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Abstract
Let p be an odd prime number andK

1

the cyclotomicZp-extension of a Galois
p-extensionK over an imaginary quadratic field. We consider the Galois group
QX(K

1

) of the maximal unramified pro-p-extension ofK
1

. In this paper, under cer-
tain assumptions, we give certainK such that QX(K

1

) is abelian. Also, we give an
example such that a special value of the characteristic polynomial of the Iwasawa
module of K

1

determines whetherQX(K
1

) is abelian or not.

1. Introduction

Let p be an odd prime number,F a finite extension over the fieldQ of rational
numbers andF

1

the cyclotomicZp-extension ofF . In other words,F
1

is defined
by the following. The extension overF which is obtained by adjoining toF all roots
of unity of p-power order has the unique subfield whose Galois group overF is iso-
morphic to the additive group of the ringZp of p-adic integers. We defineF

1

by the

subfield. Denote byQX(F) (resp. QX(F
1

)) the Galois group of the maximal unramified
pro-p-extension QL(F) of F (resp. QL(F

1

) of F
1

). The extensionsQL(F)=F , QL(F
1

)=F
1

are called thep-class field towers, and their Galois groupsQX(F), QX(F
1

) are very in-
teresting objects in number theory. ThoughQX(F) can be infinite, we have quite a few
known criterions for assuring thatQX(F) is finite: in addition, we do not have efficient
methods for describing the structure ofQX(F). However, we mention that Ozaki [17]
recently showed that there existsF such that QX(F) is isomorphic to any givenfinite
p-group.

We apply Iwasawa theory to the study ofp-class field towers, such as in Mizusawa
[11], [12] and Ozaki [16]. We consider toclassify the finite algebraic number fields
F such that eachQX(F

1

) is abelian; in other words, the maximal unramified pro-p-
extension of eachF

1

remains abelian extension. It is equivalent thatQX(F
1

) is abelian
and that all sufficiently large subfields inF

1

=F have thep-class field towers whose
Galois groups are abelian. Also ifQX(F) is abelian for a finite algebraic number field
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F , then QX(F) is finite and isomorphic to thep-Sylow subgroup of the ideal class group
of F .

In [14], the author determined the all imaginary quadratic fields F such that QX(F
1

)
is abelian for an odd prime numberp: for p D 2, the same result was shown by
Mizusawa–Ozaki [13]. After [13] and [14], one of further problems for the above clas-
sifying is to treat the case whereF is an abelian number field. However, this problem
seems very difficult. Since, for instance, there is Greenberg’s conjecture which says
that the maximal unramified abelian pro-p-extension ofF

1

is finite if F is totally real.
In [15], the author studied necessary conditions forQX(F

1

) to be abelian. And also the
case where eachF is totally imaginary abelianp-extensions over imaginary quadratic
fields with certain assumptions is treated. On the other hand, Sharifi [18] computed the
structure of QX(F

1

) in the case whereF is the cyclotomicp-th extension.
In this paper, we treat totally imaginary abelianp-extensions over imaginary quad-

ratic fields with certain assumptions which are different from [15]. Simultaneously, we
consider the following question.

We note the fact in [13] that, ifp D 2, there is a case where the special value
modulo 22 at �1 of the characteristic polynomial of Iwasawa module contributes to
the condition for QX(F

1

) to be abelian. This fact is interesting since the characteristic
polynomials of Iwasawa modules are connected to thep-adic L-function by Mazur–
Wiles [10]. So that the next question arises. Is there a similar case ifp is odd?

We use the notationA(F) for the p-Sylow subgroup of the ideal class group of
F . Then we obtain followings:

Theorem 1.1. Let p, l be odd prime numbers such that pj l � 1, k an imagin-
ary quadratic field with the property that k¤ Q(

p

�3) if p D 3, and KC an abelian
p-extension ofQ with conductor l. Put KWD kKC and let K

1

be the cyclotomic
Zp-extension of K . Assume that p does not split in K and l does notsplit in k.

Then the Galois groupQX(K
1

) of the maximal unramified pro-p-extension over K
1

is abelian if and only if A(k) D 0 moreover we have thenQX(K
1

) D 1.

Theorem 1.2. Let l be an odd prime number such that3 k l � 1, k an imagin-
ary quadratic field with the property that k¤ Q(

p

�3), and KC the unique abelian
3-extension ofQ with conductor l. Put KWD kKC and let PK (T) 2 Z3[T ] be the char-
acteristic polynomial of the Iwasawa module of the cyclotomic Z3-extension K

1

=K.
Suppose that3 does not split in K but l splits in k. Moreover, assume that A(k) D 0
and dim

F3 A(K )

Z

F3 D 1. Then QX(K
1

) is abelian if and only if PK (�1)¥ 1 mod 32.

2. Preliminaries

From now on, for any CM-fieldF , we use the notationFC and Fn for the max-
imal totally real subfield ofF and the unique subfield with degreepn of the cyclo-
tomic Zp-extensionF

1

over F , respectively. Denote the maximal unramified abelian
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p-extension ofF by L(F) and its Galois groupQX(F)ab by X(F). Similarly, denote
the maximal unramified abelian pro-p-extension ofF

1

by L(F
1

) and its Galois group
by X(F

1

). For any moduleA on which Gal(F=FC) acts, put AC WD AGal(F=FC),
A� WD A=AC.

Fix a topological generatorN
 of Gal(F
1

=F). And we write its restriction
on Gal(Fn=F) as the same notation for eachn � 0. Choose an extension
 2
Gal(L(F

1

)=F) of N
 . Then Gal(Fn=F) acts onX(Fn) as the inner automorphisms de-
fined by x N
 D 
 x
 �1 for any x 2 X(Fn). Note that this action is independent of the
choice of an extension
 and commutes with the Artin mapsX(Fn)' A(Fn). We iden-
tify X(Fn) with A(Fn) by these isomorphisms. SinceX(F

1

)' lim
 �

X(Fn), the complete

group ring lim
 �

Zp[Gal(Fn=F)] acts onX(F
1

) continuously, where each inverse limit is

taken over Galois restrictions. Hence the formal power series ring3 WD Zp[[T ]] acts
on X(F

1

) via the non-canonical isomorphism3 ' lim
 �

Zp[Gal(Fn=F)] which is ob-

tained by sending 1CT to the fixed topological generatorN
 of Gal(F
1

=F). Therefore
X(F

1

) is a 3-module, so that we write the action of3 additionally; x N
 D (1C T)x.
The module3 is a noetherian local ring with the maximal ideal (p, T). We de-

fine a distinguished polynomialP(T) 2 Zp[T ] by monic polynomial such thatP(T) �
TdegP(T) mod p. Then, by thep-adic Weierstraß preparation theorem [19, Theorem 7.3],
any non-zero elementf (T) 2 3 can be uniquely written

f (T) D p�P(T)U (T)

with an integer�� 0, a distinguished polynomialP(T) andU (T) 23�. Then degP(T)
is called the residue degree off (T). Also, there is a division theorem [19, Propos-
ition 7.2] for distinguished polynomials: iff (T) 2 3 is non-zero andP(T) is distin-
guished, then there uniquely existq(T) 2 3 and r (T) 2 Zp[T ] such that

f (T) D q(T)P(T)C r (T), degr (T) < degP(T).

Therefore3 is a UFD, whose irreducible elements arep and irreducible distinguished
polynomials.

It turns out thatX(F
1

) is a finitely generated torsion module over3. Therefore
we can define the Iwasawa�-invariant�F of F

1

=F by the dimension ofX(F
1

)

ZpQp

over the p-adic fieldQp. There is a3-homomorphism

X(F
1

)� !
s
M

iD1

3=(Pi )
mi

such that its kernel and cokernel are finite, where the principal ideals (Pi ) in 3 are
prime ideals of height 1, the ideals (Pi ) and the integersmi , s are uniquely determined
by X(F

1

)� ([19, Theorem 13.12]). In fact, the map is injective sinceX(F
1

)� has
no non-trivial finite3-submodules by [19, Theorem 13.28]. We say that the Iwasawa
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�-invariant�F of F
1

=F is zero if X(F
1

) is also finitely generated overZp: For ex-
ample, if F=Q is an abelian extension, then�F D 0 by Ferrero–Washington [2]. In
particular, if�F D 0, thenX(F

1

)� is a freeZp-module, and so that we may take each
Pi as an irreducible distinguished polynomial. Then the polynomial PF (T) WD

Qs
iD1 Pmi

i

is called the characteristic polynomial ofX(F
1

)� and we have��F WD �F � �FC

D

degPF (T). It turns out that, if the extensionF
1

=F is totally ramified at all primes
lying above p, then there is an isomorphism

(1) X(Fn) ' X(F
1

)

�

!n(T)

T
Y

for any n � 0, whereY WD Gal(L(F
1

)=L(F)F
1

), !n(T) WD (T C 1)pn
� 1.

