put $\Gamma = \Lambda^\mathcal{Q}(\mathcal{Q})$. We define $\varphi : \mathcal{Q} \otimes S, \text{Hom}_S(\mathcal{Q}, \Gamma) = \mathcal{Q} \otimes S, \mathcal{Q}^{-1} \rightarrow \text{Hom}_S(\mathcal{Q}, \mathcal{Q}) = \Lambda^\mathcal{Q}(\mathcal{Q})$ by setting $\varphi((l \otimes f)(l') = f(l')l$, where $l, l' \in \mathcal{Q}$ and $f \in \mathcal{Q}^{-1}$. Then the lemma is clear by [3], Proposition A.1.

Lemma 4. Let Λ be an order and \mathfrak{A} a two-sided ideal of Λ which is
finitely generated as left, right module. If \(\mathfrak{A} \) is a projective left \(\Lambda \)-module, then \(\Lambda'(\mathfrak{A}) \) is a right finitely generated \(\Lambda \)-projective module.

Proof. The operation of \(\Lambda \) on \(\Lambda'(\mathfrak{A}) \) from the right side coincides with the operation of \(\Lambda \) on \(\text{Hom}_\Lambda(\mathfrak{A}, \mathfrak{A}) \) with respect to the second \(\mathfrak{A} \). Since \(\mathfrak{A} \) is left \(\Lambda \)-projective, \(M = \Sigma \oplus \Delta u_i \rightarrow \mathfrak{A} \rightarrow 0 \) splits. Hence, \(\text{Hom}_\Lambda(M, \mathfrak{A}) = \Sigma \oplus \mathfrak{A} \leftarrow \text{Hom}_\Lambda(\mathfrak{A}, \mathfrak{A}) \leftarrow 0 \) splits as a usual right \(\Lambda \)-module. Since \(\mathfrak{A} \) is a finitely generated right \(\Lambda \)-module, so is \(\Lambda'(\mathfrak{A}) \).

2. \(H \)-orders

We shall quote here Asano’s axioms. Let \(\Lambda \) be an order in \(S \).

\((A_1') \) \(\Lambda \) satisfies a minimal condition for two-sided ideals in \(\Lambda \) which contains a fixed two-sided ideal.

\((A_2) \) Every prime ideal in \(\Lambda \) is a maximal two-sided ideal.

Proposition 1. If a regular order \(\Lambda \) satisfies \((A_1') \) and \((A_2) \) and \(\Lambda \) is maximal among similar orders to it, then \(\Lambda \) is an \(H \)-order.

Proof. By \([1],[1']\) we know that the set of two-sided ideals is a group with respect to multiplication. Hence, \(\Lambda \) satisfies (H) by Lemma 3.

From Lemma 2 and the proof of \([4]\), Lemma 1.2, we have

Theorem 1. Let \(\Lambda \) be a regular \(H \)-order in \(S \). If \(\Gamma \) is an order containing \(\Lambda \) which is similar to \(\Lambda \), then \(\Gamma \) is an \(H \)-order.

Proposition 2. Let \(\Lambda \) be an \(H \)-order and \(\mathfrak{A} \) a two-sided ideal of \(\Lambda \). Then \(\mathfrak{A}\Lambda^{-1} = \Lambda'(\mathfrak{A}) \) and \(\Lambda^{-1}\mathfrak{A} = \Lambda'(\mathfrak{A}) \).

Proof. It is clear from the fact \(\Lambda'(\mathfrak{A}) = \tau_{\Lambda'\mathfrak{A}}(\mathfrak{A}) = \mathfrak{A}\Lambda^{-1} \) and \(\Lambda'(\mathfrak{A}) = \tau_{\Lambda'\mathfrak{A}}(\mathfrak{A}) = \Lambda^{-1}\mathfrak{A} \) which is obtained by \([3]\), Proposition A.3.

Corollary. Let \(\Lambda \) be a regular \(H \)-order and maximal order among similar orders to \(\Lambda \). Then \(\Lambda \) is a maximal order satisfying \((A_1') \) and \((A_2) \).

