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Abstract
We study large time behavior of the solutions to the initialue problem for the
generalized Burgers equation. It is known that the solutemds to a self-similar
solution to the Burgers equation at the ratélogt in L* ast — co. The aim of
this paper is to show that the rate is optimal under suitabdeimptions and to obtain
the second asymptotic profile of large time behavior of thietsms.

1. Introduction

This paper is concerned with large time behavior of the dlamdutions to the
generalized Burgers equations:

(1.2) U+ (f(U))x =uxx, t>0, xeR,
(1.2) u(x, 0) =uo(x),

whereug € LY(R) and f (u) = (b/2)u?+(c/3)u® with b #0, c € R. The subscript$ and
x stand for the partial derivatives with respectttandx, respectively. It is well-known
that the solution of (1.1) and (1.2) tends to a nonlinearudiin wave defined by

1 X
(1.3) X(X,t)=mx*<m), t>0, xeR,
where
1 (P2 — 1)e=(x*/4)
(1.4) Xx:(X) = b ST+ (€92 — 1) fxo/oz eV dy’
1.5 S = dx.
(15) /R Uo(x) dx

2000 Mathematics Subject Classification. Primary 35B40p8éary 35L65.
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By the Hopf-Cole transformation in Hopf [4] and Cole [1], weesthat it is a solution
of the Burgers equation

(1.6) X+ (gxz) =0 >0, XeR,
X
satisfying
1.7) f x(X, 0)dx =34.
R

Concerning the convergence rate of the nonliner diffusi@aven (x,t) to the orig-
inal solution u(x, t), we can infer the following result from the argument givan i
Kawashima [7] and Nishida [10], which deal with a class oftegs in the case where
u(x, t) is a scalar unknow function without any essential diffigultf uy € L%(R) N

HY(R) for somep € (0, 1) and|ugl4: + ||Uoll 2 is small, then we have

(18)  Ju(-, )= x(-, Dllex = CA+™ ™ (luollus + luollz), t =0,

wherea = (1—B)/2. Here, for an integek > 0, H¥(R) denotes the space of functions
u = u(x) such thata)'< are L2-functions onR for 0 < | < k, endowed, with the norm
I - Inx, while L3(R) is a subset ofL'(R) whose elements satisfyul|; = Jg lul@ +

IX])? dx < oo.

This observation lead to a natural question whether it issiptes to takeo =
0 in (1.8) for the extreme casg =1 or not. An attempt to answer the ques-
tion can be found in Matsumura and Nishihara [9]. To be morecipee we put
wo(x) = exp(=(b/2) J7,, Uo(y) dy) — exp(~(b/2) /7, x(y, 0)dy) and we suppose that
wo € H?(R) N LY(R) and ||woll w2 + [lwoll 1 + |[Uoll 2 is small. Then the estimate

(1.9) flu(-, t) = x(+, Dllex < CA+1) " log(2 +t)(|lwollnz + llwollx +181%%), t=0

holds instead of (1.8). The aim of this paper is to show that decay rate of esti-
mate (1.9) is actually optimal, unless= 0 or c = 0. Indeed, the second asymptotic
profile of large time behavior of the solutions is given by

o X 1
(1.10) V(x, t) = —ﬁv*(ﬁ>(1 +t)"log(2 +t), t>0, xeR,
where
(1.12) V,(X) = (b (X) — x)e ™ /4n.(x),

b X
(112) n*(X)EeXIO<§ / x*(Y)dy),

o0
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-1 3
(1.13) d= /R 15 y) () dy.

Bisides, we can take the initial data frobf(R) N H!(R), analogously to the works of
[7], [10]. And we set, fork > 0, Ey g = |[ug|lu«+ ||u0||L}1;. Then we have the following
result.

Theorem 1.1. Assume that gic L}(R) N HY(R) and E o is small Then the ini-
tial value problem for(1.1) and (1.2) has a unique global solution(y, t) satisfying
u € Co([0, oo); HY) and dxu € L?(0, oo; HY). Moreover if ug € LI(R) N HY(R) and
E1 1 is small then the solution satisfies the estimate

(1.14) (-, ) = x(-, ) = V(- Yl =CELa(1+)7F, t=1
Here x(x, t) is defined by(1.3), while V(x, t) is defined by(1.10).

