

Title	On generalization of Asano's maximal orders in a ring
Author(s)	Harada, Manabu
Citation	Osaka Journal of Mathematics. 1964, 1(1), p. 61-68
Version Type	VoR
URL	https://doi.org/10.18910/12481
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Harada, M.
Osaka J. Math.
1 (1964), 61-68

ON GENERALIZATION OF ASANO'S MAXIMAL ORDERS IN A RING

MANABU HARADA

(Received March 26, 1964)

As an extension of maximal orders in a central simple algebra Σ over K of finite dimension, the arthor has studied structure of hereditary orders in Σ in [4], [5]. On the other hand in [1], [1'] the theory of maximal orders in Σ was extended to the theory in any ring by Asano. Following the method given by Asano in [1], [1'] we shall generalize the notion of hereditary order in Σ .

Let S be a ring with unit element 1 and Λ a subring in S containing 1 such that S is the right and left quotient ring of Λ with respect to $\Lambda \cap S^*$, where S^* consists of all non zero-divisors in S . We call Λ an order in S . Asano showed in [1], [1'] that Λ is a maximal order which satisfies two conditions (A_2) , (A_3) (see below) if and only if the set of two-sided ideals is a group with respect to multiplication. In this case

(H) *every two-sided ideal¹⁾ is finitely generated Λ -projective as a right and left Λ -module.*

Thus, we shall generalize the notion of the Asano's maximal order to orders which satisfies (H).

In this note we shall show that many results of hereditary orders in a central simple algebra in [4], [5] and [6] are valid in the above generalized orders.

We shall call briefly an order Λ in S which satisfies (H) an H -order. Furthermore, we call elements in S^* *regular*.

1. Definitions and lemmas

DEFINITION 1. Let Λ be an order in S . A subset \mathfrak{A} of S is called *left (right) ideal* of Λ if \mathfrak{A} satisfies the following conditions:

- 1) \mathfrak{A} is a left (right) Λ -module,
- 2) \mathfrak{A} contains a regular element,

1) See Definition 1.

3) there exists a regular element $\lambda(\in \Lambda)$ such that $\mathfrak{A}\lambda \subseteq \Lambda$ ($\lambda\mathfrak{A} \subseteq \Lambda$). If \mathfrak{A} is a right and left ideal of Λ , we call \mathfrak{A} a *two-sided ideal* of Λ .

DEFINITION 2. Let Λ and Γ be orders in S . If there exist regular elements α, α', β and β' such that $\alpha\Lambda\alpha' \subseteq \Gamma$ and $\beta\Gamma\beta' \subseteq \Lambda$ then we call Λ and Γ are *similar* and we denote by $\Lambda \sim \Gamma$.

Lemma 1. ([4], Lemma 1.2). *Let Λ be an order in S and $\mathfrak{L}, \mathfrak{L}'$ left ideals of Λ . Then $\text{Hom}_{\Lambda}^l(\mathfrak{L}, \mathfrak{L}') = \{x \in S, \mathfrak{L}x \subseteq \mathfrak{L}'\}$.*

Proof. It is clear that $\{x \in S, \mathfrak{L}x \subseteq \mathfrak{L}'\} \subseteq \text{Hom}_{\Lambda}^l(\mathfrak{L}, \mathfrak{L}')$. Since $S\mathfrak{L} = S$, we have, for any element x in S , that $x = \sum s_i l_i$, $s_i \in S$, $l_i \in \mathfrak{L}$. We define $\bar{f}(x) = \sum s_i f(l_i)$ for $f \in \text{Hom}_{\Lambda}^l(\mathfrak{L}, \mathfrak{L}')$. Let $x = \sum s'_i l'_i$ be another expression, then there exists a regular element γ in Λ such that $\gamma s_i, \gamma s'_i \in \Lambda$ for all i by [1']. Hence, $\gamma \sum s_i f(l_i) = \sum f(\gamma s_i l_i) = \sum \bar{f}(\gamma s'_i l'_i) = \gamma \sum s'_i f(l'_i)$. Therefore, \bar{f} is well defined and $\bar{f} \in \text{Hom}_S(S\mathfrak{L}, S\mathfrak{L}') = S$. Hence, $\bar{f}(x) = xy$ for some $y \in S$. It is clear that $\bar{f}|_{\mathfrak{L}} = f$.

