

Title	The commutativity of galois groups of the maximal unramified pro-p-extensions over the cyclotomic \mathbb{Z}_p -extensions II
Author(s)	Okano, Keiji
Citation	Osaka Journal of Mathematics. 2012, 49(2), p. 271–295
Version Type	VoR
URL	https://doi.org/10.18910/12486
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

THE COMMUTATIVITY OF GALOIS GROUPS OF THE MAXIMAL UNRAMIFIED PRO- p -EXTENSIONS OVER THE CYCLOTOMIC \mathbb{Z}_p -EXTENSIONS II

KEIJI OKANO

(Received October 13, 2009, revised October 22, 2010)

Abstract

Let p be an odd prime number and K_∞ the cyclotomic \mathbb{Z}_p -extension of a Galois p -extension K over an imaginary quadratic field. We consider the Galois group $\tilde{X}(K_\infty)$ of the maximal unramified pro- p -extension of K_∞ . In this paper, under certain assumptions, we give certain K such that $\tilde{X}(K_\infty)$ is abelian. Also, we give an example such that a special value of the characteristic polynomial of the Iwasawa module of K_∞ determines whether $\tilde{X}(K_\infty)$ is abelian or not.

1. Introduction

Let p be an odd prime number, F a finite extension over the field \mathbb{Q} of rational numbers and F_∞ the cyclotomic \mathbb{Z}_p -extension of F . In other words, F_∞ is defined by the following. The extension over F which is obtained by adjoining to F all roots of unity of p -power order has the unique subfield whose Galois group over F is isomorphic to the additive group of the ring \mathbb{Z}_p of p -adic integers. We define F_∞ by the subfield. Denote by $\tilde{X}(F)$ (resp. $\tilde{X}(F_\infty)$) the Galois group of the maximal unramified pro- p -extension $\tilde{L}(F)$ of F (resp. $\tilde{L}(F_\infty)$ of F_∞). The extensions $\tilde{L}(F)/F$, $\tilde{L}(F_\infty)/F_\infty$ are called the p -class field towers, and their Galois groups $\tilde{X}(F)$, $\tilde{X}(F_\infty)$ are very interesting objects in number theory. Though $\tilde{X}(F)$ can be infinite, we have quite a few known criterions for assuring that $\tilde{X}(F)$ is finite: in addition, we do not have efficient methods for describing the structure of $\tilde{X}(F)$. However, we mention that Ozaki [17] recently showed that there exists F such that $\tilde{X}(F)$ is isomorphic to any given finite p -group.

We apply Iwasawa theory to the study of p -class field towers, such as in Mizusawa [11], [12] and Ozaki [16]. We consider to *classify the finite algebraic number fields F such that each $\tilde{X}(F_\infty)$ is abelian*; in other words, the maximal unramified pro- p -extension of each F_∞ remains abelian extension. It is equivalent that $\tilde{X}(F_\infty)$ is abelian and that all sufficiently large subfields in F_∞/F have the p -class field towers whose Galois groups are abelian. Also if $\tilde{X}(F)$ is abelian for a finite algebraic number field

F , then $\tilde{X}(F)$ is finite and isomorphic to the p -Sylow subgroup of the ideal class group of F .

In [14], the author determined the all imaginary quadratic fields F such that $\tilde{X}(F_\infty)$ is abelian for an odd prime number p : for $p = 2$, the same result was shown by Mizusawa–Ozaki [13]. After [13] and [14], one of further problems for the above classifying is to treat the case where F is an abelian number field. However, this problem seems very difficult. Since, for instance, there is Greenberg’s conjecture which says that the maximal unramified abelian pro- p -extension of F_∞ is finite if F is totally real. In [15], the author studied necessary conditions for $\tilde{X}(F_\infty)$ to be abelian. And also the case where each F is totally imaginary abelian p -extensions over imaginary quadratic fields with certain assumptions is treated. On the other hand, Sharifi [18] computed the structure of $\tilde{X}(F_\infty)$ in the case where F is the cyclotomic p -th extension.

In this paper, we treat totally imaginary abelian p -extensions over imaginary quadratic fields with certain assumptions which are different from [15]. Simultaneously, we consider the following question.

We note the fact in [13] that, if $p = 2$, there is a case where the special value modulo 2^2 at -1 of the characteristic polynomial of Iwasawa module contributes to the condition for $\tilde{X}(F_\infty)$ to be abelian. This fact is interesting since the characteristic polynomials of Iwasawa modules are connected to the p -adic L -function by Mazur–Wiles [10]. So that the next question arises. Is there a similar case if p is odd?

We use the notation $A(F)$ for the p -Sylow subgroup of the ideal class group of F . Then we obtain followings:

Theorem 1.1. *Let p, l be odd prime numbers such that $p \mid l - 1$, k an imaginary quadratic field with the property that $k \neq \mathbb{Q}(\sqrt{-3})$ if $p = 3$, and K^+ an abelian p -extension of \mathbb{Q} with conductor l . Put $K := kK^+$ and let K_∞ be the cyclotomic \mathbb{Z}_p -extension of K . Assume that p does not split in K and l does not split in k . Then the Galois group $\tilde{X}(K_\infty)$ of the maximal unramified pro- p -extension over K_∞ is abelian if and only if $A(k) = 0$ moreover we have then $\tilde{X}(K_\infty) = 1$.*

Theorem 1.2. *Let l be an odd prime number such that $3 \parallel l - 1$, k an imaginary quadratic field with the property that $k \neq \mathbb{Q}(\sqrt{-3})$, and K^+ the unique abelian 3 -extension of \mathbb{Q} with conductor l . Put $K := kK^+$ and let $P_K(T) \in \mathbb{Z}_3[T]$ be the characteristic polynomial of the Iwasawa module of the cyclotomic \mathbb{Z}_3 -extension K_∞/K . Suppose that 3 does not split in K but l splits in k . Moreover, assume that $A(k) = 0$ and $\dim_{\mathbb{F}_3} A(K) \otimes_{\mathbb{Z}} \mathbb{F}_3 = 1$. Then $\tilde{X}(K_\infty)$ is abelian if and only if $P_K(-1) \not\equiv 1 \pmod{3^2}$.*

2. Preliminaries

From now on, for any CM-field F , we use the notation F^+ and F_n for the maximal totally real subfield of F and the unique subfield with degree p^n of the cyclotomic \mathbb{Z}_p -extension F_∞ over F , respectively. Denote the maximal unramified abelian

p -extension of F by $L(F)$ and its Galois group $\tilde{X}(F)^{\text{ab}}$ by $X(F)$. Similarly, denote the maximal unramified abelian pro- p -extension of F_∞ by $L(F_\infty)$ and its Galois group by $X(F_\infty)$. For any module A on which $\text{Gal}(F/F^+)$ acts, put $A^+ := A^{\text{Gal}(F/F^+)}$, $A^- := A/A^+$.

Fix a topological generator $\bar{\gamma}$ of $\text{Gal}(F_\infty/F)$. And we write its restriction on $\text{Gal}(F_n/F)$ as the same notation for each $n \geq 0$. Choose an extension $\gamma \in \text{Gal}(L(F_\infty)/F)$ of $\bar{\gamma}$. Then $\text{Gal}(F_n/F)$ acts on $X(F_n)$ as the inner automorphisms defined by $x^{\bar{\gamma}} = \gamma x \gamma^{-1}$ for any $x \in X(F_n)$. Note that this action is independent of the choice of an extension γ and commutes with the Artin maps $X(F_n) \simeq A(F_n)$. We identify $X(F_n)$ with $A(F_n)$ by these isomorphisms. Since $X(F_\infty) \simeq \varprojlim X(F_n)$, the complete group ring $\varprojlim \mathbb{Z}_p[\text{Gal}(F_n/F)]$ acts on $X(F_\infty)$ continuously, where each inverse limit is taken over Galois restrictions. Hence the formal power series ring $\Lambda := \mathbb{Z}_p[[T]]$ acts on $X(F_\infty)$ via the non-canonical isomorphism $\Lambda \simeq \varprojlim \mathbb{Z}_p[\text{Gal}(F_n/F)]$ which is obtained by sending $1+T$ to the fixed topological generator $\bar{\gamma}$ of $\text{Gal}(F_\infty/F)$. Therefore $X(F_\infty)$ is a Λ -module, so that we write the action of Λ additionally; $x^{\bar{\gamma}} = (1+T)x$.

The module Λ is a noetherian local ring with the maximal ideal (p, T) . We define a distinguished polynomial $P(T) \in \mathbb{Z}_p[T]$ by monic polynomial such that $P(T) \equiv T^{\deg P(T)} \pmod{p}$. Then, by the p -adic Weierstraß preparation theorem [19, Theorem 7.3], any non-zero element $f(T) \in \Lambda$ can be uniquely written

$$f(T) = p^\mu P(T)U(T)$$

with an integer $\mu \geq 0$, a distinguished polynomial $P(T)$ and $U(T) \in \Lambda^\times$. Then $\deg P(T)$ is called the residue degree of $f(T)$. Also, there is a division theorem [19, Proposition 7.2] for distinguished polynomials: if $f(T) \in \Lambda$ is non-zero and $P(T)$ is distinguished, then there uniquely exist $q(T) \in \Lambda$ and $r(T) \in \mathbb{Z}_p[T]$ such that

$$f(T) = q(T)P(T) + r(T), \quad \deg r(T) < \deg P(T).$$

Therefore Λ is a UFD, whose irreducible elements are p and irreducible distinguished polynomials.

It turns out that $X(F_\infty)$ is a finitely generated torsion module over Λ . Therefore we can define the Iwasawa λ -invariant λ_F of F_∞/F by the dimension of $X(F_\infty) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ over the p -adic field \mathbb{Q}_p . There is a Λ -homomorphism

$$X(F_\infty)^- \rightarrow \bigoplus_{i=1}^s \Lambda/(P_i)^{m_i}$$

such that its kernel and cokernel are finite, where the principal ideals (P_i) in Λ are prime ideals of height 1, the ideals (P_i) and the integers m_i , s are uniquely determined by $X(F_\infty)^-$ ([19, Theorem 13.12]). In fact, the map is injective since $X(F_\infty)^-$ has no non-trivial finite Λ -submodules by [19, Theorem 13.28]. We say that the Iwasawa

μ -invariant μ_F of F_∞/F is zero if $X(F_\infty)$ is also finitely generated over \mathbb{Z}_p : For example, if F/\mathbb{Q} is an abelian extension, then $\mu_F = 0$ by Ferrero–Washington [2]. In particular, if $\mu_F = 0$, then $X(F_\infty)^-$ is a free \mathbb{Z}_p -module, and so that we may take each P_i as an irreducible distinguished polynomial. Then the polynomial $P_F(T) := \prod_{i=1}^s P_i^{m_i}$ is called the characteristic polynomial of $X(F_\infty)^-$ and we have $\lambda_F^- := \lambda_F - \lambda_{F^+} = \deg P_F(T)$. It turns out that, if the extension F_∞/F is totally ramified at all primes lying above p , then there is an isomorphism

$$(1) \quad X(F_n) \simeq X(F_\infty) \left/ \frac{\omega_n(T)}{T} Y \right.$$

for any $n \geq 0$, where $Y := \text{Gal}(L(F_\infty)/L(F)F_\infty)$, $\omega_n(T) := (T + 1)^{p^n} - 1$.

