<table>
<thead>
<tr>
<th>Title</th>
<th>The structure of primitive gamma rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Luh, Jiang</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 7(2) P.267-P.274</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1970</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/12482</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/12482</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
THE STRUCTURE OF PRIMITIVE GAMMA RINGS

JIANG LUH

(Received November 4, 1969)

1. Introduction

The notion of a Γ-ring was first introduced by Nobusawa [7]. The class of Γ-rings contains not only all rings but also all Hestenes ternary rings. In [7], Nobusawa generalized the Wedderburn-Artin Theorem for simple Γ-rings and for semi-simple Γ-rings. Barnes [1] obtained analogues of the classical Noether-Lasker theorems concerning primary representations of ideals for Γ-rings. The author [5] gave a characterization of primitive Γ-rings with minimal one-sided ideals by means of certain Γ-rings of continuous semilinear transformations. He [6] also established several structure theorems for simple Γ-rings having minimal one-sided ideals. Recently, Coppage and the author [2] introduced the notions of Jacobson radical, Levitzki radical, nil radical for Γ-rings and obtained some basic radical properties and inclusion relations for these radicals together with the prime radical defined by Barnes [1].

The object of this paper is to study the structure of primitive Γ-rings. One of its main results is a generalization of the Jacobson - Chevalley density theorem. This generalizes further a result given by Smiley and Stephenson for Hestenes ternary rings [8].

We refer to [4] for all notions relevent to ring theory.

2. Preliminaries

Let M and Γ be two additive abelian groups. If for all $x, y, z \in M$ and all $\alpha, \beta \in \Gamma$ the conditions

(1) $x \alpha y \in M$

(2) $(x + y) \alpha z = x \alpha z + y \alpha z,$
 $x(\alpha + \beta)z = x \alpha z + x \beta z,$
 $x \alpha(y + z) = x \alpha y + x \alpha z,$

(3) $(x \alpha y) \beta z = x \alpha(y \beta z)$

are satisfied then we call M a Γ-ring.

If these conditions are strengthened to
Let M be a Γ-ring. If $S, T \subseteq M$, we write ST for the set of finite sums $\sum_{i} s_i \alpha_i \in T$, where $s_i \in S$, $t_i \in T$, $\alpha_i \in \Gamma$. A subgroup I of M is a left (right) ideal of M if $MI \subseteq I (IM \subseteq I)$. If I is both a left and a right ideal of M, then I is an ideal of M. A one-sided ideal I is strongly nilpotent if $I^n = I^{n-1} \cap \cdots \cap I = 0$ for some positive integer n. A non-zero right (left) ideal is minimal if the only right (left) ideals of M contained in I are 0 and I itself. It has been shown that every minimal right ideal which is not strongly nilpotent can be expressed as the form $e\gamma M$, where $\gamma \in \Gamma$, $e \in M$ and $e\gamma e = e$ (see [5] Theorem 3.2).

Let F be the free abelian group generated by the set of all ordered pairs (α, x) where $\alpha \in \Gamma$, $x \in M$. Let K be the subgroup of elements $\sum m_i (\alpha_i, x_i) \in F$, where m_i are integers such that $\sum m_i (\alpha_i, x_i) = 0$ for all $x \in M$. Denote by R the factor group F/K and by $[\alpha, x]$ the coset $K+(\alpha, x)$. Clearly every element in R can be expressed as a finite sum $\sum [\alpha_i, x_i]$. We define multiplication in R by

$$
\sum [\alpha_i, x_i] \cdot \sum [\beta_j, y_j] = \sum [\alpha_i, x_i \beta_j, y_j].
$$

Then R forms a ring. Furthermore, M is a right R-module with the definition

$$
x \sum [\alpha_i, x_i] = \sum x \alpha_i x_i, \quad \text{for } x \in M.
$$

We call the ring R the right operator ring of M. Similarly, we can define the left operator ring L. Every element in L can be expressed as a finite sum $\sum [\beta_j, x_j]$, where $x_j \in M$, $\beta_j \in \Gamma$. These two operator rings play important roles in studying the structure of Γ-rings. We recall that a Γ-ring M is right primitive if (i) $M \Gamma x = 0$ implies $x = 0$ and (ii) the right operator ring R of M is a right primitive ring.