If $\mathfrak{L} = \mathfrak{L}'$, then $\text{Hom}_{\Lambda}^l(\mathfrak{L}, \mathfrak{L})$ is a similar order to Λ by [1'], Theorem 4.4 and we call it the *right order* of \mathfrak{L} and denote it by $\Lambda^r(\mathfrak{L})$. Similarly, we can define the *left order* of \mathfrak{L} and denote it by $\Lambda^l(\mathfrak{L})$.

DEFINITION 3. Let Λ be an order in S . If there exist regular elements α, β in Λ for x in S such that $x\Lambda\alpha \subseteq \Lambda$, $\beta\Lambda x \subseteq \Lambda$, then Λ is called *regular*.

Lemma 2. *Let Λ be a regular order in S and Γ a similar order to Λ . Then there exist regular elements α, β in Λ such that $\alpha\Gamma \subseteq \Lambda$ and $\Gamma\beta \subseteq \Lambda$, and Γ is also regular.*

It is clear (cf. [1'] pp. 163–165).

Corollary. *Let Λ be a regular order and Γ an order containing Λ . If Λ is a finitely generated left or right Λ -module, then $\Gamma \sim \Lambda$. Hence, Γ is a two-sided ideal of Λ and is regular.*

It is clear by [1'] and [2].

Lemma 3. *Let Λ be an order and \mathfrak{L} a left ideal. Then $\mathfrak{L}\mathfrak{L}^{-1} = \Lambda^l(\mathfrak{L})$ if and only if \mathfrak{L} is a finitely generated projective $\Lambda^r(\mathfrak{L})$ -module, where $\mathfrak{L}^{-1} = \{x \in S, \mathfrak{L}x \subseteq \mathfrak{L}\}$.*

Proof. We put $\Gamma = \Lambda^r(\mathfrak{L})$. We define $\varphi: \mathfrak{L} \otimes_{\Gamma} \text{Hom}(\mathfrak{L}, \Gamma) = \mathfrak{L} \otimes_{\Gamma} \mathfrak{L}^{-1} \rightarrow \text{Hom}_{\Gamma}(\mathfrak{L}, \mathfrak{L}) = \Lambda^l(\mathfrak{L})$ by setting $\varphi(l \otimes f)(l') = f(l')l$, where $l, l' \in \mathfrak{L}$ and $f \in \mathfrak{L}^{-1}$. Then the lemma is clear by [3], Proposition A.1.

Lemma 4. *Let Λ be an order and \mathfrak{A} a two-sided ideal of Λ which is*

finitely generated as left, right module. If \mathfrak{A} is a projective left Λ -module, then $\Lambda^r(\mathfrak{A})$ is a right finitely generated Λ -projective module.

Proof. The operation of Λ on $\Lambda^r(\mathfrak{A})$ from the right side coincides with the operation of Λ on $\text{Hom}_\Lambda^r(\mathfrak{A}, \mathfrak{A})$ with respect to the second \mathfrak{A} . Since \mathfrak{A} is left Λ -projective, $M = \Sigma \oplus \Lambda u_i \rightarrow \mathfrak{A} \rightarrow 0$ splits. Hence, $\text{Hom}_\Lambda(M, \mathfrak{A}) = \Sigma \oplus \mathfrak{A} \leftarrow \text{Hom}_\Lambda^r(\mathfrak{A}, \mathfrak{A}) \leftarrow 0$ splits as a usual right Λ -module. Since \mathfrak{A} is a finitely generated right Λ -module, so is $\Lambda^r(\mathfrak{A})$.

2. H -orders

We shall quote here Asano's axioms. Let Λ be an order in S .

(A₂') Λ satisfies a minimal condition for two-sided ideals in Λ which contains a fixed two-sided ideal.

(A₃) Every prime ideal in Λ is a maximal two-sided ideal.

Proposition 1. If a regular order Λ satisfies (A₂') and (A₃) and Λ is maximal among similar orders to it, then Λ is an H -order.

Proof. By [1], [1'] we know that the set of two-sided ideals is a group with respect to multiplication. Hence, Λ satisfies (H) by Lemma 3.

From Lemma 2 and the proof of [4], Lemma 1.2, we have

Theorem 1. Let Λ be a regular H -order in S . If Γ is an order containing Λ which is similar to Λ , then Γ is an H -order.

