<table>
<thead>
<tr>
<th>Title</th>
<th>The commutativity of galois groups of the maximal unramified pro-p-extensions over the cyclotomic Zp-extensions II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Okano, Keiji</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 49(2) P.271–P.295</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2012-06</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/12486</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/12486</td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/repo/ouka/all/

Osaka University
THE COMMUTATIVITY OF GALOIS GROUPS OF
THE MAXIMAL UNRAMIFIED PRO-p-EXTENSIONS OVER
THE CYCLOTOMIC \mathbb{Z}_p-EXTENSIONS II

KEIJI OKANO

(Received October 13, 2009, revised October 22, 2010)

Abstract

Let p be an odd prime number and K_∞ the cyclotomic \mathbb{Z}_p-extension of a Galois p-extension K over an imaginary quadratic field. We consider the Galois group $\hat{X}(K_\infty)$ of the maximal unramified pro-p-extension of K_∞. In this paper, under certain assumptions, we give certain K such that $\hat{X}(K_\infty)$ is abelian. Also, we give an example such that a special value of the characteristic polynomial of the Iwasawa module of K_∞ determines whether $\hat{X}(K_\infty)$ is abelian or not.

1. Introduction

Let p be an odd prime number, F a finite extension over the field \mathbb{Q} of rational numbers and F_∞ the cyclotomic \mathbb{Z}_p-extension of F. In other words, F_∞ is defined by the following. The extension over F which is obtained by adjoining to F all roots of unity of p-power order has the unique subfield whose Galois group over F is isomorphic to the additive group of the ring \mathbb{Z}_p of p-adic integers. We define F_∞ by the subfield. Denote by $\hat{X}(F)$ (resp. $\hat{X}(F_\infty)$) the Galois group of the maximal unramified pro-p-extension $\tilde{L}(F)$ of F (resp. $\tilde{L}(F_\infty)$ of F_∞). The extensions $\tilde{L}(F)/F$, $\tilde{L}(F_\infty)/F_\infty$ are called the p-class field towers, and their Galois groups $\hat{X}(F)$, $\hat{X}(F_\infty)$ are very interesting objects in number theory. Though $\hat{X}(F)$ can be infinite, we have quite a few known criterions for assuring that $\hat{X}(F)$ is finite: in addition, we do not have efficient methods for describing the structure of $\hat{X}(F)$. However, we mention that Ozaki [17] recently showed that there exists F such that $\hat{X}(F)$ is isomorphic to any given finite p-group.

We apply Iwasawa theory to the study of p-class field towers, such as in Mizusawa [11], [12] and Ozaki [16]. We consider to classify the finite algebraic number fields F such that each $\hat{X}(F_\infty)$ is abelian; in other words, the maximal unramified pro-p-extension of each F_∞ remains abelian extension. It is equivalent that $\hat{X}(F_\infty)$ is abelian and that all sufficiently large subfields in F_∞/F have the p-class field towers whose Galois groups are abelian. Also if $\hat{X}(F)$ is abelian for a finite algebraic number field.
F, then $\tilde{X}(F)$ is finite and isomorphic to the p-Sylow subgroup of the ideal class group of F.

In [14], the author determined the all imaginary quadratic fields F such that $\tilde{X}(F_{\infty})$ is abelian for an odd prime number p: for $p = 2$, the same result was shown by Mizusawa–Ozaki [13]. After [13] and [14], one of further problems for the above classifying is to treat the case where F is an abelian number field. However, this problem seems very difficult. Since, for instance, there is Greenberg’s conjecture which says that the maximal unramified abelian pro-p-extension of F_{∞} is finite if F is totally real. In [15], the author studied necessary conditions for $\tilde{X}(F_{\infty})$ to be abelian. And also the case where each F is totally imaginary abelian p-extensions over imaginary quadratic fields with certain assumptions is treated. On the other hand, Sharifi [18] computed the structure of $\tilde{X}(F_{\infty})$ in the case where F is the cyclotomic p-th extension.

In this paper, we treat totally imaginary abelian p-extensions over imaginary quadratic fields with certain assumptions which are different from [15]. Simultaneously, we consider the following question.

We note the fact in [13] that, if $p = 2$, there is a case where the special value modulo 2^2 of the characteristic polynomial of Iwasawa module contributes to the condition for $\tilde{X}(F_{\infty})$ to be abelian. This fact is interesting since the characteristic polynomials of Iwasawa modules are connected to the p-adic L-function by Mazur–Wiles [10]. So that the next question arises. Is there a similar case if p is odd?

We use the notation $A(F)$ for the p-Sylow subgroup of the ideal class group of F. Then we obtain followings:

Theorem 1.1. Let p, l be odd prime numbers such that $p \mid l - 1$, k an imaginary quadratic field with the property that $k \neq \mathbb{Q}(\sqrt{-3})$ if $p = 3$, and K an abelian p-extension of \mathbb{Q} with conductor l. Put $K := kK^+$ and let K_∞ be the cyclotomic \mathbb{Z}_p-extension of K. Assume that p does not split in K and l does not split in k. Then the Galois group $\tilde{X}(K_\infty)$ of the maximal unramified pro-p-extension over K_∞ is abelian if and only if $A(k) = 0$ moreover we have then $\tilde{X}(K_\infty) = 1$.

Theorem 1.2. Let l be an odd prime number such that $3 \mid l - 1$, k an imaginary quadratic field with the property that $k \neq \mathbb{Q}(\sqrt{-3})$, and K the unique abelian 3-extension of \mathbb{Q} with conductor l. Put $K := kK^+$ and let $P_K(T) \in \mathbb{Z}_3[T]$ be the characteristic polynomial of the Iwasawa module of the cyclotomic \mathbb{Z}_3-extension K_{∞}/K. Suppose that 3 does not split in K but l splits in k. Moreover, assume that $A(k) = 0$ and $\text{dim}_{\mathbb{F}_3}A(K) \otimes \mathbb{Z}_3\mathbb{F}_3 = 1$. Then $\tilde{X}(K_\infty)$ is abelian if and only if $P_K(-1) \not\equiv 1$ mod 3^2.

2. Preliminaries

From now on, for any CM-field F, we use the notation F^\pm and F_n for the maximal totally real subfield of F and the unique subfield with degree p^n of the cyclotomic \mathbb{Z}_p-extension F_{∞} over F, respectively. Denote the maximal unramified abelian
\(p \)-extension of \(F \) by \(L(F) \) and its Galois group \(\tilde{X}(F)^{ab} \) by \(X(F) \). Similarly, denote the maximal unramified abelian pro-\(p \)-extension of \(F_\infty \) by \(L(F_\infty) \) and its Galois group by \(X(F_\infty) \). For any module \(A \) on which \(\text{Gal}(F/F^+) \) acts, put \(A^+ := A^{\text{Gal}(F/F^+)} \), \(A^- := A/A^+ \).

Fix a topological generator \(\tilde{\gamma} \) of \(\text{Gal}(F_\infty/F) \). And we write its restriction on \(\text{Gal}(F_n/F) \) as the same notation for each \(n \geq 0 \). Choose an extension \(\gamma \in \text{Gal}(L(F_\infty)/F) \) of \(\tilde{\gamma} \). Then \(\text{Gal}(F_n/F) \) acts on \(X(F_n) \) as the inner automorphisms defined by \(x^\gamma = \gamma x \gamma^{-1} \) for any \(x \in X(F_n) \). Note that this action is independent of the choice of an extension \(\gamma \) and commutes with the Artin maps \(X(F_n) \simeq A(F_n) \). We identify \(X(F_n) \) with \(A(F_n) \) by these isomorphisms. Since \(X(F_\infty) \simeq \varprojlim X(F_n) \), the complete group ring \(\lim Z_p[\text{Gal}(F_n/F)] \) acts on \(X(F_\infty) \) continuously, where each inverse limit is taken over Galois restrictions. Hence the formal power series ring \(\Lambda := Z_p[[T]] \) acts on \(X(F_\infty) \) via the non-canonical isomorphism \(\Lambda \simeq \varprojlim Z_p[\text{Gal}(F_n/F)] \) which is obtained by sending \(1 + T \) to the fixed topological generator \(\tilde{\gamma} \) of \(\text{Gal}(F_\infty/F) \). Therefore \(X(F_\infty) \) is a \(\Lambda \)-module, so that we write the action of \(\Lambda \) additionally; \(x^\gamma = (1 + T)x \).

The module \(\Lambda \) is a noetherian local ring with the maximal ideal \((p, T) \). We define a distinguished polynomial \(P(T) \in Z_p[T] \) by monic polynomial such that \(P(T) \equiv T^{\deg P(T)} \mod p \). Then, by the \(p \)-adic Weierstraß preparation theorem [19, Theorem 7.3], any non-zero element \(f(T) \in \Lambda \) can be uniquely written

\[
 f(T) = p^n P(T) U(T)
\]

with an integer \(n \geq 0 \), a distinguished polynomial \(P(T) \) and \(U(T) \in \Lambda^\times \). Then \(\deg P(T) \) is called the residue degree of \(f(T) \). Also, there is a division theorem [19, Proposition 7.2] for distinguished polynomials: if \(f(T) \in \Lambda \) is non-zero and \(P(T) \) is distinguished, then there uniquely exist \(q(T) \in \Lambda \) and \(r(T) \in Z_p[T] \) such that

\[
 f(T) = q(T)P(T) + r(T), \quad \deg r(T) < \deg P(T).
\]

Therefore \(\Lambda \) is a UFD, whose irreducible elements are \(p \) and irreducible distinguished polynomials.