Proof. Let \(\mathfrak{A} \) be a two-sided ideal in \(\Lambda \). Since \(\Lambda'(\mathfrak{A}) \sim \Lambda \), \(\Lambda'(\mathfrak{A}) = \Lambda \). Hence \(\mathfrak{A}\Lambda^{-1} = \Lambda^{-1}\mathfrak{A} = \Lambda \). Let \(\mathfrak{B} \) be any two-sided ideal of \(\Lambda \). Since \(\mathfrak{B}\lambda \mathfrak{A} \subseteq \Lambda \) for some regular element \(\lambda \) in \(\Lambda \), \(\mathfrak{B}\Lambda\Lambda \mathfrak{A} \subseteq \Lambda \). By \([1']\), Theorem 4.12 \(\Lambda\Lambda\Lambda \mathfrak{A} \) is a two-sided ideal in \(\Lambda \). Hence the set of two-sided ideals of \(\Lambda \) is a group.

We note that in the proof of \([4]\), Proposition 1.6 we have only used the facts that \(\mathfrak{A} \) is a finitely generated projective module and \(\Lambda'(\mathfrak{A}) \), \(\Lambda'(\mathfrak{A}) \subseteq S \) for a two-sided ideal \(\mathfrak{A} \) of \(\Lambda \) and that if an order \(\Gamma \supseteq \Lambda \) is a finitely generated left \(\Lambda \)-module, \(C(\Gamma) = \{ x | \in S, \Gamma x \subseteq \Lambda \} \) is a two-sided
ideal in \(\Lambda \). Hence, we have by Lemma 4.

Theorem 2. ([4], Theorem 1.7). Let \(\Lambda \) be an \(H \)-order in \(S \) and \(\Gamma \) an order containing \(\Lambda \). If \(\Gamma \) is finitely generated left \(\Lambda \)-projective, then \(C(\Gamma) \) is an idempotent two-sided ideal in \(\Lambda \) and \(\Gamma = \Lambda'C(\Gamma) \). Conversely, if \(\mathfrak{A} \) is an idempotent two-sided ideal in \(\Lambda \) then \(\Lambda'(\mathfrak{A}) \) is finitely generated left \(\Lambda \)-projective and \(\mathfrak{A} = C(\Lambda'(\mathfrak{A})) \). This correspondence is anti-lattice isomorphic.

Corollary 1. Let \(\Lambda \) be a regular \(H \)-order in \(S \). Then there exists the above one-to-one correspondence between two-sided idempotent ideals in \(\Lambda \) and orders \(\Gamma \) containing \(\Lambda \) which is finitely generated as a right or left \(\Lambda \)-module.

Proof. It is clear from Theorem 2 and Lemma 2.

Corollary 2. Let \(\Lambda \) be a regular \(H \)-order in \(S \). If there exists only a finite number of maximal orders containing \(\Lambda \) which are similar to \(\Lambda \), then \(\Lambda \) is equal to the intersection of them.

Proof. Let \(\{\Omega_i\}_{i=1}^n \) be the set of maximal orders in the corollary. Then \(\{C(\Omega_i)\}_{i=1}^n \) is the set of minimal ones among idempotent two-sided ideals by Theorem 2. We put \(\Xi = \Sigma C(\Omega_i) \). \(\Xi \) is also idempotent. Let \(\Gamma = \bigcap \Omega_i = \Lambda'(\Xi) \), and \(\Gamma' = \Lambda'(\Xi) \). Since \(C(\Omega_i) \) is minimal idempotent, \(\Lambda'(C(\Omega_i)) \) is also a maximal order. Hence, \(\{\Omega_i\}_{i=1}^n = \{\Lambda'(C(\Omega_i))\}_{i=1}^n \) and \(\Gamma = \bigcap \Omega_i = \Gamma' \) by Theorem 2. Therefore, \(\Lambda = \Gamma \) by [4], Corollary 1.9.

Proposition 3. Let \(\Lambda \) be an \(H \)-order in \(S \) and \(\mathfrak{S} \) a left ideal of \(\Lambda \) such that \(\Lambda = \Lambda'(\mathfrak{S}) \). Then the following statements are equivalent.

1) \(\Lambda'(\mathfrak{S}^{-1}) = \Lambda \).
2) \(\mathfrak{S}^{-1} = \Lambda \).
3) \(\mathfrak{S} \) is a finitely generated \(\Lambda'(\mathfrak{S}) \)-module.

