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Abstract
We study large time behavior of the solutions to the initial value problem for the

generalized Burgers equation. It is known that the solutiontends to a self-similar
solution to the Burgers equation at the ratet�1 log t in L1 as t !1. The aim of
this paper is to show that the rate is optimal under suitable assumptions and to obtain
the second asymptotic profile of large time behavior of the solutions.

1. Introduction

This paper is concerned with large time behavior of the global solutions to the
generalized Burgers equations:

ut + ( f (u))x = uxx, t > 0, x 2 R,(1.1)

u(x, 0) = u0(x),(1.2)

whereu0 2 L1(R) and f (u) = (b=2)u2+(c=3)u3 with b 6= 0, c 2 R. The subscriptst and
x stand for the partial derivatives with respect tot andx, respectively. It is well-known
that the solution of (1.1) and (1.2) tends to a nonlinear diffusion wave defined by

(1.3) �(x, t) � 1p
1 + t

��
�

xp
1 + t

�
, t � 0, x 2 R,

where

��(x) � 1

b

(ebÆ=2 � 1)e�(x2=4)p� + (ebÆ=2 � 1)
R1

x=2 e�y2 dy
,(1.4)

Æ � Z
R

u0(x) dx.(1.5)
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By the Hopf-Cole transformation in Hopf [4] and Cole [1], we see that it is a solution
of the Burgers equation

(1.6) �t +

�
b

2
�2

�
x

= �xx, t > 0, x 2 R,

satisfying

(1.7)
Z

R

�(x, 0) dx = Æ.
Concerning the convergence rate of the nonliner diffusion wave�(x, t) to the orig-

inal solution u(x, t), we can infer the following result from the argument given in
Kawashima [7] and Nishida [10], which deal with a class of system, in the case where
u(x, t) is a scalar unknow function without any essential difficulty: If u0 2 L1� (R) \
H1(R) for some� 2 (0, 1) andku0kH1 + ku0kL1 is small, then we have

(1.8) ku( � , t)� �( � , t)kL1 � C(1 + t)�1+�(ku0kH1 + ku0kL1� ), t � 0,

where� = (1��)=2. Here, for an integerk � 0, H k(R) denotes the space of functions
u = u(x) such that� l

x are L2-functions onR for 0 � l � k, endowed, with the normk � kH k , while L1�(R) is a subset ofL1(R) whose elements satisfykukL1� � R
R
juj(1 +

jxj)� dx <1.
This observation lead to a natural question whether it is possible to take� =

0 in (1.8) for the extreme case� = 1 or not. An attempt to answer the ques-
tion can be found in Matsumura and Nishihara [9]. To be more precise, we putw0(x) = exp(�(b=2)

R x�1 u0(y) dy) � exp(�(b=2)
R x�1 �(y, 0) dy) and we suppose thatw0 2 H2(R) \ L1(R) and kw0kH2 + kw0kL1 + ku0kL1 is small. Then the estimate

(1.9) ku( � , t)� �( � , t)kL1 � C(1 + t)�1 log(2 + t)(kw0kH2 + kw0kL1 + jÆj3=2), t � 0

holds instead of (1.8). The aim of this paper is to show that the decay rate of esti-
mate (1.9) is actually optimal, unlessÆ = 0 or c = 0. Indeed, the second asymptotic
profile of large time behavior of the solutions is given by

(1.10) V(x, t) � � cd

12
p� V�

�
xp
1 + t

�
(1 + t)�1 log(2 + t), t � 0, x 2 R,

where

V�(x) � (b��(x)� x)e�x2=4��(x),(1.11)

��(x) � exp

�
b

2

Z x

�1 ��(y) dy

�
,(1.12)
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d � Z
R

��1� (y)�3� (y) dy.(1.13)

Bisides, we can take the initial data fromL1
1(R)\ H1(R), analogously to the works of

[7], [10]. And we set, fork � 0, Ek,� � ku0kH k +ku0kL1� . Then we have the following

result.

Theorem 1.1. Assume that u0 2 L1(R)\ H1(R) and E1,0 is small. Then the ini-
tial value problem for(1.1) and (1.2) has a unique global solution u(x, t) satisfying
u 2 C0([0, 1); H1) and �xu 2 L2(0,1; H1). Moreover, if u0 2 L1

1(R) \ H1(R) and
E1,1 is small, then the solution satisfies the estimate

(1.14) ku( � , t)� �( � , t)� V( � , t)kL1 � C E1,1(1 + t)�1, t � 1.

Here �(x, t) is defined by(1.3), while V(x, t) is defined by(1.10).

REMARK 1.2. In Liu [8], the initial value problem for the Burgers equations (1.1)
and (1.2) is studied, providedc = 0 implicity at p.42. After the proof of Theorem 2.2.1,
it is mentioned, without proof, that if we assume (1 +jxj)2ju0(x)j � Æ̃ and Æ̃ is small,
then the estimate

ku( � , t)� �( � , t)kL1 � CÆ̃(1 + t)�1, t � 1

holds. However, from our result, the above estimate fails true for the casecÆ 6= 0.
We remark that the estimate similar to (1.14) was obtained for other types of

Burgers equation such as KdV-Burgers in Hayashi and Naumkin[3] and Kaikina and
Ruiz-Paredes [5], and Benjamin-Bona-Mahony-Burgers in Hayashi, Kaikina and
Naumkin [2].