Theorem 1. If M is a right primitive Γ-ring, then the left operator ring of M is a right primitive ring.

Proof. Let R and L be respectively the right and left operator rings of M.

Let G be a faithful irreducible right R-module. Let A be the free abelian group generated by the set of ordered pairs (g, γ), where $g \in G$, $\gamma \in \Gamma$, and let B be the subgroup of elements $\sum m_i (g_i, \gamma_i) \in A$ where m_i are integers such that $\sum m_i (g_i, \gamma_i, x) = 0$ for all $x \in M$. Denote by H the factor group A/B and, without causing any ambiguity, by $[g, \gamma]$ the coset $B+(g, \gamma)$. Every element in H therefore can be expressed as a finite sum $\sum [g_i, \gamma_i]$. H forms a right L-module with the definition
\[\sum_i [g_i, \gamma_i] \cdot \sum_j [x_j, \beta_j] = \sum_i [g_i, \gamma_i, x_j, \beta_j] \]

for \(\sum_i [g_i, \gamma_i] \in H \) and \(\sum_j [x_j, \beta_j] \in L \). We claim that \(H \) is a faithful irreducible right \(L \)-module. Assume \(H \sum_j [x_j, \beta_j] = 0 \). Then for all \(\gamma \in \Gamma \), \(g \in G \), we have \(\sum_j [g[\gamma, x_j], \beta_j] = [g, \gamma] \sum_j [x_j, \beta_j] = 0 \), i.e. \(g \sum_j [\gamma, x_j] \beta_j, x] = 0 \) for all \(x \in M \). By the faithfulness of the \(R \)-module of \(G, [\gamma, \sum_j x_j \beta_j x] = \sum_j [\gamma, x_j] \beta_j, x] = 0 \), so \(MT = \Sigma x_j \beta_j x = 0 \). By the condition (i), \(\sum_j x_j \beta_j x = 0 \) for all \(x \in M \). This means that \(\sum_j [x_j, \beta_j] = 0 \) and \(H \) is faithful. To see that \(H \) is irreducible, let \(\sum_i [g_i, \gamma_i] \) be an arbitrary non-zero submodule in \(H \). Then the set \(G' = \{ \sum_i g_i [\gamma_i, x], x \in M \} \) is a non-zero \(R \)-submodule of \(G \). Since \(G \) is irreducible, \(G' = G \). For any \(\sum_i [g_i', \gamma_i'] \in H \), we may write \(g_i' = \sum_i g_i [\gamma_i, x_j] \) where \(x_j \in M \). Thus \(\sum_i [g_i', \gamma_i'] = \sum_i [g_i [\gamma_i, x_j], \gamma_i'] = \sum_i [g_i, \gamma_i] \sum_i [x_j, \gamma_i'] \in \sum_i [g_i, \gamma_i] L \). Hence \(H \) is irreducible and \(L \) is a right primitive ring.

3. Irreducible \(\Gamma \)-rings of homomorphisms on groups

Let \(G \) and \(H \) be non-zero additive abelian groups. If \(M \) and \(\Gamma \) are respectively subgroups of \(\text{Hom}(H, G) \) and \(\text{Hom}(G, H) \) such that \(g \Gamma = H \) and \(h M = G \) whenever \(0 \neq g \in G \) and \(0 \neq h \in H \), and moreover if \(xcy \in M \) and \(\alpha \beta \in \Gamma \) for all \(x, y \in M \), then \(M \) forms a \(\Gamma \)-ring in the sense of Nobusawa under the composition of mappings. We shall call such a \(\Gamma \)-ring an irreducible \(\Gamma \)-ring of homomorphisms on groups.