Proof. 2) is equivalent to 3) by Lemma 3. It is clear that 2) implies 1).

1) \(\rightarrow \) 3). We set \(\Gamma = \Lambda'(\mathfrak{S}) \). \(\text{Hom}_\Lambda(\mathfrak{S} \otimes_\mathfrak{S} \mathfrak{S}^{-1}, \Lambda) = \text{Hom}_\mathfrak{S}(\mathfrak{S}^{-1}, \text{Hom}_\Lambda(\mathfrak{S}, \Lambda)) = \text{Hom}_\mathfrak{S}(\mathfrak{S}^{-1}, \mathfrak{S}^{-1}) = \Lambda \). From an exact sequence \(\mathfrak{S} \otimes \mathfrak{S}^{-1} \to \mathfrak{S}^{-1} \to 0 \) we obtain an exact sequence \(0 \to \text{Hom}_\Lambda(\mathfrak{S}, \mathfrak{S}^{-1}, \Lambda) \to \text{Hom}_\Lambda(\mathfrak{S} \otimes_\mathfrak{S} \mathfrak{S}^{-1}, \Lambda) = \Lambda \). Since \(\mathfrak{S} \otimes \mathfrak{S}^{-1} \subseteq \Lambda \), \(\text{Hom}_\Lambda(\mathfrak{S}, \Lambda) \supseteq \Lambda \). Therefore, \(\text{Hom}_\Lambda(\mathfrak{S}, \Lambda) = \Lambda \), which implies \(\Lambda'(\mathfrak{S}^{-1}) = \Lambda \) and \(\tau_\Lambda(\mathfrak{S}^{-1}) = \mathfrak{S}^{-1} = \mathfrak{S}^{-1} \). Hence \(\mathfrak{S}^{-1} \) is idempotent by [4], Lemma 1.5. Therefore, we obtain by Theorem 2 that \(\Lambda = D(\Lambda)^{\otimes} = D(\Lambda')(\mathfrak{S}^{-1}) = \mathfrak{S}^{-1} \).

2) \(D(\Gamma) = \{x \in S \mid x \Gamma \subseteq \Lambda\} \).
Corollary. Let Λ be an order in S. We assume the set of two-sided ideals of Λ is a group. Then every left ideal \mathfrak{G} of Λ is finitely generated Λ-projective and $\mathfrak{G}^{-1}=\Lambda$.

Proof. Λ is a maximal order among similar to Λ by [1'], Theorem 4.22. It is clear that $\Lambda \sim \Lambda'\mathfrak{G}^{-1}$. Hence, $\Lambda'\mathfrak{G}^{-1}=\Lambda$.

Proposition 4. ([6], Theorem 1.1). Let Λ be an H-order in S and \mathfrak{G} a left ideal of Λ. If $\Lambda'\mathfrak{G}=\Lambda$ and \mathfrak{G} is finitely generated Λ-projective, then $\Lambda'\mathfrak{G}$ is an H-order and \mathfrak{G} is finitely generated $\Lambda'\mathfrak{G}$-projective.

Proof. Let $\Gamma=\Lambda'\mathfrak{G}$. Since \mathfrak{G} is finitely generated Λ-projective, we have $\Gamma=\mathfrak{G}^{-1}\mathfrak{G}$ by Lemma 3, and $\tau_\Lambda^\mathfrak{G}(\mathfrak{G})=\mathfrak{G}$ by [3], Proposition A.5. Hence, $\tau_\Lambda^\mathfrak{G}(\mathfrak{G})=\mathfrak{G}^{-1}=\tau_\Lambda^\mathfrak{G}(\mathfrak{G})\mathfrak{G}^{-1}=\tau_\Lambda(\mathfrak{G})'$. We obtain $\Lambda'(\tau_\Lambda^\mathfrak{G}(\mathfrak{G}))=\Lambda$ from the facts $\Lambda'\mathfrak{G}=\Lambda$ and $\tau_\Lambda^\mathfrak{G}(\mathfrak{G})=\mathfrak{G}$. Therefore, $\mathfrak{G}^{-1}=\tau_\Lambda(\mathfrak{G})=\Lambda$ by Theorem 2. We can easily check that a correspondence $\mathfrak{A} \leftrightarrow \mathfrak{G}^{-1}\mathfrak{A}$ of two-sided ideals \mathfrak{A} of Λ and those of Γ is one-to-one and preserves projectivity and finiteness, because $\mathfrak{G}^{-1}\mathfrak{A}=\mathfrak{A}\mathfrak{G}^{-1}\mathfrak{A}$.