It turns out that \(X(F_\infty) \) is a finitely generated torsion module over \(\Lambda \). Therefore we can define the Iwasawa \(\lambda \)-invariant \(\lambda_F \) of \(F_\infty/F \) by the dimension of \(X(F_\infty) \otimes_{Z_p} \mathbb{Q}_p \) over the \(p \)-adic field \(\mathbb{Q}_p \). There is a \(\Lambda \)-homomorphism

\[
 X(F_\infty)^{-} \to \bigoplus_{i=1}^{s} \Lambda/(P_i)^{m_i}
\]

such that its kernel and cokernel are finite, where the principal ideals \((P_i) \) in \(\Lambda \) are prime ideals of height 1, the ideals \((P_i) \) and the integers \(m_i \), \(s \) are uniquely determined by \(X(F_\infty)^{-} \) ([19, Theorem 13.12]). In fact, the map is injective since \(X(F_\infty)^{-} \) has no non-trivial finite \(\Lambda \)-submodules by [19, Theorem 13.28]. We say that the Iwasawa
\(\mu_{inv} \mu_F \) of \(F_\infty/F \) is zero if \(X(F_\infty) \) is also finitely generated over \(\mathbb{Z}_p \); For example, if \(F/Q \) is an abelian extension, then \(\mu_F = 0 \) by Ferrero–Washington [2]. In particular, if \(\mu_F = 0 \), then \(X(F_\infty)^- \) is a free \(\mathbb{Z}_p \)-module, and so that we may take each \(P_i \) as an irreducible distinguished polynomial. Then the polynomial \(P_F(T) := \prod_{i=1}^{n} P_i^{m_i} \) is called the characteristic polynomial of \(X(F_\infty)^- \) and we have \(\lambda_F^- := \lambda_F - \lambda_{F^*} = \deg P_F(T) \). It turns out that, if the extension \(F_\infty/F \) is totally ramified at all primes lying above \(p \), then there is an isomorphism

\[
(1) \quad X(F_n) \simeq X(F_\infty) / \frac{\omega_n(T)}{T} Y
\]

for any \(n \geq 0 \), where \(Y := \text{Gal}(L(F_\infty)/L(F)F_\infty) \), \(\omega_n(T) := (T + 1)^{p^n} - 1 \).

Now, let \(k \) be a CM-field such that \(k \) is a finite extension over \(\mathbb{Q} \) with \(\mu_k = 0 \) and \(K^+ \) a cyclic extension of \(k^+ \) with degree \(p \) such that \(k_\infty^+ \cap K^+ = k^+ \). Put \(K := kK^+ \) and \(\Delta := \text{Gal}(K/k) \). First of all, we compare \(P_K(T) \) with \(P_k(T) \) (Proposition 2.1). We identify \(\Gamma := \text{Gal}(k_\infty/k) \) with \(\text{Gal}(K_\infty/K) \) and \(\Delta \) with \(\text{Gal}(K_\infty/k_\infty) \) by the canonical isomorphisms. Note that \(\Delta \) acts on \(X(K_\infty) \) and \(X(K_\infty)^- \) as the inner automorphisms similar to the action of \(\Gamma \). The actions of \(\Gamma \) and \(\Delta \) are commutative since \(X(K_\infty) \), \(X(K_\infty)^- \) and \(\text{Gal}(K_\infty/k) \) are abelian. Therefore \(X(K_\infty) \), \(X(K_\infty)^- \) are \(\Lambda[\Delta] \)-modules. By Iwasawa [7] and Kida’s formula [8], \(\mu_K = 0 \) and

\[
(2) \quad \lambda_k^- = p \lambda_k^- + (p - 1)(s - v),
\]

where \(s \) is the number of primes in \(K_\infty^+ \) not lying above \(p \) which split in \(K_\infty/K_\infty^+ \) and ramify in \(K_\infty^+ /k_\infty^+ \), and \(v = 1 \) or \(0 \) according as a primitive \(p \)-th root of unity is in \(k \) or not. In addition, suppose that \(X(K_\infty)^- \) is cyclic over \(\Lambda \). Then we have a surjection

\[
\Lambda/(P_K(T)) \twoheadrightarrow X(K_\infty)^-,
\]

since \(X(K_\infty)^- \) has no non-trivial finite \(\Lambda \)-submodules and is annihilated by \(P_K(T) \). Comparing the \(\mathbb{Z}_p \)-ranks, we have \(X(K_\infty)^- \simeq \Lambda/(P_K(T)) \). Fix a generator \(\varepsilon \in X(K_\infty)^- \) over \(\Lambda \) and a generator \(\delta \in \Delta \). We described the action of \(\Delta \) as \(\varepsilon^\delta \). Then we have

\[
\varepsilon^\delta = (Q(T) + 1)\varepsilon
\]

for some \(Q(T) \in \Lambda \). Then polynomial \(Q(T) \in \Lambda \) is uniquely defined up to the modulus \(P_K(T) \) and independent of the choice of \(\varepsilon \). We may assume that \(Q(T) \) is a polynomial by the division theorem. Put

\[
(3) \quad N(T) := Q(T)^{p-1} + \left(\frac{p}{p-1} \right) Q(T)^{p-2} + \cdots + \left(\frac{p}{1} \right) = \frac{(Q(T) + 1)^p - 1}{Q(T)},
\]

where \(\left(\frac{p}{r} \right) \) is a binomial coefficient. Then we have the following proposition:
Proposition 2.1. Let K/k and Δ be as above. Assume that $X(K_{\infty})^{-}$ is non-trivial and cyclic over Λ. Then the followings hold:

(i) If $\lambda_{k}^{-} = 1$, $s = 0$ and $\nu = 1$, where s and ν are defined above, then $X(K_{\infty})^{-} \simeq \mathbb{Z}_{p}$ as $\mathbb{Z}_{p}[\Delta]$-modules and $P_{K}(T) = P_{k}(T)$. And then, $Q(T) = 0$.

(ii) If $\lambda_{k}^{-} \neq 1$ or $s \neq 0$ or $\nu \neq 1$, then $s - \mu \geq 0$,

$$P_{K}(T) = (\Lambda\text{-unit})P_{k}(T)N(T) \quad \text{i.e.,} \quad P_{k}(T)N(T)/P_{K}(T) \in \Lambda_{\times},$$

$$X(K_{\infty})^{-} \simeq \mathbb{Z}_{p}[\Delta]^{\oplus \lambda_{k}^{-}} \oplus I_{\Delta}^{\oplus (s - \nu)} \quad \text{as} \quad \mathbb{Z}_{p}[\Delta]\text{-modules}$$

and the residue degree of $Q(T)$ is $\lambda_{k}^{-} + s - \nu$, where I_{Δ} is the augmentation ideal in $\mathbb{Z}_{p}[\Delta]$.

Proof. We treat $X(K_{\infty})^{-}$ as the inverse limit of ideal class groups via the identification $X(K_{\infty})^{-} = \lim_{\leftarrow} \Lambda(K_{n})^{-}$. We consider the norm map $N_{K_{n}/K_{\infty}} : X(K_{\infty})^{-} \to X(k_{\infty})^{-}$ which is induced by the norm maps $N_{K_{n}/K_{\infty}} : X(K_{n})^{-} \to X(k_{n})^{-}$ and the norm operator $N_{\Delta} : X(K_{\infty})^{-} \to X(K_{\infty})^{-}$ ($N_{\Delta}(x) := x + x^{\frac{\mu}{p-1}} + \cdots + x^{p^{n} - 1}$). If K_{∞}/k_{∞} is not unramified, in other words, $K_{\infty} \cap L(k_{\infty}) = k_{\infty}$, then $N_{K_{n}/k_{\infty}}$ is surjective by the class field theory. Similarly, $N_{K_{n}/k_{\infty}}$ is surjective if K_{∞}/k_{∞} is unramified. Indeed, by taking the minus-part of the exact sequence of Galois groups

$$1 \to \text{Gal}(L(k_{\infty})/K_{\infty}) \to X(k_{\infty}) \to \Delta \to 1,$$

we have $X(k_{\infty})^{-} = \text{Gal}(L(k_{\infty})/K_{\infty})^{-}$. The right hand side is isomorphic to the image of $X(K_{\infty})^{-}$ by $N_{K_{n}/k_{\infty}}$ and so that $N_{K_{n}/k_{\infty}}$ is surjective. Hence $X(k_{\infty})^{-}$ is a cyclic Λ-module generated by $N_{K_{n}/k_{\infty}}$ and is isomorphic to $\Lambda/(P_{k}(T))$.

The norm operator N_{Δ} coincides with the endomorphism by multiplying $N(T)$ since

$$N_{\Delta}(x) = x + x^{\frac{\mu}{p-1}} + \cdots + x^{p^{n} - 1}$$

$$= (1 + (1 + Q(T)) + \cdots + (1 + Q(T))^{p-1})x$$

$$= N(T)x.$$

Therefore we have the following commutative diagram:

$$
\begin{array}{ccc}
\Lambda/(P_{k}(T)) & \simeq & X(K_{\infty})^{-} \quad \xrightarrow{N_{\Delta}} \\
\Lambda/(P_{k}(T)) & \simeq & X(k_{\infty})^{-} \quad \xrightarrow{\text{lift.}} \\
\Lambda/(P_{k}(T)) & \simeq & X(k_{\infty})^{-} \quad \xrightarrow{\text{lift.}} \\
\end{array}
$$

Here the each map id. and lift. is the map induced by the identity map $\Lambda \to \Delta$ and the lifting maps on the ideal class groups $t_{n} : A(k_{n})^{-} \to A(K_{n})^{-}$, respectively, and the
commutativity of the center square follows from $N_\Delta = f_\epsilon \circ N_{K_\epsilon/k_\epsilon}$. It follows from this that

\[(4) \quad P_\epsilon(T) \mid P_K(T) \mid P_p(T) N(T),\]

where we use the notation $f(T) \mid g(T)$ if $f(T), g(T) \in \Lambda$ satisfy $g(T)/f(T) \in \Lambda$ (recall that Λ is a UFD). Now, we see that $Q(T) N(T)$ belongs to the ideal $(P_K(T))$ of Λ since $\epsilon = e^{s \rho_p}$, so that there is some $F(T) \in \Lambda$ such that $Q(T) N(T) = P_K(T) F(T)$. This equation and (3) follow $Q(0) \in p \mathbb{Z}_p$ since $P_K(0) \not\in \mathbb{Z}_p^\times$ by the assumption $X(K_{\infty})^\tau \neq 0$. Moreover, we see that $p \mid N(0)$ by (3) (note that $p \geq 3$). Therefore, by the p-adic Weierstraß preparation theorem,

\[N(T) = p U(T) \quad \text{or} \quad N(T) = \tilde{N}(T) U(T)\]

with some $U(T) \in \Lambda^\times$ and some irreducible distinguished polynomial $\tilde{N}(T) \in \mathbb{Z}_p[T]$. Combining (4) with $p \nmid P_K(T)$, we have

\[P_K(T) = P_p(T) \quad \text{or} \quad P_K(T) = P_p(T) \tilde{N}(T).\]

