

Title	The structure of primitive gamma rings
Author(s)	Luh, Jiang
Citation	Osaka Journal of Mathematics. 1970, 7(2), p. 267-274
Version Type	VoR
URL	https://doi.org/10.18910/12482
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

THE STRUCTURE OF PRIMITIVE GAMMA RINGS

JIANG LUH

(Received November 4, 1969)

1. Introduction

The notion of a Γ -ring was first introduced by Nobusawa [7]. The class of Γ -rings contains not only all rings but also all Hestenes ternary rings. In [7], Nobusawa generalized the Wedderburn-Artin Theorem for simple Γ -rings and for semi-simple Γ -rings. Barnes [1] obtained analogues of the classical Noether-Lasker theorems concerning primary representations of ideals for Γ -rings. The author [5] gave a characterization of primitive Γ -rings with minimal one-sided ideals by means of certain Γ -rings of continuous semilinear transformations. He [6] also established several structure theorems for simple Γ -rings having minimal one-sided ideals. Recently, Coppage and the author [2] introduced the notions of Jacobson radical, Levitzki radical, nil radical for Γ -rings and obtained some basic radical properties and inclusion relations for these radicals together with the prime radical defined by Barnes [1].

The object of this paper is to study the structure of primitive Γ -rings. One of its main results is a generalization of the Jacobson - Chevalley density theorem. This generalizes further a result given by Smiley and Stephenson for Hestenes ternary rings [8].

We refer to [4] for all notions relevent to ring theory.

2. Preliminaries

Let M and Γ be two additive abelian groups. If for all x, y, $z \in M$ and all α , $\beta \in \Gamma$ the conditions

- (1) $x\alpha y \in M$
- (2) $(x+y)\alpha z = x\alpha z + y\alpha z$, $x(\alpha+\beta)z = x\alpha z + x\beta z$, $x\alpha(y+z) = x\alpha y + x\alpha z$,
- (3) $(x\alpha y)\beta z = x\alpha(y\beta z)$

are satisfied then we call M a Γ -ring.

If these conditions are strengthened to

268 J. Luн

- (1') $x\alpha y \in M, \alpha x\beta \in \Gamma$,
- (2') the same as (2),
- (3') $(x\alpha y)\beta z = x(\alpha y\beta)z = x\alpha(y\beta z)$
- (4') $x\alpha y=0$ for all $x, y\in M$ implies $\alpha=0$, then M is called a Γ -ring in the sense of Nobusawa.

Let M be a Γ -ring. If S, $T \subseteq M$, we write $S \Gamma T$ for the set of finite sums $\Sigma_i s_i \alpha_i t_i$ where $s_i \in S$, $t_i \in T$, $\alpha_i \in T$. A subgroup I of M is a left (right) ideal of M if $M \Gamma I \subseteq I$ ($I \Gamma M \subseteq I$). If I is both a left and a right ideal of M, then I is an ideal of M. A one-sided ideal I is strongly nilpotent if $I^n = I \Gamma I \cdots \Gamma I = 0$ for some positive integer n. A non-zero right (left) ideal is minimal if the only right (left) ideals of M contained in I are 0 and I itself. It has been shown that every minimal right ideal which is not strongly nilpotent can be expressed as the form $e \gamma M$, where $\gamma \in \Gamma$, $e \in M$ and $e \gamma e = e$ (see [5] Theorem 3.2).

Let F be the free abelian group generated by the set of all ordered pairs (α, x) where $\alpha \in \Gamma$, $x \in M$. Let K be the subgroup of elements $\Sigma_i m_i$ $(\alpha_i, x_i) \in F$, where m_i are integers such that $\Sigma_i m_i$ $(x\alpha_i x_i) = 0$ for all $x \in M$. Denote by R the factor group F/K and by $[\alpha, x]$ the coset $K+(\alpha, x)$. Clearly every element in R can be expressed as a finite sum $\Sigma_i[\alpha_i, x_i]$. We define multiplication in R by

$$\Sigma_i[\alpha_i, x_i] \cdot \Sigma_j[\beta_j, y_j] = \Sigma_{i,j}[\alpha_i, x_i\beta_j y_j].$$

Then R forms a ring. Furthermore, M is a right R-module with the definition

$$x\Sigma_i[\alpha_i, x_i] = \Sigma_i x\alpha_i x_i$$
, for $x \in M$.