Now, let k be a CM-field such thatk is a finite extension overQ with �k D 0 and
KC a cyclic extension ofkC with degreep such thatkC

1

\ KC

D kC. Put K WD kKC

and1 WD Gal(K=k). First of all, we comparePK (T) with Pk(T) (Proposition 2.1). We
identify 0 WD Gal(k

1

=k) with Gal(K
1

=K ) and1 with Gal(K
1

=k
1

) by the canonical
isomorphisms. Note that1 acts onX(K

1

) and X(K
1

)� as the inner automorphisms
similar to the action of0. The actions of0 and 1 are commutative sinceX(K

1

),
X(K

1

)� and Gal(K
1

=k) are abelian. ThereforeX(K
1

), X(K
1

)� are3[1]-modules.
By Iwasawa [7] and Kida’s formula [8],�K D 0 and

(2) �

�

K D p��k C (p� 1)(s� �),

wheres is the number of primes inKC

1

not lying abovep which split in K
1

=KC

1

and
ramify in KC

1

=kC
1

, and � D 1 or 0 according as a primitivep-th root of unity is ink
or not. In addition, suppose thatX(K

1

)� is cyclic over3. Then we have a surjection

3=(PK (T)) � X(K
1

)�,

since X(K
1

)� has no non-trivial finite3-submodules and is annihilated byPK (T).
Comparing theZp-ranks, we haveX(K

1

)� '3=(PK (T)). Fix a generator" 2 X(K
1

)�

over3 and a generatorÆ 2 1. We described the action of1 as xÆ. Then we have

"

Æ

D (Q(T)C 1)"

for someQ(T) 23. Then polynomialQ(T) 23 is uniquely defined up to the modulus
PK (T) and independent of the choice of". We may assume thatQ(T) is a polynomial
by the division theorem. Put

(3) N(T) WD Q(T)p�1
C

�

p

p� 1

�

Q(T)p�2
C � � � C

�

p

1

�

D

(Q(T)C 1)p
� 1

Q(T)
,

where
�p

k

�

is a binomial coefficient. Then we have the following proposition:
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Proposition 2.1. Let K=k and 1 be as above. Assume that X(K
1

)� is non-
trivial and cyclic over3. Then the followings hold:
(i) If ��k D 1, sD 0 and � D 1, where s and� are defined above, then X(K

1

)� ' Zp

as Zp[1]-modules and PK (T) D Pk(T). And then, Q(T) D 0.
(ii) If ��k ¤ 1 or s¤ 0 or � ¤ 1, then s� � � 0,

PK (T) D (3-unit)Pk(T)N(T) i.e., Pk(T)N(T)=PK (T) 2 3�,

X(K
1

)� ' Zp[1]
L

�

�

k
� I

L

(s��)
1

as Zp[1]-modules

and the residue degree of Q(T) is ��k C s � �, where I
1

is the augmentation ideal
in Zp[1].

Proof. We treatX(K
1

)� as the inverse limit of ideal class groups via the iden-
tification X(K

1

)� D lim
 �

A(Kn)�. We consider the norm mapNK
1

=k
1

W X(K
1

)� !

X(k
1

)� which is induced by the norm mapsNKn=kn W X(Kn)� ! X(kn)� and the norm

operatorN
1

W X(K
1

)� ! X(K
1

)� (N
1

(x) WD x C xÆ C � � � C xÆ
p�1

). If K
1

=k
1

is not
unramified, in other words,K

1

\ L(k
1

) D k
1

, then NK
1

=k
1

is surjective by the class
field theory. Similarly,NK

1

=k
1

is surjective if K
1

=k
1

is unramified. Indeed, by taking
the minus-part of the exact sequence of Galois groups

1! Gal(L(k
1

)=K
1

)! X(k
1

)! 1! 1,

we haveX(k
1

)� D Gal(L(k
1

)=K
1

)�. The right hand side is isomorphic to the image
of X(K

1

)� by NK
1

=k
1

, and so thatNK
1

=k
1

is surjective. HenceX(k
1

)� is a cyclic
3-module generated byNK

1

=k
1

" and is isomorphic to3=(Pk(T)).
The norm operatorN

1

coincides with the endomorphism by multiplicatingN(T) since

N
1

(x) D x C xÆ C � � � C xÆ
p�1

D (1C (1C Q(T))C � � � C (1C Q(T))p�1)x

D N(T)x.

Therefore we have the following commutative diagram:

3=(PK (T)) ' X(K
1

)�
N
1

K

NK
1

=k
1

K

id.
K

X(K
1

)� ' 3=(PK (T))

3=(Pk(T)) ' X(k
1

)� X(k
1

)� ' 3=(Pk(T)).

lift.

K

N(T)

K

Here the each map id. and lift. is the map induced by the identity map3 ! 3 and
the lifting maps on the ideal class groups�n W A(kn)� ! A(Kn)�, respectively, and the
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commutativity of the center square follows fromN
1

D �n Æ NKn=kn . It follows from
this that

(4) Pk(T) j PK (T) j Pk(T)N(T),

where we use the notationf (T) j g(T) if f (T), g(T) 2 3 satisfyg(T)= f (T) 2 3 (recall
that3 is a UFD). Now, we see thatQ(T)N(T) belongs to the ideal (PK (T)) of 3 since
" D "

Æ

p
, so that there is someF(T) 2 3 such thatQ(T)N(T) D PK (T)F(T). This

equation and (3) followQ(0) 2 pZp sincePK (0) � Z�p by the assumptionX(K
1

)� ¤ 0.
Moreover, we see thatp k N(0) by (3) (note thatp � 3). Therefore, by thep-adic
Weierstraß preparation theorem,

N(T) D pU(T ) or N(T) D NN(T)U (T)

with someU (T) 2 3� and some irreducible distinguished polynomialNN(T) 2 Zp[T ].
Combining (4) with p ­ PK (T), we have

PK (T) D Pk(T) or PK (T) D Pk(T) NN(T).

First, we supposePK (T) D Pk(T). Then 1� ��k D �
�

K D ��s by (2) and we have

PK (T) D Pk(T) � �

�

k D 1, sD 0, � D 1.

Then we may assume that degQ(T) < degPK (T) D 1 by the division theorem. If
Q(T) ¤ 0, then Q(T) is a constant, and so isPK (T)F(T) D Q(T)N(T), which is a
contradiction. ThereforeQ(T) D 0, which implies thatÆ acts onX(K

1

)� trivially.
Next, we suppose thatPK (T) D Pk(T) NN(T) to show the rest of (ii). Then, note that

Q(T), N(T) � p3 sincePK (T) � p3. Let NQ(T) 2 Zp[T ] be a distinguished polynomial
such thatQ(T)= NQ(T) 2 3�; NQ(T) depends on the choice ofQ(T). Then we know

(5) deg NN(T) D (p� 1) deg NQ(T) D (p� 1)(��k C s� �)

by N(T) � T (p�1) deg NQ(T)(Q(T)= NQ(T))p�1 mod p and (2). Hence degNQ(T) D �

�

k C

s � �. In particular, degNQ(T) does not depend on the choice ofQ(T). Note that
Pk(T) j Q(T) by Q(T)N(T) D PK (T)F(T) and PK (T) D Pk(T) NN(T). This implies
that s � � D deg NQ(T) � degPk(T) � 0 and also thatPk(T) and NN(T) are relatively
prime by (3). Finally, since1 is a cyclic group with orderp and X(K

1

)� is a free
Zp-module, we have a representation

X(K
1

)� ' Zp[1]
L

�

�

k
� I �(s��)

1

asZp[1]-modules by Gold–Madan [5]. This completes the proof.
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Corollary 2.2. Let K=k and1 be as above. Suppose that only one prime of K
1

lies above p and that this prime is totally ramified in K
1

=K. Assume that A(K )� is
non-trivial and cyclic, then

#A(K )� D

�

#A(k)� (if the assumption ofProposition 2.1 (i)holds),
p � #A(k)� (if the assumption ofProposition 2.1 (ii)holds),

where we denote the order of a set M by#M.