2. Preliminaries

In order to prove the basic estimates given by Lemma 3.2, Lemma 3.3 and Lem-
ma 3.5, we prepare the following two lemmas. The first one is concerned with the
decay estimates for semigroupet1 associated with the heat equation. For the proof,
see Kawashima [6].

Lemma 2.1. Let k be a positive integer. Suppose q0 2 H k(R)\ L1(R). Then the
estimate

(2.1) k� l
xet1q0kL2 � C(1 + t)�(1=4+l=2)kq0kL1 + Ce�C0tk� l

xq0kL2, t � 0

holds for any l= 0, 1, : : : , k.
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The second one is related to the diffusion wave�(x, t) and the heat kernelG(x, t).
The explicit formula of�(x, t) and G(x, t) are given by (1.3) and

(2.2) G(x, t) =
1p
4� t

e�(x2=4t), t > 0, x 2 R,

respectively. It is easy to see that

(2.3) j�(x, t)j � CjÆj(1 + t)�(1=2)e�x2=(4(1+t)), t � 0, x 2 R.

Moreover, we get the following (see e.g. [9]).

Lemma 2.2. Let � and � be positive integers. Then, for p 2 [1, 1], the esti-
mates

k��x ��t �( � , t)kL p � CjÆj(1 + t)�(1=2)(1�1=p)��=2�� , t � 0,(2.4)

k��x ��t G( � , t)kL p � Ct�(1=2)(1�1=p)��=2�� , t > 0(2.5)

hold.

For the latter sake, we introduce�1, �2 defined by

�1(x, t) � ��
�

xp
1 + t

�
= exp

�
b

2

Z x

�1 �(y, t) dy

�
,(2.6)

�2(x, t) � ��1
1 (x, t).(2.7)

We easily have

minf1, ebÆ=2g � �1(x, t) � maxf1, ebÆ=2g,(2.8)

minf1, e�bÆ=2g � �2(x, t) � maxf1, e�bÆ=2g.(2.9)

Moreover, we get

Corollary 2.3. Let l be a positive integer. For i = 1, 2, if jÆj � 1, then we have

k� l
x�i ( � , t)kL1 � CjÆj(1 + t)�(l�1)=2,(2.10)

k� l
x�i ( � , t)kL1 � CjÆj(1 + t)�1=2,(2.11)

k� l
x�i ( � , t)kL2 � CjÆj(1 + t)�(l=2�1=4).(2.12)

Proof. We shall prove only (2.10), (2.11) and (2.12) fori = 1, since we can
prove (2.10), (2.11) and (2.12) fori = 2 in a similar way. We putq1(x) = e(b=2)x,
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q2(x, t) =
R x�1 �(y, t) dy. Then we have, forl � 1,

(2.13)

� l
x�1(x, t) =

X
Cl ,m1,:::,ml

dpq1

dxp
(q2(x, t))(�xq2(x, t))m1 � � � (� l

xq2(x, t))ml

=
X

Cl ,m1,:::,ml

�
b

2

�p�1(x, t)(�(x, t))m1 � � � (� l�1
x �(x, t))ml ,

where the sum is taken for all (m1, : : : , ml ) 2 Nk such thatm1 + 2m2 + � � � + lml = l ,
and p = m1 + � � � + ml , 1� p � l .

First we derive (2.10). Sincem1 + 2m2 + � � �+ lml = l , there existsj 2 f1, 2,: : : , l g
such thatm j � 1. Therefore, by Lemma 2.2 and (2.13), we have

k� l
x�1( � , t)kL1

� C
X k�( � , t)km1

L1k�x�( � , t)km2
L1 � � � k� j�1

x �( � , t)km j

Lmj � � � k� l�1
x �( � , t)kml

L1
� CjÆjX(1 + t)�m1=2(1 + t)�2m2=2 � � � (1 + t)�( jm j�1)=2 � � � (1 + t)�lml =2
� CjÆj(1 + t)�(l�1)=2.

Hence we get (2.10).
Next we derive (2.11). By Lemma 2.2 and (2.13), we have

k� l
x�1( � , t)kL1 � C

X k�( � , t)km1
L1k�x�( � , t)km2

L1 � � � k� l�1
x �( � , t)kml

L1
� CjÆjX(1 + t)�m1=2(1 + t)�2m2=2 � � � (1 + t)�lml =2
� CjÆj(1 + t)�l=2.

Hence we get (2.11).

Finally, by the interpolation inequalityk f kL p � k f k1�1=p
L1 k f k1=p

L1 (1� p�1), we
have from (2.10) and (2.11)

k� l
x�1( � , t)kL2 � k� l

x�1( � , t)k1=2
L1k� l

x�1( � , t)k1=2
L1

� CjÆj(1 + t)�(l=2�1=4).

This completes the proof.