We call the ring R the right operator ring of M. Similarly, we can define the left operator ring L. Every element in L can be expressed as a finite sum $\Sigma_j[x_j, \beta_j]$ where $x_j \in M$, $\beta_j \in \Gamma$. These two operator rings play important roles in studying the structure of Γ -rings. We recall that a Γ -ring M is right primitive if (i) $M\Gamma x=0$ implies x=0 and (ii) the right operator ring R of M is a right primitive ring.

Theorem 1. If M is a right primitive Γ -ring, then the left operator ring of M is a right primitive ring.

Proof. Let R and L be respectively the right and left operator rings of M.

Let G be a faithful irreducible right R-module. Let A be the free abelian group generated by the set of ordered pairs (g, γ) , where $g \in G$, $\gamma \in \Gamma$, and let B be the subgroup of elements $\sum_i m_i(g_i, \gamma_i) \in A$ where m_i are integers such that $\sum_i m_i g_i[\gamma_i, x] = 0$ for all $x \in M$. Denote by H the factor group A/B and, without causing any ambiguity, by $[g, \gamma]$ the coset $B + (g, \gamma)$. Every element in H therefore can be expressed as a finite sum $\sum_i [g_i, \gamma_i]$. H forms a right L-module with the definition

$$\Sigma_{i}[g_{i}, \gamma_{i}] \cdot \Sigma_{j}[x_{i}, \beta_{j}] = \Sigma_{i,j}[g_{i}[\gamma_{i}, x_{j}], \beta_{j}]$$

for $\Sigma_i[g_i, \gamma_i] \in H$ and $\Sigma_j[x_j, \beta_j] \in L$. We claim that H is a faithful irreducible right L-module. Assume $H \Sigma_j[x_j, \beta_j] = 0$. Then for all $\gamma \in \Gamma$, $g \in G$, we have $\Sigma_j[g[\gamma, x_j], \beta_j] = [g, \gamma] \Sigma_j[x_j, \beta_j] = 0$, i.e. $g\Sigma_j[\gamma, x_j] [\beta_j, x] = 0$ for all $x \in M$. By the faithfulness of the R-module of G, $[\gamma, \Sigma_j x_j \beta_j x] = \Sigma_j[\gamma, x_j] [\beta_j, x] = 0$, so $M\Gamma\Sigma_i x_j \beta_j x = 0$. By the condition (i), $\Sigma_j x_i \beta_j x = 0$ for all $x \in M$. This means that $\Sigma_j[x_j, \beta_j] = 0$ and H is faithful. To see that H is irreducible, let $\Sigma_i[g_i, \gamma_i]$ be an arbitrary non-zero element in H. Then the set $G' = \{\Sigma_i g_i[\gamma_i, x] : x \in M\}$ is a non-zero R-submodule of G. Since G is irreducible, G' = G. For any $\Sigma_j[g_j', \gamma_j'] \in H$, we may write $g_j' = \Sigma_i g_i[\gamma_i, x_j]$ where $x_j \in M$. Thus $\Sigma_j[g_j', \gamma_j'] = \Sigma_j[\Sigma_i g_i[\gamma_i, x_j], \gamma_j'] = \Sigma_i[g_i, \gamma_i] \Sigma_j[x_j, \gamma_j] \in \Sigma_i[g_i, \gamma_i] L$. Hence H is irreducible and L is a right primitive ring.

3. Irreducible Γ -rings of homomorphisms on groups

Let G and H be non-zero additive abelian groups. If M and Γ are respectively subgroups of Hom (H,G) and Hom (G,H) such that $g\Gamma = H$ and hM = G whenever $0 \neq g \in G$ and $0 \neq h \in H$, and moreover if $x\alpha y \in M$ and $\alpha x\beta \in \Gamma$ for all $x, y \in M$, then M forms a Γ -ring in the sense of Nobusawa under the composition of mappings. We shall call such a Γ -ring an irreducible Γ -ring of homomorphisms on groups.