REMARK 1.2. In Liu [8], the initial value problem for the Burgers edions (1.1)
and (1.2) is studied, provided= 0 implicity at p.42. After the proof of Theorem 2.2.1,
it is mentioned, without proof, that if we assume (IxH2|uo(x)| <& and 3§ is small,
then the estimate

Ju(-,t) — x(-, DllLs < C5A+1)7L, t>1

holds. However, from our result, the above estimate failge fior the cases # 0.

We remark that the estimate similar to (1.14) was obtainedother types of
Burgers equation such as KdV-Burgers in Hayashi and Naurf®{imnd Kaikina and
Ruiz-Paredes [5], and Benjamin-Bona-Mahony-Burgers in ashy Kaikina and
Naumkin [2].

2. Preliminaries

In order to prove the basic estimates given by Lemma 3.2, L&BMB and Lem-
ma 3.5, we prepare the following two lemmas. The first one iscemed with the
decay estimates for semigro® associated with the heat equation. For the proof,
see Kawashima [6].

Lemma 2.1. Let k be a positive integeSuppose g€ HX(R) N L1(R). Then the
estimate

(2.1) laye"“qollLe < C(L +t)" W4/ go|| 2 + Ce Y 18Lqollz, t =0

holds for any I=0, 1,..., k.
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The second one is related to the diffusion waMe, t) and the heat kerngb(x, t).
The explicit formula ofx(x, t) and G(x, t) are given by (1.3) and

1 2
(2.2) G(x, t) = ——e*/%  t >0, xeR,
VAt

respectively. It is easy to see that

2.3 Ix(x, )| < C|8|(1 +1)" W2 /4041 >0, x € R.
( X

Moreover, we get the following (see e.g. [9]).

Lemma 2.2. Let @ and g be positive integets Then for p € [1, oo], the esti-
mates

(2.4) 18280 x (-, liLe < CI8I(L +1)~WAA=YP—e/2=6 = ¢ > 0,
(2.5) 1820 G( -, t)|Lp < Ct-WAAYP—e/2-6 ¢~
hold.

For the latter sake, we introducg, n, defined by

X _ b X
(2.6) ik, 1) = n<ﬁ> - exp(é [ RCA dy),
(2.7) na(X, t) = nyH(x, t).

We easily have

(2.8) min{1, e%/2} < ny(x, t) < max(1, ?/3),

(2.9) min{1, e™®/2} < ny(x, t) < max1, e ®/?}.
Moreover, we get

Corollary 2.3. Let | be a positive integerFor i = 1, 2,if |§] < 1, then we have

(2.10) ki (-, Ol < Cl8|(L +t)~0-D/2,
(2.11) I8k (-, )l < CISI(L +t) Y2,
(2.12) 19kmi (-, )Lz < CI8|(L+t)~/214),

Proof. We shall prove only (2.10), (2.11) and (2.12) for 1, since we can
prove (2.10), (2.11) and (2.12) fdr= 2 in a similar way. We pui(x) = e®/2x,
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d(x, t) = [ x(y, t)dy. Then we have, fot > 1,

dP

(% 0 = 3 Crimym -2 (00X, DBk, I - - @hc(x, D)

(2.13) b\
=3 G () O 0G0 O™ G, O

where the sum is taken for aling, ..., m) e NK such thatm; +2my + - - - +1m; =1,
andp=m+---+m, 1<p<l.

First we derive (2.10). Sinceny +2m,+---+Im; =1, there existsj € {1, 2,...,1}
such thatm; > 1. Therefore, by Lemma 2.2 and (2.13), we have

19%ma(-, )llLs

<CY I OITEI9x (o OIS - 193 o O, -+ 19 x (- OIS
< CI8I Y (A +t)™™A(L+t)2M2 . (L 4ty UMmDZ (14T

< Cl|(L+t)=-2,

Hence we get (2.10).
Next we derive (2.11). By Lemma 2.2 and (2.13), we have

1k, Ol = C 3 (e, OIS e, OITE -+ 19,5 (-, DI
< CI8| S (@ +1) ™AL +) 22 (L )M
< Cl8|(1+t)7"72,