3. Basic estimates

We deal with the following linearized equations which coressponds to (4.10), (4.11)
below:

zt = zxx � (b�z)x, t > 0, x 2 R,(3.1)

z(x, 0) = z0(x).(3.2)

The explicit representation formula (3.4) below plays a crucial role in our analysis.
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Lemma 3.1. If we set

(3.3)
U [w](x, t , � ) =

Z
R

�x(G(x � y, t � � )�1(x, t))�2(y, � )
Z y

�1 w(� ) d� dy,

0� � < t , x 2 R,

then the solutions for(3.1) and (3.2) is given by

(3.4) z(x, t) = U [z0](x, t , 0), t > 0, x 2 R.

Proof. If we put

r (x, t) =
Z x

�1 z(y, t) dy,(3.5)

then we see from (3.1), (3.2) thatr (x, t) satisfies

r t = rxx � b�rx, t > 0, x 2 R,(3.6)

r (x, 0) =
Z x

�1 z0(y) dy.(3.7)

Then a direct computation yields

(3.8)

�
r (x, t)�1(x, t)

�
t

=

�
r (x, t)�1(x, t)

�
xx

,

where�1 is defined by (2.6). Therefore, we have

(3.9) r (x, t) = �1(x, t)
Z

R

G(x � y, t)�1(y, 0)�1r (y, 0) dy.

Hence (3.9), (3.5), (3.7) and (2.7) yield (3.4).

Next we derive the decay estimates (3.10) and (3.22) below for the homogenous
equation (3.1). Here, to prove the estimate, we follow the argument which is used to
show the estimate for the semigroupet1 in [7].

Lemma 3.2. Let � 2 [0, 1], k be a positive interger and p2 [1,1]. Assume thatjÆj � 1, z0 2 L1�(R) and
R

R
z0(x) dx = 0. Then, the estimate

(3.10) k� l
xU [z0]( � , t , 0)kL p � Ct�(1�1=p+�+l )=2kz0kL1� , t > 0

holds for any l= 0, 1, : : : , k.
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Proof. Since
R

R
z0(x) dx = 0, by the integration by parts with respect toy, we

have from (3.3)

(3.11) U [z0](x, t , 0) =� Z
R

z0(y)
Z y

�1 �x(G(x � � , t)�1(x, t))�2(� , 0) d� dy.

Using this expression, we shall show that

k� l
xU [z0]( � , t , 0)kL1 � Ct�(1+�+l )=2kz0kL1� , t > 0,(3.12)

k� l
xU [z0]( � , t , 0)kL1 � Ct�(�+l )=2kz0kL1� , t > 0.(3.13)

The desired estimate follows from the interpolation inequality. Actually, we have

k� l
xU [z0]( � , t , 0)kL p � k� l

xU [z0]( � , t , 0)k1�1=p
L1 k� l

xU [z0]( � , t , 0)k1=p
L1

� Ct�(1�1=p+�+l )=2kz0kL1� .
First we shall prove (3.12). From (3.11), we have

(3.14)
j� l

xU [z0](x, t , 0)j � Z
R

jz0(y)j����
Z y

0
� l+1

x (G(x � � , t)�1(x, t))�2(� , 0) d� ���� dy

� Z
R

jz0(y)jI1(x, y, t) dy.

By using (2.11), (2.9), (2.5) and the Hölder inequality, we have

(3.15)

I1 � C
l+1X
m=0

k� l+1�m
x �1( � , t)kL1 ����

Z y

0
�m

x G(x � � , t)�2(� , 0) d� ����
� C

l+1X
m=0

(1 + t)�(l+1�m)=2k�m
x G(x � � , t)kL1=(1��) jyj�

� Ct�(1+�+l )=2jyj� .

Hence (3.14) and (3.15) yield (3.12).
Next we shall prove (3.13). From (3.11), we have

k� l
xU [z0]( � , t , 0)kL1 � Z

R

Z
R

jz0(y)j����
Z y

0
� l+1

x (G(x � � , t)�1(x, t))�2(� , 0) d� ���� dy dx

� Z
R

jz0(y)jI2(y, t) dy,

where we put

(3.16) I2(y, t) =
Z

R

����
Z y

0
� l+1

x (G(x � � , t)�1(x, t))�2(� , 0) d� ���� dx.
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In order to get (3.13), it suffices to show

I2 � Ct�l=2,(3.17)

I2 � Cjyjt�(1+l )=2.(3.18)

In fact, if we would have these estimates, then

k� l
xU [z0]( � , t , 0)kL1 � Z

R

jz0(y)jI 1��
2 I �2 dy

� C
Z

R

jz0(y)jt�l (1��)=2t�(1+l )�=2jyj� dy� Ct�(�+l )=2kz0kL1� .
First we shall prove (3.17). From (3.16) we have

(3.19)

I2 � C
l+1X
m=0

Z
R

����� l+1�m
x �1(x, t)

Z y

0
�m

x G(x � � , t)�2(� , 0) d� ���� dx

= C
Z

R

�����1(x, t)
Z y

0
� l+1

x G(x � � , t)�2(� , 0) d� ���� dx

+ C
lX

m=0

Z
R

����� l+1�m
x �1(x, t)

Z y

0
�m

x G(x � � , t)�2(� , 0) d� ���� dx

� I2,1 + I2,2.