A Γ -ring M and a Γ' -ring M' are said to be isomorphic if there exist a group isomorphism θ of M onto M' and a group isomorphism ϕ of Γ onto Γ' such that $(x\alpha y)\theta = (x\theta)(\alpha\phi)(y\theta)$ for all $x, y \in M$, $\alpha \in \Gamma$. It is clear that M is right primitive if and only if M' is right primitive.

Theorem 2. A Γ -ring M is a right primitive Γ -ring in the sense of Nobusawa if and only if it is isomorphic to an irreducible Γ -ring of homomorphisms on groups.

Proof. Necessity. Let M be a right primitive Γ -ring in the sense of Nobusawa with right operator ring R and left operator ring L and let G be a faithful irreducible right R-module, from the proof of Theorem 1, we can construct the faithful irreducible right L-module H. Now, for each $\gamma \in \Gamma$ let $\gamma \phi \in \text{Hom }(G, H)$ defined by $g(\gamma \phi) = [g, \gamma]$. Clearly ϕ is a group homomorphism of Γ into Hom (G, H). Moreover, if $\gamma_1 \phi = \gamma_2 \phi$, then $[g, \gamma_1 - \gamma_2] = 0$ i.e. $g[\gamma_1 - \gamma_1, x] = 0$ for all $g \in G$, $x \in M$. By the faithfulness of G as an R-module, $[\gamma_1 - \gamma_2, x] = 0$ for all $x \in M$. Consequently $M(\gamma_1 - \gamma_2) M = 0$ and, by the condition (4') in the definition of Γ -ring in the sense of Nobusawa, $\gamma_1 = \gamma_2$. Thus ϕ is a group isomorphism of Γ onto $\Gamma' = \Gamma \phi$.

Likewise, for each $x \in M$, let $x\theta$ be the mapping of H into G defined by $\sum_{i} [g_{i}, \gamma_{i}](x\theta) = \sum_{i} g_{i}[\gamma_{i}, x]$. It can be shown easily that $x\theta \in \text{Hom }(H, G)$ and

270 J. Luh

that θ is a group homomorphism of M into Hom (H, G). We claim that θ is one-to-one. Indeed, if $x\theta = y\theta$, where $x, y \in M$, then $g[\gamma, x-y] = g[\gamma, x] - g[\gamma, y] = 0$ for all $g \in G$, $\gamma \in \Gamma$. Again by the faithfulness of G, $[\gamma, x-y] = 0$ for all $\gamma \in \Gamma$, or equivalently that $M\Gamma(x-y) = 0$. Hence x = y and θ is a group isomorphism of M onto $M' = M\theta$. It is easy to see that the Γ -ring M is isomorphic to the Γ' -ring M'.

It remains to show that M' is an irreducible Γ' -ring of homomorphisms on groups. Let $0 + g \in G$. Since gR = G, every element in H can be expressed as $\Sigma_j[g\Sigma_i[\gamma_{ij}, x_{ij}], \beta_j] = g(\gamma\phi)$ where $\gamma_{ij}, \beta_j \in \Gamma$, $x_{ij} \in M$ and $\gamma = \Sigma_{i,j}\gamma_{ij}x_{ij}\beta_j$. Hence $H = g\Gamma'$. Now, let h be an arbitrary non-zero element in H. Then $h = g(\gamma\phi) = [g, \gamma]$ for some $\gamma \in \Gamma$. It follows that $h(x\theta) = [g, \gamma](x\theta) = g[\gamma, x]$ for all $x \in M$. Thus hM' is a non-zero R-submodule of G and hence hM' = G.

Sufficiency. We may assume that M is an irreducible Γ -ring of homorphisms on groups, and that $0 \pm \Gamma \subseteq \operatorname{Hom}(G, H)$, $0 \pm M \subseteq \operatorname{Hom}(H, G)$ where H and G are abelian groups with the property that for any $0 \pm g \in G$ and $0 \pm h \in H$, $g\Gamma = H$ and hM = G. Clearly, $M\Gamma x = 0$ for $x \in M$ implies x = 0. For $g \in G$ and $\Sigma_i[\gamma_i, x_i] \in R$, the right operator ring of M, we define composition

$$g\Sigma_i[\gamma_i, x_i] = \Sigma_i(g\gamma_i)x_i$$
.