Proof. By the assumption and [19, Theorem 13.22], we obtain

A(K ) ' X(K
1

)=T X(K
1

).

By Nakayama’s lemma,X(K
1

)� is non-trivial and cyclic over3 since A(K )� is
non-trivial and cyclic. Therefore, the claim follows fromA(K )� ' 3=(PK (T), T) '
Zp=PK (0)Zp.

To prove the main theorems, we use the centralp-class field theory as follows. For
the centralp-class field theory, see [3] and also [14, §2]. LetF be a finite abelian
p-extension of an imaginary quadratic fieldk. For a primeq in k which is ramified
in F=k, we fix a prime lying aboveq in L(F) and denote its decomposition group in
Gal(L(F)=k) by Zq. Then we have the following proposition by the centralp-class field

theory and the judgment whetherQL(F) D L(F) or not is reduced to the computation of
the map8:

Proposition 2.3. With the notation above, assume that k¤ Q(
p

�3) if p D 3.
Consider the map

8 W

Y

q

H2(Zq, Zp)

Zp Fp! H2(Gal(L(F)=k), Zp)


Zp Fp

which is induced by the canonical map Zq! Gal(L(F)=k), where the product is taken

over all primes in k which are ramified in F=k. Then QL(F) D L(F) if and only if 8
is surjective.

3. Proof of Theorem 1.1

3.1. Arithmetic part. Let p, l be odd prime numbers such thatp j l � 1. We
define an integere by peC1

k l �1. Let k be an imaginary quadratic field with the con-
dition thatk¤ Q(

p

�3) if pD 3, andKC an abelianp-extension ofQ with conductor
l . Put K WD kKC. We identify 0 WD Gal(k

1

=k) with Gal(K
1

=K ) and1 WD Gal(K=k)
with Gal(K

1

=k
1

). Assume that neitherp nor l splits in K . Note thatX(Q
1

)D 0 and
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X(KC

1

) D 0 by Iwasawa [6]. If A(k) D 0, then QX(K
1

) D 1 again by [6]. Therefore
we have only to show thatQL(K

1

) ¤ L(K
1

) under the assumption that

A(k) ¤ 0 and [KC

W Q] D p

for proving Theorem 1.1. Moreover, if�k � 2, then QX(k
1

) is not abelian by [14], and
neither QX(K

1

) is. Therefore we may assume that

�k D �
�

k D 1 and �K D �
�

K D p.

Since�k D 1, we know X(k
1

) ' Zp. Moreover, since the only one prime ofk
1

lying
above p is totally ramified ink

1

=k, A(k) is a non-trivial cyclic group. Now, we apply
Proposition 2.3 to the extensionL(K )=k:

Lemma 3.1. With the notation above, QL(K )D L(K ) if and only if dim
Fp A(K )


Z

Fp � 1.

Proof. Sincel does not split inK=KC, the only one prime lying abovel in K
splits completely inL(K )=K by the class field theory. Hence the decomposition group
in Gal(L(K )=k) of a prime lying abovel in L(K ) is cyclic, and so that its Schur multi-
plier is trivial. Therefore,QL(K ) D L(K ) holds if and only if H2(Gal(L(K )=k),Zp) D 0
by Proposition 2.3. By Evens [1], we have

H2(Gal(L(K )=k), Zp) ' H2(1, Zp)� H1(1, X(K ))� H2(X(K ), Zp)
1

,

since Gal(L(K )=k) ' X(K ) Ì 1. If dim
Fp A(K ) 


Z

Fp � 2, then H2(X(K ), Zp)
1

'

(A(K ) ^
Zp A(K ))

1

¤ 0. This implies thatQL(K ) ¤ L(K ). On the other hand, the suf-
ficiency of the assertion is clear.

By Lemma 3.1 and the above argument, for proving Theorem 1.1,it is sufficient
to show the following proposition:

Proposition 3.2. Suppose that the following conditions hold:
(i) Neither p nor l splits in K=Q,
(ii) �k D 1 (hence A(k) ¤ 0 and �K D p),
(iii) dim

Fp A(K )

Z

Fp D 1.

Then QL(Kn) ¤ L(Kn) for any n� 1.

In the rest of this section, for a fixed non-negative integern, we show Propos-
ition 3.2. Suppose thatp, l , k and K satisfy the condition of Proposition 3.2. Our
first aim is to describeGn WD Gal(L(Kn)=k) and some decomposition subgroups. Put
0n WD 0=0

pn
for simplicity. Let N
 a fixed generator of0. Identify 3 D Zp[[T ]] with



THE COMMUTATIVITY OF THE GALOIS GROUPS II 279

lim
 �

Zp[0n] by sending 1C T to N
 . Since the only one prime lying abovep in K is

totally ramified inK
1

=K and A(K ) is a non-trivial cyclic group,X(K
1

) is cyclic over
3. Let " be a fixed generator ofX(K

1

) over 3 and NÆ a fixed generator of1. Then,
since X(KC

1

) D 0, we can apply Proposition 2.1 (ii) to obtain

8

�

�

<

�

�

:

X(K
1

) D 3" ' 3=(PK (T)) as3-modules,
X(K

1

) ' Zp[1] as Zp[1]-modules,
Q(T)=Pk(T) 2 3� (since the residue degree ofQ(T) is �k and Pk(T) j Q(T)),
Pk(T)N(T)=PK (T) 2 3�.

Here Q(T) is defined by" NÆ D (Q(T) C 1)" and N(T) is defined as in (3). LetMn

be the maximal abelian subextension inL(Kn)=k. We denote by"n, N"n the projection
of " 2 X(K

1

) to Gn, G
ab

n WD Gal(Mn=k), respectively. LetQpn (resp. Qln) be a prime in
L(Kn) lying above p (resp. l ), and
n 2 Gn (resp.Æn) a generator of the inertia group
I p ' 0n of Qpn (resp. the inertia groupI l ' 1 of Qln). Put N
n WD 
n mod [Gn, Gn],
N

Æn WD Æn mod [Gn, Gn]. Here [G, G] stands for the topological commutator subgroup
of a topological groupG, which is generated by [g, h] WD ghg�1h�1 for all g, h 2 G.
We may assume that
n (resp.Æn) is an extension ofN
 mod 0 pn

(resp. NÆ 2 1). Then
Gal(Kn=k) acts onX(Kn) D 3"n ' 3=(PK (T), !n(T)) by

"

N


n D 
n"n

�1
n D (1C T)"n, "

N

Æ

n D Æn"nÆ
�1
n D (1C Q(T))"n.

Lemma 3.3. As3-modules, [Gn, Gn] ' (T, pm)=(PK (T), !n(T)). Also we have

Gab
n D h N
ni � hNÆni � h N"ni ' Z=pn

Z� Z=pZ� Z=pm
Z,

where m is defined by#A(k) D pm.

Proof. Note that the maximal abelian subextension inL(Kn)=K is the fixed field
by the Galois subgroup corresponding to

(T, PK (T))=(PK (T), !n(T)) D (T, PK (0))=(PK (T), !n(T)).

Clearly, Mn is contained in the field and also containsKn. Hence there is somept
�

PK (0) such that [Gn, Gn] ' (T, pt )=(PK (T), !n(T)). We show thatt D m, in other
words, Gal(Mn=Kn)' Z=pm

Z for any n � 0. If nD 0, thenM0 has degreepm over K
by the genus formula [9, Chapter 13 Lemma 4.1]. Denote byM 0

n the maximal abelian
subextension inMn=k which is unramified outsidel . Clearly M0 � M 0

n. Moreover, we
have M 0

n D M0 since M 0

n=K is unramified and abelian. SinceM 0

n is the fixed field in
Mn by the inertia group of a prime lying abovep, Mn=M 0

nKn is totally ramified at
the prime. On the other hand, sinceM 0

n \ Kn D K , Mn=M 0

nKn is unramified at every
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prime. ThereforeM0Kn D M 0

nKn D Mn, and h N"ni D Gal(Mn=Kn) ' Z=pm
Z. Hence

we find

[Gn, Gn] ' (T, pm)=(PK (T), !n(T)).