By using the integration by parts with respect to� , we have

(3.20)

I2,1 � C
Z

R

j� l
xG(x � y, t)�2(y, 0)� � l

xG(x, t)�2(0, 0)j dx

+ C
Z

R

����
Z y

0
� l

xG(x � � , t)���2(� , 0) d� ���� dx

� C
Z

R

j� l
xG(x, t)j dx + C

Z
R

j���2(� , 0)j Z
R

j� l
xG(x � � , t)j dx d�

� Ct�l=2,

where we have used (2.8), (2.9), (2.10) and (2.5). On the other hand, from (2.9),
(2.10) and (2.5), we have

(3.21)

I2,2 � C
lX

m=0

k� l+1�m
x �1( � , t)kL1k�m

x G( � , t)kL1

� C
lX

m=0

(1 + t)�(l�m)=2t�m=2 � Ct�l=2.

Hence we obtain (3.17).
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Next we shall prove (3.18). From (3.16), (2.9), (2.11) and (2.5) we have

I2 � C
l+1X
m=0

k� l+1�m
x �1( � , t)kL1k�m

x G( � , t)kL1jyj
� C

l+1X
m=0

(1 + t)�(l+1�m)=2t�m=2jyj � Ct�(1+l )=2jyj.
Hence we get (3.18). This completes the proof.

Lemma 3.3. Let k be a positive interger. Assume thatjÆj � 1, z0 2 H k(R) \
L1(R) and

R
R

z0(x) dx = 0. Then the estimate

(3.22) k� l
xU [z0]( � , t , 0)kL2 � C(1 + t)�(1=4+l=2)kz0kL1 + Ce�tkz0kH l , t > 0

holds for any l= 0, 1, : : : , k.

Proof. We have from (3.3)
(3.23)

� l
xU [z0](x, t , 0) =

Z
R

� l+1
x (G(x � y, t)�1(x, t))�2(y, 0)

Z y

�1 z0(� ) d� dy

=
l+1X
m=0

�
l + 1

m

�� l+1�m
x �1(x, t)

Z
R

�m
x G(x � y, t)�2(y, 0)

Z y

�1 z0(� ) d� dy

= � l+1
x �1(x, t)

Z
R

G(x � y, t)�2(y, 0)
Z y

�1 z0(� ) d� dy

+
l+1X
m=1

�
l + 1

m

�� l+1�m
x �1(x, t)

Z
R

�m�1
x G(x � y, t)�y J(y) dy,

where we put

(3.24) J(y) = �2(y, 0)
Z y

�1 z0(� ) d� .

Therefore we have from (2.9), (2.5) and Corollary 2.3

(3.25)

k� l
xU [z0]( � , t , 0)kL2 � Ck� l+1

x �1( � , t)kL2kG( � , t)kL1kz0kL1

+ C
l+1X
m=1

k� l+1�m
x �1( � , t)kL1k�m�1

x et1[�x J]kL2

� C(1 + t)�(1=4+l=2)kz0kL1

+ C
l+1X
m=1

(1 + t)�(l+1�m)=2k�m�1
x et1[�x J]kL2.
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From (3.24), (2.9), (2.4) and Corollary 2.3, we have

(3.26)
k�x JkL1 � C





�(x, t)
Z x

�1 z0(� ) d�




L1(Rx)

+ Ckz0kL1

� Ckz0kL1,

and for m� 1

(3.27)

k�m
x JkL2 � C

mX
n=0





�m�n
x �2(x, 0)�n

x

Z x

�1 z0(� ) d�




L2(Rx)

� Ck�m
x �2( � , 0)kL2kz0kL1 + C

mX
n=1

k�m�n
x �2( � , 0)kL1k�n�1

x z0kL2

� C(kz0kL1 + kz0kHm�1).

Hence, for 1� m� l + 1, from (3.26), (3.27) and Lemma 2.1, we have

(3.28)
k�m�1

x et1[�x J]kL2 � C(1 + t)�(1=4+(m�1)=2)k�x JkL1 + Ce�tk�m
x JkL2

� C(1 + t)�(1=4+(m�1)=2)kz0kL1 + Ce�t (kz0kL1 + kz0kHm�1).

Therefore by (3.25) and (3.28), we obtain (3.22). This completes the proof.

From Lemma 3.2 and Lemma 3.3, we get the following uniform estimate.

Corollary 3.4. Let k be a positive integer. Assume thatjÆj � 1, z0 2 L1
1(R) \

H k(R) and
R

R
z0(x) dx = 0. Then the estimate

k� l
xU [z0]( � , t , 0)kL2 � C El ,1(1 + t)�(3=4+l=2), t > 0

holds for any l= 0, 1, : : : , k. Here El ,1 = kz0kH l + kz0kL1
1
.