Proposition 2. Let Λ be an H -order and \mathfrak{A} a two-sided ideal of Λ . Then $\mathfrak{A}\mathfrak{A}^{-1} = \Lambda^l(\mathfrak{A})$ and $\mathfrak{A}^{-1}\mathfrak{A} = \Lambda^r(\mathfrak{A})$.

Proof. It is clear from the fact $\Lambda^l(\mathfrak{A}) = \tau_{\Lambda^l(\mathfrak{A})}(\mathfrak{A}) = \mathfrak{A}\mathfrak{A}^{-1}$ and $\Lambda^r(\mathfrak{A}) = \tau_{\Lambda^r(\mathfrak{A})}(\mathfrak{A}) = \mathfrak{A}^{-1}\mathfrak{A}$ which is obtained by [3], Proposition A. 3.

Corollary. Let Λ be a regular H -order and maximal order among similar orders to Λ . Then Λ is a maximal order satisfying (A₂') and (A₃).

Proof. Let \mathfrak{A} be a two-sided ideal in Λ . Since $\Lambda^l(\mathfrak{A}) \sim \Lambda$, $\Lambda^l(\mathfrak{A}) = \Lambda$. Hence $\mathfrak{A}\mathfrak{A}^{-1} = \mathfrak{A}^{-1}\mathfrak{A} = \Lambda$. Let \mathfrak{B} be any two-sided ideal of Λ . Since $\mathfrak{B}\Lambda \subseteq \Lambda$ for some regular element λ in Λ , $\mathfrak{B}\Lambda\lambda\Lambda \subseteq \Lambda$. By [1'], Theorem 4.12 $\Lambda\Lambda\lambda\Lambda$ is a two-sided ideal in Λ . Hence the set of two-sided ideals of Λ is a group.

We note that in the proof of [4], Proposition 1.6 we have only used the facts that \mathfrak{A} is a finitely generated projective module and $\Lambda^l(\mathfrak{A})$, $\Lambda^r(\mathfrak{A}) \subseteq S$ for a two-sided ideal \mathfrak{A} of Λ and that if an order $\Gamma \supseteq \Lambda$ is a finitely generated left Λ -module, $C(\Gamma) = \{x \in S \mid \Gamma x \subseteq \Lambda\}$ is a two-sided

ideal in Λ . Hence, we have by Lemma 4

Theorem 2. ([4], Theorem 1.7). *Let Λ be an H -order in S and Γ an order containing Λ . If Γ is finitely generated left Λ -projective, then $C(\Gamma)$ is an idempotent two-sided ideal in Λ and $\Gamma=\Lambda'(C(\Gamma))$. Conversely, if \mathfrak{A} is an idempotent two-sided ideal in Λ then $\Lambda'(\mathfrak{A})$ is finitely generated left Λ -projective and $\mathfrak{A}=C(\Lambda'(\mathfrak{A}))$. This correspondence is anti-lattice isomorphic.*

Corollary 1. *Let Λ be a regular H -order in S . Then there exists the above one-to-one correspondence between two-sided idempotent ideals in Λ and orders Γ containing Λ which is finitely generated as a right or left Λ -module.*

Proof. It is clear from Theorem 2 and Lemma 2.

Corollary 2. *Let Λ be a regular H -order in S . If there exists only a finite number of maximal orders containing Λ which are similar to Λ , then Λ is equal to the intersection of them.*

Proof. Let $\{\Omega_i\}_{i=1}^n$ be the set of maximal orders in the corollary. Then $\{C(\Omega_i)\}_{i=1}^n$ is the set of minimal ones among idempotent two-sided ideals by Theorem 2. We put $\mathfrak{D}=\Sigma C(\Omega_i)$. \mathfrak{D} is also idempotent. Let $\Gamma=\cap \Omega_i=\Lambda'(\mathfrak{D})$, and $\Gamma'=\Lambda'(\mathfrak{D})$. Since $C(\Omega_i)$ is minimal idempotent, $\Lambda'(\mathfrak{D})$ is also a maximal order. Hence, $\{\Omega_i\}_{i=1}^n=\{\Lambda'(\mathfrak{D})\}_{i=1}^n$ and $\Gamma=\cap \Omega_i=\Gamma'$ by Theorem 2. Therefore, $\Lambda=\Gamma$ by [4], Corollary 1.9.