A \(\Gamma \)-ring \(M \) and a \(\Gamma' \)-ring \(M' \) are said to be isomorphic if there exist a group isomorphism \(\theta \) of \(M \) onto \(M' \) and a group isomorphism \(\phi \) of \(\Gamma \) onto \(\Gamma' \) such that \((xay) \theta = (x \theta) (a \phi) (y \theta) \) for all \(x, y \in M, \alpha \in \Gamma \). It is clear that \(M \) is right primitive if and only if \(M' \) is right primitive.

Theorem 2. A \(\Gamma \)-ring \(M \) is a right primitive \(\Gamma \)-ring in the sense of Nobusawa if and only if it is isomorphic to an irreducible \(\Gamma \)-ring of homomorphisms on groups.

Proof. Necessity. Let \(M \) be a right primitive \(\Gamma \)-ring in the sense of Nobusawa with right operator ring \(R \) and left operator ring \(L \) and let \(G \) be a faithful irreducible right \(R \)-module, from the proof of Theorem 1, we can construct the faithful irreducible right \(L \)-module \(H \). Now, for each \(\gamma \in \Gamma \) let \(g \phi \in \text{Hom}(G, H) \) defined by \(g(\gamma \phi) = [g, \gamma] \). Clearly \(\phi \) is a group homomorphism of \(\Gamma \) into \(\text{Hom}(G, H) \). Moreover, if \(\gamma_1 = \gamma_2 \phi \), then \([g, \gamma_1 - \gamma_2] = 0 \) i.e. \(g[\gamma_1 - \gamma_2, x] = 0 \) for all \(g \in G, x \in M \). By the faithfulness of \(G \) as an \(R \)-module, \([\gamma_1 - \gamma_2, x] = 0 \) for all \(x \in M \). Consequently \(M(\gamma_1 - \gamma_2) = 0 \) and, by the condition (4') in the definition of \(\Gamma \)-ring in the sense of Nobusawa, \(\gamma_1 = \gamma_2 \). Thus \(\phi \) is a group isomorphism of \(\Gamma \) onto \(\Gamma' = \Gamma \phi \).

Likewise, for each \(x \in M \), let \(x \theta \) be the mapping of \(H \) into \(G \) defined by \(\Sigma_i [g_i, \gamma_i] (x \theta) = \Sigma_i g_i [\gamma_i, x] \). It can be shown easily that \(x \theta \in \text{Hom}(H, G) \) and
that θ is a group homomorphism of M into $\text{Hom}(H, G)$. We claim that θ is one-to-one. Indeed, if $x\theta = y\theta$, where $x, y \in M$, then $g[\gamma, x-y] = g[\gamma, x] - g[\gamma, y] = 0$ for all $g \in G, \gamma \in \Gamma$. Again by the faithfulness of G, $[\gamma, x-y] = 0$ for all $\gamma \in \Gamma$, or equivalently that $M\Gamma(x-y) = 0$. Hence $x = y$ and θ is a group isomorphism of M onto $M' = M\theta$. It is easy to see that the Γ'-ring M is isomorphic to the Γ'-ring M'.

It remains to show that M' is an irreducible Γ'-ring of homomorphisms on groups. Let $0 \neq g \in G$. Since $gR = G$, every element in H can be expressed as $\Sigma_j[g\Sigma_i[\gamma_{ij}, x_i], \beta_j] = g(\gamma \phi)$ where $\gamma_{ij}, \beta_j \in \Gamma, x_i \in M$ and $\gamma = \Sigma_i, j \gamma_{ij} x_i \beta_j$. Hence $H = g\Gamma'$. Now, let h be an arbitrary non-zero element in H. Then $h = g(\gamma \phi) = [g, \gamma]$ for some $\gamma \in \Gamma$. It follows that $h(x\theta) = [g, \gamma](x\theta) = g[\gamma, x]$ for all $x \in M$. Thus hM' is a non-zero R-submodule of G and hence $hM' = G$.

