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As an extension of maximal orders in a central simple algebra X
over K of finite dimension, the arthor has studied structure of hereditary
orders in = in [4], [5]. On the other hand in [1], [1’] the theory of
maximal orders in X was extended to the theory in any ring by Asano.
Following the method given by Asano in [1], [1’] we shall generalize
the notion of hereditary order in 3.

Let S be a ring with unit element 1 and A a subring in S contain-
ing 1 such that S is the right and left quotient ring of A with respect
to AnS* where S* consists of all non zero-divisors in S. We call A an
order in S. Asano showed in [1], [1] that A is a maximal order which
satisfies two conditions (A,’), (A,) (see below) if and only if the set of
two-sided ideals is a group with respect to multiplication. In this case

(H) every two-sided ideal” is finitely generated A-projective as a right
and left A-module.

Thus, we shall generalize the notion of the Asano’s maximal order to
orders which satisfies (H).

In this note we shall show that many results of hereditary orders
in a central simple algebra in [4], [5] and [6] are valid in the above
generalized orders.

We shall call briefly an order A in S which satisfies (H) an H-order.
Furthermore, we call elements in S* regular.

1. Definitions and lemmas

DEFINITION 1. Let A be an order in S. A subset A of S is called
left (right) ideal of A if N satisfies the following conditions :

1) A is a left (right) A-module,

2) A contains a regular element,

1) See Definition 1,
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3) there exists a regular element \( € A) such that AN =A AAA).
If A is a right and left ideal of A, we call U a ftwo-sided ideal of A.

DerFINITION 2. Let A and I' be orders in S. If there exist regular
elements «, @, 8 and B such that aAa’TI' and B A then we call
A and T are similar and we denote by A~T.

Lemma 1. ([4], Lemma 1.2). Let A be an order in S and 8, left
ideals of A. Then Hom! (8, ¥)={x| €S, Lx=¥'}.

Proof. It is clear that {x| €S, Lx =¥} Hom) (&, ¥). Since SL=S,
we have, for any element x in S, that x=3s;/;, s; €S, /;€% We define
Ff(x)=3s;f(l;) for fe Hom} (8, ¥). Let x=3s//, be another expression,
then there exists a regular element v in A such that vs;, vs;€ A for all
i by [1”]. Hence, v3s; f({;)=3 f(ys:l,)=2 F(ysili)=vZs! f(I%). Therefore, f
is well defined and € Homg (S8, S8)=S. Hence, f(x)=xy for some y€S.
It is clear that fF|%=7f.

If 8=%/, then Hom (&, 8) is a similar order to A by [1”], Theorem
4.4 and we call it the right order of  and denote it by A7(¥). Similarly,
we can define the left order of € and denote it by A%Q).

DErFINITION 3. Let A be an order in S. If there exist regular ele-
ments «, Bin A for x in S such that xAa A, BAx A, then A is called
regular.

Lemma 2. Let A be a regular order in S and 1 a similar order to
A. Then there exist regular elements «, B in A such that eI’ A and
I'BCA, and I is also regular.

It is clear (cf. [1’] pp. 163-165).

Corollary. Let A be a regular order and 1' an order containing A.
If A is a finitely generated left or right A-module, then I'~A. Hence,
I’ is a two-sided ideal of A and is regular.

It is clear by [17] and [2].

Lemma 3. Let A be an order and & a left ideal. Then ¥R '=A Q)
if and only if € is a finitely gemerated projective A7 (R)-module, where
gr={x| €S, La¥8 =Y}

Proof. We put I'=A’(8). We define ¢: 2®, Hom (&, [)=2Q&"'—
Homy, (8, €)=AX) by setting (/R f)(!")=f(!')], where [,//€{ and feQ .
Then the lemma is clear by [3], Proposition A.1.

Lemma 4. Let A be an order and N a two-sided ideal of A which is
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finitely generated as left, right module. I1f N is a projective left A-module,
then A7(N) is a right finitely generated A-projective module.

Proof. The operation of A on A’(Y) from the right side coincides
with the operation of A on Hom} (2, ) with respect to the second A. Since
A is left A-projective, M==PAu; —~A—0 splits. Hence, Hom, (M, A)=
SPHA < Hom? (A, A)<—0 splits as a usual right A-module. Since A is a
finitely generated right A-module, so is A”().