Proposition 3. *Let Λ be an H -order in S and \mathfrak{L} a left ideal of Λ such that $\Lambda=\Lambda'(\mathfrak{L})$. Then the following statements are equivalent.*

- 1) $\Lambda'(\mathfrak{L}^{-1})=\Lambda$.
- 2) $\mathfrak{L}\mathfrak{L}^{-1}=\Lambda$.
- 3) \mathfrak{L} is a finitely generated $\Lambda'(\mathfrak{L})$ -module.

Proof. 2) is equivalent to 3) by Lemma 3. It is clear that 2) implies 1).

1) \rightarrow 3). We set $\Gamma=\Lambda'(\mathfrak{L})$. $\text{Hom}_{\Lambda}^l(\mathfrak{L} \otimes_{\Gamma} \mathfrak{L}^{-1}, \Lambda) = \text{Hom}_{\Gamma}^l(\mathfrak{L}^{-1}, \text{Hom}_{\Lambda}^l(\mathfrak{L}, \Lambda)) = \text{Hom}_{\Gamma}^l(\mathfrak{L}^{-1}, \mathfrak{L}^{-1}) = \Lambda$. From an exact sequence $\mathfrak{L} \otimes \mathfrak{L}^{-1} \rightarrow \mathfrak{L}\mathfrak{L}^{-1} \rightarrow 0$ we obtain an exact sequence $0 \rightarrow \text{Hom}_{\Lambda}^l(\mathfrak{L}\mathfrak{L}^{-1}, \Lambda) \rightarrow \text{Hom}_{\Lambda}^l(\mathfrak{L} \otimes_{\Gamma} \mathfrak{L}^{-1}, \Lambda) = \Lambda$. Since $\mathfrak{L}\mathfrak{L}^{-1} \subseteq \Lambda$, $\text{Hom}_{\Lambda}^l(\mathfrak{L}\mathfrak{L}^{-1}, \Lambda) \supseteq \Lambda$. Therefore, $\text{Hom}_{\Lambda}^l(\mathfrak{L}\mathfrak{L}^{-1}, \Lambda) = \Lambda$, which implies $\Lambda'(\mathfrak{L}\mathfrak{L}^{-1}) = \Lambda$ and $\tau_{\Lambda}^l(\mathfrak{L}\mathfrak{L}^{-1}) = \mathfrak{L}\mathfrak{L}^{-1}\Lambda = \mathfrak{L}\mathfrak{L}^{-1}$. Hence $\mathfrak{L}\mathfrak{L}^{-1}$ is idempotent by [4], Lemma 1.5. Therefore, we obtain by Theorem 2 that $\Lambda=D(\Lambda)^2 = D(\Lambda'(\mathfrak{L}\mathfrak{L}^{-1})) = \mathfrak{L}\mathfrak{L}^{-1}$.

2) $D(\Gamma)=\{x \mid x \in S, x\Gamma \subseteq \Lambda\}$.

Corollary. *Let Λ be an order in S . We assume the set of two-sided ideals of Λ is a group. Then every left ideal \mathfrak{L} of Λ is finitely generated Λ -projective and $\mathfrak{L}\mathfrak{L}^{-1}=\Lambda$.*

Proof. Λ is a maximal order among similar to Λ by [1'], Theorem 4.22. It is clear that $\Lambda \sim \Lambda'(\mathfrak{L}^{-1})$. Hence, $\Lambda'(\mathfrak{L}^{-1})=\Lambda$.

Proposition 4. ([6], Theorem 1.1). *Let Λ be an H -order in S and \mathfrak{L} a left ideal of Λ . If $\Lambda'(\mathfrak{L})=\Lambda$ and \mathfrak{L} is finitely generated Λ -projective, then $\Lambda'(\mathfrak{L})$ is an H -order and \mathfrak{L} is finitely generated $\Lambda'(\mathfrak{L})$ -projective.*