First, we suppose $P_K(T) = P_p(T)$. Then $1 \leq \lambda_{\tilde{N}} = \lambda_\epsilon = v - s$ by (2) and we have

\[P_K(T) = P_p(T) \iff \lambda_{\tilde{N}} = 1, \quad s = 0, \quad v = 1.\]

Then we may assume that deg $Q(T) < \deg P_K(T) = 1$ by the division theorem. If $Q(T) \neq 0$, then $Q(T)$ is a constant, and so is $P_K(T) F(T) = Q(T) N(T)$, which is a contradiction. Therefore $Q(T) = 0$, which implies that δ acts on $X(K_{\infty})^\tau$ trivially.

Next, we suppose that $P_K(T) = P_p(T) \tilde{N}(T)$ to show the rest of (ii). Then, note that $Q(T), N(T) \notin p \Lambda$ since $P_K(T) \not\in p \Lambda$. Let $\tilde{Q}(T) \in \mathbb{Z}_p[T]$ be a distinguished polynomial such that $Q(T)/\tilde{Q}(T) \in \Lambda^\times$: $\tilde{Q}(T)$ depends on the choice of $Q(T)$. Then we know

\[(5) \quad \deg \tilde{N}(T) = (p - 1) \deg \tilde{Q}(T) = (p - 1)(\lambda_{\tilde{N}} + s - v)\]

by $N(T) \equiv T^{(p - 1) \deg \tilde{Q}(T)(Q(T)/\tilde{Q}(T))} \pmod{p}$ and (2). Hence $\deg \tilde{Q}(T) = \lambda_{\tilde{N}} + s - v$. In particular, $\deg \tilde{Q}(T)$ does not depend on the choice of $Q(T)$. Note that $P_K(T) \mid Q(T)$ by $Q(T) N(T) = P_K(T) F(T)$ and $P_K(T) = P_p(T) \tilde{N}(T)$.

This implies that $s - v = \deg \tilde{Q}(T) - \deg P_p(T) \geq 0$ and also that $P_p(T)$ and $\tilde{N}(T)$ are relatively prime by (3). Finally, since Δ is a cyclic group with order p and $X(K_{\infty})^\tau$ is a free \mathbb{Z}_p-module, we have a representation

\[X(K_{\infty})^\tau \simeq \mathbb{Z}_p[\Delta]^{\oplus \lambda_{\tilde{N}}} \oplus I_\Delta^{p(s-\lambda_{\tilde{N}})}\]

as $\mathbb{Z}_p[\Delta]$-modules by Gold–Madan [5]. This completes the proof.
Corollary 2.2. Let K/k and Δ be as above. Suppose that only one prime of K_∞ lies above p and that this prime is totally ramified in K_∞/K. Assume that $A(K)^-\simeq \Lambda/(P_k(T), T) \simeq \mathbf{Z}_p/P_K(0)\mathbf{Z}_p$. Assume that $A(K)^-$ is non-trivial and cyclic, then

$$\#A(K)^- = \begin{cases} \#A(k)^- & \text{(if the assumption of Proposition 2.1 (i) holds)}, \\ p \cdot \#A(k)^- & \text{(if the assumption of Proposition 2.1 (ii) holds)}, \end{cases}$$

where we denote the order of a set M by $\#M$.

Proof. By the assumption and [19, Theorem 13.22], we obtain

$$A(K) \simeq X(K_\infty)/T X(K_\infty).$$

By Nakayama’s lemma, $X(K_\infty)^-$ is non-trivial and cyclic over Λ since $A(K)^-$ is non-trivial and cyclic. Therefore, the claim follows from $A(K)^- \simeq \Lambda/(P_k(T), T) \simeq \mathbf{Z}_p/P_K(0)\mathbf{Z}_p$. \hfill \Box

To prove the main theorems, we use the central p-class field theory as follows. For the central p-class field theory, see [3] and also [14, §2]. Let F be a finite abelian p-extension of an imaginary quadratic field k. For a prime q in k which is ramified in F/k, we fix a prime lying above q in $L(F)$ and denote its decomposition group in $\text{Gal}(L(F)/k)$ by Z_q. Then we have the following proposition by the central p-class field theory and the judgment whether $\tilde{L}(F) = L(F)$ or not is reduced to the computation of the map Φ:

Proposition 2.3. With the notation above, assume that $k \neq \mathbf{Q}(\sqrt{-3})$ if $p = 3$. Consider the map

$$\Phi: \prod_q H_2(Z_q, \mathbf{Z}_p) \otimes_{\mathbf{Z}_p} \mathbf{F}_p \to H_2(\text{Gal}(L(F)/k), \mathbf{Z}_p) \otimes_{\mathbf{Z}_p} \mathbf{F}_p$$

which is induced by the canonical map $Z_q \to \text{Gal}(L(F)/k)$, where the product is taken over all primes in k which are ramified in F/k. Then $\tilde{L}(F) = L(F)$ if and only if Φ is surjective.

3. Proof of Theorem 1.1

3.1. Arithmetic part. Let p, l be odd prime numbers such that $p \mid l - 1$. We define an integer e by $p^{e+1} \parallel l - 1$. Let k be an imaginary quadratic field with the condition that $k \neq \mathbf{Q}(\sqrt{-3})$ if $p = 3$, and K^+ an abelian p-extension of \mathbf{Q} with conductor l. Put $K := kK^+$. We identify $\Gamma := \text{Gal}(k_\infty/k)$ with $\text{Gal}(K_\infty/K)$ and $\Delta := \text{Gal}(K/k)$ with $\text{Gal}(K_\infty/k_\infty)$. Assume that neither p nor l splits in K. Note that $X(\mathbf{Q}_\infty) = 0$ and
$X(K_{\infty}^+)=0$ by Iwasawa [6]. If $A(k)=0$, then $\tilde{X}(K_{\infty})=1$ again by [6]. Therefore we have only to show that $\tilde{L}(K_{\infty}) \neq L(K_{\infty})$ under the assumption that

$$A(k) \neq 0 \quad \text{and} \quad [K^+ : \mathbb{Q}]=p$$

for proving Theorem 1.1. Moreover, if $\lambda_k \geq 2$, then $X(k_{\infty})$ is not abelian by [14], and neither $\tilde{X}(K_{\infty})$ is. Therefore we may assume that

$$\lambda_k = \lambda_k^* = 1 \quad \text{and} \quad \lambda_K = \lambda_K^* = p.$$

Since $\lambda_k = 1$, we know $X(k_{\infty}) \simeq \mathbb{Z}_p$. Moreover, since the only one prime of k_{∞} lying above p is totally ramified in k_{∞}/k, $A(k)$ is a non-trivial cyclic group. Now, we apply Proposition 2.3 to the extension $L(K)/k$:

Lemma 3.1. With the notation above, $\tilde{L}(K) = L(K)$ if and only if $\dim_{\mathbb{F}_p} A(K) \otimes_{\mathbb{Z}} \mathbb{F}_p \leq 1$.

Proof. Since l does not split in K/K^+, the only one prime lying above l in K splits completely in $L(K)/K$ by the class field theory. Hence the decomposition group in $\text{Gal}(L(K)/k)$ of a prime lying above l in $L(K)$ is cyclic, and so that its Schur multiplier is trivial. Therefore, $\tilde{L}(K) = L(K)$ holds if and only if $H_2(\text{Gal}(L(K)/k), \mathbb{Z}_p) = 0$ by Proposition 2.3. By Evens [1], we have

$$H_2(\text{Gal}(L(K)/k), \mathbb{Z}_p) \simeq H_2(\Delta, \mathbb{Z}_p) \oplus H_1(\Delta, X(K)) \oplus H_2(\text{X}(K), \mathbb{Z}_p)_\Delta,$$

since $\text{Gal}(L(K)/k) \simeq X(K) \rtimes \Delta$. If $\dim_{\mathbb{F}_p} A(K) \otimes_{\mathbb{Z}} \mathbb{F}_p \geq 2$, then $H_2(\text{X}(K), \mathbb{Z}_p)_\Delta \simeq (A(K) \otimes_{\mathbb{Z}} \mathbb{Z}_p, A(K))_\Delta \neq 0$. This implies that $\tilde{L}(K) \neq L(K)$. On the other hand, the sufficiency of the assertion is clear. \hfill \square

By Lemma 3.1 and the above argument, for proving Theorem 1.1, it is sufficient to show the following proposition:

Proposition 3.2. Suppose that the following conditions hold:

(i) Neither p nor l splits in K/\mathbb{Q}.

(ii) $\lambda_k = 1$ (hence $A(k) \neq 0$ and $\lambda_K = p$).

(iii) $\dim_{\mathbb{F}_p} A(K) \otimes_{\mathbb{Z}} \mathbb{F}_p = 1$.

Then $\tilde{L}(K_n) \neq L(K_n)$ for any $n \geq 1$.