 Sufficiency. We may assume that M is an irreducible Γ'-ring of homomorphisms on groups, and that $0 \neq G \subseteq \text{Hom}(G, H), 0 \neq M \subseteq \text{Hom}(H, G)$ where H and G are abelian groups with the property that for any $0 \neq g \in G$ and $0 \neq h \in H, g\Gamma = H$ and $hM = G$. Clearly, $M\Gamma x = 0$ for $x \in M$ implies $x = 0$. For $g \in G$ and $\Sigma_i[\gamma_i, x_i] \in R$, the right operator ring of M, we define composition

$$g\Sigma_i[\gamma_i, x_i] = \Sigma_i(g\gamma_i)x_i.$$

This composition is well defined. For if $\Sigma_j[\gamma_{ij}, x_i] = \Sigma_j[\beta_j, y_j]$ in R, then $\Sigma_i, j \gamma_{ij} x_i - \Sigma_j, j \beta_j y_j = 0$ for all $x \in M$. By noting that $g \in g\Gamma M$, we obtain $\Sigma_i(g\gamma_i)x_i - \Sigma_j(g\beta_j)y_j = g(\Sigma_i, j \gamma_{ij} x_i - \Sigma_j, j \beta_j y_j) = 0$, so $g\Sigma_i[\gamma_i, x_i] = g\Sigma_j[\beta_j, y_j]$. Clearly G forms an irreducible right R-module. Moreover, if $\Sigma_i[\gamma_i, x_i] \in R$ and if $G\Sigma_i[\gamma_i, x_i] = 0$, then $HM\Sigma_i[\gamma_i, x_i] = G\Gamma M$ and $\Sigma_i[\gamma_i, x_i] = 0$ in G, and hence $M\Sigma_i[\gamma_i, x_i] = 0$. Consequently, $\Sigma_i[\gamma_i, x_i] = 0$ and G is a faithful R-module. Thus, R is a right primitive ring and M is a right primitive Γ'-ring in the sense of Nobusawa.

Observe the definition of irreducible Γ'-rings of homomorphisms on groups. We can easily see that M is irreducible Γ'-rings of homomorphisms on groups if and only if Γ is a irreducible Γ'-ring of homomorphisms on groups, where $\Gamma' = M$. Thus from Theorem 2, we immediately have the following

Corollary. Let M be a Γ'-ring. Then M is a right primitive Γ'-ring in the sense of Nobusawa if and only if Γ is a right primitive Γ'-ring in the sense of Nobusawa, where $\Gamma' = M$.

4. Chevalley-Jacobson density theorem

Let G and H be non-zero right vector spaces over division rings Δ and Δ' respectively, and let σ be an isomorphism of Δ onto Δ'. A group N of semilinear transformations (associated with σ) of G into H is said to be dense if, for every positive integer n and every n linearly independent elements $g_1, g_2,$
\(\ldots, g_n \) in \(G \) and every \(n \) elements \(h_1, h_2, \ldots, h_n \) in \(H \), there exists \(x \in \mathbb{N} \) such that \(g_i x = h_i, i = 1, 2, \ldots, n \).

Now, if \(\Gamma \) is a dense group of semilinear transformations (associated with \(\sigma \)) of \(G \) into \(H \) and \(M \) is a dense group of semilinear transformations (associated with \(\sigma^{-1} \)) of \(H \) into \(G \), and if the compositions of mappings \(x\gamma \in M \) and \(\alpha \beta \in \Gamma \) for all \(x, y \in M, \alpha, \beta \in \Gamma \), then \(M \) forms a \(\Gamma \)-ring in the sense of Nobusawa under the composition of mappings. We shall call such a \(\Gamma \)-ring a dense \(\Gamma \)-ring of semilinear transformations.

Following is a generalization of the well known Chevalley-Jacobson density theorem.