Next we derive the decay estimate (3.29) below in the same wayas Lemma 3.6
of [6]. The estimate will be used to get the decay rate of the solution w(x, t) for
the problem (4.10) and (4.11). Bisides, we denote the Fourier transform of f (x) 2
L2(R) \ L1(R) by f̂ (� ) � F [ f ](� ) = (1=p2�)

R
R

e�i x� f (x) dx, and set

H k
1 (R) �

(
f : L1

loc(R)

����� k f kH k
1
� kX

m=0

k�m
x f kL1 <1

)
.
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Lemma 3.5. Let k be a positive integer. SupposejÆj � 1 andw 2 C0(0,1; H k)\
C0(0,1; H k

1 ). Then the estimate

(3.29)





� l
x

Z t

0
U [�xw(� )](x, t , � ) d�





L2(Rx)

� C
Z t=2

0
(1 + t � � )�(3=4+l=2)kw( � , � )kL1 d�

+ C
lX

m=0

Z t

t=2(1 + t � � )�3=4(1 + � )�(l�m)=2k�m
x w( � , � )kL1 d�

+ C
lX

m=0

�Z t

0
e�(t�� )(1 + � )�(l�m)k�m

x w( � , � )k2
L2 d��1=2

holds for any l= 0, 1, : : : , k.

Proof. From (3.3) and Corollary 2.3, we have

(3.30)





� l
x

Z t

0
U [�xw(� )](x, t , � ) d�





L2(Rx)

� C
l+1X
n=0

(1 + t)�(l+1�n)=2k�n
x I ( � , t)kL2,

where we put

(3.31) I (x, t) =
Z t

0

Z
R

G(x � y, t � � )�2(y, � )w(y, � ) dy d� .

From Lemma 2.1, we have
(3.32)

kI ( � , t)kL2 � C
Z t

0
ke(t�� )1[(�2w)(� )]( � )kL2 d�

� C
Z t

0
f(1 + t � � )�1=4kw( � , � )kL1 + e�(t�� )kw( � , � )kL2g d�

� C
Z t

0
(1 + t � � )�1=4kw( � , � )kL1 d� + C

�Z t

0
e�(t�� )kw( � , � )k2

L2 d��1=2
,

becauset � t � � for 0� � � t . In the following, let 1� n � l + 1. It follows that

(3.33)
k�n

x I (�, t)kL2 � k(i � )n Î (� , t)kL2(j� j�1) + k(i � )n Î (� , t)kL2(j� j�1)

� I1 + I2.
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First, we evaluateI1. From (3.31), we have

I1 � Z t=2
0

k(i � )ne�(t�� )j� j2F [�2w](� , � )kL2(j� j�1) d�
+
Z t

t=2 k(i � )ne�(t�� )j� j2F [�2w](� , � )kL2(j� j�1) d�
� I1,1 + I1,2.

Since Z
j� j�1

j� j j e�2(t�� )j� j2 d� � C(1 + t � � )�( j +1)=2,

for j � 0, we have

(3.34)

I1,1 � C
Z t=2

0
supj� j�1

jF [�2w]( � , � )j�Zj� j�1
j� j2ne�2(t�� )j� j2 d��1=2

d�
� C

Z t=2
0

(1 + t � � )�(2n+1)=4kw( � , � )kL1 d� .

While, we have from Corollary 2.3

(3.35)

I1,2 � C
Z t

t=2 supj� j�1
j(i � )n�1F [�2w]( � , � )j�Zj� j�1

j� j2e�2(t�� )j� j2 d��1=2
d�

� C
Z t

t=2(1 + t � � )�3=4k�n�1
x (�2w)( � , � )kL1 d�

� C
Z t

t=2(1 + t � � )�3=4 n�1X
m=0

(1 + � )�(n�1�m)=2k�m
x w( � , � )kL1 d� .

Therefore, we get from (3.34) and (3.35)

(3.36)

I1 � C
Z t=2

0
(1 + t � � )�(2n+1)=4kw( � , � )kL1 d�

+ C
Z t

t=2(1 + t � � )�3=4 n�1X
m=0

(1 + � )�(n�1�m)=2k�m
x w( � , � )kL1 d� .

Next we evaluateI2. For j� j � 1, by using the Schwarz inequality, we have

j(i � )n Î (� , t)j � C
Z t

0
j� je�(t�� )j� j2j(i � )n�1F [�2w](� , � )j d�

� C

�Z t

0
e�(t�� )j� j2j(i � )n�1F [�2w](� , � )j2 d��1=2

.
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Therefore we find from (3.33) and Corollary 2.3

(3.37)

I2 � C

�Z t

0
e�(t�� )

Z
j� j�1

j(i � )n�1F [�2w](� , � )j2 d� d��1=2

� C

�Z t

0
e�(t�� )k�n�1

x (�2w)( � , � )k2
L2 d��1=2

� C

�Z t

0
e�(t�� )

n�1X
m=0

(1 + � )�(n�1�m)k�m
x w( � , � )k2

L2 d��1=2
.

Summarizing (3.30), (3.32), (3.33), (3.36) and (3.37), we obtain (3.29). This com-
pletes the proof.

4. Proof of Theorem 1.1

In order to prove our result, we introduce the following auxiliary problem:

vt = vxx � (b�v)x �
�

c

3
�3

�
x

, t > 0, x 2 R,(4.1)

v(x, 0) = 0.(4.2)

We derive the decay estimate for the solutionv(x, t) to the above problem.

Lemma 4.1. Let l � 0 be an integer. Then we have

(4.3) k� l
xv( � , t)kL2 � CjÆj3(1 + t)�(3=4+l=2) log(2 + t), t � 0.