In the rest of this section, for a fixed non-negative integer n, we show Proposition 3.2. Suppose that p, l, k and K satisfy the condition of Proposition 3.2. Our first aim is to describe $G_n := \text{Gal}(L(K_n)/k)$ and some decomposition subgroups. Put $\Gamma_n := \Gamma/\Gamma^p$ for simplicity. Let $\tilde{\gamma}$ a fixed generator of Γ. Identify $\Lambda = \mathbb{Z}_p[[T]]$ with
\[
\lim \mathbb{Z}_p[\Gamma_n] \text{ by sending } 1 + T \text{ to } \bar{\gamma}. \quad \text{Since the only one prime lying above } p \text{ in } K \text{ is totally ramified in } K^\infty/K \text{ and } A(K) \text{ is a non-trivial cyclic group, } X(K^\infty) \text{ is cyclic over } \Lambda. \text{ Let } \varepsilon \text{ be a fixed generator of } X(K^\infty) \text{ over } \Lambda \text{ and } \delta \text{ a fixed generator of } \Delta. \text{ Then, since } X(K^\infty) = 0, \text{ we can apply Proposition 2.1 (ii) to obtain}
\]

\[
\begin{align*}
X(K^\infty) &= \Lambda \varepsilon \simeq \Lambda/(P_k(T)) \quad \text{as } \Lambda\text{-modules}, \\
X(K^\infty) &\simeq \mathbb{Z}_p[\Delta] \quad \text{as } \mathbb{Z}_p[\Delta]\text{-modules}, \\
Q(T)/P_k(T) &\in \Lambda^\times \quad \text{(since the residue degree of } Q(T) \text{ is } \lambda_k \text{ and } P_k(T) \mid Q(T)), \\
P_k(T)N(T)/P_k(T) &\in \Lambda^\times.
\end{align*}
\]

Here \(Q(T)\) is defined by \(\varepsilon^\delta = (Q(T) + 1)\varepsilon\) and \(N(T)\) is defined as in (3). Let \(M_n\) be the maximal abelian subextension in \(L(K_n)/k\). We denote by \(\varepsilon_n, \bar{\varepsilon}_n\) the projection of \(\varepsilon \in X(K^\infty)\) to \(G_n, G_n^ab := \text{Gal}(M_n/k)\), respectively. Let \(\bar{p}_n\) (resp. \(\bar{\gamma}_n\)) be a prime in \(L(K_n)\) lying above \(p\) (resp. \(l\)), and \(\gamma_n \in G_n\) (resp. \(\delta_n\)) a generator of the inertia group \(I_p \simeq \Gamma_n\) of \(\bar{p}_n\) (resp. the inertia group \(I_l \simeq \Gamma_n\)). Put \(\bar{\gamma}_n := \gamma_n \mod [G_n, G_n], \bar{\delta}_n := \delta_n \mod [G_n, G_n]\). Here \([G, G]\) stands for the topological commutator subgroup of a topological group \(G\), which is generated by \([g, h] := ghg^{-1}h^{-1}\) for all \(g, h \in G\).

We may assume that \(\gamma_n\) (resp. \(\delta_n\)) is an extension of \(\gamma \mod \Gamma p^m\) (resp. \(\delta \mod \Delta\)). Then \(\text{Gal}(K_n/k)\) acts on \(X(K_n) = \Lambda \varepsilon_n \simeq \Lambda/(P_k(T), \omega_n(T))\) by

\[
\varepsilon^\delta_n = \gamma_n \varepsilon_n \gamma_n^{-1} = (1 + T)\varepsilon_n, \quad \varepsilon^\delta = \delta_n \varepsilon_n \delta_n^{-1} = (1 + Q(T))\varepsilon_n.
\]

Lemma 3.3. As \(\Lambda\text{-modules}, [G_n, G_n] \simeq (T, p^m)/(P_k(T), \omega_n(T)).\) Also we have

\[
G_n^ab = \langle \bar{\gamma}_n \rangle \oplus \langle \bar{\delta}_n \rangle \oplus \langle \bar{\varepsilon}_n \rangle \simeq \mathbb{Z}/p^n\mathbb{Z} \oplus \mathbb{Z}/p\mathbb{Z} \oplus \mathbb{Z}/p^m\mathbb{Z},
\]

where \(m\) is defined by \(\#A(k) = p^m\).

Proof. Note that the maximal abelian subextension in \(L(K_n)/K\) is the fixed field by the Galois subgroup corresponding to

\[
(T, P_k(T))/(P_k(T), \omega_n(T)) = (T, P_k(0))/(P_k(T), \omega_n(T)).
\]

Clearly, \(M_n\) is contained in the field and also contains \(K_n\). Hence there is some \(p^i \leq P_k(0)\) such that \([G_n, G_n] \simeq (T, p^i)/(P_k(T), \omega_n(T))\). We show that \(t = m\), in other words, \(\text{Gal}(M_n/K_n) \simeq \mathbb{Z}/p^m\mathbb{Z}\) for any \(n \geq 0\). If \(n = 0\), then \(M_0\) has degree \(p^m\) over \(K\) by the genus formula [9, Chapter 13 Lemma 4.1]. Denote by \(M'_n\) the maximal abelian subextension in \(M_n/k\) which is unramified outside \(l\). Clearly \(M_0 \subset M'_n\). Moreover, we have \(M'_n = M_0\) since \(M'_n/K\) is unramified and abelian. Since \(M'_n\) is the fixed field in \(M_n\) by the inertia group of a prime lying above \(p\), \(M_n/M'_n K_n\) is totally ramified at the prime. On the other hand, since \(M'_n \cap K_n = K\), \(M_n/M'_n K_n\) is unramified at every
prime. Therefore $M_0K_n = M'_nK_n = M_n$, and \(\langle \tilde{e}_n \rangle = \Gal(M_n/K_n) \cong \mathbb{Z}/p^m\mathbb{Z} \). Hence we find \[[G_n, G_n] \cong (T, p^m)/(\Gal(T), \omega_n(T)). \]

Also, by the definitions of \(\tilde{y}_n, \tilde{h}_n, \tilde{e}_n \), we obtain \(\langle \tilde{y}_n \rangle \oplus \langle \tilde{h}_n \rangle \oplus \langle \tilde{e}_n \rangle \subset G^{ab}_n \). Comparing each order, we obtain the assertion.

In fact, \(\gamma_n \) and \(\delta_n \) are commutative and hence \(G_n \cong X(K_n) \rtimes (\Gamma_n \times \Delta) \). This fact follows from the next lemma. Recall that \(p^{e+1} \mid l - 1 \). From now on throughout this section, we regard \(X(K_n) \) as a subset of \(G_n \) and write the operator of \(X(K_n) \) multiplicatively.

Lemma 3.4. Let the subgroups \(Z_p, Z_l \) of \(G_n \) be the decomposition groups of \(\tilde{p}_n, \tilde{l}_n \), respectively. Then, changing \(\tilde{l}_n \) if necessary, there is some \(D(T) \in \Lambda \) defined uniquely up to the modulus \(P_k(T) \) such that

\[
Z_p = \langle \gamma_n \rangle \oplus \langle \delta_n \rangle,
\]

\[
Z_l = \begin{cases}
\langle \delta_n \rangle & \text{if } n \leq e, \\
\langle \gamma_n \rangle \oplus \langle \delta_n \rangle & \text{if } n > e.
\end{cases}
\]

Proof. The image of \(Z_p \) in \(G^{ab}_n \) is generated by \(\tilde{y}_n \) and \(\tilde{h}_n \). Therefore, \(Z_p \) is generated by the generator \(\gamma_n \) of \(I_p \) and a pre-image \(\rho_n \) of a generator of \(Z_p/I_p \). Moreover, every prime lying above \(p \) splits completely in \(L(K_n)/K_n \). Hence \(Z_p \cap [G_n, G_n] = 1 \). This implies that \([\gamma_n, \delta_n] = 1 \), and so that \(Z_p \) is abelian. Comparing the orders, we see that the natural surjection \(Z_p = \langle \gamma_n \rangle \oplus \langle \rho_n \rangle \twoheadrightarrow \langle \tilde{y}_n \rangle \oplus \langle \tilde{h}_n \rangle \) is isomorphic. We can take \(\rho_n \) which satisfies \(\rho_n \equiv \delta_n \mod [G_n, G_n] \). It follows from this that there is some \(B(T) \in (T, p^m) \) defined up to the modulus \(P_k(T) \) such that \(\rho_n = \delta_n e_nB(T) \). Since \(1 = \rho_n^p = e_n^{N(T)B(T)} \), we obtain \(P_k(T) \mid N(T)B(T) \). Hence \(Q(T) \mid B(T) \). On the other hand, let \(x := e_n^{-(1+Q(T))/B(T)/Q(T)} \) (note that \(1 + Q(T) \in \Lambda^\times \) since \(e_n^{1+Q(T)} = e_n^1 \)), then

\[
x \delta_n x^{-1} = \delta_n \delta_n^{-1} x \delta_n x^{-1} = \delta_n x^{(1+Q(T))^{-1}-1} = \delta_n e_n^{B(T)} = \rho_n.
\]

Hence \(\delta_n \) and \(\rho_n \) are conjugate each other in \(G_n \), so that we may assume that \(\delta_n = \rho_n \), changing \(\tilde{l}_n \) if necessary. This implies that \(B(T) = 0 \) and also \(\gamma_n \) and \(\delta_n \) are commutative.