Theorem 3. Let \(M \) be a \(\Gamma \)-ring. Then \(M \) is a right primitive \(\Gamma \)-ring in the sense of Nobusawa if and only if it is isomorphic to a dense \(\Gamma \)-ring of semilinear transformations.

Proof. Sufficiency. It is an immediate consequence of Theorem 2, since a dense \(\Gamma \)-ring of semilinear transformations evidently is an irreducible \(\Gamma \)-ring of homomorphisms on groups.

Necessity. We assume that \(M \) is a right primitive \(\Gamma \)-ring in the sense of Nobusawa. According to the proof of Theorem 1 we can construct a faithful irreducible right \(R \)-module \(G \) and a faithful irreducible right \(L \)-module \(H \), where \(R \) and \(L \) are respectively the right operator ring and the left operator ring of \(M \). Set \(\Delta = \text{Hom}_R (G, G) \) and \(\Delta' = \text{Hom}_L (H, H) \). By Schur's Lemma, \(\Delta \) and \(\Delta' \) are division rings.

First, we shall show that \(\Delta \) and \(\Delta' \) are isomorphic. For \(\delta \in \Delta \), we define the mapping \(\delta^* : H \to H \) by

\[
(\Sigma_i [g_i, \gamma_i]) \delta^* = \Sigma_i [g_i \delta, \gamma_i]
\]

for \(\Sigma_i [g_i, \gamma_i] \in H \). Here \(\delta^* \) is well defined. For, if \(\Sigma_i [g_i, \gamma_i] = \Sigma_j [g_j', \gamma_j'] \) then for all \(x \in M, \Sigma_i g_i [\gamma_i, x] = \Sigma_j g_j' [\gamma_j', x] \), and hence \(\Sigma_i (g_i \delta) [\gamma_i, x] = (\Sigma_i g_i [\gamma_i, x]) \delta = (\Sigma_j g_j' [\gamma_j', x]) \delta = \Sigma_j (g_j' \delta) [\gamma_j', x] \). Thus \(\Sigma_i (g_i \delta, \gamma_i) = \Sigma_j (g_j' \delta, \gamma_j') \) as we desired. Clearly, \(\delta^* \) preserves addition. Moreover, for \(\Sigma_i [g_i, \gamma_i] \in \Delta \) and \(\Sigma_j [x_j, \beta_j] \in \Delta' \), we have \((\Sigma_i [g_i, \gamma_i] \Sigma_j [x_j, \beta_j]) \delta^* = (\Sigma_i, j [g_i \gamma_i, x_j, \beta_j]) \delta^* = (\Sigma_i, j [g_i \gamma_i, x_j, \beta_j]) \delta^* = \Sigma_i, j [g_i \delta, \gamma_i, x_j, \beta_j] = \Sigma_i, j [g_j \delta, \gamma_j] [x_j, \beta_j] = (\Sigma_i, j [g_i \gamma_i, \delta]) \Sigma_j [x_j, \beta_j]. \)

Hence \(\delta^* \in \Delta' \). It can be easily verified that \(\sigma : \delta \to \delta^* \) is a monomorphism of \(\Delta \) into \(\Delta' \). To show that \(\sigma \) is an onto mapping, we note that since \(H \) is a faithful irreducible right \(L \)-module and \(G \) is a faithful irreducible right \(R \)-module there exist \(g_0 \in G \) and \(\gamma_0, \in \Gamma \) such that \(\{ [g_0, \gamma_0] : \gamma_0 \in \Gamma \} = H \) and \(\{ [g_0, \gamma_0, x] : x \in M \} = G \).