Also, by the definitions ofN
n, NÆn, N"n, we obtainh N
ni � hNÆni � h N"ni � Gab
n . Comparing

each order, we obtain the assertion.

In fact, 
n and Æn are commutative and henceGn ' X(Kn) Ì (0n � 1). This
fact follows from the next lemma. Recall thatpeC1

k l � 1. From now on through-
out this section, we regardX(Kn) as a subset ofGn and write the operator ofX(Kn)
multiplicatively.

Lemma 3.4. Let the subgroups Zp, Zl of Gn be the decomposition groups of
Qpn, Qln, respectively. Then, changing Qln if necessary, there is some D(T) 2 3 defined
uniquely up to the modulus PK (T) such that

Zp D h
ni � hÆni,

Zl D

(

hÆni (if n � e),
h


pe

n "

D(T )N(T)
n i � hÆni (if n > e).

Proof. The image ofZp in Gab
n is generated byN
n and NÆn. Therefore,Zp is gen-

erated by the generator
n of I p and a pre-image�n of a generator ofZp=I p. Moreover,
every prime lying abovep splits completely inL(Kn)=Kn. HenceZp \ [Gn, Gn] D 1.
This implies that [
n, Æn] D 1, and so thatZp is abelian. Comparing the orders, we
see that the natural surjectionZp D h
ni � h�ni� h N
ni � hNÆni is isomorphic. We can
take �n which satisfies�n � Æn mod [Gn, Gn]. It follows from this that there is some
B(T) 2 (T, pm) defined up to the modulusPK (T) such that�n D Æn"

B(T)
n . Since

1D � p
n D "

N(T )B(T)
n ,

we obtain PK (T) j N(T)B(T). Hence Q(T) j B(T). On the other hand, letx WD

"

�(1CQ(T))B(T )=Q(T)
n (note that 1C Q(T) 2 3� since"1CQ(T)

n D "

N

Æn
n ), then

xÆnx�1
D ÆnÆ

�1
n xÆnx�1

D Ænx(1CQ(T))�1
�1
D Æn"

B(T )
n D �n.

HenceÆn and�n are conjugate each other inGn, so that we may assume thatÆn D �n,
changingQln if necessary. This implies thatB(T)D 0 and also
n andÆn are commutative.

On the other hand, we deal withZl . Suppose thatn � e. Then every prime lying
abovel splits completely inL(Kn)=K , so thatZl D I l . Suppose thate< n. Then the

image of Zl in Gab
n is generated byN
 pe

n and NÆn. In the same way as in the above, we
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see that there is someC(T) 2 (T, pm) defined up to the modulusPK (T) such that

Zl D h

pe

n "

C(T)
n i � hÆni

Since

1D 
 pe

n "

C(T)
n Æn"

�C(T)
n 


�pe

n Æ

�1
n D "

�(1CT)pe
Q(T)C(T)

n ,

we obtain PK (T) j Q(T)C(T) and so that,D(T) WD C(T)=N(T) is in 3. This com-
pletes the proof.

Lemma 3.5. For any n� 1, dim
Fp H2(Gn,Zp)


ZpFp � 2. If e> 0, then QL(Kn)¤
L(Kn) for any n� 1.

Proof. Combining the splitting exact sequence

1! X(Kn)! Gn ! 0n �1! 1

with the result in [1], we obtain

H2(Gn, Zp) ' H2(0n �1, Zp)� H1(0n �1, X(Kn))� H2(X(Kn), Zp)
0n�1.

We find that H2(0n � 1, Zp) ' Z=pZ again by [1]. On the other hand, we know

that H1(0n, X(Kn)) ' OH0(0n, A(Kn)) D 0 which follows from the genus formula [9,
Chapter 13 Lemma 4.1] and the injectionA(K )! A(Kn) (see [19, Proposition 13.26]).
Also, we get

H1(1, X(Kn)
0n) � OH

0(1, X(Kn)
0n) � (T, PK (T))=(T, PK (T)) D 0

from pm
j Q(0). Therefore the Hochschild–Serre exact sequence

H1(0n, X(Kn))
1

! H1(0n �1, X(Kn))! H1(1, X(Kn)
0n)! 0

yields the resultH1(0n � 1, X(Kn)) D 0. We haveH2(X(Kn), Zp)
0n�1 ¤ 0. Indeed,

X(Kn) is not cyclic by �K D p and Fukuda [4], so thatH2(X(Kn), Zp) ¤ 0 and
H2(X(Kn), Zp)

0n�1 ¤ 0. This shows the first claim.
We are in the position of proving the second claim. Assume that e> 0. Take an

integer n � 1 such thatn � e. Then, for such ann, we have H2(Zl , Zp) D 0 and
H2(Zp, Zp) ' Fp. The combination of Proposition 2.3 and the first claim implies that
QX(Kn) is not abelian and that neither everyQX(Kn) is (n � 1).

3.2. Group theorical part. We deal with the remaining case whereeD 0. As-
sume thateD 0. Our next aim is to obtain minimal presentations ofGn, Zp, Zl and
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their Schur multipliers by free pro-p-groups. LetF WD h
 , Æ, "i be a free pro-p-group
of rank 3. We define the action of a polynomialf (
 )D ak


k
C� � �Ca1
Ca0 (ai 2 Zp)

on F by the product of inner products such as

x f (
 )
WD xak


k
� � � xa1
 xa0.

Put

R WD h
 pn
, Æ p, "PK (
�1), [Æ, 
 ], [Æ, "]("Q(
�1))�1, [", "
 ], [", "


2
], : : : , [", "


(p�1)=2
]iF ,

where hx, y, : : : iF stands for the closed normal subgroup generated byx, y, : : : and
their conjugates. Note that there are equations

[x, y]z
D [xz, yz],

[x, yz] D [x, y][x, z]y,

[x, yk] D [x, y][x, y]y
� � � [x, y]yk�1

for any x, y, z 2 F and any integerk � 1. We have the following lemma in the same
way as in the proof of [14, Lemma 5.3]:

Lemma 3.6. For arbitrary z1, z2 2 Zp, i , j 2 Z,

(i) ["z1

i
, "z2


j
] is congruent with some product of[", "
 ], : : : , [", "


(p�1)=2
] mod [R, F ].

In particular, ["z1

i
, "z2


j
] 2 R.

(ii) [ "z1

i
, "z2


p
] � [", "


i
]�z1z2 mod [R, F ](R\ [F, F ]) p.

Proof. (i) First, we prove the case wherez1 D z2 D 1. We have only to prove the
claim that ["


�k
,"] is congruent with some product of [","
 ], : : : , [","


(p�1)=2
] mod [R, F ]

for any non-negative integerk. If k D 0,�1, : : : , �(p � 1)=2, this claim is clear. Fix
an integerk � (p� 1)=2 and assume that the claim holds for any non-negative integer i
such that 0� i � k. If we put PK (
 � 1)D 
 p

C cp�1

p�1
C � � � C c0, then we have

1� ["

�kC(p�1)

, ("�PK (
�1))�1] D ["

�kC(p�1)

, "c0
"

c1

� � � "




p
]

D ["

�kC(p�1)

, "c0]["

�kC(p�1)

, "c1

� � � "




p
]"

c0

� ["

�kC(p�1)

, "]c0["

�kC(p�1)

, "c1

� � � "




p
]"

c0 mod [R, F ],

since�(p� 1)=2 � k � (p� 1)< k. Hence ["

�kC(p�1)

, "c1

� � � "




p
] 2 R and so that, in

the same way, we obtain

1� ["

�kC(p�1)

, "]c0["

�kC(p�1)

, "c1

� � � "




p
]

D ["

�kC(p�1)

, "]c0["

�kC(p�2)

, "c1
� � � "




p�1
]


� � �
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� ["

�kC(p�1)

, "]c0["

�kC(p�2)

, "]c1

� � � ["


�k
, "]cp�1


p�1
["


�(kC1)
, "]


p

� ["

�kC(p�1)

, "]c0["

�kC(p�2)

, "]c1
� � � ["


�k
, "]cp�1["


�(kC1)
, "]


p
mod [R, F ].