From the similar argument to [4], Lemma 2.1 we have

Proposition 5. ([4], Proposition 2.2). Let Λ be an H-order in S. If $S=S_1 \oplus \cdots \oplus S_n$, then $\Lambda=\Lambda_1 \oplus \cdots \oplus \Lambda_n$ and Λ_i is an H-order in S_i, where the S_i's are subring of S.

3. Inversible ideals in an H-order

Finally we shall consider two-sided ideals \mathfrak{A} in Λ such that $\mathfrak{A}^{-1}=\mathfrak{A}^{-1}\mathfrak{A}=\Lambda$. We call those ideals inversible ideals of Λ.

Proposition 6. Let Λ be a regular H-order in S satisfying $(A_\mathfrak{A})$. If every maximal two-sided ideal in Λ is inversible, then Λ is a maximal order.

Proof. We assume that there exists an ideal in Λ which is not inversible. Let C be a maximal one among ideals in Λ which are not inversible, and N be a maximal two-sided ideal containing C. Since Λ satisfies $(A_\mathfrak{A})$, $C \subseteq N^n$ for some n. Then $C \subseteq N^{-1}C \subseteq \Lambda$, because if $NC=C$, $C=N^{-1}C \subseteq N^n$. Thus, $N^{-1}C$ must be inversible, which is a contradiction.

Lemma 5. Let Λ be an H-order in S and \mathfrak{M} a maximal two-sided ideal. Then \mathfrak{M} is either inversible in Λ or idempotent.

Proof. Since $C(\Lambda'\mathfrak{M}) \subseteq \mathfrak{M}$, $C(\Lambda'\mathfrak{M})=\Lambda$ or $=\mathfrak{M}$. If $C(\Lambda'\mathfrak{M})=\Lambda$, then $\Lambda=\Lambda'\mathfrak{M}$. Hence, \mathfrak{M} is not idempotent by Theorem 2. Therefore, $D(\Lambda'\mathfrak{M})=\Lambda$, which implies $\Lambda'\mathfrak{M}=\Lambda$. Hence, \mathfrak{M} is inversible by Pro-
position 2. If $C(\Lambda'(M)) = M$ then M is idempotent by Theorem 2.

REMARK 1. Let Ω be a maximal order among similar orders to Λ and satisfy (A') and (A_3). If Λ is an H-order in Ω which is similar to Λ, then the above idempotent and maximal two-sided ideals divide a unique maximal one among two-sided ideals of Ω in Λ by [2], Lemma 1.

Lemma 6. Let Λ be a regular H-order in S and \mathcal{M} a maximal and idempotent two-sided ideal in Λ. Then $C(\Lambda'(\mathcal{M}))$ is also a maximal and idempotent two-sided ideal in Λ.

Proof. We set $\Gamma_1 = \Lambda'(\mathcal{M})$ and $\Gamma_2 = \Lambda'(M)$. From Corollary 1 to Theorem 2 we know that $C(\Gamma_2) = C(\Gamma_1)$ is idempotent and that there are no orders between Γ_1 and Λ which is a finitely generated Λ-module. Hence, C is a maximal one among idempotent two-sided ideal. We assume that C is not a maximal ideal. Let $\mathcal{N} \supseteq C$ be a maximal two-sided ideal in Λ. Then \mathcal{N} is invertible by the above observation and Lemma 5. If $\mathcal{N}^{-1} \subseteq C$, then $\mathcal{N}^{-1} \subseteq \Gamma_1$ by Theorem 2. Hence $\mathcal{N} \subseteq \mathcal{M}_1 \subseteq \mathcal{M}_{\Gamma_2} = \mathcal{M}$. Therefore, $\mathcal{M} = \mathcal{M} \mathcal{N} \mathcal{M} \subseteq \mathcal{N}$, which implies $\mathcal{M} = \mathcal{N}$. It is a contradiction. Thus, we know $\mathcal{N}^{-1} \subseteq C \subseteq \Lambda$, and $\Lambda'(\mathcal{N}^{-1}C) = \Lambda'(\mathcal{N}^{-1}C) = \Lambda$. Therefore, $\mathcal{N}^{-1}C$ is invertible in Λ and hence, so is C which is a contradiction.