Let \(\delta' \) be an arbitrary element in \(\Delta' \) and \([g_0, \gamma_0] \delta' = [g_0, \gamma_0] \), where \(\gamma \in \Gamma \). Let \(\delta : G \to G \) be defined by \((g_0 [\gamma_0, x]) \delta = g_0 [\gamma_0, x] \) for \(x \in M \). This is well defined. In fact, if \(g_0 [\gamma_0, x] = g_0 [\gamma_0, y] \), then, for any \(\gamma \in \Gamma, [g_0, \gamma_0] [x, \gamma] = [g_0, \gamma_0] \delta' = [g_0, \gamma_0] [y, \gamma] \delta' = [g_0, \gamma_0] [y, \gamma] = [g_0, \gamma_0] [y, \gamma] \).
and hence, by the construction of H, $g_0[y, x, z] = g_0[y, y, y, z]$ for all $y \in \Gamma$, $z \in M$. It follows that $(g_4[y, x] - g_4[y, y]) R = 0$. Since G is a faithful irreducible right R-module, $g_0[y, x] = g_0[y, y]$. Clearly $\delta \in \Delta$ and $\delta' = \delta'$. Therefore $\Delta = \Delta'$.

In the proof of Theorem 2 we have known already that the Γ-ring M is isomorphic to a Γ'-ring M', where Γ' is a subgroup of Hom (G, H) and M' is a subgroup of Hom (H, G). More precisely, two group isomorphisms $\theta : M \rightarrow M'$ and $\phi : \Gamma \rightarrow \Gamma'$ exist such that $\sum_i g_i [\gamma, x] = g_0 [\gamma, y]$ for all $g_i, g_j \in G$, $\gamma, \gamma' \in \Gamma, x \in M$.

Now we consider G and H as right Δ-vector space and right Δ'-vector space respectively. For any $g \in G$, $\delta \in \Delta$ and $\gamma \in \Gamma$, we have $(g \delta) (\gamma \phi) = [g \delta, \gamma]$ and $\sum_i g_i [\gamma, x] = [g, \gamma] (\delta \phi)$ for all $g_i, g_j \in G$, $\gamma, \gamma' \in \Gamma, x \in M$.

In the proof of Theorem 2 we have known already that the Γ-ring M is isomorphic to a Γ'-ring M', where Γ' is a subgroup of Hom (G, H) and M' is a subgroup of Hom (H, G). More precisely, two group isomorphisms $\theta : M \rightarrow M'$ and $\phi : \Gamma \rightarrow \Gamma'$ exist such that $\sum_i g_i [\gamma, x] = g_0 [\gamma, y]$ for all $g_i, g_j \in G$, $\gamma, \gamma' \in \Gamma, x \in M$.

Now we consider G and H as right Δ-vector space and right Δ'-vector space respectively. For any $g \in G$, $\delta \in \Delta$ and $\gamma \in \Gamma$, we have $(g \delta) (\gamma \phi) = [g \delta, \gamma]$ and $\sum_i g_i [\gamma, x] = [g, \gamma] (\delta \phi)$ for all $g_i, g_j \in G$, $\gamma, \gamma' \in \Gamma, x \in M$.

It remains to show the density property for Γ'. The density property for M' can be obtained similarly. We shall show that for any $n \Delta$-independent elements $g_1, g_2, \cdots, g_n \in G$ and any n elements $h_1, h_2, \cdots, h_n \in H$ there exists $\gamma \in \Gamma$ such that $g_i (\gamma \phi) = h_i, i = 1, 2, \cdots, n$. We proceed by induction on n.