2. H-orders

We shall quote here Asano’s axioms. Let A be an order in S.

(A)) A satisfies a minimal condition for two-sided ideals in A which
contains a fixed two-sided ideal.
(A;) Every prime ideal in A is a maximal two-sided ideal.

Proposition 1. If a regular order A satisfies (A,) and (A,) and A
is maximal among similar orders to it, then A is an H-order.

Proof. By [1], [1] we know that the set of two-sided ideals is a
group with respect to multiplication. Hence, A satisfies (H) by Lemma
3.

From Lemma 2 and the proof of [4], Lemma 1.2, we have

Theorem 1. Let A be a regular H-order in S. If I' is an order
containing A which is similar to A, then I’ is an H-order.

Proposition 2. Let A be an H-order and U a two-sided ideal of A.
Then AN'=ANN) and A"Y=A"(N).

Proof. It is clear from the fact A{U)=,19(A)=UA""* and A"(A)=
Ta7on(W)=A"A which is obtained by [3], Proposition A. 3.

Corollary. Let A be a regular H-order and wmaximal order among
similar orders to A. Then A is a maximal order satisfying (A,) and (A)).

Proof. Let A be a two-sided ideal in A. Since A(Q)~A, A{A)=A.
Hence AA'=A-"A=A. Let B be any two-sided ideal of A. Since
BALEA for some regular element N in A, BAMACA, By [1’], Theorem
4.12 AXA is a two-sided ideal in A. Hence the set of two-sided ideals
of A is a group.

We note that in the proof of [4], Proposition 1.6 we have only used
the facts that 9 is a finitely generated projective module and A’(2),
A’(A)=S for a two-sided ideal A of A and that if an order I'DA is a
finitely generated left A-module, C(I)={x| €S, 'x=A} is a two-sided
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ideal in A. Hence, we have by Lemma 4

Theorem 2. ([4], Theorem 1.7). Let A be an H-order in S and I'
an order containing A. If I' is finitely generated left A-projective, then
C(I") is an idempotent two-sided ideal in A and I'=ANC(L)). Conversely,
if Wis an idempotent two-sided ideal in A then ANN) is finitely generated
left A-projective and W=C(AYN)). This correspondence is anti-lattice
isomorphic.

Corollary 1. Let A be a regular H-order in S. Then there exists
the above one-to-ome correspondence between two-sided idempotent ideals in
A and orders ' containing A which is finitely generated as a right or left
A-module.

Proof. It is clear from Theorem 2 and Lemma 2.

Corollary 2. Let A be a regular H-order in S. If there exists only
a finite number of maximal orders containing A. which are similar to A,
then A is equal to the intersection of them.

Proof. Let {Q;}7., be the set of maximal orders in the corollary.
Then {C(Q;)}?., is the set of minimal ones among idempotent two-sided
ideals by Theorem 2. We put D=3 C(Q;). D is also idempotent. Let
'=nQ;=A/D), and I"=A"(D). Since C(Q;) is minimal idempotent,
A7(C(Q;)) is also a maximal order. Hence, {Q;}7.,={A"(C(Q,))}?-, and
F=nQ;=I" by Theorem 2. Therefore, A=I" by [4], Corollary 1.9.

Proposition 3. Let A be an H-order in S and & a left ideal of A
such that A=AYR). Then the following statements are equivalent.

1) A(®@YH=A.

2) L '=A.

3) L is a finitely genervated A’(L)-module.

Proof. 2) is equivalent to 3) by Lemma 3. It is clear that 2) im-
plies 1).
1)—3). We set I'=A"(). Hom} (8® 27", A)=Hom% (8!, Hom} (£, A))
=Hom} (8, 2 ")=A. From an exact sequence QL '—-LL'—-0 we ob-
tain an exact sequence 0 — Hom/ (88, A)—Hom} (R®,L", A)=A. Since
LA, Hom) (88", A)>A. Therefore, Hom} (88, A)=A, which im-
plies A7(®¢-")=A and 7{(¥€")=LL'A=82-'. Hence 28"’ is idempotent
by [4], Lemma 1.5. Therefore, we obtain by Theorem 2 that A=D(A)?
=D(A7(R81))=28""

2) DIM)={x| €S, 2I"C A}.
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Corollary. Let A be an order in S. We assume the set of two-sided
ideals of A is a group. Then every left ideal & of A is finitely generated
A-projective and LL'=A.