Now, let k be a CM-field such that k is a finite extension over \mathbb{Q} with $\mu_k = 0$ and K^+ a cyclic extension of k^+ with degree p such that $k_\infty^+ \cap K^+ = k^+$. Put $K := kK^+$ and $\Delta := \text{Gal}(K/k)$. First of all, we compare $P_K(T)$ with $P_k(T)$ (Proposition 2.1). We identify $\Gamma := \text{Gal}(k_\infty/k)$ with $\text{Gal}(K_\infty/K)$ and Δ with $\text{Gal}(K_\infty/k_\infty)$ by the canonical isomorphisms. Note that Δ acts on $X(K_\infty)$ and $X(K_\infty)^-$ as the inner automorphisms similar to the action of Γ . The actions of Γ and Δ are commutative since $X(K_\infty)$, $X(K_\infty)^-$ and $\text{Gal}(K_\infty/k)$ are abelian. Therefore $X(K_\infty)$, $X(K_\infty)^-$ are $\Lambda[\Delta]$ -modules. By Iwasawa [7] and Kida's formula [8], $\mu_K = 0$ and

$$(2) \quad \lambda_K^- = p\lambda_k^- + (p-1)(s-v),$$

where s is the number of primes in K_∞^+ not lying above p which split in K_∞/K_∞^+ and ramify in K_∞^+/k_∞^+ , and $v = 1$ or 0 according as a primitive p -th root of unity is in k or not. In addition, suppose that $X(K_\infty)^-$ is cyclic over Λ . Then we have a surjection

$$\Lambda/(P_K(T)) \twoheadrightarrow X(K_\infty)^-,$$

since $X(K_\infty)^-$ has no non-trivial finite Λ -submodules and is annihilated by $P_K(T)$. Comparing the \mathbb{Z}_p -ranks, we have $X(K_\infty)^- \simeq \Lambda/(P_K(T))$. Fix a generator $\varepsilon \in X(K_\infty)^-$ over Λ and a generator $\delta \in \Delta$. We described the action of Δ as x^δ . Then we have

$$\varepsilon^\delta = (Q(T) + 1)\varepsilon$$

for some $Q(T) \in \Lambda$. Then polynomial $Q(T) \in \Lambda$ is uniquely defined up to the modulus $P_K(T)$ and independent of the choice of ε . We may assume that $Q(T)$ is a polynomial by the division theorem. Put

$$(3) \quad N(T) := Q(T)^{p-1} + \binom{p}{p-1} Q(T)^{p-2} + \cdots + \binom{p}{1} = \frac{(Q(T) + 1)^p - 1}{Q(T)},$$

where $\binom{p}{k}$ is a binomial coefficient. Then we have the following proposition:

Proposition 2.1. *Let K/k and Δ be as above. Assume that $X(K_\infty)^-$ is non-trivial and cyclic over Λ . Then the followings hold:*

- (i) *If $\lambda_k^- = 1$, $s = 0$ and $v = 1$, where s and v are defined above, then $X(K_\infty)^- \simeq \mathbb{Z}_p$ as $\mathbb{Z}_p[\Delta]$ -modules and $P_K(T) = P_k(T)$. And then, $Q(T) = 0$.*
- (ii) *If $\lambda_k^- \neq 1$ or $s \neq 0$ or $v \neq 1$, then $s - \mu \geq 0$,*

$$P_K(T) = (\Lambda\text{-unit})P_k(T)N(T) \quad \text{i.e.,} \quad P_k(T)N(T)/P_K(T) \in \Lambda^\times,$$

$$X(K_\infty)^- \simeq \mathbb{Z}_p[\Delta]^{\oplus \lambda_k^-} \oplus I_\Delta^{\oplus(s-v)} \quad \text{as } \mathbb{Z}_p[\Delta]\text{-modules}$$

and the residue degree of $Q(T)$ is $\lambda_k^- + s - v$, where I_Δ is the augmentation ideal in $\mathbb{Z}_p[\Delta]$.

Proof. We treat $X(K_\infty)^-$ as the inverse limit of ideal class groups via the identification $X(K_\infty)^- = \varprojlim A(K_n)^-$. We consider the norm map $N_{K_\infty/k_\infty}: X(K_\infty)^- \rightarrow X(k_\infty)^-$ which is induced by the norm maps $N_{K_n/k_n}: X(K_n)^- \rightarrow X(k_n)^-$ and the norm operator $N_\Delta: X(K_\infty)^- \rightarrow X(K_\infty)^-$ ($N_\Delta(x) := x + x^\delta + \cdots + x^{\delta^{p-1}}$). If K_∞/k_∞ is not unramified, in other words, $K_\infty \cap L(k_\infty) = k_\infty$, then N_{K_∞/k_∞} is surjective by the class field theory. Similarly, N_{K_∞/k_∞} is surjective if K_∞/k_∞ is unramified. Indeed, by taking the minus-part of the exact sequence of Galois groups

$$1 \rightarrow \text{Gal}(L(k_\infty)/K_\infty) \rightarrow X(k_\infty) \rightarrow \Delta \rightarrow 1,$$

we have $X(k_\infty)^- = \text{Gal}(L(k_\infty)/K_\infty)^-$. The right hand side is isomorphic to the image of $X(K_\infty)^-$ by N_{K_∞/k_∞} , and so that N_{K_∞/k_∞} is surjective. Hence $X(k_\infty)^-$ is a cyclic Λ -module generated by $N_{K_\infty/k_\infty}\varepsilon$ and is isomorphic to $\Lambda/(P_k(T))$.

The norm operator N_Δ coincides with the endomorphism by multiplicating $N(T)$ since

$$\begin{aligned} N_\Delta(x) &= x + x^\delta + \cdots + x^{\delta^{p-1}} \\ &= (1 + (1 + Q(T)) + \cdots + (1 + Q(T))^{p-1})x \\ &= N(T)x. \end{aligned}$$

Therefore we have the following commutative diagram:

$$\begin{array}{ccccc} \Lambda/(P_K(T)) \simeq X(K_\infty)^- & \xrightarrow{N_\Delta} & X(K_\infty)^- \simeq \Lambda/(P_K(T)) \\ \text{id.} \downarrow & N_{K_\infty/k_\infty} \downarrow & \uparrow \text{lift.} & \uparrow N(T) \\ \Lambda/(P_k(T)) \simeq X(k_\infty)^- & \xlongequal{\quad} & X(k_\infty)^- \simeq \Lambda/(P_k(T)). & & \end{array}$$

Here the each map id. and lift. is the map induced by the identity map $\Lambda \rightarrow \Lambda$ and the lifting maps on the ideal class groups $\iota_n: A(k_n)^- \rightarrow A(K_n)^-$, respectively, and the

commutativity of the center square follows from $N_\Delta = \iota_n \circ N_{K_n/k_n}$. It follows from this that

$$(4) \quad P_k(T) \mid P_K(T) \mid P_k(T)N(T),$$

where we use the notation $f(T) \mid g(T)$ if $f(T), g(T) \in \Lambda$ satisfy $g(T)/f(T) \in \Lambda$ (recall that Λ is a UFD). Now, we see that $Q(T)N(T)$ belongs to the ideal $(P_K(T))$ of Λ since $\varepsilon = \varepsilon^{\delta^p}$, so that there is some $F(T) \in \Lambda$ such that $Q(T)N(T) = P_K(T)F(T)$. This equation and (3) follow $Q(0) \in p\mathbb{Z}_p$ since $P_K(0) \notin \mathbb{Z}_p^\times$ by the assumption $X(K_\infty)^- \neq 0$. Moreover, we see that $p \parallel N(0)$ by (3) (note that $p \geq 3$). Therefore, by the p -adic Weierstraß preparation theorem,

$$N(T) = pU(T) \quad \text{or} \quad N(T) = \tilde{N}(T)U(T)$$

with some $U(T) \in \Lambda^\times$ and some irreducible distinguished polynomial $\tilde{N}(T) \in \mathbb{Z}_p[T]$. Combining (4) with $p \nmid P_K(T)$, we have

$$P_K(T) = P_k(T) \quad \text{or} \quad P_K(T) = P_k(T)\tilde{N}(T).$$

First, we suppose $P_K(T) = P_k(T)$. Then $1 \leq \lambda_k^- = \lambda_K^- = v - s$ by (2) and we have

$$P_K(T) = P_k(T) \iff \lambda_k^- = 1, s = 0, v = 1.$$

Then we may assume that $\deg Q(T) < \deg P_K(T) = 1$ by the division theorem. If $Q(T) \neq 0$, then $Q(T)$ is a constant, and so is $P_K(T)F(T) = Q(T)N(T)$, which is a contradiction. Therefore $Q(T) = 0$, which implies that δ acts on $X(K_\infty)^-$ trivially.

Next, we suppose that $P_K(T) = P_k(T)\tilde{N}(T)$ to show the rest of (ii). Then, note that $Q(T), N(T) \notin p\Lambda$ since $P_K(T) \notin p\Lambda$. Let $\tilde{Q}(T) \in \mathbb{Z}_p[T]$ be a distinguished polynomial such that $Q(T)/\tilde{Q}(T) \in \Lambda^\times$; $\tilde{Q}(T)$ depends on the choice of $Q(T)$. Then we know

$$(5) \quad \deg \tilde{N}(T) = (p-1) \deg \tilde{Q}(T) = (p-1)(\lambda_k^- + s - v)$$

by $N(T) \equiv T^{(p-1)\deg \tilde{Q}(T)}(Q(T)/\tilde{Q}(T))^{p-1} \pmod{p}$ and (2). Hence $\deg \tilde{Q}(T) = \lambda_k^- + s - v$. In particular, $\deg \tilde{Q}(T)$ does not depend on the choice of $Q(T)$. Note that $P_k(T) \mid Q(T)$ by $Q(T)N(T) = P_K(T)F(T)$ and $P_K(T) = P_k(T)\tilde{N}(T)$. This implies that $s - v = \deg \tilde{Q}(T) - \deg P_k(T) \geq 0$ and also that $P_k(T)$ and $\tilde{N}(T)$ are relatively prime by (3). Finally, since Δ is a cyclic group with order p and $X(K_\infty)^-$ is a free \mathbb{Z}_p -module, we have a representation

$$X(K_\infty)^- \simeq \mathbb{Z}_p[\Delta]^{\oplus \lambda_k^-} \oplus I_\Delta^{\oplus (s-v)}$$

as $\mathbb{Z}_p[\Delta]$ -modules by Gold–Madan [5]. This completes the proof. \square

Corollary 2.2. *Let K/k and Δ be as above. Suppose that only one prime of K_∞ lies above p and that this prime is totally ramified in K_∞/K . Assume that $A(K)^-$ is non-trivial and cyclic, then*

$$\#A(K)^- = \begin{cases} \#A(k)^- & \text{(if the assumption of Proposition 2.1 (i) holds),} \\ p \cdot \#A(k)^- & \text{(if the assumption of Proposition 2.1 (ii) holds),} \end{cases}$$

where we denote the order of a set M by $\#M$.

Proof. By the assumption and [19, Theorem 13.22], we obtain

$$A(K) \simeq X(K_\infty)/TX(K_\infty).$$

By Nakayama's lemma, $X(K_\infty)^-$ is non-trivial and cyclic over Λ since $A(K)^-$ is non-trivial and cyclic. Therefore, the claim follows from $A(K)^- \simeq \Lambda/(P_K(T), T) \simeq \mathbb{Z}_p/P_K(0)\mathbb{Z}_p$. \square

To prove the main theorems, we use the central p -class field theory as follows. For the central p -class field theory, see [3] and also [14, §2]. Let F be a finite abelian p -extension of an imaginary quadratic field k . For a prime q in k which is ramified in F/k , we fix a prime lying above q in $L(F)$ and denote its decomposition group in $\text{Gal}(L(F)/k)$ by Z_q . Then we have the following proposition by the central p -class field theory and the judgment whether $\tilde{L}(F) = L(F)$ or not is reduced to the computation of the map Φ :

Proposition 2.3. *With the notation above, assume that $k \neq \mathbb{Q}(\sqrt{-3})$ if $p = 3$. Consider the map*

$$\Phi: \prod_q H_2(Z_q, \mathbb{Z}_p) \otimes_{\mathbb{Z}_p} \mathbb{F}_p \rightarrow H_2(\text{Gal}(L(F)/k), \mathbb{Z}_p) \otimes_{\mathbb{Z}_p} \mathbb{F}_p$$

which is induced by the canonical map $Z_q \rightarrow \text{Gal}(L(F)/k)$, where the product is taken over all primes in k which are ramified in F/k . Then $\tilde{L}(F) = L(F)$ if and only if Φ is surjective.

3. Proof of Theorem 1.1

3.1. Arithmetic part. Let p, l be odd prime numbers such that $p \mid l - 1$. We define an integer e by $p^{e+1} \parallel l - 1$. Let k be an imaginary quadratic field with the condition that $k \neq \mathbb{Q}(\sqrt{-3})$ if $p = 3$, and K^+ an abelian p -extension of \mathbb{Q} with conductor l . Put $K := kK^+$. We identify $\Gamma := \text{Gal}(k_\infty/k)$ with $\text{Gal}(K_\infty/K)$ and $\Delta := \text{Gal}(K/k)$ with $\text{Gal}(K_\infty/k_\infty)$. Assume that neither p nor l splits in K . Note that $X(\mathbb{Q}_\infty) = 0$ and

$X(K_\infty^+) = 0$ by Iwasawa [6]. If $A(k) = 0$, then $\tilde{X}(K_\infty) = 1$ again by [6]. Therefore we have only to show that $\tilde{L}(K_\infty) \neq L(K_\infty)$ under the assumption that

$$A(k) \neq 0 \quad \text{and} \quad [K^+ : \mathbb{Q}] = p$$

for proving Theorem 1.1. Moreover, if $\lambda_k \geq 2$, then $\tilde{X}(K_\infty)$ is not abelian by [14], and neither $\tilde{X}(K_\infty)$ is. Therefore we may assume that

$$\lambda_k = \lambda_k^- = 1 \quad \text{and} \quad \lambda_K = \lambda_K^- = p.$$

Since $\lambda_k = 1$, we know $X(k_\infty) \simeq \mathbb{Z}_p$. Moreover, since the only one prime of k_∞ lying above p is totally ramified in k_∞/k , $A(k)$ is a non-trivial cyclic group. Now, we apply Proposition 2.3 to the extension $L(K)/k$:

Lemma 3.1. *With the notation above, $\tilde{L}(K) = L(K)$ if and only if $\dim_{\mathbb{F}_p} A(K) \otimes_{\mathbb{Z}} \mathbb{F}_p \leq 1$.*

Proof. Since l does not split in K/K^+ , the only one prime lying above l in K splits completely in $L(K)/K$ by the class field theory. Hence the decomposition group in $\text{Gal}(L(K)/k)$ of a prime lying above l in $L(K)$ is cyclic, and so that its Schur multiplier is trivial. Therefore, $\tilde{L}(K) = L(K)$ holds if and only if $H_2(\text{Gal}(L(K)/k), \mathbb{Z}_p) = 0$ by Proposition 2.3. By Evens [1], we have

$$H_2(\text{Gal}(L(K)/k), \mathbb{Z}_p) \simeq H_2(\Delta, \mathbb{Z}_p) \oplus H_1(\Delta, X(K)) \oplus H_2(X(K), \mathbb{Z}_p)_\Delta,$$

since $\text{Gal}(L(K)/k) \simeq X(K) \rtimes \Delta$. If $\dim_{\mathbb{F}_p} A(K) \otimes_{\mathbb{Z}} \mathbb{F}_p \geq 2$, then $H_2(X(K), \mathbb{Z}_p)_\Delta \simeq (A(K) \wedge_{\mathbb{Z}_p} A(K))_\Delta \neq 0$. This implies that $\tilde{L}(K) \neq L(K)$. On the other hand, the sufficiency of the assertion is clear. \square

By Lemma 3.1 and the above argument, for proving Theorem 1.1, it is sufficient to show the following proposition:

Proposition 3.2. *Suppose that the following conditions hold:*

- (i) *Neither p nor l splits in K/\mathbb{Q} ,*
- (ii) *$\lambda_k = 1$ (hence $A(k) \neq 0$ and $\lambda_K = p$),*
- (iii) *$\dim_{\mathbb{F}_p} A(K) \otimes_{\mathbb{Z}} \mathbb{F}_p = 1$.*

Then $\tilde{L}(K_n) \neq L(K_n)$ for any $n \geq 1$.