Proof. By the Duhamel principle, we see from Lemma 3.1 that

(4.4) v(x, t) =
Z t

0
U

��x

��c

3
�3(� )

��
(x, t , � ) d� .

From Lemma 3.5, we get

(4.5)

k� l
xv( � , t)kL2 � C

Z t=2
0

(1 + t � � )�(3=4+l=2)k�3( � , � )kL1 d�
+ C

lX
m=0

Z t

t=2(1 + t � � )�3=4(1 + � )�(l�m)=2k�m
x (�3( � , � ))kL1 d�

+ C
lX

m=0

�Z t

0
e�(t�� )(1 + � )�(l�m)k�m

x (�3( � , � ))k2
L2 d��1=2

� I1 + I2 + I3.
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It follows from Lemma 2.2 that forp 2 [1, 1]
(4.6)

k�m
x (�3( � , � ))kL p � C

mX
n=0

m�nX
s=0

k�n
x�( � , � )kL1k�s

x�( � , � )kL1k�m�n�s
x �( � , � )kL p

� CjÆj3 mX
n=0

m�nX
s=0

(1 + � )�(1+n)=2(1 + � )�(1+s)=2(1 + � )�(1�(1=p)+m�n�s)=2
� CjÆj3(1 + � )�(3�(1=p)+m)=2.

Using (4.6), we obtain

I1 � CjÆj3 Z t=2
0

(1 + t � � )�(3=4+l=2)(1 + � )�1 d�
� CjÆj3(1 + t)�(3=4+l=2) log(2 + t),

(4.7)

I2 � CjÆj3 Z t

t=2(1 + t � � )�3=4(1 + � )�(1+l=2) d�
� CjÆj3(1 + t)�(3=4+l=2),

(4.8)

and

(4.9)
I3 � CjÆj3�Z t

0
e�(t�� )(1 + � )�(5=2+l ) d��1=2

� CjÆj3(1 + t)�(5=4+l=2).

This completes the proof.

Our first step to prove Theorem 1.1 is the following.

Proposition 4.2. Let k� 1 be an integer. Assume that u0 2 L1(R) \ H k(R) and
Ek,0 is small. Then the initial value problem for(1.1) and (1.2) has a unique global
solution u(x, t) satisfying u2 C0([0, 1); H k) and �xu 2 L2(0,1; H k). Moreover, if
u0 2 L1

1(R) \ H k(R) and Ek,1 is small, then the estimate

k� l
x(u( � , t)� �( � , t)� v( � , t))kL2 � C Ek,1(1 + t)�(3=4+l=2), t � 0

holds for l� k. In particular,

ku( � , t)� �( � , t)� v( � , t)kL1 � C E1,1(1 + t)�1, t � 0.

Here �(x, t) is defined by(1.3), while v(x, t) is the solution for the problem(4.1)
and (4.2).



ASYMPTOTIC BEHAVIOR OF GENERALIZED BURGERS EQUATIONS 937

Proof. We can show the local existence and uniqueness of the solution to (1.1)
and (1.2) by standard argument. Using the argument of Theorem 8.2 in [7], we can
continue the local solution globally in time. We shall proveonly the decay estimate.
We note that the smallness ofEk,1 implies that ofjÆj by (1.5). We put

w(x, t) = u(x, t)� �(x, t)� v(x, t).

Thenw(x, t) satisfies

wt = wxx � (b�w)x + (g(w, � , v))x, t > 0, x 2 R,(4.10)

w(x, 0) =w0(x),(4.11)

where we have setw0(x) = u0(x)� �(x, 0) and

(4.12)
g(w, � , v) = �b

2
(w + v)2

� c

3
[w3 + v3 + 3(w + v)(w + �)(� + v)].

Since u0(x), �(x, 0) 2 L1
1(R) \ H k(R), we havew0(x) 2 L1

1 \ H k. Bisides by (1.5)
and (1.7),

(4.13)
Z

R

w0(x) dx = 0.

Now, we defineN(T) by

(4.14) N(T) = sup
0�t�T

kX
m=0

(1 + t)3=4+m=2k�m
x w( � , t)kL2.

For 0� l � k� 1, we have from (4.14) and the Sobolev inequality

(4.15) k� l
xw( � , t)kL1 � N(T)(1 + t)�(1+l=2).

We shall show that for 0� l � k

k� l
xg( � , t)kL1 � C(1 + t)�(3=2+l=2)((jÆj log(2 + t))2 + N(T)2),(4.16)

k� l
xg( � , t)kL2 � C(1 + t)�(7=4+l=2)((jÆj log(2 + t))2 + N(T)2).(4.17)

We shall prove only (4.16), since we can prove (4.17) in a similar way. Here and
later, jÆj and N(T) are assumed to be small. We puth1(x, t) = w(x, t) + v(x, t),
h2(x, t) = w(x, t) + �(x, t) and h3(x, t) = �(x, t) + v(x, t). Then, for 0� m � k, we
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have from (4.14), (4.3) and (2.4)

k�m
x h1( � , t)kL2 � C(1 + t)�(3=4+m=2)(jÆj log(2 + t) + N(T)),(4.18)

k�m
x h2( � , t)kL2 � C(1 + t)�(1=4+m=2)(jÆj + N(T)),(4.19)

k�m
x h3( � , t)kL1 � C(1 + t)�(1=2+m=2)jÆj.(4.20)