This composition is well defined. For if $\Sigma_j[\gamma_i, x_i] = \Sigma_j[\beta_j, y_j]$ in R, then $\Sigma_i x \gamma_i x_i - \Sigma_j x \beta_j y_j = 0$ for all $x \in M$. By noting that $g \in g \Gamma M$, we obtain $\Sigma_i(g \gamma_i) x_i - \Sigma_j(g \beta_j) y_j = g(\Sigma_i \gamma_i x_i - \beta_j y_j) \in g \Gamma M(\Sigma_i \gamma_i x_i - \Sigma_j \beta_j y_j) = 0$, so $g \Sigma_i[\gamma_i, x_i] = g \Sigma_j[\beta_j, y_j]$. Clearly G forms an irreducible right R-module. Moreover, if $\Sigma_i[\gamma_i, x_i] \in R$ and if $G \Sigma_i[\gamma_i, x_i] = 0$, then $HM \Sigma_i[\gamma_i, x_i] = G \Gamma M \Sigma_i[\gamma_i, x_i] = G \Sigma_i[\gamma_i, x_i] = 0$, and hence $M \Sigma_i[\gamma_i x_i] = 0$. Consequently, $\Sigma_i[\gamma_i, x_i] = 0$ and G is a faithful R-module. Thus, R is a right primitive ring and M is a right primitive Γ -ring in the sense of Nobusawa.

Observe the definition of irreducible Γ -rings of homomorphisms on groups. We can easily see that M is irreducible Γ -rings of homomorphisms on groups if and only if Γ is a irreducible Γ' -ring of homomorphisms on groups, where $\Gamma'=M$. Thus from Theorem 2, we immediately have the following

Corollary. Let M be a Γ -ring. Then M is a right primitive Γ -ring in the sense of Nobusawa if and only if Γ is a right primitive Γ' -ring in the sense of Nobusawa, where $\Gamma' = M$.

4. Chevalley-Jacobson density theorem

Let G and H be non-zero right vector spaces over division rings Δ and Δ' respectively, and let σ be an isomorphism of Δ onto Δ' . A group N of semilinear transformations (associated with σ) of G into H is said to be dense if, for every positive integer n and every n linearly independent elements g_1, g_2 ,

 \dots , g_n in G and every n elements h_1 , h_2 , \dots , h_n in H, there exists $x \in N$ such that $g_i x = h_i, i = 1, 2, \dots, n$.

Now, if Γ is a dense group of semilinear transformations (associated with σ) of G into H and M is a dense group of semilinear transformations (associated with σ^{-1}) of H into G, and if the compositions of mappings $x\alpha y \in M$ and $\alpha x\beta \in \Gamma$ for all $x, y \in M$, $\alpha, \beta \in \Gamma$, then M forms a Γ -ring in the sense of Nobusawa under the composition of mappings. We shall call such a Γ -ring a dense Γ -ring of semilinear transformations.

Following is a generalization of the well known Chevalley-Jacobson density theorem.

Theorem 3. Let M be a Γ -ring. Then M is a right primitive Γ -ring in the sense of Nobusawa if and only if it is isomorphic to a dense Γ -ring of semilinear transformations.

Proof. Sufficiency. It is an immediate consequence of Theorem 2, since a dense Γ -ring of semilinear transformations evidently is an irreducible Γ -ring of homomorphisms on groups.

Necessity. We assume that M is a right primitive Γ -ring in the sense of Nobusawa. According to the proof of Theorem 1 we can construct a faithful irreducible right R-module G and a faithful irreducible right L-module H, where R and L are respectively the right operator ring and the left operator ring of M. Set $\Delta = \operatorname{Hom}_R(G, G)$ and $\Delta' = \operatorname{Hom}_L(H, H)$. By Schur's Lemma, Δ and Δ' are division rings.