In the rest of this section, for a fixed non-negative integer n , we show Proposition 3.2. Suppose that p , l , k and K satisfy the condition of Proposition 3.2. Our first aim is to describe $G_n := \text{Gal}(L(K_n)/k)$ and some decomposition subgroups. Put $\Gamma_n := \Gamma/\Gamma^{p^n}$ for simplicity. Let $\bar{\gamma}$ a fixed generator of Γ . Identify $\Lambda = \mathbb{Z}_p[[T]]$ with

$\varprojlim \mathbb{Z}_p[\Gamma_n]$ by sending $1 + T$ to $\bar{\gamma}$. Since the only one prime lying above p in K is totally ramified in K_∞/K and $A(K)$ is a non-trivial cyclic group, $X(K_\infty)$ is cyclic over Λ . Let ε be a fixed generator of $X(K_\infty)$ over Λ and $\bar{\delta}$ a fixed generator of Δ . Then, since $X(K_\infty^+) = 0$, we can apply Proposition 2.1 (ii) to obtain

$$\begin{cases} X(K_\infty) = \Lambda \varepsilon \simeq \Lambda / (P_K(T)) \text{ as } \Lambda\text{-modules,} \\ X(K_\infty) \simeq \mathbb{Z}_p[\Delta] \text{ as } \mathbb{Z}_p[\Delta]\text{-modules,} \\ Q(T)/P_k(T) \in \Lambda^\times \text{ (since the residue degree of } Q(T) \text{ is } \lambda_k \text{ and } P_k(T) \mid Q(T)), \\ P_k(T)N(T)/P_K(T) \in \Lambda^\times. \end{cases}$$

Here $Q(T)$ is defined by $\varepsilon^{\bar{\delta}} = (Q(T) + 1)\varepsilon$ and $N(T)$ is defined as in (3). Let M_n be the maximal abelian subextension in $L(K_n)/k$. We denote by ε_n , $\bar{\varepsilon}_n$ the projection of $\varepsilon \in X(K_\infty)$ to G_n , $G_n^{\text{ab}} := \text{Gal}(M_n/k)$, respectively. Let $\tilde{\mathfrak{p}}_n$ (resp. $\tilde{\mathfrak{l}}_n$) be a prime in $L(K_n)$ lying above p (resp. l), and $\gamma_n \in G_n$ (resp. δ_n) a generator of the inertia group $I_p \simeq \Gamma_n$ of $\tilde{\mathfrak{p}}_n$ (resp. the inertia group $I_l \simeq \Delta$ of $\tilde{\mathfrak{l}}_n$). Put $\bar{\gamma}_n := \gamma_n \bmod [G_n, G_n]$, $\bar{\delta}_n := \delta_n \bmod [G_n, G_n]$. Here $[G, G]$ stands for the topological commutator subgroup of a topological group G , which is generated by $[g, h] := ghg^{-1}h^{-1}$ for all $g, h \in G$. We may assume that γ_n (resp. δ_n) is an extension of $\bar{\gamma}$ mod Γ^{p^n} (resp. $\bar{\delta} \in \Delta$). Then $\text{Gal}(K_n/k)$ acts on $X(K_n) = \Lambda \varepsilon_n \simeq \Lambda / (P_K(T), \omega_n(T))$ by

$$\varepsilon_n^{\bar{\gamma}} = \gamma_n \varepsilon_n \gamma_n^{-1} = (1 + T) \varepsilon_n, \quad \varepsilon_n^{\bar{\delta}} = \delta_n \varepsilon_n \delta_n^{-1} = (1 + Q(T)) \varepsilon_n.$$

Lemma 3.3. *As Λ -modules, $[G_n, G_n] \simeq (T, p^m)/(P_K(T), \omega_n(T))$. Also we have*

$$G_n^{\text{ab}} = \langle \bar{\gamma}_n \rangle \oplus \langle \bar{\delta}_n \rangle \oplus \langle \bar{\varepsilon}_n \rangle \simeq \mathbb{Z}/p^n\mathbb{Z} \oplus \mathbb{Z}/p\mathbb{Z} \oplus \mathbb{Z}/p^m\mathbb{Z},$$

where m is defined by $\#A(k) = p^m$.

Proof. Note that the maximal abelian subextension in $L(K_n)/K$ is the fixed field by the Galois subgroup corresponding to

$$(T, P_K(T))/(P_K(T), \omega_n(T)) = (T, P_K(0))/(P_K(T), \omega_n(T)).$$

Clearly, M_n is contained in the field and also contains K_n . Hence there is some $p^t \leq P_K(0)$ such that $[G_n, G_n] \simeq (T, p^t)/(P_K(T), \omega_n(T))$. We show that $t = m$, in other words, $\text{Gal}(M_n/k) \simeq \mathbb{Z}/p^m\mathbb{Z}$ for any $n \geq 0$. If $n = 0$, then M_0 has degree p^m over K by the genus formula [9, Chapter 13 Lemma 4.1]. Denote by M'_n the maximal abelian subextension in M_n/k which is unramified outside l . Clearly $M_0 \subset M'_n$. Moreover, we have $M'_n = M_0$ since M'_n/K is unramified and abelian. Since M'_n is the fixed field in M_n by the inertia group of a prime lying above p , $M_n/M'_n K_n$ is totally ramified at the prime. On the other hand, since $M'_n \cap K_n = K$, $M_n/M'_n K_n$ is unramified at every

prime. Therefore $M_0 K_n = M'_n K_n = M_n$, and $\langle \bar{\varepsilon}_n \rangle = \text{Gal}(M_n/K_n) \simeq \mathbb{Z}/p^m \mathbb{Z}$. Hence we find

$$[G_n, G_n] \simeq (T, p^m)/(P_K(T), \omega_n(T)).$$

Also, by the definitions of $\bar{\gamma}_n$, $\bar{\delta}_n$, $\bar{\varepsilon}_n$, we obtain $\langle \bar{\gamma}_n \rangle \oplus \langle \bar{\delta}_n \rangle \oplus \langle \bar{\varepsilon}_n \rangle \subset G_n^{\text{ab}}$. Comparing each order, we obtain the assertion. \square

In fact, γ_n and δ_n are commutative and hence $G_n \simeq X(K_n) \rtimes (\Gamma_n \times \Delta)$. This fact follows from the next lemma. Recall that $p^{e+1} \parallel l - 1$. From now on throughout this section, we regard $X(K_n)$ as a subset of G_n and write the operator of $X(K_n)$ multiplicatively.

Lemma 3.4. *Let the subgroups Z_p , Z_l of G_n be the decomposition groups of $\tilde{\mathfrak{p}}_n$, $\tilde{\mathfrak{l}}_n$, respectively. Then, changing $\tilde{\mathfrak{l}}_n$ if necessary, there is some $D(T) \in \Lambda$ defined uniquely up to the modulus $P_K(T)$ such that*

$$Z_p = \langle \gamma_n \rangle \oplus \langle \delta_n \rangle,$$

$$Z_l = \begin{cases} \langle \delta_n \rangle & (\text{if } n \leq e), \\ \langle \gamma_n^{p^e} \varepsilon_n^{D(T)N(T)} \rangle \oplus \langle \delta_n \rangle & (\text{if } n > e). \end{cases}$$

Proof. The image of Z_p in G_n^{ab} is generated by $\bar{\gamma}_n$ and $\bar{\delta}_n$. Therefore, Z_p is generated by the generator γ_n of I_p and a pre-image ρ_n of a generator of Z_p/I_p . Moreover, every prime lying above p splits completely in $L(K_n)/K_n$. Hence $Z_p \cap [G_n, G_n] = 1$. This implies that $[\gamma_n, \delta_n] = 1$, and so that Z_p is abelian. Comparing the orders, we see that the natural surjection $Z_p = \langle \gamma_n \rangle \oplus \langle \rho_n \rangle \twoheadrightarrow \langle \bar{\gamma}_n \rangle \oplus \langle \bar{\delta}_n \rangle$ is isomorphic. We can take ρ_n which satisfies $\rho_n \equiv \delta_n \pmod{[G_n, G_n]}$. It follows from this that there is some $B(T) \in (T, p^m)$ defined up to the modulus $P_K(T)$ such that $\rho_n = \delta_n \varepsilon_n^{B(T)}$. Since

$$1 = \rho_n^p = \varepsilon_n^{N(T)B(T)},$$

we obtain $P_K(T) \mid N(T)B(T)$. Hence $Q(T) \mid B(T)$. On the other hand, let $x := \varepsilon_n^{-(1+Q(T))B(T)/Q(T)}$ (note that $1 + Q(T) \in \Lambda^\times$ since $\varepsilon_n^{1+Q(T)} = \varepsilon_n^{\bar{\delta}_n}$), then

$$x \delta_n x^{-1} = \delta_n \delta_n^{-1} x \delta_n x^{-1} = \delta_n x^{(1+Q(T))^{-1}-1} = \delta_n \varepsilon_n^{B(T)} = \rho_n.$$

Hence δ_n and ρ_n are conjugate each other in G_n , so that we may assume that $\delta_n = \rho_n$, changing $\tilde{\mathfrak{l}}_n$ if necessary. This implies that $B(T) = 0$ and also γ_n and δ_n are commutative.

On the other hand, we deal with Z_l . Suppose that $n \leq e$. Then every prime lying above l splits completely in $L(K_n)/K_n$, so that $Z_l = I_l$. Suppose that $e < n$. Then the image of Z_l in G_n^{ab} is generated by $\bar{\gamma}_n^{p^e}$ and $\bar{\delta}_n$. In the same way as in the above, we

see that there is some $C(T) \in (T, p^m)$ defined up to the modulus $P_K(T)$ such that

$$Z_l = \langle \gamma_n^{p^e} \varepsilon_n^{C(T)} \rangle \oplus \langle \delta_n \rangle$$

Since

$$1 = \gamma_n^{p^e} \varepsilon_n^{C(T)} \delta_n \varepsilon_n^{-C(T)} \gamma_n^{-p^e} \delta_n^{-1} = \varepsilon_n^{-(1+T)^{p^e} Q(T)C(T)},$$

we obtain $P_K(T) \mid Q(T)C(T)$ and so that, $D(T) := C(T)/N(T)$ is in Λ . This completes the proof. \square

Lemma 3.5. *For any $n \geq 1$, $\dim_{\mathbb{F}_p} H_2(G_n, \mathbb{Z}_p) \otimes_{\mathbb{Z}_p} \mathbb{F}_p \geq 2$. If $e > 0$, then $\tilde{L}(K_n) \neq L(K_n)$ for any $n \geq 1$.*

Proof. Combining the splitting exact sequence

$$1 \rightarrow X(K_n) \rightarrow G_n \rightarrow \Gamma_n \times \Delta \rightarrow 1$$

with the result in [1], we obtain

$$H_2(G_n, \mathbb{Z}_p) \simeq H_2(\Gamma_n \times \Delta, \mathbb{Z}_p) \oplus H_1(\Gamma_n \times \Delta, X(K_n)) \oplus H_2(X(K_n), \mathbb{Z}_p)_{\Gamma_n \times \Delta}.$$

We find that $H_2(\Gamma_n \times \Delta, \mathbb{Z}_p) \simeq \mathbb{Z}/p\mathbb{Z}$ again by [1]. On the other hand, we know that $H_1(\Gamma_n, X(K_n)) \simeq \hat{H}^0(\Gamma_n, A(K_n)) = 0$ which follows from the genus formula [9, Chapter 13 Lemma 4.1] and the injection $A(K) \rightarrow A(K_n)$ (see [19, Proposition 13.26]). Also, we get

$$H_1(\Delta, X(K_n)_{\Gamma_n}) \cong \hat{H}^0(\Delta, X(K_n)_{\Gamma_n}) \cong (T, P_K(T))/(T, P_K(T)) = 0$$

from $p^m \mid Q(0)$. Therefore the Hochschild–Serre exact sequence

$$H_1(\Gamma_n, X(K_n))_{\Delta} \rightarrow H_1(\Gamma_n \times \Delta, X(K_n)) \rightarrow H_1(\Delta, X(K_n)_{\Gamma_n}) \rightarrow 0$$

yields the result $H_1(\Gamma_n \times \Delta, X(K_n)) = 0$. We have $H_2(X(K_n), \mathbb{Z}_p)_{\Gamma_n \times \Delta} \neq 0$. Indeed, $X(K_n)$ is not cyclic by $\lambda_K = p$ and Fukuda [4], so that $H_2(X(K_n), \mathbb{Z}_p) \neq 0$ and $H_2(X(K_n), \mathbb{Z}_p)_{\Gamma_n \times \Delta} \neq 0$. This shows the first claim.