Therefore we obtain ["

�(kC1)

,"]

p
2 R and so that ["


�(kC1)
,"]


p
� ["


�(kC1)
,"] mod [R,F ].

This implies that the claim holds. The general case where anyz1,z2 2 Zp follows from
this, since, taking the limit later if necessary, we may assume that 1� z1, z2 2 Z.

(ii) We have only to prove the case wherez1 D z2 D 1, since the general case
follows from this immediately. For a polynomial

f (
 � 1)D ak

k
C � � � C a1
 C a0

D bk(
 � 1)k C � � � C b1(
 � 1)C b0 (ai , bi 2 Zp),

we obtain that

ai D

k
X

jD0

�

j

i

�

(�1) j�i b j ,

where we define
� j

i

�

D 0 if j < i . And, in the same way as in the proof of (i), we
obtain that

["

i
, " f (
�1)] D ["


i
, "ak


k
C���Ca1
Cc0]

� ["

i
, "


k
]ak
� � � ["


i
, "
 ]a1["


i
, "]a0 mod [R, F ],

since ["

i
, "


j
] 2 R. Now, if f (
 � 1) D PK (
 � 1), thenbp D 1 and bp�1 � � � � �

b0 � 0 mod p, so that we obtain

ai �

8

<

:

�1 mod p (if i D 0),
1 mod p (if i D p),
0 mod p (otherwise).

Therefore we have 1� ["

i
,"PK (
�1)] � ["


i
,"


p
]["


i
,"]�1 mod [R, F ](R\ [F, F ]) p.

Lemma 3.7. Let x 2 F. Then, for any polynomial f(T) 2 Zp[T ] and any non-
negative integer k, we have

[x, (" f (
�1))Æ
k
] � [x, " f (
�1)(Q(
�1)C1)k ] mod [R, F ],

where the action of a product of polynomials f(
 ), g(
 ) is defined as

x f (
 )g(
 )
WD xak


k
� � � xa1
 xa0 if f (
 )g(
 ) D ak


k
C � � � C a1
 C a0.

Proof. If k D 0, then the congruence holds. Suppose that the congruence holds
for somek. Note that, by [Æ, 
 ] 2 R and Lemma 3.6 (i), the congruences [x, ("


i
)Æ] �
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[x, ("Æ)

i
] and [x, "


i
"




j
] D [x, ["


i
, "


j
]"


j
"




i
] � [x, "


j
"




i
] mod [R, F ] hold for ar-

bitrary i , j 2 Z. Hence we have

[x, (" f (
�1))Æ
kC1

] � [x, (("Æ) f (
�1))Æ
k
]

� [x, (("Q(
�1)C1) f (
�1))Æ
k
] (by [Æ, "]("Q(
�1))�1

2 R),

� [x, (" f (
�1)(Q(
�1)C1))Æ
k
]

� [x, " f (
�1)(Q(
�1)C1)kC1
] mod [R, F ] (by the assumption).

Therefore the congruence holds for anyk by induction.

Lemma 3.8. For n � 1, the sequence of pro-p-groups1! R! F
�

! Gn ! 1
is exact, where the map� W F ! Gn is given by
 7! 
n, Æ 7! Æn, " 7! "n.

Proof. It is clear thatR� Ker� and � is surjective, so that we have the surjec-
tive maps

F=[F, F ]RD (F=R)ab
� Gab

n , [F, F ]R=RD [F=R, F=R] � [Gn, Gn].

We prove that these two maps are isomorphisms. We know that [F, F ] is generated by
[Æ, 
 ], [
 , "] D "
�1, [Æ, "] and their conjugates. Hence, using [Æ, "] � "Q(
�1) mod R
and Lemma 3.6 (i), we see that [F, F ]R=R is generated by"
�1 and "Q(0) mod R and
their conjugates. But, by the congruences

("
�1)" � "
�1, ("Q(0))Æ � ("Q(0))Q(
�1)C1, ("
�1)Æ � ("
�1)Q(
�1)C1 mod R

and "!n(
�1)
� 1 mod R which follows from T j !n(T), we obtain

[F, F ]R=RD h("
�1)F(
�1), ("pm
)F(
�1)

j F(T) 2 3iR=R

D h"

F(
�1)
j F(T) 2 (T, pm)iR=R.

Then the surjective map

[Gn, Gn] ' (T, pm)=(PK (T), !n(T)) � [F, F ]R=R

is induced and hence [F, F ]R=R' [Gn, Gn]. Finally F=[F, F ]R is generated by the
classes of
 , Æ, " which are annihilated bypn, p, pm, respectively. Therefore we have
#(F=[F, F ]R) � #Gab

n and so thatF=[F, F ]R' Gab
n .

Lemma 3.9.

R=[R, F ] D h
 pn
, Æ p, [Æ, 
 ], [Æ, "]("Q(
�1))�1, [", "
 ], : : : , [", "


(p�1)=2
]i[R, F ]=[R, F ].
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Proof. Throughout the proof, the notation� is used for a congruence modulo the
right hand side of the above equation. It is sufficient to showthat "PK (
�1)

� 1. By
Lemmas 3.6 and 3.7, we have

[Æ, "]Æ
k
D [Æ, "Æ

k
] � [Æ, "(Q(
�1)C1)k ]

� ("Æ)(Q(
�1)C1)k ("�1)(Q(
�1)C1)k

� ("(Q(
�1)C1))(Q(
�1)C1)k ("�1)(Q(
�1)C1)k

� "

Q(
�1)(Q(
�1)C1)k .

Therefore 1� [Æ p, "] D [Æ, "]Æ
p�1
� � � [Æ, "]Æ[Æ, "] � "

Q(
�1)N(
�1). Since Q(T)N(T) D
PK (T)F(T) with some polynomial F(T) 2 3

�, we have 1� "

PK (
�1)F(
�1)
�

("PK (
�1))F(0). Hence"PK (
�1)
� 1.

Recall thatD(T) 23 is defined in Lemma 3.4. The closed subgroupsFp WD h
 ,Æi,

Fl WD h
 ("Æ
p�1
C���CÆC1)D(
�1), Æi of F and their closed normal subgroups

Rp WD h

pn

, Æ p, [Æ, 
 ]iFp ,

Rl WD h(
 ("Æ
p�1
C���C1)D(
�1))pn

, Æ p, [Æ, 
 ("Æ
p�1
C���C1)D(
�1)]iFl

give minimal presentations 1! Rp ! Fp ! Zp ! 1 of Zp and 1! Rl ! Fl !

Zl ! 1 of Zl . The Hochschild–Serre exact sequence with respect to the minimal pres-
entation ofGn induces the isomorphismH2(Gn, Zp) ' R\ [F, F ]=[R, F ]. Therefore
H2(Gn,Zp)


Zp Fp ' (Rp\ [Fp, Fp])=([Rp, Fp](Rp\ [Fp, Fp]) p). Hence, for completing
the proof of Proposition 3.2, it is sufficient to show the map

8 W

Rp\ [Fp, Fp]

[Rp, Fp](Rp\ [Fp, Fp]) p
�

Rl \ [Fl , Fl ]

[Rl , Fl ](Rl \ [Fl , Fl ]) p
!

R\ [F, F ]

[R, F ](R\ [F, F ]) p

is not surjective by Proposition 2.3.

Lemma 3.10. The followings hold:
(i) R\ [F, F ]=[R, F ] D h[Æ, 
 ], [", "
 ], : : : , [", "


(p�1)=2
]i[R, F ]=[R, F ],

(ii) Rp \ [Fp, Fp]=[Rp, Fp] D h[Æ, 
 ]i[Rp, Fp]=[Rp, Fp],

(iii) Rl \ [Fl , Fl ]=[Rl , Fl ] D h[Æ, 
 ("Æ
p�1
C���C1)D(
�1)]i[Rl , Fl ]=[Rl , Fl ].