By using the same argument as [4], Theorem 5.3 we shall prove

Proposition 7. Let Λ be a regular H-order in S and $\{\mathcal{M}_i\}_{i=1}^n$ a set of maximal and idempotent two-sided ideals in Λ such that $\Lambda'/(\mathcal{M}_i) = \Lambda'/(\mathcal{M}_{i+1})$ for all i. If all the \mathcal{M}_i's are distinct then $\Lambda'/(\mathcal{M}_i) = \Lambda'(\mathcal{M}_i)$, $\Lambda'/(\mathcal{M}_i) = \Lambda'(\mathcal{M}_i)$ for $\mathcal{M}_i = \mathcal{M}_1 \wedge \mathcal{M}_2 \wedge \cdots \wedge \mathcal{M}_i$. If $\mathcal{M}_i = \mathcal{M}_n$ for some $n > 1$, then $\mathcal{N}_n = \mathcal{M}_1 \wedge \cdots \wedge \mathcal{M}_{n-1}$ is an invertible two-sided ideal. Furthermore, if \mathcal{N} is an invertible two-sided ideal in Λ, which is contained in \mathcal{M}_i for some i, then $\mathcal{N} \subseteq \mathcal{M}_1 \wedge \cdots \wedge \mathcal{M}_r$ for any $r > i$.

Proof. We denote $\Lambda'(\mathcal{M}_i)$ and $\Lambda'(\mathcal{M}_i)$ by Γ_i and Γ_{i+1}. Let $\mathcal{N} = \mathcal{M}_1 \wedge \cdots \wedge \mathcal{M}_i$. We know from argument of [4], Corollary 1.9 that $\mathcal{M}_i \subseteq \Gamma_i$, $\Gamma_{i+1} \subseteq \Gamma_i$. Since \mathcal{M}_i is maximal, $\mathcal{M}_1 = \Sigma \mathcal{M}_{\rho_1} \mathcal{M}_{\rho_2} \cdots \mathcal{M}_{\rho_1}$ where Σ runs through all elements of symmetric group S_i.

\[(*) \quad \Lambda \supseteq \mathcal{M}_{\rho_{i-1}} \Gamma_j \supseteq \mathcal{M}_{\rho_i} \mathcal{M}_{\rho_{i+1}} \cdots \mathcal{M}_{\rho_{i-j+1}} \mathcal{M}_{\rho_i} = \mathcal{M}_{\rho_{i-j+1}} \mathcal{M}_{\rho_i} \quad \text{if } j + 1.
\]

Hence $\Gamma_j \subseteq \text{Hom}(\mathcal{N}, \Lambda)$ and $\tau_j(\mathcal{N}) \supseteq \mathcal{M}_{\rho_{i-1}} \supseteq \mathcal{M}_{\rho_i} \cdots \mathcal{M}_{\rho_{i-j+1}} \mathcal{M}_{\rho_i} \supseteq \mathcal{M}_{\rho_{i-j+1}}$ for $j + 1$. Therefore, if $\mathcal{M}_n = \mathcal{M}_1$, then $\Lambda/\mathcal{N} = \Lambda/\mathcal{M}_i \cdots \Lambda/\mathcal{M}_n = \tau(\mathcal{N})/\mathcal{N} = \Lambda/\mathcal{M}_i \cdots \Lambda/\mathcal{M}_{n-1} = \Lambda/\mathcal{N}$, and hence $\tau(\mathcal{N}) = \Lambda$. Similarly, we obtain $\tau(\mathcal{N}) = \Lambda$. Therefore, \mathcal{N} is invertible. Let \mathcal{I} be the ideal in the

3) j means that the jth factor is omitted.
proposition. We may assume \(A \subseteq M_1 \). Hence \(\Gamma_2 M_1 \subseteq \Lambda^*(A) = \Lambda \), which implies \(A \subseteq C(\Gamma_2) = M_2 \). Therefore, \(A \subseteq \bigcap_{i=1}^{n} M_i \).