On the other hand, we deal with \(Z_l \). Suppose that \(n \leq e \). Then every prime lying above \(l \) splits completely in \(L(K_n)/K_n \), so that \(Z_l = I_l \). Suppose that \(e < n \). Then the image of \(Z_l \) in \(G^{ab}_n \) is generated by \(\tilde{y}_n^{\rho_n} \) and \(\tilde{h}_n \). In the same way as in the above, we
see that there is some $C(T) \in (T, p^m)$ defined up to the modulus $P_K(T)$ such that

$$Z_T = \langle y_n^{p'} e_n^{C(T)} \rangle \oplus \langle \delta_n \rangle$$

Since

$$1 = y_n^{p'} e_n^{C(T)} \delta_n^{-1} = e_n^{-(1+T)p^r Q(T) C(T)}$$

we obtain $P_K(T) \mid Q(T) C(T)$ and so that, $D(T) := C(T)/N(T)$ is in Λ. This completes the proof.

\[\text{Lemma 3.5.} \quad \text{For any } n \geq 1, \, \dim_{\mathbb{F}_p} H_2(G_n, \mathbb{Z}_p) \otimes \mathbb{Z}_p \geq 2. \text{ If } e > 0, \text{ then } \tilde{L}(K_n) \neq L(K_n) \text{ for any } n \geq 1.\]

Proof. Combining the splitting exact sequence

$$1 \to X(K_n) \to G_n \to \Gamma_n \times \Delta \to 1$$

with the result in [1], we obtain

$$H_2(G_n, \mathbb{Z}_p) \simeq H_2(\Gamma_n \times \Delta, \mathbb{Z}_p) \oplus H_1(\Gamma_n \times \Delta, X(K_n)) \oplus H_2(X(K_n), \mathbb{Z}_p)_{\Gamma_n \times \Delta}.$$

We find that $H_2(\Gamma_n \times \Delta, \mathbb{Z}_p) \simeq \mathbb{Z}/p\mathbb{Z}$ again by [1]. On the other hand, we know that $H_1(\Gamma_n, X(K_n)) \simeq \hat{H}^0(\Gamma_n, A(K_n)) = 0$ which follows from the genus formula [9, Chapter 13 Lemma 4.1] and the injection $A(K) \to A(K_n)$ (see [19, Proposition 13.26]). Also, we get

$$H_1(\Delta, X(K_n)_{\Gamma_n}) \simeq \hat{H}^0(\Delta, X(K_n)_{\Gamma_n}) \cong (T, P_K(T))/(T, P_K(T)) = 0$$

from $p^m \mid Q(0)$. Therefore the Hochschild–Serre exact sequence

$$H_1(\Gamma_n, X(K_n))_{\Delta} \to H_1(\Gamma_n \times \Delta, X(K_n)) \to H_1(\Delta, X(K_n)_{\Gamma_n}) \to 0$$

yields the result $H_1(\Gamma_n \times \Delta, X(K_n)) = 0$. We have $H_2(X(K_n), \mathbb{Z}_p)_{\Gamma_n \times \Delta} \neq 0$. Indeed, $X(K_n)$ is not cyclic by $\lambda K = p$ and Fukuda [4], so that $H_2(X(K_n), \mathbb{Z}_p) \neq 0$ and $H_2(X(K_n), \mathbb{Z}_p)_{\Gamma_n \times \Delta} \neq 0$. This shows the first claim.

We are in the position of proving the second claim. Assume that $e > 0$. Take an integer $n \geq 1$ such that $n \leq e$. Then, for such an n, we have $H_2(Z_l, \mathbb{Z}_p) = 0$ and $H_2(Z_p, \mathbb{Z}_p) \simeq \mathbb{F}_p$. The combination of Proposition 2.3 and the first claim implies that $\tilde{X}(K_n)$ is not abelian and that neither every $\tilde{X}(K_n)$ is $(n \geq 1)$.

\[\text{3.2. Group theoretical part.} \quad \text{We deal with the remaining case where } e = 0. \text{ Assume that } e = 0. \text{ Our next aim is to obtain minimal presentations of } G_n, \mathbb{Z}_p, Z_l \text{ and}\]
their Schur multipliers by free pro-p-groups. Let $F := \langle y, \delta, e \rangle$ be a free pro-p-group of rank 3. We define the action of a polynomial $f(y) = a_k y^k + \cdots + a_1 y + a_0$ ($a_i \in \mathbb{Z}_p$) on F by the product of inner products such as

$$x^f(y) := x^{a_k} y^k \cdots x^{a_1} y + a_0 .$$

Put

$$R := \langle \gamma^p, \delta^p, e^{P_k(y-1)}, [\delta, \gamma], [\delta, e, \gamma^r], [\delta, e, y^r], \ldots, [\delta, e, y^{(p-1)/2}] \rangle_F,$$

where $\langle x, y, z \rangle_F$ stands for the closed normal subgroup generated by x, y, z and their conjugates. Note that there are equations

$$[x, y] = [x^z, y],$$
$$[x, yz] = [x, y][x, z]^y,$$
$$[x, y^k] = [x, y][x, y]^y \cdots [x, y]^{y^{k-1}}$$

for any $x, y, z \in F$ and any integer $k \geq 1$. We have the following lemma in the same way as in the proof of [14, Lemma 5.3]:

Lemma 3.6. For arbitrary $z_1, z_2 \in \mathbb{Z}_p$, $i, j \in \mathbb{Z}$,

(i) $[\varepsilon^{z_1} y^i, \varepsilon^{z_2} y^i]$ is congruent with some product of $[\varepsilon, \varepsilon^y], \ldots, [\varepsilon, \varepsilon^{y^{(p-1)/2}}]$ mod $[R, F]$. In particular, $[\varepsilon^{z_1} y^i, \varepsilon^{z_2} y^i] \in R$.

(ii) $[\varepsilon^{z_1} y^i, \varepsilon^{z_2} y^i] \equiv [\varepsilon, \varepsilon^y]^{-z_1 z_2}$ mod $[R, F](R \cap [F, F])^p$.

Proof. (i) First, we prove the case where $z_1 = z_2 = 1$. We have only to prove the claim that $[\varepsilon y^k, \varepsilon]$ is congruent with some product of $[\varepsilon, \varepsilon^y], \ldots, [\varepsilon, \varepsilon^{y^{(p-1)/2}}]$ mod $[R, F]$ for any non-negative integer k. If $k = 0, \pm 1, \ldots, \pm (p-1)/2$, this claim is clear. Fix an integer $k \geq (p-1)/2$ and assume that the claim holds for any non-negative integer i such that $0 \leq i < k$. If we put $P_k(y-1) = y^p + c_{p-1} y^{p-1} + \cdots + c_0$, then we have

$$1 \equiv \varepsilon y^{-i+(p-1)}, \ (\varepsilon^{-i} P_k(y-1))^{-1} = \varepsilon^{y^{-i} + (p-1)}, \varepsilon^{c_1}, \varepsilon^{c_2} \ldots \varepsilon^{c_0} \varepsilon^y \ldots \varepsilon^{y^p} \equiv [\varepsilon y^{-i+(p-1)}, \varepsilon^{c_1} \varepsilon^{c_2} \ldots \varepsilon^{c_0} \varepsilon^y \ldots \varepsilon^{y^p}] \mod [R, F],$$

since $-(p-1)/2 \leq k - (p-1) < k$. Hence $[\varepsilon y^{-i+(p-1)}, \varepsilon^{c_1} \varepsilon^{c_2} \ldots \varepsilon^{c_0} \varepsilon^y \ldots \varepsilon^{y^p}] \in R$ and so that, in the same way, we obtain

$$1 \equiv \varepsilon y^{-i+(p-1)}, \varepsilon^{c_1} \varepsilon^{c_2} \ldots \varepsilon^{c_0} \varepsilon^y \ldots \varepsilon^{y^p} \equiv [\varepsilon y^{-i+(p-1)}, \varepsilon^{c_1} \varepsilon^{c_2} \ldots \varepsilon^{c_0} \varepsilon^y \ldots \varepsilon^{y^p}] \frac{1}{y} \ldots \frac{1}{y^k} \mod [R, F] .$$
\[
\begin{align*}
&= [e^{y_{n+1}(n+1)}], \varepsilon]^{0} [e^{y_{n+1}(n+1)}], \varepsilon]^{e_{1} y} \cdots [e^{y_{k}], \varepsilon]^{e_{l_{-1}} y_{l_{-1}} [e^{y_{k}], \varepsilon}]^{y_{l_{-1}}} \\
&= [e^{y_{n+1}(n+1)}], \varepsilon]^{0} [e^{y_{n+1}(n+1)}], \varepsilon]^{e_{1} y} \cdots [e^{y_{k}], \varepsilon]^{e_{l_{-1}} y_{l_{-1}} [e^{y_{k}], \varepsilon}]^{y_{l_{-1}}} \mod [R, F].
\end{align*}
\]

Therefore we obtain \([e^{y_{n+1}(n+1)}, \varepsilon]^{y_{l_{-1}} \in R}\) and so that \([e^{y_{n+1}(n+1)}, \varepsilon]^{y_{l_{-1}}} = [e^{y_{n+1}(n+1)}, \varepsilon] \mod [R, F].\)

This implies that the claim holds. The general case where any \(z_{1}, z_{2} \in \mathbb{Z}\) follows from this, since, taking the limit later if necessary, we may assume that \(1 \leq z_{1}, z_{2} \in \mathbb{Z}\).