From Theorem 2, the assertion is obviously true for $n = 1$. Now we assume that the assertion is true for $n - 1$. Then for any $\gamma \in \Gamma$, $g_i (\gamma \phi) = 0$ for $1 \leq i \leq n - 1$, implies $g_0 (\gamma \phi) = 0$. Thus for any $h \in H$, the induction hypothesis, there exists $\gamma \in \Gamma$ such that $g_0 (\gamma \phi) = h$ and $g_i (\gamma \phi) = 0, 1 < i < n - 1$. If also $g_n (\gamma \phi) = h$ and $g_l (\gamma \phi) = 0$, for some $\gamma \in \Gamma$, then since $g_n ((\gamma - \gamma') \phi) = 0$, for $1 \leq i < n - 1$ it follows that $g_n ((\gamma_0 - \gamma) \phi) = h_0$, i.e. $g_n (\gamma \phi) = g_n (\gamma_0 \phi)$. Hence the mapping $\psi : H \rightarrow H$ defined by $h \psi = g_n (\gamma \phi)$ whenever $g_n (\gamma \phi) = h$ and $g_l (\gamma \phi) = 0$ for $1 < l < n$, is well defined. It is easy to see that ψ preserves addition. Let us recall that g_0 is an element in G with $\{[g_0, \gamma] : \gamma \in \Gamma\} = H$. Let $[g_0, \gamma] \in H$ and $\sum_i [x_i, \gamma_i] \in L$. Then $[g_0, \gamma] \psi = g_n (\gamma \phi)$ for some $\gamma_0 \in \Gamma$, where $g_i (\gamma \phi) = [g_0, \gamma]$ and $g_i (\gamma \phi) = 0, 2 \leq i \leq n - 1$. Thus, $\sum_i [x_i, \gamma_i] = g_n (\gamma \phi)$. Consequently, $\psi = \sum_i [x_i, \gamma_i] \psi = g_n (\gamma \phi)$. Hence $\psi \in \Delta'$. Let $\psi = \delta'$ where $\delta \in \Delta$. Since $g_i \delta - g_n, g_n, \cdots, g_n - 1$ are Δ-linearly independent, by the induction hypothesis, there exists $\gamma' \in \Gamma$ such that $(g_0 \delta - g_n) (\gamma' \phi) = 0$ and $g_i (\gamma' \phi) = 0$ for $1 < i < n$. But by the definition of ψ, $(g_0 \delta - g_n) (\gamma' \phi) = g_n (\gamma \phi) - g_n (\gamma' \phi) = (g_n (\gamma \phi)) \psi - g_n (\gamma' \phi) = 0$, a contradiction. This proves the existence of $\gamma \in \Gamma$ such that $g_n (\gamma \phi) = 0$ and $g_i (\gamma \phi) = 0$, for $1 \leq i < n$. Since $g_n (\gamma \phi) L = H$, there exists $\gamma_0 \in \Gamma$ such that $g_n (\gamma_0 \phi) = h_0$, and $g_i (\gamma_0 \phi) = 0$ for $1 \leq i < n$.

\[J. Lu \]
Likewise, there exist $\gamma_i \in \Gamma, 1 \leq i \leq n$, such that $g_i(\gamma_i \phi) = h_i$ and $g_j(\gamma_i \phi) = 0$ for $i \neq j$. Now let $\gamma = \gamma_1 + \gamma_2 + \cdots + \gamma_n$. Then $g_i(\gamma \phi) = h_i, 1 \leq i \leq n$ as we desired. This completes the proof of the theorem.

We recall the definition of Hestense ternary rings. Let G and H be additive abelian groups. M and Γ be subgroups of $\text{Hom}(H, G)$ and $\text{Hom}(G, H)$ respectively. If there is a mapping $*$ of M onto Γ such that $a * b * c \in M$ whenever $a, b, c \in M$ then M is called a Hestenes ternary ring. The set of all finite sums $\sum a_i b_i$ with $a_i, b_i \in M$ form a ring R and the set of all finite sums $\sum c_i d_i$ with $c_i, d_i \in M$ form a ring L. Clearly M is a right R-module and is a left L-module. If M is irreducible as a R-module and as an L-module then M is called an irreducible Hestenes ternary ring. Obviously, if M is an irreducible Hestenes ternary ring then M is a right primitive Γ-ring in the sense of Nobusawa and the rings R and L are respectively the right operator ring and the left operator ring of M. Therefore Theorem 3 generalizes further the extension of the Chevalley-Jacobson density theorem given by Smiley and Stephenson (see [8, 9]).