Hence we get (2.11).
Finally, by the interpolation inequalityf f ||, » < || f IIi;l/pll f ||i/1p (1< p<o0), we
have from (2.10) and (2.11)

1kma(-, Oz < l8kna( -, OIT2N84n( -, OITY

< Cls|(L+t) 72,

This completes the proof. ]

3. Basic estimates

We deal with the following linearized equations which cegmands to (4.10), (4.11)
below:

3.1 Zt =z — (bx2)x, t>0, xeR,
3.2) z(x, 0) =zp(x).

The explicit representation formula (3.4) below plays ac@urole in our analysis.
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Lemma 3.1. If we set

y
Ulw](x, t, 7) = /R W(Gx =y, t = )ma(x, )n2A(y, T)/_ w(§) dé dy,

0<t<t, xeR,

(3.3)

then the solutions fo(3.1) and (3.2) is given by
(3.4) z(x,t) =U[z](x,t,0), t>0, xeR.

Proof. If we put

X
35) 0= [ ayndy
then we see from (3.1), (3.2) thafx, t) satisfies
(3.6) re =ryx —bxry, t>0, xeR,
X
3.7) (0= z()dy

Then a direct computation yields

rex, t)\ _ [ rxt)
(3.8) (nl(x, t))t - (;71(X, t))xx’

wheren; is defined by (2.6). Therefore, we have

3.9) 06D =m0 ) [ G6—y, mly, 0)7'r(y, 0)dy.

Hence (3.9), (3.5), (3.7) and (2.7) yield (3.4). U
Next we derive the decay estimates (3.10) and (3.22) belowthi® homogenous

equation (3.1). Here, to prove the estimate, we follow thguerent which is used to

show the estimate for the semigroefd* in [7].

Lemma 3.2. Let g €0, 1], k be a positive interger and @ [1, cc]. Assume that
18] <1, 20 € L(R) and [ zo(x) dx = 0. Then the estimate

(3.10) 1,U[Zo]( -, t, O)lle < O Y/PF D275 5, ¢ >0

holds for any I=0, 1,..., k.
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Proof. Since [, zo(x) dx = 0, by the integration by parts with respect yo we
have from (3.3)

y
(3.11) U[zo](x, t, 0) =— /R zo(y)ﬁ I (G(x — &, t)na(x, t))n2(¢, 0)dé dy.

Using this expression, we shall show that
(3.12) 19U [Zo]( -, t, O)llL~ < CtF02)7]1 1, £ >0,
(3.13) 13U [Z]( -, t, Ol < Ct D2z 5, t > 0.

The desired estimate follows from the interpolation indipaActually, we have

18U zo]( -, t, O)lle < l[8LU[20]( - , t, O)lI{=” Pllak U zo]( - , t, O)[I15P
< Ct- /PP 2] 4.
- B

First we shall prove (3.12). From (3.11), we have

y
AUzl 0 < | |Zo(Y)|‘ [ e omex t))nz(s.O)ds‘dy
(3.14) R 0

= [ i, v 0 dy.
By using (2.11), (2.9), (2.5) and the Hoélder inequality, wavd

1+1
1< CY 0 ™, Ol
m=0

y
/0 AG(X — &, nalé, O)ds‘

(3.15) I+1
<CY @+t BEM29NG(x — -, t)|lLvanlyl?

m=0

Hence (3.14) and (3.15) yield (3.12).
Next we shall prove (3.13). From (3.11), we have

y
185U [zo]( -, t, O)llLx < fR fR |Zo(y)|‘ fo MHG(x — &, na(x, t))')z(éyo)dé‘dydx
1) dy,
s/}éle(y)llz(y t) dy.

where we put

y
(3.16) Iy, 1) = /}R ‘ /O LG — &, Onalx, D)nale, O)ds‘ dx.
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In order to get (3.13), it suffices to show
(3.17) I, <Ct ™2
(3.18) I, < Cly[t-@/2,

In fact, if we would have these estimates, then
10U LZo]( - t, O)lLs < / 2012715 dy
R
<C [ Jzay)t PG P gy < CEOD 2z,
R

First we shall prove (3.17). From (3.16) we have

1+1

I§C/
2 %R

y
almy (x, t)/o WG(x — &, )naA&, O)d%”‘ dx

=cC / (. 1) f " 01G(x — £, na(e, 0) | dx
(3.19) rl o ’ '
' y
C I+l-mp (X, MG(x — &, ,0)d¢| d
+ g/Rax n(x t)/0 ANG(x — &, t)na(&, 0) g‘ X
E|2’1+|2’2.