We are in the position of proving the second claim. Assume that $e > 0$. Take an integer $n \geq 1$ such that $n \leq e$. Then, for such an n , we have $H_2(Z_l, \mathbb{Z}_p) = 0$ and $H_2(Z_p, \mathbb{Z}_p) \simeq \mathbb{F}_p$. The combination of Proposition 2.3 and the first claim implies that $\tilde{X}(K_n)$ is not abelian and that neither every $\tilde{X}(K_n)$ is ($n \geq 1$). \square

3.2. Group theoretical part. We deal with the remaining case where $e = 0$. Assume that $e = 0$. Our next aim is to obtain minimal presentations of G_n , Z_p , Z_l and

their Schur multipliers by free pro- p -groups. Let $F := \langle \gamma, \delta, \varepsilon \rangle$ be a free pro- p -group of rank 3. We define the action of a polynomial $f(\gamma) = a_k \gamma^k + \cdots + a_1 \gamma + a_0$ ($a_i \in \mathbb{Z}_p$) on F by the product of inner products such as

$$x^{f(\gamma)} := x^{a_k \gamma^k} \cdots x^{a_1 \gamma} x^{a_0}.$$

Put

$$R := \langle \gamma^{p^n}, \delta^p, \varepsilon^{P_K(\gamma-1)}, [\delta, \gamma], [\delta, \varepsilon](\varepsilon^{\mathcal{Q}(\gamma-1)})^{-1}, [\varepsilon, \varepsilon^\gamma], [\varepsilon, \varepsilon^{\gamma^2}], \dots, [\varepsilon, \varepsilon^{\gamma^{(p-1)/2}}] \rangle_F,$$

where $\langle x, y, \dots \rangle_F$ stands for the closed normal subgroup generated by x, y, \dots and their conjugates. Note that there are equations

$$\begin{aligned} [x, y]^z &= [x^z, y^z], \\ [x, yz] &= [x, y][x, z]^y, \\ [x, y^k] &= [x, y][x, y]^y \cdots [x, y]^{y^{k-1}} \end{aligned}$$

for any $x, y, z \in F$ and any integer $k \geq 1$. We have the following lemma in the same way as in the proof of [14, Lemma 5.3]:

Lemma 3.6. *For arbitrary $z_1, z_2 \in \mathbb{Z}_p$, $i, j \in \mathbb{Z}$,*

- (i) $[\varepsilon^{z_1 \gamma^i}, \varepsilon^{z_2 \gamma^j}]$ is congruent with some product of $[\varepsilon, \varepsilon^\gamma], \dots, [\varepsilon, \varepsilon^{\gamma^{(p-1)/2}}]$ mod $[R, F]$.
In particular, $[\varepsilon^{z_1 \gamma^i}, \varepsilon^{z_2 \gamma^j}] \in R$.
- (ii) $[\varepsilon^{z_1 \gamma^i}, \varepsilon^{z_2 \gamma^p}] \equiv [\varepsilon, \varepsilon^{\gamma^i}]^{-z_1 z_2}$ mod $[R, F](R \cap [F, F])^p$.

Proof. (i) First, we prove the case where $z_1 = z_2 = 1$. We have only to prove the claim that $[\varepsilon^{\gamma^{-k}}, \varepsilon]$ is congruent with some product of $[\varepsilon, \varepsilon^\gamma], \dots, [\varepsilon, \varepsilon^{\gamma^{(p-1)/2}}]$ mod $[R, F]$ for any non-negative integer k . If $k = 0, \pm 1, \dots, \pm(p-1)/2$, this claim is clear. Fix an integer $k \geq (p-1)/2$ and assume that the claim holds for any non-negative integer i such that $0 \leq i \leq k$. If we put $P_K(\gamma-1) = \gamma^p + c_{p-1} \gamma^{p-1} + \cdots + c_0$, then we have

$$\begin{aligned} 1 &\equiv [\varepsilon^{\gamma^{-k+(p-1)}}, (\varepsilon^{-P_K(\gamma-1)})^{-1}] = [\varepsilon^{\gamma^{-k+(p-1)}}, \varepsilon^{c_0} \varepsilon^{c_1 \gamma} \cdots \varepsilon^{\gamma^p}] \\ &= [\varepsilon^{\gamma^{-k+(p-1)}}, \varepsilon^{c_0}] [\varepsilon^{\gamma^{-k+(p-1)}}, \varepsilon^{c_1 \gamma} \cdots \varepsilon^{\gamma^p}]^{\varepsilon^{c_0}} \\ &\equiv [\varepsilon^{\gamma^{-k+(p-1)}}, \varepsilon]^{c_0} [\varepsilon^{\gamma^{-k+(p-1)}}, \varepsilon^{c_1 \gamma} \cdots \varepsilon^{\gamma^p}]^{\varepsilon^{c_0}} \quad \text{mod } [R, F], \end{aligned}$$

since $-(p-1)/2 \leq k - (p-1) < k$. Hence $[\varepsilon^{\gamma^{-k+(p-1)}}, \varepsilon^{c_1 \gamma} \cdots \varepsilon^{\gamma^p}] \in R$ and so that, in the same way, we obtain

$$\begin{aligned} 1 &\equiv [\varepsilon^{\gamma^{-k+(p-1)}}, \varepsilon]^{c_0} [\varepsilon^{\gamma^{-k+(p-1)}}, \varepsilon^{c_1 \gamma} \cdots \varepsilon^{\gamma^p}] \\ &= [\varepsilon^{\gamma^{-k+(p-1)}}, \varepsilon]^{c_0} [\varepsilon^{\gamma^{-k+(p-2)}}, \varepsilon^{c_1} \cdots \varepsilon^{\gamma^{p-1}}]^{\gamma} \\ &\quad \dots \end{aligned}$$

$$\begin{aligned}
&\equiv [\varepsilon^{\gamma^{-k+(p-1)}}, \varepsilon]^{c_0} [\varepsilon^{\gamma^{-k+(p-2)}}, \varepsilon]^{c_1 \gamma} \cdots [\varepsilon^{\gamma^{-k}}, \varepsilon]^{c_{p-1} \gamma^{p-1}} [\varepsilon^{\gamma^{-(k+1)}}, \varepsilon]^{\gamma^p} \\
&\equiv [\varepsilon^{\gamma^{-k+(p-1)}}, \varepsilon]^{c_0} [\varepsilon^{\gamma^{-k+(p-2)}}, \varepsilon]^{c_1} \cdots [\varepsilon^{\gamma^{-k}}, \varepsilon]^{c_{p-1}} [\varepsilon^{\gamma^{-(k+1)}}, \varepsilon]^{\gamma^p} \pmod{[R, F]}.
\end{aligned}$$

Therefore we obtain $[\varepsilon^{\gamma^{-(k+1)}}, \varepsilon]^{\gamma^p} \in R$ and so that $[\varepsilon^{\gamma^{-(k+1)}}, \varepsilon]^{\gamma^p} \equiv [\varepsilon^{\gamma^{-(k+1)}}, \varepsilon] \pmod{[R, F]}$. This implies that the claim holds. The general case where any $z_1, z_2 \in \mathbb{Z}_p$ follows from this, since, taking the limit later if necessary, we may assume that $1 \leq z_1, z_2 \in \mathbb{Z}$.

(ii) We have only to prove the case where $z_1 = z_2 = 1$, since the general case follows from this immediately. For a polynomial

$$\begin{aligned}
f(\gamma - 1) &= a_k \gamma^k + \cdots + a_1 \gamma + a_0 \\
&= b_k (\gamma - 1)^k + \cdots + b_1 (\gamma - 1) + b_0 \quad (a_i, b_i \in \mathbb{Z}_p),
\end{aligned}$$

we obtain that

$$a_i = \sum_{j=0}^k \binom{j}{i} (-1)^{j-i} b_j,$$

where we define $\binom{j}{i} = 0$ if $j < i$. And, in the same way as in the proof of (i), we obtain that

$$\begin{aligned}
[\varepsilon^{\gamma^i}, \varepsilon^{f(\gamma-1)}] &= [\varepsilon^{\gamma^i}, \varepsilon^{a_k \gamma^k + \cdots + a_1 \gamma + a_0}] \\
&\equiv [\varepsilon^{\gamma^i}, \varepsilon^{\gamma^k}]^{a_k} \cdots [\varepsilon^{\gamma^i}, \varepsilon^{\gamma}]^{a_1} [\varepsilon^{\gamma^i}, \varepsilon]^{a_0} \pmod{[R, F]},
\end{aligned}$$

since $[\varepsilon^{\gamma^i}, \varepsilon^{\gamma^j}] \in R$. Now, if $f(\gamma - 1) = P_K(\gamma - 1)$, then $b_p = 1$ and $b_{p-1} \equiv \cdots \equiv b_0 \equiv 0 \pmod{p}$, so that we obtain

$$a_i \equiv \begin{cases} -1 \pmod{p} & (\text{if } i = 0), \\ 1 \pmod{p} & (\text{if } i = p), \\ 0 \pmod{p} & (\text{otherwise}). \end{cases}$$

Therefore we have $1 \equiv [\varepsilon^{\gamma^i}, \varepsilon^{P_K(\gamma-1)}] \equiv [\varepsilon^{\gamma^i}, \varepsilon^{\gamma^p}] [\varepsilon^{\gamma^i}, \varepsilon]^{-1} \pmod{[R, F](R \cap [F, F])^p}$. \square

Lemma 3.7. *Let $x \in F$. Then, for any polynomial $f(T) \in \mathbb{Z}_p[T]$ and any non-negative integer k , we have*

$$[x, (\varepsilon^{f(\gamma-1)})^{\delta^k}] \equiv [x, \varepsilon^{f(\gamma-1)(Q(\gamma-1)+1)^k}] \pmod{[R, F]},$$

where the action of a product of polynomials $f(\gamma), g(\gamma)$ is defined as

$$x^{f(\gamma)g(\gamma)} := x^{a_k \gamma^k} \cdots x^{a_1 \gamma} x^{a_0} \quad \text{if } f(\gamma)g(\gamma) = a_k \gamma^k + \cdots + a_1 \gamma + a_0.$$

Proof. If $k = 0$, then the congruence holds. Suppose that the congruence holds for some k . Note that, by $[\delta, \gamma] \in R$ and Lemma 3.6 (i), the congruences $[x, (\varepsilon^{\gamma^i})^{\delta}] \equiv$

$[x, (\varepsilon^\delta)^{\gamma^i}]$ and $[x, \varepsilon^{\gamma^i} \varepsilon^{\gamma^j}] = [x, [\varepsilon^{\gamma^i}, \varepsilon^{\gamma^j}] \varepsilon^{\gamma^j} \varepsilon^{\gamma^i}] \equiv [x, \varepsilon^{\gamma^j} \varepsilon^{\gamma^i}] \pmod{[R, F]}$ hold for arbitrary $i, j \in \mathbb{Z}$. Hence we have

$$\begin{aligned} [x, (\varepsilon^{f(\gamma-1)})^{\delta^{k+1}}] &\equiv [x, ((\varepsilon^\delta)^{f(\gamma-1)})^{\delta^k}] \\ &\equiv [x, ((\varepsilon^{Q(\gamma-1)+1})^{f(\gamma-1)})^{\delta^k}] \quad (\text{by } [\delta, \varepsilon](\varepsilon^{Q(\gamma-1)})^{-1} \in R), \\ &\equiv [x, (\varepsilon^{f(\gamma-1)(Q(\gamma-1)+1)})^{\delta^k}] \\ &\equiv [x, \varepsilon^{f(\gamma-1)(Q(\gamma-1)+1)^{k+1}}] \pmod{[R, F]} \quad (\text{by the assumption}). \end{aligned}$$