Hence, we have from (4.18), (4.19), (4.20), (4.14), (4.15),(4.3) and (2.4)

k� l
x((w + v)2( � , t))kL1 � C

lX
m=0

k�m
x h1( � , t)kL2k� l�m

x h1( � , t)kL2

� C(1 + t)�(3=2+l=2)((jÆj log(2 + t))2 + N(T)2),

(4.21)

k� l
x(w3( � , t))kL1 � C

l�1X
m=0

l�mX
n=0

k�m
x w( � , t)kL1k�n

xw( � , t)kL2k� l�m�n
x w( � , t)kL2

+ Ck� l
xw( � , t)kL2kw( � , t)kL2kw( � , t)kL1

� C(1 + t)�(5=2+l=2)N(T)3,

(4.22)

k� l
x(v3( � , t))kL1 � C

lX
m=0

l�mX
n=0

k�m
x v( � , t)kL1k�n

xv( � , t)kL2k� l�m�n
x v( � , t)kL2

� C(1 + t)�(5=2+l=2)(jÆj3 log(2 + t))3

� C(1 + t)�(3=2+l=2)(jÆj log(2 + t))2

(4.23)

and
(4.24)

k� l
x(h1h2h3)( � , t)kL1 � C

lX
m=0

l�mX
n=0

k�m
x h1( � , t)kL2k�n

x h2( � , t)kL2k� l�m�n
x h3( � , t)kL1

� C(1 + t)�(3=2+l=2)(jÆj log(2 + t) + N(T))(jÆj + N(T))

� C(1 + t)�(3=2+l=2)((jÆj log(2 + t))2 + N(T)2).

Summing up these estimates, we obtain (4.16) from (4.12).
Applying the Duhamel principle for the problem (4.10) and (4.11), we have

(4.25) w(x, t) = U [w0](x, t , 0) +
Z t

0
U [�xg(w, � , v)(� )](x, t , � ) d� , t > 0, x 2 R.
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For l � k, we have from (4.25), Corollary 3.4 and Lemma 3.5
(4.26)

k� l
xw( � , t)kL2 � C(1 + t)�(3=4+l=2)Ek,1 + C

Z t=2
0

(1 + t � � )�(3=4+l=2)kg( � , � )kL1 d�
+ C

lX
m=0

Z t

t=2(1 + t � � )�3=4(1 + � )�(l�m)=2k�m
x g( � , � )kL1 d�

+ C
lX

m=0

�Z t

0
e�(t�� )(1 + � )�(l�m)k�m

x g( � , � )k2
L2 d��1=2

� I1 + I2 + I3 + I4.

First we evaluateI2. From (4.16), we have

(4.27)
I2 � C

Z t=2
0

(1 + t � � )�(3=4+l=2)(1 + � )�3=2((jÆj log(2 +� ))2 + N(T)2) d�
� C(1 + t)�(3=4+l=2)(jÆj2 + N(T)2).

Next we evaluateI3. From (4.16), we have

(4.28)
I3 � C

lX
m=0

Z t

t=2(1 + t � � )�3=4(1 + � )�(3+l )=2((jÆj log(2 +� ))2 + N(T)2) d�
� C(1 + t)�(5=4+l=2)((jÆj log(2 + t))2 + N(T)2).

Finally we evaluateI4. From (4.17), it follows that

(4.29)
I4 � C

lX
m=0

�Z t

0
e�(t�� )(1 + � )�(7=2+l )((jÆj log(2 +� ))4 + N(T)4) d��1=2

� C(1 + t)�(7=4+l=2)((jÆj log(2 + t))2 + N(T)2).

Since jÆj � Ek,1, if Ek,1 is small, then we obtain the inequality

(4.30) (1 +t)3=4+l=2k� l
xw( � , t)kL2 � C(Ek,1 + N(T)2).

Therefore, (4.30) gives the desired estimateN(T) � C Ek,1. This completes the proof.

To prove Theorem 1.1, it is sufficent to show Proposition 4.3 below by virtue of
Proposition 4.2. Although the similer estimate was shown byLemma 3 in [5], but we
need to modify the proof of it in order to avoid the logarithmic term in the right-hand side.
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Proposition 4.3. Assume thatjÆj � 1. Then the estimate

(4.31) kv( � , t)� V( � , t)kL1 � CjÆj3(1 + t)�1, t � 1

holds. Here, v(x, t) is the solution for the problem(4.1) and (4.2), while V(x, t) is
defined by(1.10).

Proof. It follows from (4.4) and (3.3) that

(4.32)

v(x, t) = �c

3

Z t

0
U [�x�3(� )](x, t , � ) d�

= �c

3

Z t

t=2
Z

R

�x(G(x � y, t � � )�1(x, t))�2(y, � )�3(y, � ) dy d�
� c

3

Z t=2
0

Z
R

�x(G(x � y, t � � )�1(x, t))�2(y, � )�3(y, � ) dy d�
� I1 + I2.