By using the integration by parts with respect&powe have
1222 C [ 18,60 ¥, Dy, 0) - 2 G(x, D10, 0)
R

y
c 8LG(x — £, 1)den(&, 0)d& | d
(3.20) ¥ ~/R‘/0 xG(X — &, 1)0:m2(¢, 0)dg | dx

| | _
schwXG(x, t)|dx+c/R|agnz(s.on/waG(x £, 1) dx d
<cCct/2

where we have used (2.8), (2.9), (2.10) and (2.5). On therdthed, from (2.9),
(2.10) and (2.5), we have

|
l22<CY 10 (-, Ol I9G( -, Bl
(3.21) ’“|=°
< C Z(l +t)—(l—m)/2t—m/2 < Ct_l/z.

m=0

Hence we obtain (3.17).
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Next we shall prove (3.18). From (3.16), (2.9), (2.11) andb)2ve have

I+1
o < CY 10 ™na( -, Ol 107G+, ]l ly]
m=0

I+1
< C Z(l +t)—(l+1—m)/2t—m/2|y| < Ct—(l+|)/2|y|

m=0
Hence we get (3.18). This completes the proof. U

Lemma 3.3. Let k be a positive intergerAssume thats| < 1, zg € HX(R) N
LY(R) and fR Zo(X) dx = 0. Then the estimate

(322) I U[zl( -, t, O)llz < CL+t)" W*/ 2z s + Cetfzoll, t>0
holds for any I=0, 1,..., k.
Proof. We have from (3.3)

(3.23)
y
B\ ULz](x, t, 0) = /R AL (G(X — Y, (k. D)na(y, 0) / 20(¢) dé dy

1+1

=3 () 0 [ty omty.0) [ 26 s dy
y

_ i+l _

= 3y (x, 1) /R G(x — . )na(y, 0) / 2(e)d dy

[+1
[+1\ |, _
+Z( : )a'x st [ a6 0=y, 03,90) dy.

m=1

where we put
y
(3.24) 3) = na(y. 0) f 20(¢) de.

Therefore we have from (2.9), (2.5) and Corollary 2.3

19 U[Z0]( -, t, O)llz < Cllay™ (-, )l G(-, OllalizollLa
1+1
+C YU ™l Dlleelloy e (3] e
m=1

(3.25)
< C(L+t) W2z 4
1+1
+C ) (1 +t) M2 pn-te g, 3|l 2.

m=1
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From (3.24), (2.9), (2.4) and Corollary 2.3, we have

X
l9xdllL: < CHX(X, t)/ zo(§) dg +Cl 2ol
(3.26) —00 L1(Ry)
< Cllzol1,

and form > 1

m X

I3l = C 3 e, 0 [ za(e) de
n=0 —00 LZ(RX)

(3.27) m
< Cllagn2( -, O)llzllzoll s +C Z 19 "n2( -, O)llL [0y 20l 2
n=1

=< CllzollLx + lIZollym-1).
Hence, for I<= m<I+1, from (3.26), (3.27) and Lemma 2.1, we have

3.28) oyt (3¢ I llLe < C(L+1)~ W=Dy, )| + Ce 197 .o
' < C(L+t) WD) z]| . + Ce(l|zofls + 1 Z0llms).
Therefore by (3.25) and (3.28), we obtain (3.22). This catgd the proof. [
From Lemma 3.2 and Lemma 3.3, we get the following unifornineste.