Therefore the congruence holds for any k by induction. \square

Lemma 3.8. *For $n \geq 1$, the sequence of pro- p -groups $1 \rightarrow R \rightarrow F \xrightarrow{\phi} G_n \rightarrow 1$ is exact, where the map $\phi: F \rightarrow G_n$ is given by $\gamma \mapsto \gamma_n$, $\delta \mapsto \delta_n$, $\varepsilon \mapsto \varepsilon_n$.*

Proof. It is clear that $R \subset \text{Ker } \phi$ and ϕ is surjective, so that we have the surjective maps

$$F/[F, F]R = (F/R)^{\text{ab}} \twoheadrightarrow G_n^{\text{ab}}, \quad [F, F]R/R = [F/R, F/R] \twoheadrightarrow [G_n, G_n].$$

We prove that these two maps are isomorphisms. We know that $[F, F]$ is generated by $[\delta, \gamma]$, $[\gamma, \varepsilon] = \varepsilon^{\gamma-1}$, $[\delta, \varepsilon]$ and their conjugates. Hence, using $[\delta, \varepsilon] \equiv \varepsilon^{Q(\gamma-1)} \pmod{R}$ and Lemma 3.6 (i), we see that $[F, F]R/R$ is generated by $\varepsilon^{\gamma-1}$ and $\varepsilon^{Q(0)}$ mod R and their conjugates. But, by the congruences

$$(\varepsilon^{\gamma-1})^\varepsilon \equiv \varepsilon^{\gamma-1}, \quad (\varepsilon^{Q(0)})^\delta \equiv (\varepsilon^{Q(0)})^{Q(\gamma-1)+1}, \quad (\varepsilon^{\gamma-1})^\delta \equiv (\varepsilon^{\gamma-1})^{Q(\gamma-1)+1} \pmod{R}$$

and $\varepsilon^{\omega_n(\gamma-1)} \equiv 1 \pmod{R}$ which follows from $T \mid \omega_n(T)$, we obtain

$$\begin{aligned} [F, F]R/R &= \langle (\varepsilon^{\gamma-1})^{F(\gamma-1)}, (\varepsilon^{p^m})^{F(\gamma-1)} \mid F(T) \in \Lambda \rangle R/R \\ &= \langle \varepsilon^{F(\gamma-1)} \mid F(T) \in (T, p^m) \rangle R/R. \end{aligned}$$

Then the surjective map

$$[G_n, G_n] \simeq (T, p^m)/(P_K(T), \omega_n(T)) \twoheadrightarrow [F, F]R/R$$

is induced and hence $[F, F]R/R \simeq [G_n, G_n]$. Finally $F/[F, F]R$ is generated by the classes of γ , δ , ε which are annihilated by p^n , p , p^m , respectively. Therefore we have $\#(F/[F, F]R) \leq \#G_n^{\text{ab}}$ and so that $F/[F, F]R \simeq G_n^{\text{ab}}$. \square

Lemma 3.9.

$$R/[R, F] = \langle \gamma^{p^n}, \delta^p, [\delta, \gamma], [\delta, \varepsilon](\varepsilon^{Q(\gamma-1)})^{-1}, [\varepsilon, \varepsilon^\gamma], \dots, [\varepsilon, \varepsilon^{\gamma^{(p-1)/2}}] \rangle [R, F]/[R, F].$$

Proof. Throughout the proof, the notation \equiv is used for a congruence modulo the right hand side of the above equation. It is sufficient to show that $\varepsilon^{P_K(\gamma-1)} \equiv 1$. By Lemmas 3.6 and 3.7, we have

$$\begin{aligned} [\delta, \varepsilon]^{\delta^k} &= [\delta, \varepsilon^{\delta^k}] \equiv [\delta, \varepsilon^{(Q(\gamma-1)+1)^k}] \\ &\equiv (\varepsilon^\delta)^{(Q(\gamma-1)+1)^k} (\varepsilon^{-1})^{(Q(\gamma-1)+1)^k} \\ &\equiv (\varepsilon^{(Q(\gamma-1)+1)})^{(Q(\gamma-1)+1)^k} (\varepsilon^{-1})^{(Q(\gamma-1)+1)^k} \\ &\equiv \varepsilon^{Q(\gamma-1)(Q(\gamma-1)+1)^k}. \end{aligned}$$

Therefore $1 \equiv [\delta^p, \varepsilon] = [\delta, \varepsilon]^{\delta^{p-1}} \cdots [\delta, \varepsilon]^\delta [\delta, \varepsilon] \equiv \varepsilon^{Q(\gamma-1)N(\gamma-1)}$. Since $Q(T)N(T) = P_K(T)F(T)$ with some polynomial $F(T) \in \Lambda^\times$, we have $1 \equiv \varepsilon^{P_K(\gamma-1)F(\gamma-1)} \equiv (\varepsilon^{P_K(\gamma-1)})^{F(0)}$. Hence $\varepsilon^{P_K(\gamma-1)} \equiv 1$. \square

Recall that $D(T) \in \Lambda$ is defined in Lemma 3.4. The closed subgroups $F_p := \langle \gamma, \delta \rangle$, $F_l := \langle \gamma(\varepsilon^{\delta^{p-1}+\cdots+\delta+1})^{D(\gamma-1)}, \delta \rangle$ of F and their closed normal subgroups

$$\begin{aligned} R_p &:= \langle \gamma^{p^n}, \delta^p, [\delta, \gamma] \rangle_{F_p}, \\ R_l &:= \langle (\gamma(\varepsilon^{\delta^{p-1}+\cdots+1})^{D(\gamma-1)})^{p^n}, \delta^p, [\delta, \gamma(\varepsilon^{\delta^{p-1}+\cdots+1})^{D(\gamma-1)}] \rangle_{F_l} \end{aligned}$$

give minimal presentations $1 \rightarrow R_p \rightarrow F_p \rightarrow Z_p \rightarrow 1$ of Z_p and $1 \rightarrow R_l \rightarrow F_l \rightarrow Z_l \rightarrow 1$ of Z_l . The Hochschild–Serre exact sequence with respect to the minimal presentation of G_n induces the isomorphism $H_2(G_n, \mathbb{Z}_p) \cong R \cap [F, F]/[R, F]$. Therefore $H_2(G_n, \mathbb{Z}_p) \otimes_{\mathbb{Z}_p} \mathbb{F}_p \cong (R_p \cap [F_p, F_p])/([R_p, F_p](R_p \cap [F_p, F_p])^p)$. Hence, for completing the proof of Proposition 3.2, it is sufficient to show the map

$$\Phi: \frac{R_p \cap [F_p, F_p]}{[R_p, F_p](R_p \cap [F_p, F_p])^p} \times \frac{R_l \cap [F_l, F_l]}{[R_l, F_l](R_l \cap [F_l, F_l])^p} \rightarrow \frac{R \cap [F, F]}{[R, F](R \cap [F, F])^p}$$

is not surjective by Proposition 2.3.

Lemma 3.10. *The followings hold:*

- (i) $R \cap [F, F]/[R, F] = \langle [\delta, \gamma], [\varepsilon, \varepsilon^\gamma], \dots, [\varepsilon, \varepsilon^{\gamma^{(p-1)/2}}] \rangle [R, F]/[R, F]$,
- (ii) $R_p \cap [F_p, F_p]/[R_p, F_p] = \langle [\delta, \gamma] \rangle [R_p, F_p]/[R_p, F_p]$,
- (iii) $R_l \cap [F_l, F_l]/[R_l, F_l] = \langle [\delta, \gamma(\varepsilon^{\delta^{p-1}+\cdots+1})^{D(\gamma-1)}] \rangle [R_l, F_l]/[R_l, F_l]$.

Proof. We show only (i) because the remainder are shown in the same way. For any $x \in R \cap [F, F] \subset R$, there exist $z_1, \dots, z_{4+(p-1)/2} \in \mathbb{Z}_p$ such that

$$x \equiv (\gamma^{p^n})^{z_1} (\delta^p)^{z_2} [\delta, \gamma]^{z_3} ([\delta, \varepsilon](\varepsilon^{Q(\gamma-1)})^{-1})^{z_4} [\varepsilon, \varepsilon^\gamma]^{z_5} \cdots [\varepsilon, \varepsilon^{\gamma^{(p-1)/2}}]^{z_{4+(p-1)/2}} \pmod{[R, F]}$$

by Lemma 3.9. Hence we obtain $1 \equiv \gamma^{p^n z_1} \delta^{p z_2} \varepsilon^{-Q(0) z_4} \pmod{[F, F]}$, and so that $z_1 = z_2 = z_4 = 0$. This shows (i). \square

We now conclude our proof. Put $d := \varepsilon^{Q(\gamma-1)}$ for convenience. By Lemma 3.10, it is sufficient to show that $[\delta, \gamma]$ and $[\delta, (\varepsilon^{\delta^{p-1}+\dots+\delta+1})^{D(\gamma-1)}]$ do not generate $(R \cap [F, F]) / ([R, F](R \cap [F, F])^p)$. By induction, we have

$$\varepsilon^{\delta^k} \equiv ([\delta, \varepsilon]d^{-1})^k d^{\delta^{k-1}+\dots+\delta+1} \varepsilon \pmod{[R, F]} \quad (k \geq 1).$$

Indeed, by the assumption of the induction,

$$\begin{aligned} (\varepsilon^{\delta^{k-1}})^\delta &\equiv ([\delta, \varepsilon]d^{-1})^{k-1} d^{\delta^{k-1}+\dots+\delta} \varepsilon^\delta \\ &\equiv ([\delta, \varepsilon]d^{-1})^{k-1} d^{\delta^{k-1}+\dots+\delta} ([\delta, \varepsilon]d^{-1})d\varepsilon \\ &\equiv ([\delta, \varepsilon]d^{-1})^k d^{\delta^{k-1}+\dots+\delta+1} \varepsilon \pmod{[R, F]}. \end{aligned}$$

Using $([\delta, \varepsilon]d^{-1})^k \in R$ and this congruence, we obtain

$$\begin{aligned} &[\delta, \varepsilon^{\delta^{p-1}+\dots+\delta+1}] \\ &= \delta(\varepsilon^{\delta^{p-1}} \dots \varepsilon^\delta \varepsilon) \delta^{-1} \times (\varepsilon^{-1} \varepsilon^{-\delta} \varepsilon^{-\delta^2} \dots \varepsilon^{-\delta^{p-1}}) \\ &= \varepsilon^{\delta^p} \varepsilon^{\delta^{p-1}} \dots \varepsilon^{\delta^2} \varepsilon^\delta \times \varepsilon^{-1} \varepsilon^{-\delta} \varepsilon^{-\delta^2} \dots \varepsilon^{-\delta^{p-1}} \\ &\equiv \varepsilon(d^{\delta^{p-2}+\dots+1} \varepsilon) \dots (d^{\delta+1} \varepsilon)(d\varepsilon) \times \varepsilon^{-1}(d\varepsilon)^{-1}(d^{\delta+1} \varepsilon)^{-1} \dots (d^{\delta^{p-2}+\dots+1} \varepsilon)^{-1} \\ &= [\varepsilon, (d^{\delta^{p-2}+\dots+1} \varepsilon) \dots (d^{\delta+1} \varepsilon)d] \\ &\equiv [\varepsilon, d^{\delta^{p-2}}][\varepsilon, d^{\delta^{p-3}}]^2 \dots [\varepsilon, d^\delta]^{p-2}[\varepsilon, d]^{p-1} \pmod{[R, F]}, \end{aligned}$$

where the last congruence is obtained from $[\varepsilon, d^{\delta^k}] = [\varepsilon, (\varepsilon^{Q(\gamma-1)})^{\delta^k}] \in R$ by Lemmas 3.6 (i) and 3.7. Moreover, using

$$\sum_{k=0}^{p-2} (p-1-k)Q(T)(Q(T)+1)^k = N(T) - p$$

and again Lemma 3.7, we have

$$\begin{aligned} &[\delta, \varepsilon^{\delta^{p-1}+\dots+\delta+1}] \equiv \prod_{k=0}^{p-2} [\varepsilon, \varepsilon^{Q(\gamma-1)(Q(\gamma-1)+1)^k}]^{p-1-k} \\ &\equiv [\varepsilon, \varepsilon^{N(\gamma-1)}] \pmod{[R, F]}. \end{aligned}$$

Now, dividing $N(T)$ by the distinguished polynomial $P_K(T)$, we write

$$\begin{aligned} N(\gamma-1) &= a_{p-1}\gamma^{p-1} + \dots + a_0 + P_K(\gamma-1)f(\gamma-1) \\ &= b_{p-1}(\gamma-1)^{p-1} + \dots + b_0 + P_K(\gamma-1)f(\gamma-1) \quad (a_i, b_i \in \mathbb{Z}_p). \end{aligned}$$