(ii) We have only to prove the case where \(z_{1} = z_{2} = 1\), since the general case follows from this immediately. For a polynomial

\[
f(y - 1) = a_{k} y^{k} + \cdots + a_{1} y + a_{0}
= b_{k}(y - 1)^{k} + \cdots + b_{1}(y - 1) + b_{0} \quad (a_{i}, b_{i} \in \mathbb{Z}),
\]

we obtain that

\[
a_{i} = \sum_{j=0}^{k} \binom{j}{i}(-1)^{j-i} b_{j},
\]

where we define \(\binom{j}{i} = 0\) if \(j < i\). And, in the same way as in the proof of (i), we obtain that

\[
[e^{y'}, e^{f(y - 1)}] = [e^{y'}, e^{a_{1} y^{1} + \cdots + a_{1} y + c_{0}}]
= [e^{y'}, e^{y^{k}}]^{b_{1}} \cdots [e^{y'}, e^{y^{l_{-1}}}]^{b_{l_{-1}}} \mod [R, F],
\]

since \([e^{y'}, e^{y^{k}}] \in R\). Now, if \(f(y - 1) = P_{K}(y - 1)\), then \(b_{p} = 1\) and \(b_{p-1} \equiv \cdots \equiv b_{0} \equiv 0 \mod p\), so that we obtain

\[
a_{i} \equiv \begin{cases} -1 \mod p & \text{(if } i = 0), \\ 1 \mod p & \text{(if } i = p), \\ 0 \mod p & \text{(otherwise).}
\end{cases}
\]

Therefore we have \(1 \equiv [e^{y'}, e^{P_{K}(y - 1)}] \equiv [e^{y'}, e^{P_{0}(y - 1)}] \mod [R, F](R \cap [F, F])^{p}. \)

Lemma 3.7. Let \(x \in F\). Then, for any polynomial \(f(T) \in \mathbb{Z}[T]\) and any non-negative integer \(k\), we have

\[
[x, (e^{f(y - 1)}^{k})^{\delta}] \equiv [x, e^{f(y - 1)(y - 1)\delta}] \mod [R, F],
\]

where the action of a product of polynomials \(f(y), g(y)\) is defined as

\[
x^{f(y)g(y)} := x^{a_{1} y^{k} \cdots x^{a_{1} y^{l_{-1}}}} \quad \text{if } f(y)g(y) = a_{k} y^{k} + \cdots + a_{1} y + a_{0}.
\]

Proof. If \(k = 0\), then the congruence holds. Suppose that the congruence holds for some \(k\). Note that, by \([\delta, y] \in R\) and Lemma 3.6 (i), the congruences \([x, (e^{y^{l_{-1}}})^{\delta}] \equiv
Therefore the congruence holds for any k, i, $j \in \mathbb{Z}$. Hence we have
\[
[x, (e^{f(y-1)})^j] \equiv [x, ((e^{Q(y-1)+1})^j e^{f(y-1)})^j] \equiv [x, e^{f(y-1)(Q(y-1)+1)^j}] \mod [R, F] \text{ (by the assumption)}.
\]

Therefore the congruence holds for any k by induction. \hfill \Box

Lemma 3.8. For $n \geq 1$, the sequence of pro-p-groups $1 \to R \to F \xrightarrow{\phi} G_n \to 1$ is exact, where the map $\phi: F \to G_n$ is given by $\gamma \mapsto \gamma_n$, $\delta \mapsto \delta_n$, $\varepsilon \mapsto \varepsilon_n$.

Proof. It is clear that $R \subset \text{Ker} \phi$ and ϕ is surjective, so that we have the surjective maps
\[
F/[F, F]R = (F/R)^{ab} \to G_n^{ab}, \quad [F, F]R/R = [F/R, F/R] \to [G_n, G_n].
\]
We prove that these two maps are isomorphisms. We know that $[F, F]$ is generated by $[\delta, \gamma]$, $[\gamma, \varepsilon] = e^{y-1}$, $[\delta, \varepsilon]$ and their conjugates. Hence, using $[\delta, \varepsilon] = e^{Q(y-1)} \mod R$ and Lemma 3.6 (i), we see that $[F, F]R/R$ is generated by e^{y-1} and $e^{Q(0)} \mod R$ and their conjugates. But, by the congruences
\[
(e^{y-1})^{\varepsilon} \equiv e^{y-1}, \quad (e^{Q(0)})^{\delta} \equiv (e^{Q(0)})^{Q(y-1)+1}, \quad (e^{y-1})^{\delta} \equiv (e^{y-1})^{Q(y-1)+1} \mod R
\]
and $e^{\omega_n(y-1)} \equiv 1 \mod R$ which follows from $T \mid \omega_n(T)$, we obtain
\[
[F, F]R/R = \langle (e^{y-1})^{F(y-1)}, (e^{p^n})^{F(y-1)} \mid F(T) \in \Lambda \rangle R/R = \langle e^{F(y-1)} \mid F(T) \in (T, p^m) \rangle R/R.
\]
Then the surjective map
\[
[G_n, G_n] \simeq (T, p^m)/(P_K(T), \omega_n(T)) \to [F, F]R/R
\]
is induced and hence $[F, F]R/R \simeq [G_n, G_n]$. Finally $F/[F, F]R$ is generated by the classes of γ, δ, ε which are annihilated by p^n, p, p^m, respectively. Therefore we have $\#(F/[F, F]R) \leq \#G_n^{ab}$ and so that $F/[F, F]R \simeq G_n^{ab}$. \hfill \Box

Lemma 3.9.
\[
R/[R, F] = \langle \gamma^{p^n}, \delta^n, [\delta, \gamma], [\delta, \varepsilon](e^{Q(y-1)})^{-1}, [\varepsilon, e^y], \ldots, [\varepsilon, e^{Q(y-1)/2}] \rangle [R, F]/[R, F].
\]
Proof. Throughout the proof, the notation \(\equiv \) is used for a congruence modulo the right hand side of the above equation. It is sufficient to show that \(\epsilon^{p^k(y-1)} \equiv 1 \). By Lemmas 3.6 and 3.7, we have

\[
[\delta, \epsilon]^\delta = [\delta, \epsilon^Q(y-1)+1]^\delta
\]

\[
\equiv (\epsilon^Q(y-1)+1)^{Q(y-1)+1}(\epsilon^{-1})^Q(y-1)+1)
\]

\[
\equiv (\epsilon^{Q(y-1)+1})^Q(y-1)+1)^{Q(y-1)+1}(\epsilon^{-1})^Q(y-1)+1)
\]

\[
\equiv \epsilon^{Q(y-1)+Q(y-1)+1)}
\]

Therefore \(1 \equiv [\delta^p, \epsilon] = [\delta, \epsilon]^\delta \equiv [\delta, \epsilon^{Q(y-1)+1}] \). Since \(Q(T)N(T) = P_k(T)F(T) \) with some polynomial \(F(T) \in \Lambda^* \), we have \(1 \equiv \epsilon^{p^k(y-1)+Q(y-1)} = (\epsilon^{p^k(y-1)})^F(0) \). Hence \(\epsilon^{p^k(y-1)} \equiv 1 \). \(\Box \)

Recall that \(D(T) \in \Lambda \) is defined in Lemma 3.4. The closed subgroups \(F_p := \langle \gamma, \delta \rangle \), \(F_l := \langle (\epsilon^{Q^{p^i-1}+\cdots+\delta^i+1})^{D(y-1)}(\delta, \delta \rangle \) of \(F \) and their closed normal subgroups

\[
R_p := \langle \gamma, \gamma, \delta^p, [\gamma, \gamma] \rangle_{F_p},
\]

\[
R_l := \langle (\gamma^{(\epsilon^{Q^{p^i-1}+\cdots+\delta^i+1})^{D(y-1)}}, \delta^p, [\gamma, \gamma^{(\epsilon^{Q^{p^i-1}+\cdots+\delta^i+1})^{D(y-1)}}]_F \rangle
\]

give minimal presentations \(1 \rightarrow R_p \rightarrow F_p \rightarrow Z_p \rightarrow 1 \) of \(Z_p \) and \(1 \rightarrow R_l \rightarrow F_l \rightarrow Z_l \rightarrow 1 \) of \(Z_l \). The Hochschild–Serre exact sequence with respect to the minimal presentation of \(G_n \) induces the isomorphism \(H_2(G_n, \mathbb{Z}_p) \cong R \cap [F, F]/[R, F] \). Therefore \(H_2(G_n, \mathbb{Z}_p) \otimes \mathbb{Z}_p \cong (R_p \cap [F_p, F_p])/([R_p, F_p]/[R_p, F_p])^p \). Hence, for completing the proof of Proposition 3.2, it is sufficient to show the map

\[
\Phi: \frac{R_p \cap [F_p, F_p]}{[R_p, F_p]/[R_p, F_p]} \times \frac{R_l \cap [F_l, F_l]}{[R_l, F_l]/[R_l, F_l]} \rightarrow \frac{R \cap [F, F]}{[R, F]/[R \cap [F, F]]}^p
\]

is not surjective by Proposition 2.3.

Lemma 3.10. The followings hold:

(i) \(R \cap [F, F]/[R, F] = \langle [\delta, \gamma], [\epsilon, \epsilon^{y}] \rangle, \ldots, [\epsilon, \epsilon^{y^{(p^i-1)/2}}]\rangle / [R, F] / [R, F] \),

(ii) \(R_p \cap [F_p, F_p]/[R_p, F_p] = \langle [\delta, \gamma] \rangle / [R_p, F_p] / [R_p, F_p] \),

(iii) \(R_l \cap [F_l, F_l]/[R_l, F_l] = \langle [\delta, \gamma^{(\epsilon^{Q^{p^i-1}+\cdots+\delta^i+1})^{D(y-1)}}] \rangle / [R_l, F_l] / [R_l, F_l] \).