Corollary 3.4. Let k be a positive integerAssume thats| < 1, zy € Li(R) N
HX(R) and [ zo(x) dx = 0. Then the estimate

19,U[Zo]( -, t, Oz < CEo(1+1)"®4%/2 t >0
holds for any I=0, 1,..., k. Here B 1= ||zl + I Zoll2-

Next we derive the decay estimate (3.29) below in the same agajemma 3.6
of [6]. The estimate will be used to get the decay rate of thietiem w(x,t) for
the problem (4.10) and (4.11). Bisides, we denote the Fouransform of f(x) e
L2(R) N LY(R) by f(&) = FIfI(&) = (1/v27) [ e ¢ f(x) dx, and set

k
Ifllge =D 107 s < oot

m=0

HY(R) = { f:LE(R)
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Lemma 3.5. Let k be a positive integeSupposés| < 1 and w € C°(0,00; HX)N

C%0, oo; HE). Then the estimate

al /t Uoxw(o)](x, t, T) dt
0

t/2
<C | @+t—1)y®* 2 y(., 7)|n:dr
0

L2(Ry)

(3.29) Lt
+Cy° f L+t — ) ¥4 @+ 1) =m2) My (., 7)1 de
m=0 /2

1/2

' t
+C Z( /O e @+ ) M afw( -, 1) dr)
m=0

holds for any I1=0, 1,..., k.

Proof. From (3.3) and Corollary 2.3, we have

t 1+1
(3.30) a'X/ U[axw(2)](x, t, T) dz <CY @+t 200 (L Y,
0 L2(Ry) n=0
where we put
t
(3.31) 1060 = [ [ 6= 3.t = Dmaly, Dy, ) dy ek
0JR

From Lemma 2.1, we have
(3.32)

t
(Dl <C /0 1A () ()]( - )2 de

t
<C / A+t =) ™Y w(-, Ol +e I w( -, 7)ll2) de
0

t t 1/2
sc/(1+t—r)‘1/“||w(-,r)||L1dr+C(f e—“—”||w(~,r)||izdr) :
0 0

becausd >t — 7 for 0 < 7 <t. In the following, let 1< n <| +1. It follows that

A

1821 (-, Iz < 1GE)T(E, Ollzgei<a) + 1GE)TE, L2121y

= |1+,

(3.33)
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First, we evaluatd;. From (3.31), we have
v2 )
Iy < /0 1) e Flnaw](g, ©)lLzei<) dT

t
+ / ) i &) e CEE Flnawl(€, T)llLzgei<) dT
t/

=lg1+ 110

Since
/ e 2R g < C(1 +t — 7)-U*D12,
[§1=<1

for j > 0, we have

t/2 . 1/2
l11<C / sup|f[nzw](-,r)|< / |&|2ng 20l d&) dr
0 |E1<1

(3.34) I=t
t/2
<C | (@+t—1) @V (., )| dr.
0

While, we have from Corollary 2.3

t 1/2
ly=<C / sup|(is)“1f[nzw1(-,r)|([ |§|2e2<”>¥2ds) dr
t |£1<1

/2 El=1

t
(3.35) <C / L+t — )40y Ynaw)( -, 7)llLs dr
t/2

t n-1
<C [ @+t—o) ¥ (@ +1) M2 pm( ., 1)L dr.

/2 m=0

Therefore, we get from (3.34) and (3.35)

t/2
lh<C | (@+t—2) "V u(., 7)lsdr
0
(3.36) . n-1
+C / L+t — ) ¥ (L +7) 2 gy ( - 7))L dr
t/2 m=0

Next we evaluatd,. For |§| > 1, by using the Schwarz inequality, we have
t
(67T 01 =C [ lele I8 FTraul(e, o) o
0

t 1/2
§C< / e“f”ﬂﬂ(i&)“lf[nzw](s,mzdr) .
0
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Therefore we find from (3.33) and Corollary 2.3

t 172
|2§C( /O o1 /E 168" T, ) de dr)

t 1/2
(3.37) SC( / e Iy Y naw)(-, D)2 dr)
0
t n-1 1/2
sc( / C Z(1+r)—<”—1—m>||a;“w(~,r)nizdr) :
0 m=0

Summarizing (3.30), (3.32), (3.33), (3.36) and (3.37), weam (3.29). This com-
pletes the proof. ]

4. Proof of Theorem 1.1
In order to prove our result, we introduce the following aiaxy problem:
4.1) ve = vgx — (bxv)x — <§X3> , t>0, xeR,
x
4.2) v(x, 0) =0.
We derive the decay estimate for the solutig(x, t) to the above problem.
Lemma 4.1. Let|> 0 be an integer Then we have
(4.3) alv(-, )2 < CI813(A +1) @4/ og(2 +t), t=>0.