Proof. Let $\Gamma=\Lambda'(\mathfrak{L})$. Since \mathfrak{L} is finitely generated Λ -projective, we have $\Gamma=\mathfrak{L}^{-1}\mathfrak{L}$ by Lemma 3, and $\tau_{\Lambda}^l(\mathfrak{L})\mathfrak{L}=\mathfrak{L}$ by [3], Proposition A.5. Hence, $\tau_{\Lambda}^l(\mathfrak{L})=\mathfrak{L}\mathfrak{L}^{-1}=\tau_{\Lambda}^l(\mathfrak{L})\mathfrak{L}\mathfrak{L}^{-1}=\tau(\mathfrak{L})^2$. We obtain $\Lambda'(\tau_{\Lambda}^l(\mathfrak{L}))=\Lambda$ from the facts $\Lambda'(\mathfrak{L})=\Lambda$ and $\tau_{\Lambda}^l(\mathfrak{L})\mathfrak{L}=\mathfrak{L}$. Therefore, $\mathfrak{L}\mathfrak{L}^{-1}=\tau_{\Lambda}(\mathfrak{L})=\Lambda$ by Theorem 2. We can easily check that a correspondence $\mathfrak{A} \leftrightarrow \mathfrak{L}^{-1}\mathfrak{A}\mathfrak{L}$ of two-sided ideals \mathfrak{A} of Λ and those of Γ is one-to-one and preserves projectivity and finiteness, because $\mathfrak{L}^{-1}\mathfrak{A}\mathfrak{L} \approx \mathfrak{L}^{-1} \otimes \mathfrak{A} \otimes \mathfrak{L}$.

From the similar regument to [4], Lemma 2.1 we have

Proposition 5. ([4], Proposition 2.2). *Let Λ be an H -order in S . If $S=S_1 \oplus \cdots \oplus S_n$, then $\Lambda=\Lambda_1 \oplus \cdots \oplus \Lambda_n$ and Λ_i is an H -order in S_i , where the S_i 's are subring of S .*

3. Inversible ideals in an H -order

Finally we shall consider two-sided ideals \mathfrak{A} in Λ such that $\mathfrak{A}\mathfrak{A}^{-1}=\mathfrak{A}^{-1}\mathfrak{A}=\Lambda$. We call those ideals *inversible ideals* of Λ .

Proposition 6. *Let Λ be a regular H -order in S satisfying (A_2') . If every maximal two-sided ideal in Λ is *inversible*, then Λ is a maximal order.*

Proof. We assume that there exists an ideal in Λ which is not *inversible*. Let \mathfrak{C} be a maximal one among ideals in Λ which are not *inversible*, and \mathfrak{N} be a maximal two-sided ideal containing \mathfrak{C} . Since Λ satisfies (A_2') , $\mathfrak{C} \not\subseteq \mathfrak{N}^n$ for some n . Then $\mathfrak{C} \not\subseteq \mathfrak{N}^{-1}\mathfrak{C} \subseteq \Lambda$, because if $\mathfrak{N}\mathfrak{C}=\mathfrak{C}$, $\mathfrak{C}=\mathfrak{N}^n\mathfrak{C} \subseteq \mathfrak{N}^n$. Thus, $\mathfrak{N}^{-1}\mathfrak{C}$ must be *inversible*, which is a contradiction.

Lemma 5. *Let Λ be an H -order in S and \mathfrak{M} a maximal two-sided ideal. Then \mathfrak{M} is either *inversible* in Λ or *idempotent*.*

Proof. Since $\mathfrak{C}(\Lambda'(\mathfrak{M})) \supseteq \mathfrak{M}$, $C(\Lambda'(\mathfrak{M}))=\Lambda$ or $=\mathfrak{M}$. If $C(\Lambda'(\mathfrak{M}))=\Lambda$, then $\Lambda=\Lambda'(\mathfrak{M})$. Hence, \mathfrak{M} is not *idempotent* by Theorem 2. Therefore, $D(\Lambda'(\mathfrak{M}))=\Lambda$, which implies $\Lambda'(\mathfrak{M})=\Lambda$. Hence, \mathfrak{M} is *inversible* by Pro-

position 2. If $C(\Lambda'(\mathfrak{M})) = \mathfrak{M}$ then \mathfrak{M} is idempotent by Theorem 2.

REMARK 1. Let Ω be a maximal order among similar orders to Λ and satisfy (A_2') and (A_3) . If Λ is an H -order in Ω which is similar to Λ , then the above idempotent and maximal two-sided ideals divide a unique maximal one among two-sided ideals of Ω in Λ by [2], Lemma 1.