Then $b_0 \equiv \cdots \equiv b_{p-2} \equiv 0 \pmod{p}$ since the residue degree of $N(T)$ is $p-1$ by (5). Therefore, in the same way as in the proof of Lemma 3.7, we get

$$[\varepsilon, \varepsilon^{N(\gamma-1)}] \equiv [\varepsilon, \varepsilon^{\gamma^{p-1}}]^{a_{p-1}} \cdots [\varepsilon, \varepsilon^\gamma]^{a_1} [\varepsilon, \varepsilon]^{a_0} \pmod{[R, F]}$$

and $a_i = \sum_{j=0}^{p-1} \binom{j}{i} (-1)^{j-i} b_j \equiv (-1)^i \binom{p-1}{i} b_{p-1} \pmod{p}$. Finally, for $1 \leq i \leq (p-1)/2$,

$$[\varepsilon, \varepsilon^{\gamma^i}]^{a_i} \equiv [\varepsilon^{\gamma^p}, \varepsilon^{\gamma^i}]^{a_i} \equiv [\varepsilon, \varepsilon^{\gamma^{p-i}}]^{-a_i} \pmod{[R, F](R \cap [F, F])^p}$$

by Lemma 3.6 (ii) and $a_{p-i} - a_i \equiv \binom{p}{i} (-1)^{i+1} b_{p-1} \equiv 0 \pmod{p}$. Therefore we obtain

$$\begin{aligned} [\delta, \varepsilon^{\delta^{p-1} + \cdots + \delta + 1}] &\equiv \prod_{i=1}^{p-1} [\varepsilon, \varepsilon^{\gamma^{p-i}}]^{a_{p-i}} = \prod_{i=1}^{(p-1)/2} [\varepsilon, \varepsilon^{\gamma^{p-i}}]^{a_{p-i}} [\varepsilon, \varepsilon^{\gamma^i}]^{a_i} \\ &\equiv 1 \pmod{[R, F](R \cap [F, F])^p}. \end{aligned}$$

By Lemma 3.5, this implies that Φ is not surjective, which completes the proof of Proposition 3.2.

EXAMPLE. Let $p = 3$, $k = \mathbb{Q}(\sqrt{-31})$ and K^+ an abelian p -extension of \mathbb{Q} with conductor $l = 43$. Then $A(k) \simeq \mathbb{Z}/3\mathbb{Z}$, $\lambda_k = 1$, $A(K) \simeq \mathbb{Z}/9\mathbb{Z}$ and $\lambda_K = 3$. They satisfy the condition of Proposition 3.2. Therefore $\tilde{X}(K_n)$ is not abelian for any $n \geq 1$.

4. Proof of Theorem 1.2

Since the strategy of the proof of Theorem 1.2 is similar to the proof of Theorem 1.1, we explain briefly. Let p, l be odd prime numbers such that $p \parallel l-1$ (later, we assume that $p = 3$), k an imaginary quadratic field with the property that $k \neq \mathbb{Q}(\sqrt{-3})$ if $p = 3$, and K^+ the unique abelian p -extension of \mathbb{Q} with conductor l . Put $K := kK^+$. Assume that p does not split in K , but l splits in k and $\dim_{\mathbb{F}_p} A(K) \otimes_{\mathbb{Z}} \mathbb{F}_p = 1$. We may assume that $\lambda_k = \lambda_k^- \leq 1$ similarly as in §3 by [14]. Then $\lambda_K = \lambda_K^- = p\lambda_k + p-1$, $X(K_\infty)$ is cyclic over Λ and $\#A(K) = p^{m+1}$. Here m is defined by $\#A(k) = p^m$ by Corollary 2.2. Let $\tilde{\mathfrak{p}}_n$ (resp. $\tilde{\mathfrak{l}}_n$) be a prime in $L(K_n)$ lying above p (resp. l). We define $J \in \text{Gal}(L(K_n)/K_n^+)$ as an element of order 2 in the decomposition subgroup of $\tilde{\mathfrak{p}}_n$ in $\text{Gal}(L(K_n)/K_n^+)$. Then a prime $\tilde{\mathfrak{l}}_n^J$ in $L(K_n)$ is a conjugate of $\tilde{\mathfrak{l}}_n$ and the principal ideal (l) in k splits as $(l) = \mathfrak{l}\mathfrak{l}^J$, where $\mathfrak{l} := \tilde{\mathfrak{l}}_n \cap k$. We use the notation as in §3; namely, $\Gamma = \langle \tilde{\gamma} \rangle$, Γ_n , $\Delta = \langle \tilde{\delta} \rangle$, G_n , γ_n , $\tilde{\gamma}_n$, δ_n , $\tilde{\delta}_n$, ε_n , $\tilde{\varepsilon}_n$.

Lemma 4.1. *The primes \mathfrak{l} and \mathfrak{l}^J do not split in $L(K)/K$.*

Proof. By the genus formula [9, Chapter 13 Lemma 4.1], the maximal abelian subextension in $L(K)/k$ has degree p^{m+1} over K . Therefore it coincides with $L(K)$

and so that $G_0 \simeq A(K) \oplus \Delta$. Let F be a free pro- p -group of rank 2 generated by the symbols δ, ε and $R := \langle \delta^p, \varepsilon^{p^{m+1}}, [\delta, \varepsilon] \rangle_F$. Then $G_0 \simeq F/R$, and so that $H_2(G_0, \mathbb{Z}_p) \simeq \langle [\delta, \varepsilon] \rangle [R, F]/[R, F]$. On the other hand, the decomposition group of $\tilde{\mathfrak{l}}_0$ (resp. $\tilde{\mathfrak{l}}_0^J$) in G_0 is $\langle \delta_0 \rangle \oplus \langle \varepsilon_0^v \rangle$ (resp. $\langle \delta_0 \varepsilon_0^u \rangle \oplus \langle \varepsilon_0^v \rangle$) since $\tilde{\mathfrak{l}}_0^J$ is ramified in K/k for some $u, v \in \mathbb{Z}_p$. Since $\tilde{L}(K) = L(K)$ by the cyclicity of $A(K)$, applying Proposition 2.3, we have $v \in \mathbb{Z}_p^\times$. This implies that the decomposition groups equal to G_0 . Hence \mathfrak{l} and \mathfrak{l}^J do not split in $L(K)/K$. Also, note that the p -adic order of u is equal to m , since the fixed field of $\langle \delta_0, \varepsilon_0^u \rangle$ is the maximal subextension $L(k)$ which is unramified at $\tilde{\mathfrak{l}}_0, \tilde{\mathfrak{l}}_0^J$. \square

We use the notation $Q(T), N(T)$ as in §3. Fix $n \geq 1$. Since the next lemma is shown in the way similar to Lemmas 3.3, we omit the proofs.

Lemma 4.2. *As Λ -modules, $[G_n, G_n] \simeq (T, p^{m+1})/(P_K(T), \omega_n(T))$. Moreover $G_n^{\text{ab}} = \langle \tilde{\gamma}_n \rangle \oplus \langle \tilde{\delta}_n \rangle \oplus \langle \tilde{\varepsilon}_n \rangle \simeq \mathbb{Z}/p^n \mathbb{Z} \oplus \mathbb{Z}/p \mathbb{Z} \oplus \mathbb{Z}/p^{m+1} \mathbb{Z}$.*

We define $A(T) \in \Lambda$ by $[\delta_n, \gamma_n] = \varepsilon_n^{A(T)}$. Note that $A(T)$ is defined uniquely up to the modulus $P_K(T)$.

Lemma 4.3. (i) *Let the subgroup Z_p of G_n be the decomposition group of $\tilde{\mathfrak{p}}_n$. Then there is an element $B(T) \in (p^m, T)$ defined uniquely up to the modulus $P_K(T)$ such that*

$$Z_p = \langle \gamma_n \rangle \oplus \langle \delta_n \varepsilon_n^{B(T)} \rangle, \quad P_K(T) \mid -A(T) + T(1 + Q(T))B(T).$$

Therefore the exact sequence $1 \rightarrow X(K_n) \rightarrow G_n \rightarrow \Gamma_n \times \Delta \rightarrow 1$ splits.

(ii) *Let $Z_{\mathfrak{l}}, Z_{\mathfrak{l}}^J$ be the decomposition groups of $\tilde{\mathfrak{l}}_n$ and $\tilde{\mathfrak{l}}_n^J$, respectively. Then, changing ε_n , if necessary, there is an element $J(T) \in (p^m, T)$ defined uniquely up to the modulus $P_K(T)$ such that*

$$\begin{aligned} Z_{\mathfrak{l}} &= \langle \gamma_n \varepsilon_n^{-1/(1+T)} \rangle \oplus \langle \delta_n \rangle, \quad P_K(T) \mid A(T) - Q(T), \\ Z_{\mathfrak{l}}^J &= \langle \gamma_n \varepsilon_n^{1/(1+T)} \rangle \oplus \langle \delta_n \varepsilon_n^{J(T)} \rangle, \quad P_K(T) \mid -A(T) - Q(T) + T(1 + Q(T))J(T) \end{aligned}$$

for any $n \geq m+1$ and $J(0) \equiv u \pmod{p^{m+1}}$. Here u is defined in the proof of Lemma 4.1.

Proof. The image of Z_p in G_n^{ab} is generated by $\tilde{\gamma}_n$ and $\tilde{\delta}_n \tilde{\varepsilon}_n^w$ for some $w \in p^m \mathbb{Z}_p$ (In fact, $w \not\equiv 0, w \not\equiv v \pmod{p^{m+1}}$, since the image $\langle \tilde{\delta}_0 \tilde{\varepsilon}_0^w \rangle$ under a projection of Z_p in G_0^{ab} coincide neither the inertia groups of $\tilde{\mathfrak{l}}_0$ nor of $\tilde{\mathfrak{l}}_0^J$). Since every primes lying above p split completely in $L(K_n)/K_n$, in the same way as in the proof of Lemma 3.4, there is some $B(T) \in (p^m, T)$ defined up to the modulus $P_K(T)$ such that $B(0) \equiv w \pmod{p^{m+1}}$ and

$$Z_p = \langle \gamma_n \rangle \oplus \langle \delta_n \varepsilon_n^{B(T)} \rangle \simeq \langle \tilde{\gamma}_n \rangle \oplus \langle \tilde{\delta}_n \tilde{\varepsilon}_n^w \rangle.$$

Hence, we obtain $P_K(T) \mid -A(T) + T(1 + Q(T))B(T)$ since

$$1 = \gamma_n \delta_n \varepsilon_n^{B(T)} \gamma_n^{-1} \varepsilon_n^{-B(T)} \delta_n^{-1} = \varepsilon_n^{-A(T) + T(1 + Q(T))B(T)}.$$

(ii) Put $n \geq m + 1$. Since \mathfrak{l} does not split in K_∞/K , \mathfrak{l} splits in $L(K_n)^{[G_n, G_n]}/K_n$ completely by Lemmas 4.1 and 4.2. There the image of Z_l in G_n^{ab} is generated by $\bar{\delta}_n$ and $\bar{\gamma}_n \bar{\varepsilon}_n^v$, where $v \in \mathbb{Z}_p^\times$ is defined in the proof of Lemma 4.1. Hence Z_l is generated by δ_n and $\gamma_n \varepsilon_n^{v+C(T)}$ for some $C(T) \in (p^{m+1}, T)$. Moreover, since $\langle \delta_n \rangle \triangleleft Z_l$ and $[G_n, G_n] \cap \langle \delta_n \rangle = 1$, we find

$$Z_l = \langle \gamma_n \varepsilon_n^{v+C(T)} \rangle \oplus \langle \delta_n \rangle, \quad P_K(T) \mid A(T) + Q(T)(1 + T)(v + C(T)).$$

The decomposition group of $\tilde{\mathfrak{l}}_n^J$ is given by $Z_{\mathfrak{l}}^J = \langle J(\gamma_n \varepsilon_n^{v+C(T)})J^{-1} \rangle \oplus \langle J\delta_n J \rangle$. We find $JxJ^{-1} + x = 0$ for any $x \in X(K_n)$ since $A(K_n^+) = 0$. Also we find $J\gamma_n J^{-1} = \gamma_n$ since the natural projection from the decomposition group of $\tilde{\mathfrak{p}}_n$ in $\text{Gal}(L(K_n)/K^+)$ to the abelian group $\text{Gal}(K_n/K^+)$ is an isomorphism. On the other hand, $\langle J\delta_n J \rangle$ is the inertia group of $\tilde{\mathfrak{l}}_n^J$, so that we may assume, changing u if necessary, that the image of a projection of $J\delta_n J$ in G_n^{ab} is $\bar{\delta}_n \bar{\varepsilon}_n^u$. Hence $J\delta_n J$ can be written as $\delta_n \varepsilon_n^{u+j(T)}$ with some element $j(T) \in (p^{m+1}, T)$. Therefore we have

$$Z_{\mathfrak{l}}^J = \langle \gamma_n \varepsilon_n^{-(v+C(T))} \rangle \oplus \langle \delta_n \varepsilon_n^{J(T)} \rangle,$$

$$P_K(T) \mid -A(T) + Q(T)(1 + T)(v + C(T)) + T(1 + Q(T))J(T),$$

where $J(T) := u + j(T)$. Since $v \in \mathbb{Z}_p^\times$, changing ε_n , if necessary, we may assume that $v + C(T) = -1/(1 + T)$, which completes the proof. \square