Proof. We show only (i) because the remainder are shown in the same way. For any \(x \in R \cap [F, F] \subset R \), there exist \(z_1, \ldots, z_{4+(p-1)/2} \in \mathbb{Z}_p \) such that

\[
x \equiv (\gamma^{p^i z_i})^{z_i} \delta^{p^{i/2} z_i} [\gamma, \gamma]^{z_i} ([\delta, \epsilon] \epsilon^{Q(y-1)-1})^{z_i} [\epsilon, \epsilon^{y^{(p^i-1)/2}}]^{z_i} \mod [R, F]
\]

by Lemma 3.9. Hence we obtain \(1 \equiv \gamma^{p^i z_i} \delta^{p^{i/2} z_i} \epsilon^{Q(y-1)-1} \mod [F, F] \), and so that \(z_1 = z_2 = z_4 = 0 \). This shows (i). \(\Box \)
We now conclude our proof. Put \(d := \varepsilon^{Q(y-1)} \) for convenience. By Lemma 3.10, it is sufficient to show that \([\delta, \gamma]\) and \([\delta, (e^{[\gamma-1] \odot \ldots \odot \gamma + 1})] \) do not generate \((R \cap \{F, F\})/(R \cap \{F, F\})^{\pmod{}}\). By induction, we have

\[
e^{\delta} \equiv ([\delta, \varepsilon])d^{-1} \; d^{\beta^1 + \ldots + \beta^i + 1} \; \varepsilon \mod [R, F] \; (k \geq 1).
\]

Indeed, by the assumption of the induction,

\[
(e^{\delta^{k-1}})^{\delta} \equiv ([\delta, \varepsilon])d^{-1} \; d^{\beta^1 + \ldots + \beta^i} \; e^{\delta}
\]

\[
= ([\delta, \varepsilon])d^{-1} \; d^{\beta^1 + \ldots + \beta^i} ([\delta, \varepsilon])d^{-1}d^{\varepsilon}
\]

\[
= ([\delta, \varepsilon])d^{-1} \; d^{\beta^1 + \ldots + \beta^i + 1} \; \varepsilon \mod [R, F].
\]

Using \(([\delta, \varepsilon])d^{-1} \; d^k \in R\) and this congruence, we obtain

\[
\delta(e^{\beta^1} \cdots e^{\beta^i} \varepsilon)\delta^{-1} \times (\varepsilon^{-1} e^{-\delta} e^{-\delta} \cdots e^{-\beta^1})
\]

\[
e^{\beta^1} e^{\beta^1} \cdots e^{\beta^i} \varepsilon \times \varepsilon^{-1} e^{-\delta} e^{-\delta} \cdots e^{-\beta^1}
\]

\[
e(\varepsilon d^{\beta^2 + \ldots + 1} \varepsilon) \cdots (\varepsilon^{\beta^1 + 1} \varepsilon)(\varepsilon^{-1} d \varepsilon)^{-1}(d^{\beta^1 + 1} \varepsilon)^{-1} \cdots (d^{\beta^2 + \ldots + 1} \varepsilon)^{-1}
\]

\[
= [\varepsilon, (d^{\beta^2 + \ldots + 1} \varepsilon) \cdots (d^{\beta^1 + 1} \varepsilon)]d
\]

\[
= [\varepsilon, d^{\beta^1}] [\varepsilon, d^{\beta^2}]^2 \cdots [\varepsilon, d^{\beta^i}]^{p-2} [\varepsilon, d]^{p-1} \mod [R, F],
\]

where the last congruence is obtained from \([\varepsilon, d^{\beta^i}] = [\varepsilon, (e^{Q(y-1)})^{\beta^i}] \in R\) by Lemmas 3.6 (i) and 3.7. Moreover, using

\[
\sum_{k=0}^{p-2} (p-1-k)Q(T)(Q(T) + 1)^k = N(T) - p
\]

and again Lemma 3.7, we have

\[
[\delta, e^{\delta^{k-1} + \ldots + \delta} + 1] \equiv \prod_{k=0}^{p-2} [\varepsilon, e^{Q(y-1)(Q(y-1) + 1)^k}]_{p-1-k}
\]

\[
= [\varepsilon, e^{N(y-1)}] \mod [R, F].
\]

Now, dividing \(N(T)\) by the distinguished polynomial \(P_k(T)\), we write

\[
N(\gamma - 1) = a_p(\gamma - 1)^{p-1} + \cdots + a_0 + P_k(\gamma - 1) f(\gamma - 1)
\]

\[
= b_p(\gamma - 1)^{p-1} + \cdots + b_0 + P_k(\gamma - 1) f(\gamma - 1) \; (a_i, b_i \in \mathbb{Z}_p).
\]
Then $b_0 \equiv \cdots \equiv b_{p-2} \equiv 0 \pmod{p}$ since the residue degree of $N(T)$ is $p-1$ by (5). Therefore, in the same way as in the proof of Lemma 3.7, we get

$$[\varepsilon, e^{N^*(p-1)}] \equiv [\varepsilon, e^{\gamma_{p-1}}] \equiv \cdots [\varepsilon, e^\gamma]^{a_p} \mod [R, F]$$

and $a_i = \sum_{j=0}^{p-1} (\begin{bmatrix} i \end{bmatrix})(-1)^{j-i} b_j \equiv (-1)^i (p-1) b_{p-1} \pmod{p}$. Finally, for $1 \leq i \leq (p-1)/2$,

$$[\varepsilon, e^\gamma]^{a_i} \equiv [\varepsilon, e^{\gamma_{p-1}}]^{a_i} \equiv [\varepsilon, e^{\gamma_{p-1}}]^{a_{p-1}} \mod [R, F](R \cap [F, F])^p$$

by Lemma 3.6 (ii) and $a_{p-1} - a_i \equiv (\begin{bmatrix} i \end{bmatrix})(-1)^{i+1} b_{p-1} \equiv 0 \pmod{p}$. Therefore we obtain

$$[\delta, e^{\delta_{p-1} + \cdots + \delta_{i+1}}] \equiv \prod_{i=1}^{p-1} [\varepsilon, e^{\gamma_{p-1}}]^{a_{p-1}} = \prod_{i=1}^{(p-1)/2} [\varepsilon, e^{\gamma_{p-1}}]^{a_{p-1}} [\varepsilon, e^\gamma]^{a_i} \equiv 1 \mod [R, F](R \cap [F, F])^p.$$

By Lemma 3.5, this implies that Φ is not surjective, which completes the proof of Proposition 3.2.

Example. Let $p = 3$, $k = \mathbb{Q}(\sqrt{-31})$ and K^+ an abelian p-extension of \mathbb{Q} with conductor $l = 43$. Then $A(k) \simeq \mathbb{Z}/3\mathbb{Z}$, $\lambda_k = 1$, $A(K) \simeq \mathbb{Z}/9\mathbb{Z}$ and $\lambda_K = 3$. They satisfy the condition of Proposition 3.2. Therefore $X(K_n)$ is not abelian for any $n \geq 1$.

4. Proof of Theorem 1.2

Since the strategy of the proof of Theorem 1.2 is similar to the proof of Theorem 1.1, we explain briefly. Let p, l be odd prime numbers such that $p \mid l - 1$ (later, we assume that $p = 3$), k an imaginary quadratic field with the property that $k \neq \mathbb{Q}(\sqrt{-3})$ if $p = 3$, and K^+ the unique abelian p-extension of \mathbb{Q} with conductor l. Put $K := kK^+$. Assume that p does not split in K, but l splits in k and $\dim_{\mathbb{F}_p} A(K) \otimes_{\mathbb{Z}} \mathbb{F}_p = 1$. We may assume that $\lambda_k = \lambda_K \leq 1$ similarly as in §3 by [14]. Then $\lambda_K = \lambda_K' = p\lambda_k + p - 1$, $X(K_{\infty})$ is cyclic over Λ and $\#A(K) = p^{m+1}$. Here m is defined by $\#A(k) = p^m$ by Corollary 2.2. Let \tilde{p}_n (resp. \tilde{l}_n) be a prime in $L(K_n)$ lying above p (resp. l). We define $J \in \text{Gal}(L(K_n)/K_n^+)$ as an element of order 2 in the decomposition subgroup of \tilde{p}_n in $\text{Gal}(L(K_n)/K_n^+)$. Then a prime \tilde{l}_n^i in $L(K_n)$ is a conjugate of \tilde{l}_n and the principal ideal (l) in k splits as $(l) = \mathfrak{l}_n^l$, where $\mathfrak{l}_n := \tilde{l}_n \cap k$. We use the notation as in §3; namely, $\Gamma = \langle \tilde{\gamma} \rangle$, Γ_n, $\Delta = \langle \tilde{\delta} \rangle$, G_n, γ_n, $\tilde{\gamma}_n$, δ_n, $\tilde{\delta}_n$, ϵ_n, $\tilde{\epsilon}_n$.

Lemma 4.1. The primes l and l^i do not split in $L(K)/K$.

Proof. By the genus formula [9, Chapter 13 Lemma 4.1], the maximal abelian subextension in $L(K)/k$ has degree p^{m+1} over K. Therefore it coincides with $L(K)$
and so that $G_0 \simeq A(K) \oplus \Delta$. Let F be a free pro-p-group of rank 2 generated by the symbols δ, ϵ and $R := \langle \delta^p, \epsilon^{p^{m+1}}, [\delta, \epsilon] \rangle_F$. Then $G_0 \simeq F / R$, and so that $H_2(G_0, \mathbb{Z}_p) \simeq \langle [\delta, \epsilon] \rangle [R, F] / [R, F]$. On the other hand, the decomposition group of $\bar{1}_0$ (resp. $\bar{1}_0'$) in G_0 is $\langle \delta_0 \rangle \oplus \langle \epsilon_0'' \rangle$ (resp. $\langle \delta_0 \epsilon_0'' \rangle \oplus \langle \epsilon_0'' \rangle$) since $\bar{1}_0'$ is ramified in K / k for some $u, v \in \mathbb{Z}_p$. Since $\bar{L}(K) = L(K)$ by the cyclicity of $A(K)$, applying Proposition 2.3, we have $v \in \mathbb{Z}_p$. This implies that the decomposition groups equal to G_0. Hence l and l' do not split in $L(K) / K$. Also, note that the p-adic order of u is equal to m, since the fixed field of $\langle \delta_0, \epsilon_0'' \rangle$ is the maximal subextension $L(k)$ which is unramified at $\bar{1}_0, \bar{1}_0'$.

We use the notation $Q(T), N(T)$ as in §3. Fix $n \geq 1$. Since the next lemma is shown in the way similar to Lemmas 3.3, we omit the proofs.

Lemma 4.2. As Λ-modules, $[G_n, G_n] \simeq (T, p^{m+1})/(P_K(T), \omega_h(T))$. Moreover $G_n^{ab} = \langle \gamma_n \rangle \oplus \langle \delta_n \rangle \oplus \langle \delta_n \rangle \simeq \mathbb{Z} / p^n \mathbb{Z} \oplus \mathbb{Z} / p \mathbb{Z} \oplus \mathbb{Z} / p^{m+1} \mathbb{Z}$.