Proof. We show only (i) because the remainder are shown in thesame way. For
any x 2 R\ [F, F ] � R, there existz1, : : : , z4C(p�1)=2 2 Zp such that

x � (
 pn
)z1(Æ p)z2[Æ, 
 ]z3([Æ, "]("Q(
�1))�1)z4[", "
 ]z5

� � � [", "

(p�1)=2

]z4C(p�1)=2 mod [R, F ]

by Lemma 3.9. Hence we obtain 1� 
 pnz1
Æ

pz2
"

�Q(0)z4 mod [F, F ], and so thatz1 D

z2 D z4 D 0. This shows (i).
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We now conclude our proof. Putd WD "Q(
�1) for convenience. By Lemma 3.10,
it is sufficient to show that [Æ, 
 ] and [Æ, ("Æ

p�1
C���CÆC1)D(
�1)] do not generate (R \

[F, F ])=([R, F ](R\ [F, F ]) p). By induction, we have

"

Æ

k
� ([Æ, "]d�1)kdÆ

k�1
C���CÆC1

" mod [R, F ] (k � 1).

Indeed, by the assumption of the induction,

("Æ
k�1

)Æ � ([Æ, "]d�1)k�1dÆ
k�1
C���CÆ

"

Æ

� ([Æ, "]d�1)k�1dÆ
k�1
C���CÆ([Æ, "]d�1)d"

� ([Æ, "]d�1)kdÆ
k�1
C���CÆC1

" mod [R, F ].

Using ([Æ, "]d�1)k
2 R and this congruence, we obtain

[Æ, "Æ
p�1
C���CÆC1]

D Æ("Æ
p�1
� � � "

Æ

")Æ�1
� ("�1

"

�Æ

"

�Æ

2
� � � "

�Æ

p�1
)

D "

Æ

p
"

Æ

p�1
� � � "

Æ

2
"

Æ

� "

�1
"

�Æ

"

�Æ

2
� � � "

�Æ

p�1

� "(dÆ
p�2
C���C1

") � � � (dÆC1
")(d") � "�1(d")�1(dÆC1

")�1
� � � (dÆ

p�2
C���C1

")�1

D [", (dÆ
p�2
C���C1

") � � � (dÆC1
")d]

� [", dÆ
p�2

][", dÆ
p�3

]2
� � � [", dÆ] p�2[", d] p�1 mod [R, F ],

where the last congruence is obtained from [", dÆ
k
] D [", ("Q(
�1))Æ

k
] 2 R by Lem-

mas 3.6 (i) and 3.7. Moreover, using

p�2
X

kD0

(p� 1� k)Q(T)(Q(T)C 1)k D N(T) � p

and again Lemma 3.7, we have

[Æ, "Æ
p�1
C���CÆC1] �

p�2
Y

kD0

[", "Q(
�1)(Q(
�1)C1)k ] p�1�k

� [", "N(
�1)] mod [R, F ].

Now, dividing N(T) by the distinguished polynomialPK (T), we write

N(
 � 1)D ap�1

p�1
C � � � C a0C PK (
 � 1) f (
 � 1)

D bp�1(
 � 1)p�1
C � � � C b0C PK (
 � 1) f (
 � 1) (ai , bi 2 Zp).
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Then b0 � � � � � bp�2 � 0 mod p since the residue degree ofN(T) is p � 1 by (5).
Therefore, in the same way as in the proof of Lemma 3.7, we get

[", "N(
�1)] � [", "

p�1

]ap�1
� � � [", "
 ]a1[", "]a0 mod [R, F ]

and ai D
Pp�1

jD0

� j
i

�

(�1) j�i b j � (�1)i
�p�1

i

�

bp�1 mod p. Finally, for 1� i � (p� 1)=2,

[", "

i
]ai
� ["


p
, "


i
]ai
� [", "


p�i
]�ai mod [R, F ](R\ [F, F ]) p

by Lemma 3.6 (ii) andap�i � ai �
�p

i

�

(�1)iC1bp�1 � 0 mod p. Therefore we obtain

[Æ, "Æ
p�1
C���CÆC1] �

p�1
Y

iD1

[", "

p�i

]ap�i
D

(p�1)=2
Y

iD1

[", "

p�i

]ap�i [", "

i
]ai

� 1 mod [R, F ](R\ [F, F ]) p.

By Lemma 3.5, this implies that8 is not surjective, which completes the proof of
Proposition 3.2.

EXAMPLE . Let pD 3, k D Q(
p

�31) andKC an abelianp-extension ofQ with
conductor l D 43. Then A(k) ' Z=3Z, �k D 1, A(K ) ' Z=9Z and �K D 3. They
satisfy the condition of Proposition 3.2. ThereforeQX(Kn) is not abelian for anyn � 1.

4. Proof of Theorem 1.2

Since the strategy of the proof of Theorem 1.2 is similar to the proof of The-
orem 1.1, we explain briefly. Letp, l be odd prime numbers such thatp k l � 1
(later, we assume thatp D 3), k an imaginary quadratic field with the property that
k ¤ Q(

p

�3) if p D 3, and KC the unique abelianp-extension ofQ with conduc-
tor l . Put K WD kKC. Assume thatp does not split inK , but l splits in k and
dim

Fp A(K )

Z

Fp D 1. We may assume that�k D �
�

k � 1 similarly as in §3 by [14].
Then �K D �

�

K D p�k C p � 1, X(K
1

) is cyclic over3 and #A(K ) D pmC1. Here

m is defined by #A(k) D pm by Corollary 2.2. LetQpn (resp. Qln) be a prime inL(Kn)
lying above p (resp. l ). We defineJ 2 Gal(L(Kn)=KC

n ) as an element of order 2 in

the decomposition subgroup ofQpn in Gal(L(Kn)=KC

n ). Then a primeQlJn in L(Kn) is a

conjugate ofQln and the principal ideal (l ) in k splits as (l )D llJ , wherel WD Qln\k. We
use the notation as in §3; namely,0 D h N
 i, 0n, 1 D hNÆi, Gn, 
n, N
n, Æn, NÆn, "n, N"n.

Lemma 4.1. The primesl and lJ do not split in L(K )=K.

Proof. By the genus formula [9, Chapter 13 Lemma 4.1], the maximal abelian
subextension inL(K )=k has degreepmC1 over K . Therefore it coincides withL(K )
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and so thatG0 ' A(K )�1. Let F be a free pro-p-group of rank 2 generated by the
symbolsÆ, " and R WD hÆ p, "pmC1

, [Æ, "]iF . ThenG0 ' F=R, and so thatH2(G0,Zp) '

h[Æ,"]i[R, F ]=[R, F ]. On the other hand, the decomposition group ofQl0 (resp.QlJ0 ) in G0

is hÆ0i�h"
v

0i (resp.hÆ0"
u
0i�h"

v

0i sinceQlJ0 is ramified inK=k) for someu,v 2 Zp. Since
QL(K ) D L(K ) by the cyclicity of A(K ), applying Proposition 2.3, we havev 2 Z�p.

This implies that the decomposition groups equal toG0. Hencel and lJ do not split
in L(K )=K . Also, note that thep-adic order ofu is equal tom, since the fixed field
of hÆ0, "u

0i is the maximal subextensionL(k) which is unramified atQl0, QlJ0 .

We use the notationQ(T), N(T) as in §3. Fixn � 1. Since the next lemma is
shown in the way similar to Lemmas 3.3, we omit the proofs.

Lemma 4.2. As 3-modules, [Gn, Gn] ' (T, pmC1)=(PK (T), !n(T)). Moreover
Gab

n D h N
ni � hNÆni � h N"ni ' Z=pn
Z� Z=pZ� Z=pmC1

Z.

We define A(T) 2 3 by [Æn, 
n] D "

A(T)
n . Note that A(T) is defined uniquely up

to the modulusPK (T).

Lemma 4.3. (i) Let the subgroup Zp of Gn be the decomposition group ofQpn.
Then there is an element B(T) 2 (pm, T) defined uniquely up to the modulus PK (T)
such that

Zp D h
ni � hÆn"
B(T )
n i, PK (T) j �A(T)C T(1C Q(T))B(T).

Therefore the exact sequence1! X(Kn)! Gn ! 0n �1! 1 splits.
(ii) Let Zl, Z J

l be the decomposition groups ofQln and QlJn , respectively. Then, changing
"n, if necessary, there is an element J(T) 2 (pm,T) defined uniquely up to the modulus
PK (T) such that

Zl D h
n"
�1=(1CT)
n i � hÆni, PK (T) j A(T) � Q(T),

Z J
l D h
n"

1=(1CT)
n i � hÆn"

J(T )
n i, PK (T) j �A(T) � Q(T)C T(1C Q(T))J(T)

for any n�mC1 and J(0)� u mod pmC1. Here u is defined in the proof ofLemma 4.1.