First, we shall show that Δ and Δ' are isomorphic. For $\delta \in \Delta$, we define the mapping $\delta^{\sigma} \colon H \to H$ by

$$(\Sigma_i[g_i, \gamma_i])\delta^{\sigma} = \Sigma_i[g\delta_i, \gamma_i]$$

for $\Sigma_{i}[g_{i}, \gamma_{i}] \in H$. Here δ^{σ} is well defined. For, if $\Sigma_{i}[g_{i}, \gamma_{i}] = \Sigma_{j}[g_{j}', \gamma_{j}']$ then for all $x \in M$, $\Sigma_{i}g_{i}[\gamma_{i}, x] = \Sigma_{j}g_{j}'[\gamma_{j}, x]$, and hence $\Sigma_{i}(g_{i}\delta)[\gamma_{i}, x] = (\Sigma_{i}g_{i}[\gamma_{i}, x])\delta = (\Sigma_{j}g_{j}'[\gamma_{j}', x])\delta = \Sigma_{j}(g_{j}'\delta)[\gamma_{j}', x]$. Thus $\Sigma_{i}[g_{i}\delta, \gamma_{i}] = \Sigma_{j}[g_{j}'\delta, \gamma_{j}']$ as we desired. Clearly, δ^{σ} preserves addition. Moreover, for $\Sigma_{i}[g_{i}, \gamma_{i}] \in H$ and $\Sigma_{j}[x_{j}, \beta_{j}] \in L$, we have $(\Sigma_{i}[g_{i}, \gamma_{i}]\Sigma_{j}[x_{j}, \beta_{j}])\delta^{\sigma} = (\Sigma_{i,j}[g_{i}[\gamma_{i}, x_{j}], \beta_{j}])\delta^{\sigma} = (\Sigma_{i,j}[g_{i}\delta, \gamma_{i}x_{j}\beta_{j}])\delta^{\sigma} = \Sigma_{i,j}[g_{i}\delta, \gamma_{i}x_{j}\beta_{j}] = \Sigma_{i,j}[g_{i}\delta, \gamma_{i}][x_{j},\beta_{j}] = (\Sigma_{i}[g_{i}, \gamma_{i}]\delta^{\sigma})\Sigma_{j}[x_{j}, \beta_{j}]$. Hence $\delta^{\sigma} \in \Delta'$. It can be easily verified that $\sigma: \delta \to \delta^{\sigma}$ is a monomorphism of Δ into Δ' . To show that σ is an onto mapping, we note that since H is a faithful irreducible right L-module and G is a faithful irreducible right R-module there exist $g_{0} \in G$ and $\gamma_{0} \in \Gamma$ such that $\{[g_{0}, \gamma]: \gamma \in \Gamma\} = H$ and $\{g_{0}[\gamma_{0}, x]: x \in M\} = G$. Let δ' be an arbitrary element in Δ' and $[g_{0}, \gamma_{0}]\delta' = [g_{0}, \gamma_{1}]$, where $\gamma \in \Gamma$. Let $\delta: G \to G$ be defined by $(g_{0}[\gamma_{0}, x])\delta = g_{0}[\gamma_{1}, x]$ for $x \in M$. This is well defined. In fact, if $g_{0}[\gamma_{0}, x] = g_{0}[\gamma_{0}, y]$, then, for any $\gamma \in \Gamma$, $[g_{0}, \gamma_{1}][x, \gamma] = ([g_{0}, \gamma_{0}]\delta')[x, \gamma] = ([g_{0}, \gamma_{0}][x, \gamma])\delta' = [g_{0}, \gamma_{0}][y, \gamma]\delta' = ([g_{0}, \gamma_{1}]\delta')[y, \gamma] = [g_{0}, \gamma_{0}][y, \gamma]$

272 J. Luh

and hence, by the construction of H, $g_0[\gamma_1 x \gamma, z] = g_0[\gamma_1 y \gamma, z]$ for all $\gamma \in \Gamma$, $z \in M$. It follows that $(g_0[\gamma_1, x] - g_0[\gamma_1, y])R = 0$. Since G is a faithful irreducible right R-module, $g_0[\gamma_1, x] = g_0[\gamma_1, y]$. Clearly $\delta \in \Delta$ and $\delta^{\sigma} = \delta'$. Therefore $\Delta \simeq \Delta'$.