Proof. By the Duhamel principle, we see from Lemma 3.1 that

(4.4) w(X, t) = /Ot u [ax(—gf(f))](x, t, ) dr.

From Lemma 3.5, we get

t/2
3v(-, )2 <C | @+t —1) 23 )| de
0

|
+Cy / t L+t — ) L+ ) 20003, 1)l de
(4.5) m=0 /1/2

[ t 1/2
+ C Z(A e_(t—f)(l + T)—(|—m)||a>r(n(x3( -, T))”iz dT)
m=0

=l1+1l+ 13
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It follows from Lemma 2.2 that fomp € [1, oo]
(4.6)

m—n

m me
19203, T < C Y Y ogx (- Dl llogx (-, Dl 107" °x (-, T)llLs
n=0 s=0
m m-—n
<cCls® Z Z(l +1)"@N/2(7 4 7)=(149/2( 4 7)=(A-(1/pyrm—n—s)/2
n=0 s=0

< C|8|3(1 + r)*(3*(1/P)+m)/2_
Using (4.6), we obtain

t/2
I < C|8|3/ L+t — ) &2+ 1)1 dr
0

4.7)

< CISIP(L +t) @4/ jog(2 +1),

t
b <Cls]® | (@+t—1)%4L+7) WAy

(4.8) 12

< CI8J3(1 +1)~Gr44/2),
and

t 1/2

I3 < C|5|3(/ e*(tfr)(l +.L.)7(5/2H) d‘[)

(4.9) 0
< CI53(1 +t)~G/44/2),

This completes the proof. 0

Our first step to prove Theorem 1.1 is the following.

Proposition 4.2. Let k> 1 be an integer Assume that gic LY(R) N H¥(R) and
Ex0 is small Then the initial value problem fo(1.1) and (1.2) has a unique global
solution yx, t) satisfying ue CO([0, 00); H¥) and dxu € L?(0, oo; H¥). Moreover if
Uo € LYR) N HX(R) and E; is small then the estimate

13, (UC- o ) = x (-, ) = v(-, )z < CEa(L+1) 43, t >0
holds for | < k. In particular,

lu(-, ) = x(-, ) —v(-, e < CELa(1+1)7%, t>0.

Here x(x, t) is defined by(1.3), while v(x, t) is the solution for the problent4.1)
and (4.2).
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Proof. We can show the local existence and uniqueness ofdlwion to (1.1)
and (1.2) by standard argument. Using the argument of The@&® in [7], we can
continue the local solution globally in time. We shall prosely the decay estimate.
We note that the smallness & ;1 implies that of|5| by (1.5). We put

w(X, t) =u(x, t) — x(x, t) — v(x, t).
Then w(x, t) satisfies

(4.10) wy = wyx — (bxw)x + (Q(w, x, v))x, t>0, XeR,
(4.11) w(x, 0) = wo(X),

where we have seig(X) = ug(x) — x(x, 0) and

A, 10 ) = — 2w+ v)?
(4.12) 2

_ %[uﬁ +v3 4+ 3w +v)(w + x)(x +v)].

Since up(x), x(x, 0) € LI(R) N HX(R), we havewo(x) € LI n HX. Bisides by (1.5)
and (1.7),

(4.13) / wo(X) dx = 0.
R

Now, we defineN(T) by

k
(4.14) N(T)= sup Y (L +0)¥*™2a0w( -, t)]|Le.

0<t<T 125

For 0<| <k—1, we have from (4.14) and the Sobolev inequality
(4.15) ||8Lw(~ )l < N(T)(L +t)-H472),

We shall show that for & | <k

(4.16) 1859(-, Dl < C(L+1)~C24/2((18] log(2 +1))? + N(T)?),
(4.17) 18,9(-, Dz < C(L+)~"*/2((8]log(2 +1)) + N(T)?).
We shall prove only (4.16), since we can prove (4.17) in alsimivay. Here and

later, |6] and N(T) are assumed to be small. We pi(x, t) = w(x, t) + v(x, t),
ho(x, t) = w(x, t) + x(x, t) and hz(x, t) = x(x, t) + v(X, t). Then, for 0O< m < k, we
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have from (4.14), (4.3) and (2.4)