Proof. The image ofZp in Gab
n is generated byN
n and NÆn N"wn for somew 2 pm

Zp

(In fact, w ¥ 0, w ¥ v mod pmC1, since the imageh NÆ0 N"w0 i under a projection ofZp in

Gab
0 coincide neither the inertia groups ofQl0 nor of QlJ0 ). Since every primes lying above

p split completely inL(Kn)=Kn, in the same way as in the proof of Lemma 3.4, there
is someB(T) 2 (pm, T) defined up to the modulusPK (T) such thatB(0) � w mod
pmC1 and

Zp D h
ni � hÆn"
B(T )
n i ' h N
ni � hNÆn N"

w

n i.
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Hence, we obtainPK (T) j �A(T)C T(1C Q(T))B(T) since

1D 
nÆn"
B(T )
n 


�1
n "

�B(T )
n Æ

�1
n D "

�A(T)CT(1CQ(T))B(T )
n .

(ii) Put n � mC 1. Sincel does not split inK
1

=K , l splits in L(Kn)[Gn,Gn]
=Kn

completely by Lemmas 4.1 and 4.2. There the image ofZl in Gab
n is generated byNÆn

and N
n N"
v

n, where v 2 Z�p is defined in the proof of Lemma 4.1. HenceZl is gener-

ated byÆn and 
n"
vCC(T)
n for someC(T) 2 (pmC1, T). Moreover, sincehÆni G Zl and

[Gn, Gn] \ hÆni D 1, we find

Zl D h
n"
vCC(T)
n i � hÆni, PK (T) j A(T)C Q(T)(1C T)(v C C(T)).

The decomposition group ofQlJn is given by Z J
l D hJ(
n"

vCC(T)
n )J�1

i�hJÆn Ji. We
find J x J�1

C x D 0 for any x 2 X(Kn) since A(KC

n ) D 0. Also we find J
n J�1
D 
n

since the natural projection from the decomposition group of Qpn in Gal(L(Kn)=KC) to
the abelian group Gal(Kn=KC) is an isomorphism. On the other hand,hJÆn Ji is the
inertia group ofQlJn , so that we may assume, changingu if necessary, that the image

of a projection ofJÆn J in Gab
n is NÆn N"u

n. Hence JÆn J can be written asÆn"
uC j (T)
n with

some elementj (T) 2 (pmC1, T). Therefore we have

Z J
l D h
n"

�(vCC(T))
n i � hÆn"

J(T )
n i,

PK (T) j �A(T)C Q(T)(1C T)(v C C(T))C T(1C Q(T))J(T),

where J(T) WD uC j (T). Sincev 2 Z�p, changing"n, if necessary, we may assume that
v C C(T) D �1=(1C T), which completes the proof.

By Lemmas 4.3, we may assume thatA(T) D Q(T) and J(T) � 2B(T) mod
PK (T) since T ­ PK (T). Now, we fix Q(T) to simplify the proof. Since the residue
degree ofQ(T) is �kC1> degPk(T) and Pk(T) j Q(T), we obtainpmC1

j Q(0). There-
fore, changing the representation ofQ(T) mod PK (T) for vanishing the constant term
if necessary, we may assume that

T j Q(T), degQ(T) � �K ,

since pmC1
k PK (0). Also, dividing by the distinguished polynomialPK (T), we may

assume that degJ(T) D degB(T) � �K � 1. Note that the differentialsQ0(T), J 0(T)
modulo the ideal (p, T) of Q(T), J(T) are independent of the choices ofQ(T) and
J(T). By Lemma 4.3, there is an elementF(T) 2 3 such that

J(T)(1C Q(T)) � 2
Q(T)

T
D PK (T)F(T).

Put T D 0, and on the other hand, differentiate atT D 0. Then we have

(6) u � 2Q0(0) mod p, J 0(0)� �2Q0(0)2C Q00(0) mod p.
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In the following, we suppose thatp D 3 and A(k) D 0; in other words, suppose
that the assumption in Theorem 1.2 holds. ThenmD 0, �K D 2 andu 2 Z�3 .

Lemma 4.4. dim
F3 H2(Gn, Z3)


Z3 F3 D 3 for n � 1.

Proof. SinceGn ' X(Kn) Ì (0n �1) by Lemma 4.3, in the same way as in the
proof of Lemma 3.5, we obtain this lemma. Note thatH2(X(K

1

),Z3)' I
1

^

Z3 I
1

' Z3

since p D 3 and X(K
1

) ' I
1

by Proposition 2.1.

We write

Q(T) D T(q1T C q1C q0) (q1, q0 2 Z3).

Then Q(
 � 1)D (
 � 1)(q1
 C q0) D q1

2
C (q0� q1)
 � q0. Note thatq1C q0 2 Z

�

3
since the residue degree ofQ(T) is equal to 1. LetF WD h
 ,Æ,"i be a free pro-p-group
of rank 3. Put

R WD h
 3n
, Æ3, "PK (
�1), [Æ, 
 ]("Q(
�1))�1, [Æ, "]("Q(
�1))�1, [", "
 ]iF

and C WD [Æ, 
 ]("Q(
�1))�1, D WD [Æ, "]("Q(
�1))�1. Then, since�K � 3, we obtain the
same result as in [14, Lemma 5.3 (ii)] which is stronger than Lemma 3.6:

(7) ["z1

i
, "z2


j
] � [", "
 ]z1z2( j�i ) mod (R\ [F, F ])3[R, F ].

In the following, the notation� is used for a congruence modulo(R\ [F, F ])3[R, F ].

Lemma 4.5. (i) For n� 1, the sequence of pro-p-groups1! R! F
�

! Gn! 1
is exact, where the map� W F ! Gn is given by
 7! 
n, Æ 7! Æn, " 7! "n.
(ii) R\ [F, F ]=[R, F ] D h[", "
 ], C, Di[R, F ]=[R, F ].

Proof. Using (7), we findC, D 2 R\ [F, F ] since T j Q(T). Then, in the same
way as in the proofs of Lemmas 3.8 and 3.10, we obtain the lemma.

Lemma 4.6. For any polynomial f(
 � 1) with degree1, put

Wf WD "
(Q(
�1)C1) f (
�1), E WD "q1
Cq0,

where the action of a factorized polynomial is defined in the same way asLemma 3.7.
Then

[" f (
�1), 
 ]Æ � ((Wf E�1)
�1)�1("Q(
�1))�1[", "
 ]q2
1Cq1q0Cq2

0 .



THE COMMUTATIVITY OF THE GALOIS GROUPS II 291

Proof. Describef (
 � 1) as f (
 � 1) D f1
 C f0 ( f1, f0 2 Z3). SinceC 2 R
and [(" f (
�1))Æ, C] 2 [R, F ],

[" f (
�1), 
 ]Æ D [(" f (
�1))Æ, 
 Æ]

D [(" f (
�1))Æ, C"Q(
�1)

 ]

D [(" f (
�1))Æ, C]C[(" f (
�1))Æ, "Q(
�1)

 ]C�1

� [(" f (
�1))Æ, "Q(
�1)

 ] D [(("
 )Æ) f1(" f0)Æ, "Q(
�1)


 ].

We find

(" f0)Æ D ("Æ) f0
D (D"Q(
�1)C1) f0

� D f0("Q(
�1)C1) f0,

(" f1
 )Æ D (("
 )Æ) f1
D ([Æ, 
 ]("Æ)
 [Æ, 
 ]�1) f1

� (C"Q(
�1)(D"Q(
�1)C1)
 ("Q(
�1))�1C�1) f1

� r ("Q(
�1)C1) f1


for somer 2 R by (7). Therefore we obtain

[" f (
�1), 
 ]Æ � [("Q(
�1)C1) f1

� ("Q(
�1)C1) f0, "Q(
�1)


 ]

� [r 0"(Q(
�1)C1)( f1
C f0), "Q(
�1)

 ] (for some r 0 2 R by (7))

� [Wf , "
Q(
�1)


 ]

D Wf "
Q(
�1)W�


f ("Q(
�1))�1.