In the proof of Theorem 2 we have known already that the Γ -ring M is isomorphic to a Γ' -ring M', where Γ' is a subgroup of Hom (G, H) and M' is a subgroup of Hom (H, G). More precisely, two group isomorphisms $\theta \colon M \to M'$ and $\phi \colon \Gamma \to \Gamma'$ exist such that $\Sigma_i[g_i, \gamma_i](x\theta) = \Sigma_i g_i[\gamma_i, x]$ and $g(\gamma \phi) = [g, \gamma]$ for all $g_i, g \in G, \gamma_i, \gamma \in \Gamma, x \in M$.

Now we consider G and H as right Δ -vector space and right Δ' -vector space respectively. For any $g \in G$, $\delta \in \Delta$ and $\gamma \in \Gamma$, we have $(g\delta)(\gamma\phi)=[g\delta, \gamma]$ $=[g, \gamma]\delta^{\sigma}=(g(\gamma\phi))\delta^{\sigma}$ and $([g, \gamma]\delta^{\sigma})(x\theta)=[g\delta, \gamma](x\theta)=g\delta[\gamma, x]=(g[\gamma, x])\delta$ $=([g, \gamma](x\theta))\delta$. Thus $\gamma\phi$ and $x\theta$ are semilinear transformations (associated with σ and σ^{-1} respectively).

It remains to show the density property for Γ' . The density property for M' can be obtained similarly. We shall show that for any n Δ -independent elements $g_1, g_2, \dots, g_n \in G$ and any n elements $h_1, h_2, \dots, h_n \in H$ there exists $\gamma \in \Gamma$ such that $g_i(\gamma \phi) = h_i$, $i = 1, 2, \dots, n$. We proceed by induction on n.

From Theorem 2, the assertion is obviously true for n=1. Now we assume that the assertion is true for n-1. We want first to show the existence of $\gamma \in \Gamma$ such that $g_i(\gamma\phi)=0$ for i < n and $g_n(\gamma\phi) \neq 0$. Suppose such a $\gamma \in \Gamma$ does not exist. Then, for any $\gamma \in \Gamma$, $g_i(\gamma \phi) = 0$, $1 \le i \le n-1$, implies $g_n(\gamma \phi) = 0$. Thus for any $h \in H$, by the induction hypothesis, there exists $\gamma_0 \in \Gamma$ such that $g_1(\gamma_0 \phi)$ =h and $g_i(\gamma_0\phi)=0$, $1 < i \le n-1$. If also $g_i(\gamma_1\phi)=h$ and $g_i(\gamma_1\phi)=0$, $1 < i \le n-1$, for some $\gamma_1 \in \Gamma$, then since $g_i((\gamma_0 - \gamma_1)\phi) = 0$, for $1 \le i \le n-1$ it follows that $g_n((\gamma_0 - \gamma_1)\phi) = 0$, i.e. $g_n(\gamma_0 \phi) = g_n(\gamma_1 \phi)$. Hence the mapping $\psi: H \to H$ defined by $h\psi = g_n(\gamma_0\phi)$ whenever $g_1(\gamma_0\phi) = h$ and $g_i(\gamma_0\phi) = 0$ for 1 < i < n, is well defined. It is easy to see that ψ preserves addition. Let us recall that g_0 is an element in G with $\{[g_0, \gamma]: \gamma \in \Gamma\} = H$. Let $[g_0, \gamma] \in H$ and $\Sigma_i[x_i, \gamma_i] \in L$. Then $[g_0, \gamma]\psi = g_n(\gamma_0\phi)$ for some $\gamma_0 \in \Gamma$, where $g_1(\gamma_0\phi) = [g_0, \gamma]$ and $g_i(\gamma_0\phi) = 0, 2 \le i \le 1$, Thus, $([g_0, \gamma]\psi)$ $\Sigma_i[x_i, \gamma_i] = (g_n(\gamma_0\phi))$ $\Sigma_i[x_i, \gamma_i] = [g_n, \gamma_0]$ $\Sigma_i[x_i, \gamma_i]$ $=g_n(\gamma_1\phi)$, where $\gamma_1=\sum_i\gamma_0x_i\gamma_i$. On the other hand, since $g_1(\gamma_1\phi)=[g_0,\gamma]$ $\Sigma_i[x_i, \gamma_i]$ and $g_i(\gamma_i \phi) = 0, 2 \le i \le n-1$, by the definition of ψ , $([g_0, \gamma] \Sigma_i[x_i, \gamma_i])$ $\psi = g_n(\gamma_1 \phi)$. Consequently, $([g_0, \gamma] \Sigma_i[x_i, \gamma_i]) \psi = ([g_0, \gamma] \psi) \Sigma_i[x_i, \gamma_i]$ hence $\psi \in \Delta'$. Let $\psi = \delta^{\sigma}$ where $\delta \in \Delta$. Since $g_1 \delta - g_n, g_2, \dots, g_{n-1}$ are Δ -linearly independent, by the induction hypothesis, there exists $\gamma' \in \gamma$ such that $(g_1 \delta - g_n)$ $(\gamma'\phi) \neq 0$ and $g_i(\gamma'\phi) = 0$ for 1 < i < n. But by the definition of ψ , $(g_1\delta - g_n)$ $(\gamma'\phi)=(g_1\delta)(\gamma'\phi)-g_n(\gamma'\phi)=(g_1(\gamma'\phi))\psi-g_n(\gamma'\phi)=0$, a contradiction. This proves the existence of $\gamma \in \Gamma$ such that $g_n(\gamma \phi) \neq 0$ and $g_i(\gamma \phi) = 0$ for $1 \leq i < n$. Since $g_n(\gamma\phi)L=H$, there exists $\gamma_n \in \Gamma$ such that $g_n(\gamma_n\phi)=h_n$, and $g_i(\gamma_n\phi)=0$ for $1 \le i < n$.