Proof. A is a maximal order among similar to A by [1’], Theorem
4.22. Tt is clear that A~AX(%""). Hence, A7(®")=A.

Proposition 4. ([6], Theorem 1.1). Let A be an H-order in S and
Q aleftideal of A. If A(R)=A and L is finitely generated A-projective,
then A7 (R) is an H-order and L is finitely generated A’ (R)-projective.

Proof. Let I'=A”(2). Since € is finitely generated A-projective, we
have I'=2-¢ by Lemma 3, and =} (8)%=% by [3], Proposition A.5.
Hence, 7} (8)=28"'=7}(2)28'==(8)>. We obtain A/(r{(¥))=A from the
facts A(®)=A and 74()2%=8. Therefore, L& '=7,(8)=A by Theorem 2.
We can easily check that a correspondence 2 AL of two-sided ideals A
of A and those of I is one-to-one and preserves projectivity and finiteness,
because L7'AL ~ L 'QARL.

From the similar regument to [4], Lemma 2.1 we have

Proposition 5. ([4], Proposition 2.2). Let A be an H-order in S.
If S=S,®---PS,, then A=A, D---PA, and A; is an H-order in S;, where
the S/s are subring of S.

3. Inversible ideals in an H-order

Finally we shall consider two-sided ideals 2 in A such that
AA'=A""A=A. We call those ideals inversible ideals of A.

Proposition 6. Let A be a regular H-order in S satisfying (A)). If
every maximal two-sided ideal in A is inversible, then A is a maximal

order.

Proof. We assume that there exists an ideal in A which is not in-
versible. Let € be a maximal one among ideals in A which are not
inversible, and % be a maximal two-sided ideal containing €. Since A
satisfies (A,), €=N" for some #n. Then €LEN'C A, because if NE=C,
C=N"CN". Thus, N'€ must be inversible, which is a contradiction.

Lemma 5. Let A be an H-order in S and M a maximal two-sided
ideal. Then M is either inversible in A or idempotent.

Proof. Since G(A{(M))2M, C(AY(M))=A or =M. If CA(M))=A,
then A=A/(M). Hence, M is not idempotent by Theorem 2. Therefore,
D(A7(M))=A, which implies A”’(MM)=A. Hence, M is inversible by Pro-
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position 2. If CA/(IM))=M then M is idempotent by Theorem 2.

REMARK 1. Let © be a maximal order among similar orders to A
and satisfy (A,) and (A,). If A is an H-order in Q which is similar to
A, then the above idempotent and maximal two-sided ideals divide a
unique maximal one among two-sided ideals of Q in A by [2], Lemma 1.

Lemma 6. Let A be a regular H-order in S and M a maximal and
idempotent two-sided ideal in A. Then C(A7(M)) is also a maximal and
idempotent two-sided ideal in A.

Proof. We set I', = A/(M) and I',=A"(M). From Corollary 1 to
Theorem 2 we know that €=C(I',) is idempotent and that there are no
orders between I', and A which is a finitely generated A-module. Hence,
€ is a maximal one among idempotent two-sided ideal. We assume that
€ is not a maximal ideal. Let M Z2€ be a maximal two-sided ideal in
A. Then M is inversible by the above observation and Lemma 5. If
NE€=EC, then M 'CTI, by Theorem 2. Hence MZMN'CINI, =M.
Therefore, M=MNCN, which implies M=N. It is a contradiction.
Thus, we know €EN'CSE A, and A/(NRT'C)=A"(N"'C)=A. Therefore,
N-'C is inversible in A and hence, so is € which is a contradiction.