Lemma 6. *Let Λ be a regular H -order in S and \mathfrak{M} a maximal and idempotent two-sided ideal in Λ . Then $C(\Lambda'(\mathfrak{M}))$ is also a maximal and idempotent two-sided ideal in Λ .*

Proof. We set $\Gamma_1 = \Lambda'(\mathfrak{M})$ and $\Gamma_2 = \Lambda'(\mathfrak{M})$. From Corollary 1 to Theorem 2 we know that $\mathfrak{C} = C(\Gamma_2)$ is idempotent and that there are no orders between Γ_2 and Λ which is a finitely generated Λ -module. Hence, \mathfrak{C} is a maximal one among idempotent two-sided ideal. We assume that \mathfrak{C} is not a maximal ideal. Let $\mathfrak{N} \supsetneq \mathfrak{C}$ be a maximal two-sided ideal in Λ . Then \mathfrak{N} is invertible by the above observation and Lemma 5. If $\mathfrak{N}^{-1}\mathfrak{C} = \mathfrak{C}$, then $\mathfrak{N}^{-1} \subseteq \Gamma_2$ by Theorem 2. Hence $\mathfrak{M} \subseteq \mathfrak{M}\mathfrak{N}^{-1} \subseteq \mathfrak{M}\Gamma_2 = \mathfrak{M}$. Therefore, $\mathfrak{M} = \mathfrak{M}\mathfrak{N} \subseteq \mathfrak{N}$, which implies $\mathfrak{M} = \mathfrak{N}$. It is a contradiction. Thus, we know $\mathfrak{C} \subsetneq \mathfrak{N}^{-1}\mathfrak{C} \subsetneq \Lambda$, and $\Lambda'(\mathfrak{N}^{-1}\mathfrak{C}) = \Lambda'(\mathfrak{N}^{-1}\mathfrak{C}) = \Lambda$. Therefore, $\mathfrak{N}^{-1}\mathfrak{C}$ is invertible in Λ and hence, so is \mathfrak{C} which is a contradiction.

By using the same argument as [4], Theorem 5.3 we shall prove

Proposition 7. *Let Λ be a regular H -order in S and $\{\mathfrak{M}_i\}_{i=1}^n$ a set of maximal and idempotent two-sided ideals in Λ such that $\Lambda'(\mathfrak{M}_i) = \Lambda'(\mathfrak{M}_{i+1})$ for all i . If all the \mathfrak{M}_i 's are distinct then $\Lambda'(\mathfrak{M}_i) = \Lambda'(\mathfrak{M}_1)$, $\Lambda'(\mathfrak{M}_i) = \Lambda'(\mathfrak{M}_i)$ for $\mathfrak{M}_i = \mathfrak{M}_1 \cap \mathfrak{M}_2 \cap \dots \cap \mathfrak{M}_i$. If $\mathfrak{M}_1 = \mathfrak{M}_n$ for some $n > 1$, then $\mathfrak{N}_{n-1} = \mathfrak{M}_1 \cap \dots \cap \mathfrak{M}_{n-1}$ is an invertible two-sided ideal. Furthermore, if \mathfrak{A} is an invertible two-sided ideal in Λ , which is contained in \mathfrak{M}_i for some i , then $\mathfrak{A} \subseteq \mathfrak{M}_i \cap \dots \cap \mathfrak{M}_r$ for any $r > i$.*

Proof. We denote $\Lambda'(\mathfrak{M}_i)$ and $\Lambda'(\mathfrak{M}_i)$ by Γ_i and Γ_{i+1} . Let $\mathfrak{N} = \mathfrak{M}_1 \cap \dots \cap \mathfrak{M}_i$. We know from argument of [4], Corollary 1.9 that $\mathfrak{M}_i\Gamma_i = \Gamma_i$, $\Gamma_{i+1}\mathfrak{M}_i = \Gamma_{i+1}$. Since \mathfrak{M}_i is maximal, $\mathfrak{N} = \Sigma \mathfrak{M}_{p_1} \mathfrak{M}_{p_2} \dots \mathfrak{M}_{p_i}$ where Σ runs through all elements of symmetric group S_i .

$$(*) \quad \Lambda \supseteq \mathfrak{M}_{j-1} \Gamma_j \supseteq \mathfrak{N} \Gamma_j \supseteq \mathfrak{M}_{p_1} \mathfrak{M}_{p_2} \dots \mathfrak{M}_{j-1} \mathfrak{M}_j \Gamma_j = \mathfrak{M}_{p_1} \dots \mathfrak{M}_{p_{i-2}} \mathfrak{M}_{j-1} \quad \text{if } j \neq 1.$$