Likewise, there exist $\gamma_i \in \Gamma, 1 \le i < n$, such that $g_i(\gamma_i \phi) = h_i$ and $g_j(\gamma_i \phi) = 0$ for $i \ne j$. Now let $\gamma = \gamma_1 + \gamma_2 \cdots + \gamma_n$. Then $g_i(\gamma \phi) = h_i, 1 \le i \le n$ as we desired. This completes the proof of the theorem.

We recall the definition of Hestense ternary rings. Let G and H be additive abelian groups. M and Γ be subgroups of $\operatorname{Hom}(H,G)$ and $\operatorname{Hom}(G,H)$ respectively. If there is a mapping * of M onto Γ such that a b^* $c \in M$ whenever $a, b, c \in M$ then M is called a Hestenes ternary ring. The set of all finite sums $\sum_i a_i^* b_i$ with $a_i, b_i \in M$ form a ring R and the set of all finite sums $\sum_i c_i d_i^*$ with $c_i, d_i \in M$ form a ring R and the set of all finite sums R and is a left R-module. If R is irreducible as a R-module and as an R-module then R is called an irreducible Hestenes ternary ring. Evidently, if R is an irreducible Hestenes ternary ring then R is a right primitive R-ring in the sense of Nobusawa and the rings R and R are respectively the right operator ring and the left operator ring of R. Therefore Theorem 3 generalizes further the extension of the Chevalley-Jacobson density theorem given by Smiley and Stephenson (see [8, 9]).

5. Primitive Γ -rings with non-zero socles

In [6], we have introduced the notion of socles for Γ -rings. The right (left) socle $S_r(S_l)$ of a Γ -ring M is the sum of all minimal right (left) ideals of M. In the case M has no minimal right (left) ideals, the right (left) socle of M is defined to be 0. It has been shown that if M is an one-sided primitive Γ -ring having minimal one-sided ideals then M is a two sided primitive and its right socle and left socle coincide (see [5, Theorem 4.2] and [6, Theorem 4.3]).

In this section we shall present a characterization for primitive Γ -ring with non-zero socle which is different from the one given in [5].

Theorem 4. A Γ -ring M in the sense of Nobusawa is primitive with non-zero socle if and only if it is isomorphic to a dense Γ' -ring M' of semi-linear transformations containing non-zero semilinear transformations of finite rank. Moreover, the socle of M' is the set of semilinear transformations of finite rank contained in M'.