(4.18) 35h1( -, t)llz < C(L+t)"®*M(|5] log(2 +t) + N(T)),
(4.19) 8o -, 1)z < C(L+t)"W4™A(|5] + N(T)),
(4.20) [3ha( -, t)llLe < C(L +t)~M/2m™2)5),

Hence, we have from (4.18), (4.19), (4.20), (4.14), (4.18)3) and (2.4)

|
19} ((w +v)*(-, O)lILr < C Y1957+, )ll2lldy ha( -, Il

m=0

(4.21)
< C(L+t)"®2V2((I5] log(2 +1))* + N(T)?),

-1 I-m

13,3+, O)llr < C D7D agw( -, Bl lagw( -, Iz, ™ "w( -, e

m=0 n=0

(4.22) "
+Cllaw( -, Ollzlw(-, Ollczlw(-, DL~

< C(1+t)~®2H2N(T)3,

I I-m
19 @3, tDlIe < C Y Y (-, Ol lagv(-, DIl ™ (-, e

(4.23) m=0 n=0
< C(1+t) ®/2/(|512 log(2 +1))3

< C(1+1)"®24/9(5 log(2 +1))?

and
(4.24)
[ ]
19, (hahzha)(-, )l < C 7> 18 ha( -, B)llcelldgha( -, t)llelldy ™ "ha( -, )l
m=0 n=0

< C(L+t) ®24/2(|5] log(2 +1) + N(T))(18] + N(T))
< C(L+1t) ®2H/2((15] log(2 +1))? + N(T)?).

Summing up these estimates, we obtain (4.16) from (4.12).
Applying the Duhamel principle for the problem (4.10) andl@, we have

(4.25) w(x, t) = U[wo](x, t, 0) +/t Uloxg(w, x, v)(@)I(x, t, r)dz, t >0, xeR.
0
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For| <k, we have from (4.25), Corollary 3.4 and Lemma 3.5
(4.26)

t/2
lafw( -, )z < CA+t)y"*AE  +C [ 1+t —1) G2 g(., 7)|adr
0

I t
+CY | @+t—o) ¥ L+) CM290g( -, )l de
m=0 Y1/2 "

1/2

| t
+C Z( / e @+ U ™parg(-, 1)z, dr)
m=0 0

=11+ 1+ 13+ 4.

First we evaluatd,. From (4.16), we have

(4.27) l,<C 5 (L+t — 1) B44/2(1 +£)32((5] log(2 +7))2 + N(T)?) dr

< C(L+t)"F*/2(s12 + N(T)?).

Next we evaluatds. From (4.16), we have

|
(428) I3<C Z: t/tz(l +t — ‘[)*3/4(]_ +f)*(3+|)/2((|8| |Og(2 +'L’))2 + N(T)g) dr

< CL+t)"*/3((15] log(2 +1))* + N(T)?).

Finally we evaluatel,. From (4.17), it follows that

! 1/2
w29 4=C mi;)( /Ot e (L +1) 29 ((18] log(2 +7))* + N(T)% dr)

< C(L+t)""*2((15] log(2 +1))* + N(T)?).
Since |§| < Ex 1, if Ex1 is small, then we obtain the inequality
(4.30) @+ 28w ( -, )Lz < C(Ex1+ N(T)).

Therefore, (4.30) gives the desired estimBtér) < CE ;. This completes the proof.
O

To prove Theorem 1.1, it is sufficent to show Proposition 4eBw by virtue of
Proposition 4.2. Although the similer estimate was showrLbynma 3 in [5], but we
need to modify the proof of it in order to avoid the logaritlenterm in the right-hand side.
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Proposition 4.3. Assume thats| < 1. Then the estimate
(4.31) lo(-, ) = V(- Dl <CI8PA+t)™Y, t>1

holds Here v(x, t) is the solution for the probleni4.1) and (4.2), while V(x, t) is
defined by(1.10).

Proof. It follows from (4.4) and (3.3) that

v(X, 1) = _% /Ot U 3@)](x, t, 7) de

t
(4.32) - _g /UZ/R B (G(X — y, t — T)a(x, )naly, )x3(y, 7) dy dr

t/2
N % /0 fRax(G(X — ¥, t = Dna(x, O)naly, 1)x3(y, 7) dy de

=l1+ 1o,

First we evaluatd;. By the integration by parts with respects yp we have

_c t b
=gt [ [ (566 yt =+ 30 ve—y 1= )
x na(y, T)x°(y, 7) dy de

t
=—Snixv) | . [ ox-y.t- r)(ay(nz(y, %0 7))
+ 2aly, T XY, r)) dy d.