By Lemmas 4.3, we may assume that $A(T) = Q(T)$ and $J(T) \equiv 2B(T) \pmod{P_K(T)}$ since $T \nmid P_K(T)$. Now, we fix $Q(T)$ to simplify the proof. Since the residue degree of $Q(T)$ is $\lambda_K + 1 > \deg P_k(T)$ and $P_k(T) \mid Q(T)$, we obtain $p^{m+1} \mid Q(0)$. Therefore, changing the representation of $Q(T) \pmod{P_K(T)}$ for vanishing the constant term if necessary, we may assume that

$$T \mid Q(T), \quad \deg Q(T) \leq \lambda_K,$$

since $p^{m+1} \parallel P_K(0)$. Also, dividing by the distinguished polynomial $P_K(T)$, we may assume that $\deg J(T) = \deg B(T) \leq \lambda_K - 1$. Note that the differentials $Q'(T)$, $J'(T)$ modulo the ideal (p, T) of $Q(T)$, $J(T)$ are independent of the choices of $Q(T)$ and $J(T)$. By Lemma 4.3, there is an element $F(T) \in \Lambda$ such that

$$J(T)(1 + Q(T)) - 2 \frac{Q(T)}{T} = P_K(T)F(T).$$

Put $T = 0$, and on the other hand, differentiate at $T = 0$. Then we have

$$(6) \quad u \equiv 2Q'(0) \pmod{p}, \quad J'(0) \equiv -2Q'(0)^2 + Q''(0) \pmod{p}.$$

In the following, we suppose that $p = 3$ and $A(k) = 0$; in other words, suppose that the assumption in Theorem 1.2 holds. Then $m = 0$, $\lambda_K = 2$ and $u \in \mathbb{Z}_3^\times$.

Lemma 4.4. $\dim_{\mathbb{F}_3} H_2(G_n, \mathbb{Z}_3) \otimes_{\mathbb{Z}_3} \mathbb{F}_3 = 3$ for $n \geq 1$.

Proof. Since $G_n \simeq X(K_n) \rtimes (\Gamma_n \times \Delta)$ by Lemma 4.3, in the same way as in the proof of Lemma 3.5, we obtain this lemma. Note that $H_2(X(K_\infty), \mathbb{Z}_3) \simeq I_\Delta \wedge_{\mathbb{Z}_3} I_\Delta \simeq \mathbb{Z}_3$ since $p = 3$ and $X(K_\infty) \simeq I_\Delta$ by Proposition 2.1. \square

We write

$$Q(T) = T(q_1 T + q_1 + q_0) \quad (q_1, q_0 \in \mathbb{Z}_3).$$

Then $Q(\gamma - 1) = (\gamma - 1)(q_1 \gamma + q_0) = q_1 \gamma^2 + (q_0 - q_1)\gamma - q_0$. Note that $q_1 + q_0 \in \mathbb{Z}_3^\times$ since the residue degree of $Q(T)$ is equal to 1. Let $F := \langle \gamma, \delta, \varepsilon \rangle$ be a free pro- p -group of rank 3. Put

$$R := \langle \gamma^{3^n}, \delta^3, \varepsilon^{P_K(\gamma-1)}, [\delta, \gamma](\varepsilon^{Q(\gamma-1)})^{-1}, [\delta, \varepsilon](\varepsilon^{Q(\gamma-1)})^{-1}, [\varepsilon, \varepsilon^\gamma] \rangle_F$$

and $C := [\delta, \gamma](\varepsilon^{Q(\gamma-1)})^{-1}$, $D := [\delta, \varepsilon](\varepsilon^{Q(\gamma-1)})^{-1}$. Then, since $\lambda_K \leq 3$, we obtain the same result as in [14, Lemma 5.3 (ii)] which is stronger than Lemma 3.6:

$$(7) \quad [\varepsilon^{z_1 \gamma^i}, \varepsilon^{z_2 \gamma^j}] \equiv [\varepsilon, \varepsilon^\gamma]^{z_1 z_2 (j-i)} \pmod{(R \cap [F, F])^3 [R, F]}.$$

In the following, the notation \equiv is used for a congruence modulo $(R \cap [F, F])^3 [R, F]$.

Lemma 4.5. (i) For $n \geq 1$, the sequence of pro- p -groups $1 \rightarrow R \rightarrow F \xrightarrow{\phi} G_n \rightarrow 1$ is exact, where the map $\phi: F \rightarrow G_n$ is given by $\gamma \mapsto \gamma_n$, $\delta \mapsto \delta_n$, $\varepsilon \mapsto \varepsilon_n$.
(ii) $R \cap [F, F]/[R, F] = \langle [\varepsilon, \varepsilon^\gamma], C, D \rangle [R, F]/[R, F]$.

Proof. Using (7), we find $C, D \in R \cap [F, F]$ since $T \mid Q(T)$. Then, in the same way as in the proofs of Lemmas 3.8 and 3.10, we obtain the lemma. \square

Lemma 4.6. For any polynomial $f(\gamma - 1)$ with degree 1, put

$$W_f := \varepsilon^{(Q(\gamma-1)+1)f(\gamma-1)}, \quad E := \varepsilon^{q_1 \gamma + q_0},$$

where the action of a factorized polynomial is defined in the same way as Lemma 3.7. Then

$$[\varepsilon^{f(\gamma-1)}, \gamma]^\delta \equiv ((W_f E^{-1})^{\gamma-1})^{-1} (\varepsilon^{Q(\gamma-1)})^{-1} [\varepsilon, \varepsilon^\gamma]^{q_1^2 + q_1 q_0 + q_0^2}.$$

Proof. Describe $f(\gamma - 1)$ as $f(\gamma - 1) = f_1\gamma + f_0$ ($f_1, f_0 \in \mathbb{Z}_3$). Since $C \in R$ and $[(\varepsilon^{f(\gamma-1)})^\delta, C] \in [R, F]$,

$$\begin{aligned} [\varepsilon^{f(\gamma-1)}, \gamma]^\delta &= [(\varepsilon^{f(\gamma-1)})^\delta, \gamma^\delta] \\ &= [(\varepsilon^{f(\gamma-1)})^\delta, C\varepsilon^{Q(\gamma-1)}\gamma] \\ &= [(\varepsilon^{f(\gamma-1)})^\delta, C]C[(\varepsilon^{f(\gamma-1)})^\delta, \varepsilon^{Q(\gamma-1)}\gamma]C^{-1} \\ &\equiv [(\varepsilon^{f(\gamma-1)})^\delta, \varepsilon^{Q(\gamma-1)}\gamma] = [((\varepsilon^\gamma)^\delta)^{f_1}(\varepsilon^{f_0})^\delta, \varepsilon^{Q(\gamma-1)}\gamma]. \end{aligned}$$

We find

$$\begin{aligned} (\varepsilon^{f_0})^\delta &= (\varepsilon^\delta)^{f_0} = (D\varepsilon^{Q(\gamma-1)+1})^{f_0} \\ &\equiv D^{f_0}(\varepsilon^{Q(\gamma-1)+1})^{f_0}, \\ (\varepsilon^{f_1\gamma})^\delta &= ((\varepsilon^\gamma)^\delta)^{f_1} = ([\delta, \gamma](\varepsilon^\delta)^\gamma[\delta, \gamma]^{-1})^{f_1} \\ &\equiv (C\varepsilon^{Q(\gamma-1)}(D\varepsilon^{Q(\gamma-1)+1})^\gamma(\varepsilon^{Q(\gamma-1)})^{-1}C^{-1})^{f_1} \\ &\equiv r(\varepsilon^{Q(\gamma-1)+1})^{f_1\gamma} \end{aligned}$$

for some $r \in R$ by (7). Therefore we obtain

$$\begin{aligned} [\varepsilon^{f(\gamma-1)}, \gamma]^\delta &\equiv [(\varepsilon^{Q(\gamma-1)+1})^{f_1\gamma} \cdot (\varepsilon^{Q(\gamma-1)+1})^{f_0}, \varepsilon^{Q(\gamma-1)}\gamma] \\ &\equiv [r'\varepsilon^{(Q(\gamma-1)+1)(f_1\gamma+f_0)}, \varepsilon^{Q(\gamma-1)}\gamma] \quad (\text{for some } r' \in R \text{ by (7)}) \\ &\equiv [W_f, \varepsilon^{Q(\gamma-1)}\gamma] \\ &= W_f\varepsilon^{Q(\gamma-1)}W_f^{-\gamma}(\varepsilon^{Q(\gamma-1)})^{-1}. \end{aligned}$$

On the other hand, $E^{\gamma-1} \equiv \varepsilon^{Q(\gamma-1)}[\varepsilon, \varepsilon^\gamma]^{q_1q_0}$ by (7). Therefore, again by (7),

$$\begin{aligned} \varepsilon^{Q(\gamma-1)} &\equiv [E^\gamma, E^{-1}]E^{-1}E^\gamma[\varepsilon, \varepsilon^\gamma]^{-q_1q_0} \\ &\equiv E^{-1}E^\gamma[\varepsilon, \varepsilon^\gamma]^{q_1^2+q_1q_0+q_0^2}. \end{aligned}$$

Combining this with the above, we obtain the lemma. \square

Lemma 4.7. (i) $[\delta\varepsilon^{B(\gamma-1)}, \gamma] \equiv C[\varepsilon, \varepsilon^\gamma]^{q_1^2+q_1q_0+q_0^2}$,
(ii) $[\delta, \gamma\varepsilon^{-\gamma-1}] \equiv CD^{-1}$,
(iii) $[\delta\varepsilon^{J(\gamma-1)}, \gamma\varepsilon^{\gamma-1}] \equiv CD[\varepsilon, \varepsilon^\gamma]^{q_1^2+q_0^2-q_1-q_0-J'(0)}$.

Proof. By Lemma 4.5 (i), the relation $P_K(T) \mid -Q(T)/T + (1+T)B(T)$ in Lemma 4.3 implies that $W_B E^{-1} \in R$. Hence, by Lemma 4.6, we get

$$\begin{aligned} [\delta\varepsilon^{B(\gamma-1)}, \gamma] &= [\varepsilon^{B(\gamma-1)}, \gamma]^\delta[\delta, \gamma] \\ &\equiv ((W_B E^{-1})^{\gamma-1})^{-1}(\varepsilon^{Q(\gamma-1)})^{-1}[\varepsilon, \varepsilon^\gamma]^{q_1^2+q_1q_0+q_0^2}[\delta, \gamma] \\ &\equiv C[\varepsilon, \varepsilon^\gamma]^{q_1^2+q_1q_0+q_0^2}. \end{aligned}$$

In the same way,

$$\begin{aligned}
[\delta, \gamma \varepsilon^{-\gamma^{-1}}] &= [\delta, \varepsilon^{-1}\gamma] = [\delta, \varepsilon^{-1}][\delta, \gamma]^{\varepsilon^{-1}} = \varepsilon^{-1}[\delta, \varepsilon]^{-1}\varepsilon[\delta, \gamma]^{\varepsilon^{-1}} \\
&\equiv \varepsilon^{-1}(\varepsilon^{Q(\gamma-1)})^{-1}D^{-1}\varepsilon\varepsilon^{-1}C\varepsilon^{Q(\gamma-1)}\varepsilon \\
&\equiv CD^{-1}.
\end{aligned}$$

Finally, we compute $[\delta\varepsilon^{J(\gamma-1)}, \gamma\varepsilon^{\gamma^{-1}}] = [\delta\varepsilon^{J(\gamma-1)}, \varepsilon][\delta\varepsilon^{J(\gamma-1)}, \gamma]^{\varepsilon}$. Note that the relation $P_K(T) \mid J(T)(1 + Q(T)) - 2Q(T)/T$ implies that $W_J E^{-2} \in R$. Since $J(T) = J'(0)T + J(0)$, it turns out that

$$\begin{aligned}
[\delta\varepsilon^{J(\gamma-1)}, \varepsilon] &= [\varepsilon^{J(\gamma-1)}, \varepsilon]^{\delta}[\delta, \varepsilon] \equiv [\varepsilon, \varepsilon^{\gamma}]^{-J'(0)}D\varepsilon^{Q(\gamma-1)}, \\
[\delta\varepsilon^{J(\gamma-1)}, \gamma] &= [\varepsilon^{J(\gamma-1)}, \gamma]^{\delta}[\delta, \gamma] \\
&\equiv ((W_J E^{-1})^{\gamma-1})^{-1}(\varepsilon^{Q(\gamma-1)})^{-1}[\varepsilon, \varepsilon^{\gamma}]^{q_1^2 + q_1 q_0 + q_0^2}C\varepsilon^{Q(\gamma-1)} \\
&\equiv ((W_J E^{-1})^{\gamma-1})^{-1}C[\varepsilon, \varepsilon^{\gamma}]^{q_1^2 + q_1 q_0 + q_0^2} \\
&\equiv (\varepsilon^{Q(\gamma-1)})^{-1}C[\varepsilon, \varepsilon^{\gamma}]^{q_1^2 + q_0^2}.
\end{aligned}$$