On the other hand,E
�1
� "

Q(
�1)[", "
 ]q1q0 by (7). Therefore, again by (7),

"

Q(
�1)
� [E
 , E�1]E�1E
 [", "
 ]�q1q0

� E�1E
 [", "
 ]q2
1Cq1q0Cq2

0 .

Combining this with the above, we obtain the lemma.

Lemma 4.7. (i) [Æ"B(
�1), 
 ] � C[", "
 ]q2
1Cq1q0Cq2

0 ,
(ii) [ Æ, 
 "�


�1
] � C D�1,

(iii) [ Æ"J(
�1), 
 "

�1

] � C D[", "
 ]q2
1Cq2

0�q1�q0�J 0(0).

Proof. By Lemma 4.5 (i), the relationPK (T) j �Q(T)=T C (1 C T)B(T) in
Lemma 4.3 implies thatWB E�1

2 R. Hence, by Lemma 4.6, we get

[Æ"B(
�1), 
 ] D ["B(
�1), 
 ]Æ[Æ, 
 ]

� ((WB E�1)
�1)�1)("Q(
�1))�1[", "
 ]q2
1Cq1q0Cq2

0 [Æ, 
 ]

� C[", "
 ]q2
1Cq1q0Cq2

0 .
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In the same way,

[Æ, 
 "�

�1

] D [Æ, "�1

 ] D [Æ, "�1][Æ, 
 ]"

�1
D "

�1[Æ, "]�1
"[Æ, 
 ]"

�1

� "

�1("Q(
�1))�1D�1
""

�1C"Q(
�1)
"

� C D�1.

Finally, we compute [Æ"J(
�1),
 "

�1

] D [Æ"J(
�1),"][Æ"J(
�1),
 ]". Note that the relation
PK (T) j J(T)(1C Q(T))�2Q(T)=T implies thatWJ E�2

2 R. Since J(T) D J 0(0)T C
J(0), it turns out that

[Æ"J(
�1), "] D ["J(
�1), "]Æ[Æ, "] � [", "
 ]�J 0(0)D"Q(
�1),

[Æ"J(
�1), 
 ] D ["J(
�1), 
 ]Æ[Æ, 
 ]

� ((WJ E�1)
�1)�1("Q(
�1))�1[", "
 ]q2
1Cq1q0Cq2

0 C"Q(
�1)

� ((WJ E�1)
�1)�1C[", "
 ]q2
1Cq1q0Cq2

0

� ("Q(
�1))�1C[", "
 ]q2
1Cq2

0 .

In fact, the last congruence follows from the congruences

(WJ E�1)
�1
D [
 , WJ E�2E] � E
�1

� "

Q(
�1)[", "
 ]q1q0.

Therefore

[Æ"J(
�1), 
 "

�1

] � [", "
 ]�J 0(0)D"Q(
�1)
� "("Q(
�1))�1C[", "
 ]q2

1Cq2
0
"

�1

� [", "
 ]�J 0(0)D[", ("Q(
�1))�1]C[", "
 ]q2
1Cq2

0

� C D[", "
 ]q2
1Cq2

0�q1�q0�J 0(0).

This completes the proof.

We apply Proposition 2.3 to the extensionL(Kn)=k. By Lemmas 4.3, 4.5 and 4.7,
we obtain QL(Kn) D L(Kn) if and only if the three elementsC[", "
 ]q2

1Cq1q0Cq2
0 , C D�1,

C Dq2
1Cq2

0�q1�q0�J 0(0) generate the grouph[", "
 ], C, Di[R, F ]=(R\ [F, F ])3[R, F ]. Since
J 0(0) � �2(q1 C q0)2

C 2q1 � 1� q1 mod 3 by (6), we see that this is equivalent to
(q1Cq0)2

Cq1Cq0C J 0(0)� q0�1¥ 0 mod 3. To complete the proof of Theorem 1.2,
we show the following:

Lemma 4.8. Put PK (T) D T2
Cc1TCc0 (c1, c0 2 3Z3), then c0 � 3 mod 32 and

q0 ¥ 1 mod 3� c1 ¥ 3 mod 32.

Therefore QL(Kn) D L(Kn) if and only if PK (�1)� 4� c1 ¥ 1 mod 32.
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Proof. Dividing byPK (T)D T2
Cc1TCc0, Q(T) has the formQ(T)D q1PK (T)C

rT �c0q1, wherer WD q1Cq0�c1q1 2 Z
�

3 . Then, by Proposition 2.1,PK (T) has the form

PK (T) D (3-unit)(Q(T)2
C 3Q(T)C 3)

� (3-unit)((rT � c0q1)2
C 3(rT � c0q1)C 3) mod PK (T).

Hence PK (T) j (rT � c0q1)2
C 3(rT � c0q1)C 3. Therefore we get

PK (T) D (3-unit)((rT � c0q1)2
C 3(rT � c0q1)C 3)

D T2
C r �1(3� 2c0q1)T C r �2(c2

0q2
1 � 3c0q1C 3),

where note that the leading coefficient of the last polynomial is 1 since the character-
istic polynomial PK (T) is distinguished. Therefore we obtainc1r D 3� 2c0q1, c0r 2

D

c2
0q2

1 � 3c0q1C 3. Put ci D 3Nci (i D 1, 0), then

Nc0 � 1 mod 3, Nc1 � r �1(1C q1) � (q1C q0)(1C q1) mod 3,

since r 2
� 1 mod 3. We can easily check that the lemma follows from these congru-

ences andq1C q0 ¥ 0 mod 3.

Finally, we give some examples:

Proposition 4.9. PK (�1)¥ 1 mod 32 if and only if A(K1) has no element with
order 33 i.e., A(K1) ' (Z=32

Z)�2.

Proof. We know

A(K1) ' 3=(PK (T), T3
C 3T2

C 3T)

' 3=(PK (T), (3� c0 � 3c1C c2
1)T � c0(3� c1))

by (1). Then we can easily check 32
j (3� c0 � 3c1 C c2

1)T � c0(3� c1), sincec0 �

3 mod 32. If PK (�1)¥ 1 mod 32 i.e., c1 ¥ 3 mod 32, then

A(K1) ' 3=(PK (T), 32) ' (Z=32
Z)�2.

On the other hand, ifc1 � 3 mod 32, then

A(K1) ' 3=(PK (T), 32(s1T C 3s0))

for somes1, s0 2 Z3. Consider the exact sequence

0!
(PK (T), 32)

(PK (T), 32(s1T C 3s0))
!

3

(PK (T), 32(s1T C 3s0))
!

3

(PK (T), 32)
! 0.
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Assume thatA(K1) has no element with order 33. Then 32 2 (PK (T), 32(s1T C 3s0)),
and so that there exist somef (T), g(T) 2 3 such that 32 D PK (T) f (T) C 32(s1T C
3s0)g(T). This induces 32 j f (T). However, then 32 � PK (0) f (0)� 0 mod 33. This is
a contradiction. Since dim

F3 A(K1)

Z

F3 D 2, we complete the proof.

EXAMPLE . Let k D Q(
p

�m) and KC an abelian 3-extension of conductorl D
43. If m D 7, 30, 37, thenA(K1) ' (Z=32

Z)�2 and so thatQL(Kn) D L(Kn) for any
n � 0. On the other hand, ifm D 46, then A(K1) ' Z=32

Z � Z=33
Z and so that

QL(Kn) ¤ L(Kn) for any n � 1.

REMARKS. If we discard the assumptionpD 3 in Theorem 1.2, the author can-
not compute dim

Fp H2(Gn,Zp)

Zp Fp as in the same way similar to Lemma 4.4 since

it seems to depend on the form ofQ(T).
Let p, l be odd prime numbers such thatp j l � 1. Takek, KC, and K as in the

beginning of this section. Assume thatp does not split inK . If we assume, on the
contrary to the assumption in Theorem 1.1, thatl splits in k, we do not succeed in
classifying the fieldK such that QL(K

1

) D L(K
1

). Applying [15, Theorem 1.1], we
have the following:

QL(K
1

) D L(K
1

))

�

(a) p k l � 1, �k D 1, dim
Fp A(K ) D 1 or

(b) p k l � 1, �k D 0.

Theorem 1.2 is a special case of (b). In the case (a), we can prove the fact that
dim

Fp H2(Gn, Zp)

Zp Fp D 3. However, the author cannot find any relations like (7).
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