By using the same argument as [4], Theorem 5.3 we shall prove

Proposition 7. Let A be a regular H-order in S and {W;};_, a set
of maximal and idempotent two-sided ideals in A such that A7(0t;)=A(M; )
for all i. If all the W/'s are distinct then AN(N;)=A(IN)), A7(N;)=A"(IN;)
for Ri=M AW, "M, If WM=MWM, for some n_>1, then N, =
M AN, | is an inversible two-sided ideal. Furthermore, if 2 is an
inversible two-sided ideal in A, which is contained in N; for some i, then
AWM --NM, for any r >i.

Proof. We denote A/(M;) and A”(IM;) by 1I; and I;,,. Let
N=MWM,~---NM;. We know from argument of [4], Corollary 1.9 that
W =1, 103 =1,,. Since M, is maximal, N=2M, M, ---M,, where
% runs through all elements of symmetric group S;.

() ADM, 1R, W, - W, WL = Dy o My, M, if jo1.

Hence 1';”Homi{(:M, A) and 75\(%)2%1‘]-251’&,,1---EUZP,._ZJSJJE].-I”—HR for
j=1. Therefore, if M,=I,, then A/N=A/ M, D---PA/IM,_, —a(N)/N=
AP BA/M, ., =A/N, and hence =, (N)=A. Similarly, we obtain
T\(MN)=A. Therefore, N is inversible. Let 2A be the ideal in the

3) { means that the jth factor is omitted.
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proposition. We may assume ACIMN,. ALASM LA ATA. Hence

LAA"(A)=A, which implies AZCL,)=IM,. Therefore, A= ﬂ M.

Finally we assume that all the 9/s are distinct. From the fact (x) we
obtain 4 (W)22M,. If w4 (N)==M,, then 74 (N)=A. By replacing A by
N in the above argument, we obtain (] M;=ND(I",). On the other
hand, D(I',) is a maximal two-sided ideal by Lemma 6. Hence, ;=D(I'))
for some i. Then A7(WM,)=1,=1%;,, and hence, M, =M, ,, which is a con-
tradication. Therefore, 74{(N)=IMM,. Thus, we obtain A/N)=A/(IN,) by
the similar argument to [4], Proposition 1.6, 2). Similarly, we have
A7) =A"(WM,).

Lemma 7. Let A be a regular H-order in S which satisfies (A,). Then
every inversible two-sided ideal in A is contained in one of the following
ideals : 1) maximal non-idempotent two-sided ideals, 2) N=M,NM,NnM,,,
where IMM;s are as in Proposition 7 and A7(IM,)=A(IM,).

Proof. Let A be an inversible ideal in A and 9 a maximal ideal con-
taining . If I is not idempotent, then M, =C(A7(MN)), M,=C(A7(IMN,)), ---
are maximal. By Proposition 5 we know ATMAM,N.--NnW,. Since
A satisfies (A,), we can find # such that t,=M, for some n = n'.

By 2 we shall denote either the maximal and non-idempotent ideals
or N as in the Lemma 7, 2).

Theorem 3. ([4], Theorem 7.5). Let A be a regular H-order in S
which satisfies (A,)). Then the set of inversible two-sided ideals in A is
uniquely written as a product of maximal ones among inversible ideals in
A, which are commutative.

Proof. First we shall show that Q,0,=2,0,. We may assume
Q,:-0,. 0,9,=2,9;'Q,Q,. It is clear that Q;'Q,Q, is an inversible
ideal in A. If Q, is maximal, then Q,2pQ, since if Q,=MM,N---NW,;
R, then M;=2,. However IN,; is not inversible, which is a contradic-
tion. Since X, is prime, Q,20Q;'Q,Q,. Therefore, Q,Q,2Q,Q,. If
Q=M N--nM;, then Q,PQ,. Because if Q,20,, then Q,=Q, by
Proposition 5. Hence, we have as above that Q,Q,2Q,Q,. Similarly
we obtain Q,Q,22,Q,. Since the set of Q,s consists of maximal ones
among inversible ideals in A and A satisfies (A,), we can easily show
that A=I1XQ;% for an inversible ideal A. The uniqueness of this ex-
pression is easily proved by making use of the same argument as above.

REMARK 2. We may replace (A,) in Theorem 3 by a condition that
A satisfies a minimal condition with respect to two-sided ideals in A con-
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taining an inversible ideal.
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