First we evaluateI1. By the integration by parts with respects toy, we have

I1 = �c

3
�1(x, t)

Z t

t=2
Z

R

��xG(x � y, t � � ) +
b

2
�(x, t)G(x � y, t � � )

�

� �2(y, � )�3(y, � ) dy d�
= �c

3
�1(x, t)

Z t

t=2
Z

R

G(x � y, t � � )

��y(�2(y, � )�3(y, � ))

+
b

2
�2(y, � )�(x, t)�3(y, � )

�
dy d� .

Therefore, we get from Lemma 2.2, (2.8) and (2.9)
(4.33)

kI1( � , t)kL1 � C
Z t

t=2 kG( � , t � � )kL1fk�( � , � )k4
L1 + k�( � , � )k2

L1k�x�( � , � )kL1
+ k�( � , t)kL1k�( � , � )k3

L1g d�
� CjÆj3 Z t

t=2(1 + � )�2 d�
� CjÆj3(1 + t)�1.
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Next we evaluateI2. If we put

(4.34) 3(x, t , y, � ) � �c

3
�x(G(x � y, t � � )�1(x, t)),

then we have

(4.35) I2 =
Z t=2

0

Z
R

3(x, t , y, � )�2(y, � )�3(y, � ) dy d� .

Spliting the y-integral aty = 0 and making the integration by parts, we have

(4.36)

I2 =
Z t=2

0

Z 1
0

�y3(x, t , y, � )
Z 1

y
�2(� , � )�3(� , � ) d� dy d�

� Z t=2
0

Z 0

�1 �y3(x, t , y, � )
Z y

�1 �2(� , � )�3(� , � ) d� dy d�
+
Z t=2

0
3(x, t , 0, � )

Z
R

�2(� , � )�3(� , � ) d� d�
� I3 + I4 + I5.

First we considerI3. From (4.34) and Lemma 2.2, we have

(4.37)

sup
0���t=2 sup

x2R

sup
y2R

j�y3(x, t , y, � )j
� C sup

0���t=2(k�2
x G( � , t � � )kL1 + k�( � , t)kL1k�xG( � , t � � )kL1)

� C sup
0���t=2(t � � )�3=2 � Ct�3=2.

From (4.36) and (4.37), we have

kI3( � , t)kL1 � Ct�3=2 Z t=2
0

Z 1
0

Z 1
y
j�(� , � )j3 d� dy d� .

Then, by the integration by parts with respect toy, it follows from Lemma 2.2 and (2.3) that

(4.38)

kI3( � , t)kL1 � Ct�3=2 Z t=2
0

Z 1
0

yj�(y, � )j3 dy d�
� CjÆj3t�3=2 Z t=2

0
(1 + � )�1

Z
R

jyjp
1 + � e�y2=(4(1+� )) dy d�

� CjÆj3(1 + t)�1

for t � 1. Similarly, we have

(4.39) kI4( � , t)kL1 � CjÆj3(1 + t)�1.
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Next we considerI5. From (2.6), (2.7), (1.3) and (1.13), we have

Z
R

�2(� , � )�3(� , � ) d� = d(1 + � )�1,

hence it follows from (4.34) and (4.36) that

(4.40)

I5 = d
Z t=2

0
3(x, t , 0, � )(1 + � )�1 d�

= �cd

3
�1(x, t)

Z t=2
0

(1 + � )�1

�
(�xG(x, t � � )� �xG(x, t + 1))

+
b

2
�(x, t)(G(x, t � � )� G(x, t + 1))

�
d�

� cd

3
�1(x, t)

��xG(x, t + 1) +
b

2
�(x, t)G(x, t + 1)

�
log

�
2 + t

2

�
� I5,1 + I5,2.

In order to evaluateI5,1, we shall use

(4.41) j� l
xG(x, t � � )� � l

xG(x, t + 1)j � C(t � � )�(3+l )=2(1 + � )

for l = 0, 1 and 0� � � t=2. This estimate can be shown by observing that

� l
xG(x, t � � )� � l

xG(x, t + 1) =�(1 + � )
Z 1

0
(�t� l

xG)(x, 1 + t � �(1 + � )) d�
and by recalling (2.5). Sincejdj � CjÆj3 by (1.13), we have from (4.41)
(4.42)

kI5,1( � , t)kL1 � CjÆj3 Z t=2
0

(1 +� )�1f(t � � )�2(1 +� ) + (1 +t)�1=2(t � � )�3=2(1 +� )g d�
� CjÆj3 Z t=2

0
(t � � )�2 d� � CjÆj3(1 + t)�1.

Finally, we deal withI5,2. From (4.40), (2.2), (1.3) and (2.6), it follows that

I5,2 = � cd

12
p� ��

�
xp
1 + t

��
b��

�
xp
1 + t

�� xp
1 + t

�
e�x2=(4(1+t))(1 + t)�1

� (log(t + 2)� log 2).

We have from (1.10) and (1.11),

(4.43) kI5,2( � , t)� V( � , t)kL1 � CjÆj3(1 + t)�1.
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Summarizing (4.32), (4.33), (4.36), (4.38), (4.39), (4.40), (4.42) and (4.43), we ob-
tain (4.31). This completes the proof.
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