5. Primitive Γ-rings with non-zero socles

In [6], we have introduced the notion of socles for Γ-rings. The right (left) socle $S_r(S_l)$ of a Γ-ring M is the sum of all minimal right (left) ideals of M. In the case M has no minimal right (left) ideals, the right (left) socle of M is defined to be 0. It has been shown that if M is an one-sided primitive Γ-ring having minimal one-sided ideals then M is a two sided primitive and its right socle and left socle coincide (see [5, Theorem 4.2] and [6, Theorem 4.3]).

In this section we shall present a characterization for primitive Γ-ring with non-zero socle which is different from the one given in [5].

Theorem 4. A Γ-ring M in the sense of Nobusawa is primitive with non-zero socle if and only if it is isomorphic to a dense Γ'-ring M' of semi-linear transformations containing non-zero semilinear transformations of finite rank. Moreover, the socle of M' is the set of semilinear transformations of finite rank contained in M'.

Proof. Necessity. Assume that M is a primitive Γ-ring in the sense of Nobusawa with non-zero socle. According to Theorem 3, M can be regarded as a dense Γ-ring of semilinear transformations. Let G and H be vector spaces over division rings Δ and Δ', $\sigma: \Delta \rightarrow \Delta'$ be an isomorphism, M be a dense group of semilinear transformations of H into G (associated with σ^{-1}) and Γ be a dense group of semilinear transformations of G into H (associated with σ). Let $e \gamma M$ be a minimal right ideal of M, where $e \in M$, $\gamma \in \Gamma$ and $e \gamma e = e$. We claim that e is a rank 1, for otherwise, there would exist $h_i, h_2 \in H$ such that h_e and h_e are Δ-linearly independent. By the density property of Γ and M, there would exist $\gamma \in \Gamma$ such that $h, e \gamma = 0$ and $h, e \gamma = 0$ and $h, e \gamma = M = G$.
Since $e\gamma M$ is minimal and $h_1 e\gamma (e\gamma e) = h_1 e\gamma e M = 0$, the right ideal \{x \in e\gamma M: h_1 x = 0\} = e\gamma M$, i.e. $h_1 e\gamma M = 0$. Particularly, $h_1 e = h_1 e e = 0$, a contradiction. Thus M contains non-zero semilinear transformations of finite rank. In addition, since the socle S of M is the sum of minimal right ideals, every element in S is of finite rank.

Sufficiency. Assume that M is a dense Γ-ring of semilinear transformations on vector spaces G and H described above, and assume that M contains semilinear transformations of finite rank. By density property, M contains semilinear transformations of rank 1. Let $a \in M$ be of rank 1, and let $Ha = \langle g_i \rangle$, the subspace of G generated by g_i. Consider $I = \{x \in M: Hx \subseteq \langle g_i \rangle\}$, a left ideal of M. We claim that I is minimal. Let $0 + x_i \in I$. Then $Hx_i = \langle g_i \rangle$ and $h_i x_i = g_i$ for some $h_i \in H$. By the density property of Γ, there exists $g_i^\gamma \in \Gamma$ such that $g_i^\gamma x_i = h_i$. Thus $g_i^\gamma = g_i^\gamma g_i x_i$. Now let x be an arbitrary element in I. For any $h \in H$, there exists $\delta \in \Delta$ such that $hx = g_i \delta = (g_i^\gamma x_i) \delta = (g_i \delta) g_i^\gamma x_i = h x g_i^\gamma x_i$. Hence $x = x g_i^\gamma x_i \in M \Gamma x_i$, so $I = M \Gamma x_i$ for every $0 + x_i \in I$. Therefore I is a minimal left ideal containing a, a is in the socle of M, and M has a non-zero socle S.

The argument just used shows that every element in M of rank 1 is in S. But the density property of M and Γ insures that every element in M of finite rank is a sum of finitely many elements in M of rank 1. Therefore S contains all elements in M of finite rank. This completes the proof.

NORTH CAROLINA STATE UNIVERSITY AT RALEIGH

References