Hence $\Gamma_j \subseteq \text{Hom}_\Lambda^\iota(\mathfrak{N}, \Lambda)$ and $\tau_\Lambda^\iota(\mathfrak{N}) \supseteq \mathfrak{N} \Gamma_j \supseteq \mathfrak{M}_{p_1} \dots \mathfrak{M}_{p_{i-2}} \mathfrak{M}_{j-1}^j \mathfrak{M}_{j-1}^{3)} + \mathfrak{N}$ for $j \neq 1$. Therefore, if $\mathfrak{M}_n = \mathfrak{M}_1$, then $\Lambda/\mathfrak{N} = \Lambda/\mathfrak{M}_1 \oplus \dots \oplus \Lambda/\mathfrak{M}_{n-1} \supseteq \tau_\Lambda^\iota(\mathfrak{N})/\mathfrak{N} = \Lambda/\mathfrak{M}_1 \oplus \dots \oplus \Lambda/\mathfrak{M}_{n-1} = \Lambda/\mathfrak{N}$, and hence $\tau_\Lambda^\iota(\mathfrak{N}) = \Lambda$. Similarly, we obtain $\tau_\Lambda^\iota(\mathfrak{N}) = \Lambda$. Therefore, \mathfrak{N} is invertible. Let \mathfrak{A} be the ideal in the

3) \mathfrak{M}_j^j means that the j th factor is omitted.

proposition. We may assume $\mathfrak{A} \subseteq \mathfrak{M}_1$, $\mathfrak{A}\Gamma_2\mathfrak{A} \subseteq \mathfrak{M}_1\Gamma_2\mathfrak{A} \subseteq \mathfrak{M}_1\mathfrak{A} \subseteq \mathfrak{A}$. Hence $\Gamma_2\mathfrak{A} \subseteq \Lambda'(\mathfrak{A}) = \Lambda$, which implies $\mathfrak{A} \subseteq C(\Gamma_2) = \mathfrak{M}_2$. Therefore, $\mathfrak{A} \subseteq \bigcap_{i=1}^r \mathfrak{M}_i$.

Finally we assume that all the \mathfrak{M}_i 's are distinct. From the fact $(*)$ we obtain $\tau_\Lambda^i(\mathfrak{N}) \supseteq \mathfrak{M}_1$. If $\tau_\Lambda^i(\mathfrak{N}) \neq \mathfrak{M}_1$, then $\tau_\Lambda^i(\mathfrak{N}) = \Lambda$. By replacing \mathfrak{A} by \mathfrak{N} in the above argument, we obtain $\bigcap \mathfrak{M}_i = \mathfrak{N} \subseteq D(\Gamma_i)$. On the other hand, $D(\Gamma_i)$ is a maximal two-sided ideal by Lemma 6. Hence, $\mathfrak{M}_i = D(\Gamma_i)$ for some i . Then $\Lambda'(\mathfrak{M}_i) = \Gamma_i = \Gamma_{i+1}$ and hence, $\mathfrak{M}_i = \mathfrak{M}_{i+1}$, which is a contradiction. Therefore, $\tau_\Lambda^i(\mathfrak{N}) = \mathfrak{M}_1$. Thus, we obtain $\Lambda^i(\mathfrak{N}) = \Lambda^i(\mathfrak{M}_1)$ by the similar argument to [4], Proposition 1.6, 2). Similarly, we have $\Lambda'(\mathfrak{N}) = \Lambda'(\mathfrak{M}_1)$.

Lemma 7. *Let Λ be a regular H-order in S which satisfies (A_2') . Then every invertible two-sided ideal in Λ is contained in one of the following ideals: 1) maximal non-idempotent two-sided ideals, 2) $\mathfrak{N} = \mathfrak{M}_1 \cap \mathfrak{M}_2 \cap \dots \cap \mathfrak{M}_n$, where \mathfrak{M}_i 's are as in Proposition 7 and $\Lambda'(\mathfrak{M}_n) = \Lambda'(\mathfrak{M}_1)$.*

Proof. Let \mathfrak{A} be an invertible ideal in Λ and \mathfrak{M} a maximal ideal containing \mathfrak{A} . If \mathfrak{M} is not idempotent, then $\mathfrak{M}_2 = C(\Lambda'(\mathfrak{M}))$, $\mathfrak{M}_3 = C(\Lambda'(\mathfrak{M}_2))$, ... are maximal. By Proposition 5 we know $\mathfrak{A} \subseteq \mathfrak{M} \cap \mathfrak{M}_2 \cap \dots \cap \mathfrak{M}_r$. Since Λ satisfies (A_2') , we can find n such that $\mathfrak{M}_n = \mathfrak{M}_{n'}$ for some $n \leq n'$.