In fact, the last congruence follows from the congruences

$$(W_J E^{-1})^{\gamma-1} = [\gamma, W_J E^{-2}E] \equiv E^{\gamma-1} \equiv \varepsilon^{Q(\gamma-1)}[\varepsilon, \varepsilon^{\gamma}]^{q_1 q_0}.$$

Therefore

$$\begin{aligned}
[\delta\varepsilon^{J(\gamma-1)}, \gamma\varepsilon^{\gamma^{-1}}] &\equiv [\varepsilon, \varepsilon^{\gamma}]^{-J'(0)}D\varepsilon^{Q(\gamma-1)} \cdot \varepsilon(\varepsilon^{Q(\gamma-1)})^{-1}C[\varepsilon, \varepsilon^{\gamma}]^{q_1^2 + q_0^2}\varepsilon^{-1} \\
&\equiv [\varepsilon, \varepsilon^{\gamma}]^{-J'(0)}D[\varepsilon, (\varepsilon^{Q(\gamma-1)})^{-1}]C[\varepsilon, \varepsilon^{\gamma}]^{q_1^2 + q_0^2} \\
&\equiv CD[\varepsilon, \varepsilon^{\gamma}]^{q_1^2 + q_0^2 - q_1 - q_0 - J'(0)}.
\end{aligned}$$

This completes the proof. \square

We apply Proposition 2.3 to the extension $L(K_n)/k$. By Lemmas 4.3, 4.5 and 4.7, we obtain $\tilde{L}(K_n) = L(K_n)$ if and only if the three elements $C[\varepsilon, \varepsilon^{\gamma}]^{q_1^2 + q_1 q_0 + q_0^2}$, CD^{-1} , $CD^{q_1^2 + q_0^2 - q_1 - q_0 - J'(0)}$ generate the group $\langle [\varepsilon, \varepsilon^{\gamma}], C, D \rangle [R, F]/(R \cap [F, F])^3[R, F]$. Since $J'(0) \equiv -2(q_1 + q_0)^2 + 2q_1 \equiv 1 - q_1 \pmod{3}$ by (6), we see that this is equivalent to $(q_1 + q_0)^2 + q_1 + q_0 + J'(0) \equiv q_0 - 1 \not\equiv 0 \pmod{3}$. To complete the proof of Theorem 1.2, we show the following:

Lemma 4.8. *Put $P_K(T) = T^2 + c_1 T + c_0$ ($c_1, c_0 \in 3\mathbb{Z}_3$), then $c_0 \equiv 3 \pmod{3^2}$ and*

$$q_0 \not\equiv 1 \pmod{3} \iff c_1 \not\equiv 3 \pmod{3^2}.$$

Therefore $\tilde{L}(K_n) = L(K_n)$ if and only if $P_K(-1) \equiv 4 - c_1 \not\equiv 1 \pmod{3^2}$.

Proof. Dividing by $P_K(T) = T^2 + c_1T + c_0$, $Q(T)$ has the form $Q(T) = q_1 P_K(T) + rT - c_0 q_1$, where $r := q_1 + q_0 - c_1 q_1 \in \mathbb{Z}_3^\times$. Then, by Proposition 2.1, $P_K(T)$ has the form

$$\begin{aligned} P_K(T) &= (\Lambda\text{-unit})(Q(T)^2 + 3Q(T) + 3) \\ &\equiv (\Lambda\text{-unit})((rT - c_0 q_1)^2 + 3(rT - c_0 q_1) + 3) \pmod{P_K(T)}. \end{aligned}$$

Hence $P_K(T) \mid (rT - c_0 q_1)^2 + 3(rT - c_0 q_1) + 3$. Therefore we get

$$\begin{aligned} P_K(T) &= (\Lambda\text{-unit})((rT - c_0 q_1)^2 + 3(rT - c_0 q_1) + 3) \\ &= T^2 + r^{-1}(3 - 2c_0 q_1)T + r^{-2}(c_0^2 q_1^2 - 3c_0 q_1 + 3), \end{aligned}$$

where note that the leading coefficient of the last polynomial is 1 since the characteristic polynomial $P_K(T)$ is distinguished. Therefore we obtain $c_1 r = 3 - 2c_0 q_1$, $c_0 r^2 = c_0^2 q_1^2 - 3c_0 q_1 + 3$. Put $c_i = 3\bar{c}_i$ ($i = 1, 0$), then

$$\bar{c}_0 \equiv 1 \pmod{3}, \quad \bar{c}_1 \equiv r^{-1}(1 + q_1) \equiv (q_1 + q_0)(1 + q_1) \pmod{3},$$

since $r^2 \equiv 1 \pmod{3}$. We can easily check that the lemma follows from these congruences and $q_1 + q_0 \not\equiv 0 \pmod{3}$. \square

Finally, we give some examples:

Proposition 4.9. $P_K(-1) \not\equiv 1 \pmod{3^2}$ if and only if $A(K_1)$ has no element with order 3^3 i.e., $A(K_1) \simeq (\mathbb{Z}/3^2\mathbb{Z})^{\oplus 2}$.

Proof. We know

$$\begin{aligned} A(K_1) &\simeq \Lambda/(P_K(T), T^3 + 3T^2 + 3T) \\ &\simeq \Lambda/(P_K(T), (3 - c_0 - 3c_1 + c_1^2)T - c_0(3 - c_1)) \end{aligned}$$

by (1). Then we can easily check $3^2 \mid (3 - c_0 - 3c_1 + c_1^2)T - c_0(3 - c_1)$, since $c_0 \equiv 3 \pmod{3^2}$. If $P_K(-1) \not\equiv 1 \pmod{3^2}$ i.e., $c_1 \not\equiv 3 \pmod{3^2}$, then

$$A(K_1) \simeq \Lambda/(P_K(T), 3^2) \simeq (\mathbb{Z}/3^2\mathbb{Z})^{\oplus 2}.$$

On the other hand, if $c_1 \equiv 3 \pmod{3^2}$, then

$$A(K_1) \simeq \Lambda/(P_K(T), 3^2(s_1 T + 3s_0))$$

for some $s_1, s_0 \in \mathbb{Z}_3$. Consider the exact sequence

$$0 \rightarrow \frac{(P_K(T), 3^2)}{(P_K(T), 3^2(s_1 T + 3s_0))} \rightarrow \frac{\Lambda}{(P_K(T), 3^2(s_1 T + 3s_0))} \rightarrow \frac{\Lambda}{(P_K(T), 3^2)} \rightarrow 0.$$

Assume that $A(K_1)$ has no element with order 3^3 . Then $3^2 \in (P_K(T), 3^2(s_1T + 3s_0))$, and so that there exist some $f(T), g(T) \in \Lambda$ such that $3^2 = P_K(T)f(T) + 3^2(s_1T + 3s_0)g(T)$. This induces $3^2 \mid f(T)$. However, then $3^2 \equiv P_K(0)f(0) \equiv 0 \pmod{3^3}$. This is a contradiction. Since $\dim_{\mathbb{F}_3} A(K_1) \otimes_{\mathbb{Z}} \mathbb{F}_3 = 2$, we complete the proof. \square

EXAMPLE. Let $k = \mathbb{Q}(\sqrt{-m})$ and K^+ an abelian 3-extension of conductor $l = 43$. If $m = 7, 30, 37$, then $A(K_1) \simeq (\mathbb{Z}/3^2\mathbb{Z})^{\oplus 2}$ and so that $\tilde{L}(K_n) = L(K_n)$ for any $n \geq 0$. On the other hand, if $m = 46$, then $A(K_1) \simeq \mathbb{Z}/3^2\mathbb{Z} \oplus \mathbb{Z}/3^3\mathbb{Z}$ and so that $\tilde{L}(K_n) \neq L(K_n)$ for any $n \geq 1$.

REMARKS. If we discard the assumption $p = 3$ in Theorem 1.2, the author cannot compute $\dim_{\mathbb{F}_p} H_2(G_n, \mathbb{Z}_p) \otimes_{\mathbb{Z}_p} \mathbb{F}_p$ as in the same way similar to Lemma 4.4 since it seems to depend on the form of $Q(T)$.

Let p, l be odd prime numbers such that $p \mid l - 1$. Take k, K^+ , and K as in the beginning of this section. Assume that p does not split in K . If we assume, on the contrary to the assumption in Theorem 1.1, that l splits in k , we do not succeed in classifying the field K such that $\tilde{L}(K_\infty) = L(K_\infty)$. Applying [15, Theorem 1.1], we have the following:

$$\tilde{L}(K_\infty) = L(K_\infty) \Rightarrow \begin{cases} (a) & p \parallel l - 1, \lambda_k = 1, \dim_{\mathbb{F}_p} A(K) = 1 \text{ or} \\ (b) & p \parallel l - 1, \lambda_k = 0. \end{cases}$$

Theorem 1.2 is a special case of (b). In the case (a), we can prove the fact that $\dim_{\mathbb{F}_p} H_2(G_n, \mathbb{Z}_p) \otimes_{\mathbb{Z}_p} \mathbb{F}_p = 3$. However, the author cannot find any relations like (7).

References

- [1] L. Evans: *The Schur multiplier of a semi-direct product*, Illinois J. Math. **16** (1972), 166–181.
- [2] B. Ferrero and L.C. Washington: *The Iwasawa invariant μ_p vanishes for abelian number fields*, Ann. of Math. (2) **109** (1979), 377–395.
- [3] A. Fröhlich: Central Extensions, Galois Groups, and Ideal Class Groups of Number Fields, Contemporary Mathematics **24**, Amer. Math. Soc., Providence, RI, 1983.
- [4] T. Fukuda: *Remarks on \mathbb{Z}_p -extensions of number fields*, Proc. Japan Acad. Ser. A Math. Sci. **70** (1994), 264–266.
- [5] R. Gold and M. Madan: *Galois representations of Iwasawa modules*, Acta Arith. **46** (1986), 243–255.
- [6] K. Iwasawa: *A note on class numbers of algebraic number fields*, Abh. Math. Sem. Univ. Hamburg **20** (1956), 257–258.
- [7] K. Iwasawa: *On the μ -invariants of \mathbb{Z}_1 -extensions*; in Number Theory, Algebraic Geometry and Commutative Algebra, in Honor of Yasuo Akizuki, Kinokuniya, Tokyo, 1–11, 1973.
- [8] Y. Kida: *l -extensions of CM-fields and cyclotomic invariants*, J. Number Theory **12** (1980), 519–528.
- [9] S. Lang: Cyclotomic Fields I and II, combined second edition, Graduate Texts in Mathematics **121**, Springer, New York, 1990.

- [10] B. Mazur and A. Wiles: *Class fields of abelian extensions of Q* , Invent. Math. **76** (1984), 179–330.
- [11] Y. Mizusawa: *On the maximal unramified pro-2-extension of \mathbb{Z}_2 -extensions of certain real quadratic fields*, J. Number Theory **105** (2004), 203–211.
- [12] Y. Mizusawa: *On the maximal unramified pro-2-extension of \mathbb{Z}_2 -extensions of certain real quadratic fields II*, Acta Arith. **119** (2005), 93–107.
- [13] Y. Mizusawa and M. Ozaki: *Abelian 2-class field towers over the cyclotomic \mathbb{Z}_2 -extensions of imaginary quadratic fields*, Math. Ann. **347** (2010), 437–453.
- [14] K. Okano: *Abelian p -class field towers over the cyclotomic \mathbb{Z}_p -extensions of imaginary quadratic fields*, Acta Arith. **125** (2006), 363–381.
- [15] K. Okano: *The commutativity of the Galois groups of the maximal unramified pro- p -extensions over the cyclotomic \mathbb{Z}_p -extensions*, to appear in J. Number Theory.
- [16] M. Ozaki: *Non-abelian Iwasawa theory of \mathbb{Z}_p -extensions*, J. Reine Angew. Math. **602** (2007), 59–94.
- [17] M. Ozaki: *Construction of maximal unramified p -extensions with prescribed Galois groups*, preprint.
- [18] R.T. Sharifi: *On Galois groups of unramified pro- p extensions*, Math. Ann. **342** (2008), 297–308.
- [19] L.C. Washington: *Introduction to Cyclotomic Fields*, second edition, Graduate Texts in Mathematics **83**, Springer, New York, 1997.

Department of Mathematics
 Faculty of Science and Technology
 Tokyo University of Science
 2641 Yamazaki, Noda, Chiba, 278-8510
 Japan
 e-mail: okano_keiji@ma.noda.tus.ac.jp