Therefore, we get from Lemma 2.2, (2.8) and (2.9)
(4.33)

t
IH2(-, Ol =C /t/z IG(-, t = )lafllx (- DT + (- DIElloxx (- )l

+xCL Ol lx (-, 7)) de
t
<CIs® | (1+1)2dr
t/2

<Cls)P@+t) L.
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Next we evaluatd,. If we put
c
(434) A(Xr tl yr T) = _gax(G(X - y! t— T)r’l(xr t));

then we have

t/2
(4.35) |2:/0 /RA(x,t, y, Dn2(y, ©)x3(y, ©) dy dr.

Spliting the y-integral aty = 0 and making the integration by parts, we have
t/2 poo ~
I 2/ / IyA(X, t,y, ‘L’)/ (€, )% 3(E, 7) de dy de
0 0 y

t/2 0 y
3
(4.36) _/0 /m A, L, Y, 7) /m na2(&, T)x3(€, ) de dy dr

t/2
+ [ a0t 0.0) [ nate, e, v i e
0 R
=l3+Is+1s.
First we consider;. From (4.34) and Lemma 2.2, we have

sup supsupldyA(x, t, Y, )]
0<7t<t/2 xeR yeR

(4.37) <C sup (192G(-,t — D)~ + (-, Dl I3G(- , t = 1)l1L)
O<r<t/2
<C sup (t—1)"¥2<cCt%2
O<r=<t/2

From (4.36) and (4.37), we have

t/2 poo poo
(- Ol < cr”/ / / Ix(€, 7)I° dé dy dr.
0 0 Jy

Then, by the integration by parts with respecyiat follows from Lemma 2.2 and (2.3) that

t/2 poo
||I3(-,t)||stcr3/2/0 /0 yix(y, 1) dy de

t/2
(4.38) < C|8|3t_3/2/ (1+7)" lyl o V2/(4(1)) dy dr
0 RAV1+7

<ClsPL+t)~t

for t > 1. Similarly, we have

(4.39) Ia( -, )lI= < CI83QL +t)~2
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Next we considefls. From (2.6), (2.7), (1.3) and (1.13), we have

/}R na&, )3, 7) de = d(1+7),

hence it follows from (4.34) and (4.36) that

t/2
I5:d/ A(x, t,0, 7)1 +7) tdr
0

t/2

= _ﬂm(x, t) @ +r)l<(8xG(X, t—17) — G(x,t +1))
3 0

(4.40) + gx(x, t)(G(x, t — 1) — G(x, t + 1))) dr

2+t
- Gntx 056 1)+ 520, 06, 1+ 1)) og 2 )
= |5'1+ |5’2.
In order to evaluatds 1, we shall use

(4.41) 19 G(x, t — 1) — 8,G(x, t + 1) < C(t — 1) ®V%(1+7)

for =0, 1 and O< t <t/2. This estimate can be shown by observing that
1
AG(X, t—17) —d.G(X, t+1)=—(1+7) / (30LG)(x, 1+t — H(L +1)) dO
0

and by recalling (2.5). Sincg| < C|5]® by (1.13), we have from (4.41)
(4.42)

t/2
Msa(, Dlle <CI8P [ @Q+0) ™Mt — 1) 2(L+7) + (1 +t) V2t — 1) 2(L+7)} dr
0
t/2
< C|5|3/ (t—1)?dr <Cl831+t)"L
0

Finally, we deal withls,. From (4.40), (2.2), (1.3) and (2.6), it follows that

cd X X

se= e (am) e (7am) - 7
x (log(t + 2) — log 2).

)exz/(4(1+{))(1 + t)71

We have from (1.10) and (1.11),

(4.43) 5,20+, ) = V(-, llLe < CI8FL+1)7
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Summarizing (4.32), (4.33), (4.36), (4.38), (4.39), (3,4(+.42) and (4.43), we ob-
tain (4.31). This completes the proof. U
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