By \mathfrak{Q} we shall denote either the maximal and non-idempotent ideals or \mathfrak{N} as in the Lemma 7, 2).

Theorem 3. ([4], Theorem 7.5). *Let Λ be a regular H-order in S which satisfies (A_2') . Then the set of invertible two-sided ideals in Λ is uniquely written as a product of maximal ones among invertible ideals in Λ , which are commutative.*

Proof. First we shall show that $\mathfrak{Q}_1\mathfrak{Q}_2 = \mathfrak{Q}_2\mathfrak{Q}_1$. We may assume $\mathfrak{Q}_1 \neq \mathfrak{Q}_2$. $\mathfrak{Q}_1\mathfrak{Q}_2 = \mathfrak{Q}_2\mathfrak{Q}_2^{-1}\mathfrak{Q}_1\mathfrak{Q}_2$. It is clear that $\mathfrak{Q}_2^{-1}\mathfrak{Q}_1\mathfrak{Q}_2$ is an invertible ideal in Λ . If \mathfrak{Q}_1 is maximal, then $\mathfrak{Q}_1 \neq \mathfrak{Q}_2$ since if $\mathfrak{Q}_2 = \mathfrak{M}_1 \cap \dots \cap \mathfrak{M}_i \subseteq \mathfrak{Q}_1$, then $\mathfrak{M}_j = \mathfrak{Q}_1$. However \mathfrak{M}_j is not invertible, which is a contradiction. Since \mathfrak{Q}_1 is prime, $\mathfrak{Q}_1 \supseteq \mathfrak{Q}_2^{-1}\mathfrak{Q}_1\mathfrak{Q}_2$. Therefore, $\mathfrak{Q}_2\mathfrak{Q}_1 \supseteq \mathfrak{Q}_1\mathfrak{Q}_2$. If $\mathfrak{Q}_1 = \mathfrak{M}_1 \cap \dots \cap \mathfrak{M}_i$, then $\mathfrak{Q}_1 \neq \mathfrak{Q}_2$. Because if $\mathfrak{Q}_1 \supseteq \mathfrak{Q}_2$, then $\mathfrak{Q}_1 = \mathfrak{Q}_2$ by Proposition 5. Hence, we have as above that $\mathfrak{Q}_2\mathfrak{Q}_1 \supseteq \mathfrak{Q}_1\mathfrak{Q}_2$. Similarly we obtain $\mathfrak{Q}_1\mathfrak{Q}_2 \supseteq \mathfrak{Q}_2\mathfrak{Q}_1$. Since the set of \mathfrak{Q}_i 's consists of maximal ones among invertible ideals in Λ and Λ satisfies (A_2') , we can easily show that $\mathfrak{A} = \prod \mathfrak{Q}_i$ for an invertible ideal \mathfrak{A} . The uniqueness of this expression is easily proved by making use of the same argument as above.

REMARK 2. We may replace (A_2') in Theorem 3 by a condition that Λ satisfies a minimal condition with respect to two-sided ideals in Λ con-

taining an invertible ideal.

OSAKA CITY UNIVERSITY

References

- [1] K. Asano: *Arithmetische Idealtheorie in nichtkommutativen Ringen*, Japanese J. Math. **16** (1936).
- [1'] _____: Theory of rings and ideals, (Japanese), Kyoritu Press, Tokyo, 1949.
- [2] K. Asano and T. Ukegawa: *Ergenzende Bemerkungen über die Arithmetik in Schiefringen*, J. Inst. Polyt. Osaka City Univ. **3** (1952) 1-7.
- [3] M. Auslander and O. Goldman: *Maximal orders*, Trans. Amer. Math. Soc. **97** (1960), 1-24.
- [4] M. Harada: *Hereditary orders*, Trans. Amer. Math. Soc. **107** (1963), 272-290.
- [5] _____: *Structure of hereditary orders over local rings*, J. Math. Osaka City Univ. **14** (1963) 1-25.
- [6] _____: *Multiplicative ideal theory in hereditary orders*, J. Math. Osaka City Univ. **14** (1963) 82-106.