Proof. Necessity. Assume that M is a primitive Γ -ring in the sense of Nobusawa with non-zero socle. According to Theorem 3, M can be regarded as a dense Γ -ring of semilinear transformations. Let G and H be vector spaces over division rings Δ and Δ' , $\sigma \colon \Delta \to \Delta'$ be an isomorphism, M be a dense group of semilinear transformations of H into G (associated with σ^{-1}) and Γ be a dense group of semilinear transformations of G into H (associated with σ). Let $e\gamma M$ be a minimal right ideal of M, where $e \in M$, $\gamma \in \Gamma$ and $e\gamma e = e$. We claim that e is a rank 1, for otherwise, there would exist $h_1, h_2 \in H$ such that $h_1 e$ and $h_2 e$ are Δ -linearly independent. By the density property of Γ and M, there would exists $\gamma_0 \in \Gamma$ such that $h_1 e \gamma_0 = 0$ and $h_2 e \gamma_0 \neq 0$ and $h_2 e \gamma_0 M = G$.

274 J. Luн

Since $e\gamma M$ is minimal and $h_1e\gamma(e\gamma_0 M)=h_1e$ $\gamma_0 M=0$, the right ideal $\{x\in e\gamma M: h_1x=0\}=e\gamma M$, i.e. $h_1e\gamma M=0$. Particularly, $h_1e=h_1e\gamma e=0$, a contradiction. Thus M contains non-zero semilinear transformations of finite rank. In addition, since the socle S of M is the sum of minimal right ideals, every element in S is of finite rank.

Sufficiency. Assume that M is a dense Γ -ring of semilinear transformations on vector spaces G and H described above, and assume that M contains semilinear transformations of finite rank. By density property, M contains semilinear transformations of rank 1. Let $a \in M$ be of rank 1, and let $Ha = \langle g_1 \rangle$, the subspace of G generated by g_1 . Consider $I = \{x \in M: Hx \subseteq \langle g_1 \rangle\}$, a left ideal of M. We claim that I is minimal. Let $0 \neq x_1 \in I$. Then $Hx_1 = \langle g_1 \rangle$ and $h_1x_1 = g_1$ for some $h_1 \in H$. By the density property of Γ , there exists $\gamma_1 \in \Gamma$ such that $g_1\gamma_1 = h_1$. Thus $g_1 = g_1\gamma_1x_1$. Now let x be an arbitrary element in I. For any $h \in H$, there exists $\delta \in \Delta$ such that $hx = g_1\delta = (g_1\gamma_1x_1)\delta = (g_1\delta)\gamma_1x_1 = hx\gamma_1x_1$. Hence $x = x\gamma_1x_1 \in M\Gamma x_1$, so $I = M\Gamma x_1$ for every $0 \neq x_1 \in I$. Thereofre I is a minimal left ideal containing a, a is in the socle of M, and M has a non-zero socle S.

The argument just used shows that every element in M of rank 1 is in S. But the density property of M and Γ insures that every element in M of finite rank is a sum of finitely many elements in M of rank 1. Therefore S contains all elements in M of finite rank. This completes the proof.

NORTH CAROLINA STATE UNIVERSITY AT RALEIGH

References

- [1] W.E. Barnes: On the Γ-rings of Nobusawa, Pacific J. Math. 18 (1966), 411-422.
- [2] W.E. Coppage and J. Luh: Radicals of gamma rings (to appear).
- [3] M.R. Hestenes: A ternary algebra with applications to matrices and linear transformations, Arch. Rational Mech. Anal. 11 (1962), 138-194.
- [4] N. Jacobson: Structure of Rings, Amer. Math. Soc. Colloquium Publ. 37, Providence, 1964.
- [5] J. Luh: On primitive Γ-rings with minimal one-sided ideals, Osaka J. Math. 5 (1968), 165-173.
- [6] : On the theory of simple Γ -rings, Michigan Math. J. 16 (1969), 65–75.
- [7] N. Nobusawa: On a generalization of the ring theory, Osaka J. Math. 1 (1964), 81-89.
- [8] M.F. Smiley: An introduction to Hestenes ternary rings, Amer. Math. Monthly 76 (1969), 245-248.
- [9] R.A. Stephenson: Jacobson structure theory for Hestenes ternary rings, Ph. D. dissertation, University of California, Riverside, 1968.