Finally we assume that all the \(M_i \)'s are distinct. From the fact (*) we obtain \(\tau_1(A) = M_i \). If \(\tau_1(A) = \Lambda \), then \(\tau_1(A) = \Lambda \). By replacing \(A \) by \(R \) in the above argument, we obtain \(\bigcap_{i=1}^{n} M_i = R \subseteq D(\Gamma_1) \). On the other hand, \(D(\Gamma_1) \) is a maximal two-sided ideal by Lemma 6. Hence, \(M_i = D(\Gamma_1) \) for some \(i \). Then \(\Lambda^*(M_i) = \Gamma_i = \Gamma_{i+1} \), and hence, \(M_i = M_{i+1} \), which is a contradiction. Therefore, \(\tau_1(A) = M_i \). Thus, we obtain \(\Lambda'(A) = \Lambda'(M_i) \) by the similar argument to \([4], \text{Proposition 1.6, 2}\). Similarly, we have \(\Lambda'(A) = \Lambda'(M_i) \).

Lemma 7. Let \(A \) be a regular \(H \)-order in \(S \) which satisfies \((A_*) \). Then every inversible two-sided ideal in \(A \) is contained in one of the following ideals: 1) maximal non-idempotent two-sided ideals, 2) \(R = M_1 \cap M_2 \cap M_n \), where \(M_i \)'s are as in Proposition 7 and \(\Lambda^*(M_i) = \Lambda'(M_i) \).

Proof. Let \(A \) be an inversible ideal in \(A \) and \(R \) a maximal ideal containing \(A \). If \(M_n \) is not idempotent, then \(M_n = C(\Lambda'(M_i)) \), \(M_2 = C(\Lambda'(M_i)) \), ... are maximal. By Proposition 5 we know \(A \subseteq M_i \cap M_2 \cap M_n \). Since \(A \) satisfies \((A_*) \), we can find \(n \) such that \(M_n = M_{n'} \) for some \(n \leq n' \).

By \(\Omega \) we shall denote either the maximal and non-idempotent ideals or \(R \) as in the Lemma 7, 2).

Theorem 3. ([4], Theorem 7.5). Let \(A \) be a regular \(H \)-order in \(S \) which satisfies \((A_*) \). Then the set of inversible two-sided ideals in \(A \) is uniquely written as a product of maximal ones among inversible ideals in \(A \), which are commutative.

Proof. First we shall show that \(\Omega_i \cap \Omega_j = \Omega_i \cap \Omega_j \). We may assume \(\Omega_i \subseteq \Omega_j \). \(\Omega_i \cap \Omega_j = \Omega_i \cap \Omega_j \cap \Omega_i \cap \Omega_j \). It is clear that \(\Omega_i : \Omega_j \Omega_j \) is an inversible ideal in \(A \). If \(\Omega_i \) is maximal, then \(\Omega_i \cap \Omega_j \cap \Omega_i \cap \Omega_j \subseteq \Omega_1 \), then \(M_j = \Omega_1 \). However \(M_j \) is not inversible, which is a contradiction. Since \(\Omega_i \) is prime, \(\Omega_i \subseteq \Omega_i \cap \Omega_i \cap \Omega_i \cap \Omega_j \). Therefore, \(\Omega_i \cap \Omega_i \subseteq \Omega_i \cap \Omega_i \). If \(\Omega_i = M_i \cap \cdots \cap M_i \), then \(\Omega_i \subseteq \Omega_1 \). Because if \(\Omega_i \subseteq \Omega_1 \), then \(\Omega_i = \Omega_1 \) by Proposition 5. Hence, we have as above that \(\Omega_i : \Omega_i \cap \Omega_i \). Similarly we obtain \(\Omega_i : \Omega_i \subseteq \Omega_i : \Omega_i \). Since the set of \(\Omega_i \)'s consists of maximal ones among inversible ideals in \(A \), which satisfies \((A_*) \), we can easily show that \(A = \pi \Omega_i \) for an inversible ideal \(A \). The uniqueness of this expression is easily proved by making use of the same argument as above.

Remark 2. We may replace \((A_*) \) in Theorem 3 by a condition that \(A \) satisfies a minimal condition with respect to two-sided ideals in \(A \). con-
taining an inversible ideal.

OSAKA CITY UNIVERSITY

References