We define $A(T) \in \Lambda$ by $[\delta_n, \gamma_n] = \epsilon_n^{A(T)}$. Note that $A(T)$ is defined uniquely up to the modulus $P_K(T)$.

Lemma 4.3. (i) Let the subgroup Z_p of G_n be the decomposition group of $\bar{\gamma}_n$. Then there is an element $B(T) \in (p^n, T)$ defined uniquely up to the modulus $P_K(T)$ such that

$$Z_p = \langle \gamma_n \rangle \oplus \langle \delta_n \epsilon_n(B(T)) \rangle, \quad P_K(T) \mid -A(T) + T(1 + Q(T))B(T).$$

Therefore the exact sequence $1 \to X(K_n) \to G_n \to \Gamma_n \times \Delta \to 1$ splits.

(ii) Let Z_1, Z_1' be the decomposition groups of $\bar{1}_n$ and $\bar{1}_n'$, respectively. Then, changing ϵ_n, if necessary, there is an element $J(T) \in (p^n, T)$ defined uniquely up to the modulus $P_K(T)$ such that

$$Z_1 = \langle \gamma_n \epsilon_n^{-1/(1 + T)} \rangle \oplus \langle \delta_n \rangle, \quad P_K(T) \mid A(T) - Q(T).$$

$$Z_1' = \langle \gamma_n \epsilon_n^{1/(1 + T)} \rangle \oplus \langle \delta_n \epsilon_n^{J(T)} \rangle, \quad P_K(T) \mid -A(T) - Q(T) + T(1 + Q(T))J(T)$$

for any $n \geq m + 1$ and $J(0) \equiv u \mod p^{m+1}$. Here u is defined in the proof of Lemma 4.1.

Proof. The image of Z_p in G_n^{ab} is generated by $\bar{\gamma}_n$ and $\bar{\delta}_n \bar{\epsilon}_n^w$ for some $w \in p^n \mathbb{Z}_p$ (In fact, $w \neq 0, w \neq v \mod p^{m+1}$, since the image $\langle \bar{\delta}_0 \bar{\epsilon}_0^w \rangle$ under a projection of Z_p in G_0^{ab} coincide neither the inertia groups of $\bar{1}_n$ nor of $\bar{1}_n'$). Since every primes lying above p split completely in $L(K_n) / K_n$, in the same way as in the proof of Lemma 3.4, there is some $B(T) \in (p^n, T)$ defined up to the modulus $P_K(T)$ such that $B(0) \equiv w \mod p^{m+1}$ and

$$Z_p = \langle \gamma_n \rangle \oplus \langle \delta_n \epsilon_n^{B(T)} \rangle \simeq \langle \bar{\gamma}_n \rangle \oplus \langle \bar{\delta}_n \bar{\epsilon}_n^w \rangle.$$
Hence, we obtain $P_K(T) \mid -A(T) + T(1 + Q(T))B(T)$ since

$$1 = \gamma_n \delta_n \varepsilon_n^{B(T)} \gamma_n^{-1} \varepsilon_n^{-B(T)} \delta_n^{-1} = \varepsilon_n^{-A(T) + T(1 + Q(T))B(T)}.$$

(ii) Put $n \geq m + 1$. Since 1 does not split in K_∞/K, 1 splits in $L(K_n)^{[G_n,G_n]}/K_n$ completely by Lemmas 4.1 and 4.2. There the image of Z_l in G_n is generated by $\tilde{\delta}_n$ and $\tilde{\gamma}_n \varepsilon_n^{\delta_n}$, where $v \in \mathbb{Z}^\times$ is defined in the proof of Lemma 4.1. Hence Z_l is generated by δ_n and $\gamma_n \varepsilon_n^{u + C(T)}$ for some $C(T) \in (p^{m+1}, T)$. Moreover, since $\langle \delta_n \rangle \triangleleft Z_l$ and $[G_n, G_n] \cap \langle \delta_n \rangle = 1$, we find

$$Z_l = \langle \gamma_n \varepsilon_n^{u + C(T)} \rangle \oplus \langle \delta_n \rangle, \quad P_K(T) \mid A(T) + Q(T)(1 + T)(u + C(T)).$$

The decomposition group of \tilde{u}_l is given by $Z_l^{\tilde{u}} = \langle J(\gamma_n \varepsilon_n^{u + C(T)})^{-1} \rangle \oplus \langle J \delta_n J \rangle$. We find $JxJ^{-1} + x = 0$ for any $x \in X(K_n)$ since $A(K_n^\times) = 0$. Also we find $J \gamma_n J^{-1} = \gamma_n$ since the natural projection from the decomposition group of $\tilde{\gamma}_n$ in $\text{Gal}(L(K_n)/K^\times)$ to the abelian group $\text{Gal}(K_n/K^\times)$ is an isomorphism. On the other hand, $\langle J \delta_n J \rangle$ is the inertia group of \tilde{u}_l, so that we may assume, changing u if necessary, that the image of a projection of $J \delta_n J$ in G_n is $\tilde{\delta}_n \varepsilon_n^{\delta_n}$. Hence $J \delta_n J$ can be written as $\delta_n \varepsilon_n^{u + j(T)}$ with some element $j(T) \in (p^{m+1}, T)$. Therefore we have

$$Z_l = \langle \gamma_n \varepsilon_n^{u + C(T)} \rangle \oplus \langle \delta_n \varepsilon_n^{j(T)} \rangle,$$

$$P_K(T) \mid -A(T) + Q(T)(1 + T)(u + C(T)) + T(1 + Q(T))J(T),$$

where $J(T) := u + j(T)$. Since $v \in \mathbb{Z}^\times_p$, changing ε_n, if necessary, we may assume that $v + C(T) = -1/(1 + T)$, which completes the proof.

By Lemmas 4.3, we may assume that $A(T) = Q(T)$ and $J(T) \equiv 2B(T) \mod P_K(T)$ since $T \nmid P_K(T)$. Now, we fix $Q(T)$ to simplify the proof. Since the residue degree of $Q(T)$ is $\lambda_K + 1 > \deg P_K(T)$ and $P_K(T) \mid Q(T)$, we obtain $p^{m+1} \mid Q(0)$. Therefore, changing the representation of $Q(T)$ mod $P_K(T)$ for vanishing the constant term if necessary, we may assume that

$$T \mid Q(T), \quad \deg Q(T) \leq \lambda_K,$$

since $p^{m+1} \mid P_K(0)$. Also, dividing by the distinguished polynomial $P_K(T)$, we may assume that $\deg J(T) = \deg B(T) \leq \lambda_K - 1$. Note that the differentials $Q'(T)$, $J'(T)$ modulo the ideal (p, T) of $Q(T)$, $J(T)$ are independent of the choices of $Q(T)$ and $J(T)$. By Lemma 4.3, there is an element $F(T) \in \Lambda$ such that

$$J(T)(1 + Q(T)) - 2\frac{Q'(T)}{T} = P_K(T)F(T).$$

Put $T = 0$, and on the other hand, differentiate at $T = 0$. Then we have

$$u \equiv 2Q'(0) \mod p, \quad J'(0) \equiv -2Q'(0)^2 + Q''(0) \mod p.$$
In the following, we suppose that \(p = 3 \) and \(A(k) = 0 \); in other words, suppose that the assumption in Theorem 1.2 holds. Then \(m = 0, \lambda_K = 2 \) and \(u \in \mathbb{Z}_3^\times \).

Lemma 4.4. \(\dim_{\mathbb{F}_3} H_2(G_n, \mathbb{Z}_3) \otimes_{\mathbb{Z}_3} \mathbb{F}_3 = 3 \) for \(n \geq 1 \).

Proof. Since \(G_n \simeq X(K_n) \times (\Gamma_n \times \Delta) \) by Lemma 4.3, in the same way as in the proof of Lemma 3.5, we obtain this lemma. Note that \(H_2(X(K_\infty), \mathbb{Z}_3) \simeq I_\Delta \wedge_{\mathbb{Z}_3} I_\Delta \simeq \mathbb{Z}_3 \) since \(p = 3 \) and \(X(K_\infty) \simeq I_\Delta \) by Proposition 2.1.

We write

\[Q(T) = T(q_1 T + q_1 + q_0) \quad (q_1, q_0 \in \mathbb{Z}_3). \]

Then \(Q(\gamma - 1) = (\gamma - 1)(q_1 \gamma + q_0) = q_1 \gamma^2 + (q_0 - q_1) \gamma - q_0 \). Note that \(q_1 + q_0 \in \mathbb{Z}_3^\times \) since the residue degree of \(Q(T) \) is equal to 1. Let \(F := \langle \gamma, \delta, \varepsilon \rangle \) be a free pro-\(p \)-group of rank 3. Put

\[R := \langle \gamma^3, \delta^3, \varepsilon^p \gamma^{(\gamma - 1)}, [\delta, \gamma](\varepsilon Q(\gamma - 1))^{-1}, [\delta, \varepsilon](\varepsilon Q(\gamma - 1))^{-1}, [\varepsilon, \gamma^2] \rangle_F \]

and \(C := [\delta, \gamma](\varepsilon Q(\gamma - 1))^{-1}, D := [\delta, \varepsilon](\varepsilon Q(\gamma - 1))^{-1} \). Then, since \(\lambda_K \leq 3 \), we obtain the same result as in [14, Lemma 5.3 (ii)] which is stronger than Lemma 3.6:

\[[\varepsilon^2 \gamma^2, \varepsilon^2 \gamma^2] \equiv [\varepsilon, \varepsilon \gamma^2]^1_{i=1} \mod (R \cap [F, F])^3/R, F]. \]

In the following, the notation \(\equiv \) is used for a congruence modulo \((R \cap [F, F])^3/R, F] \).

Lemma 4.5. (i) For \(n \geq 1 \), the sequence of pro-\(p \)-groups \(1 \rightarrow R \rightarrow F \rightarrow G_n \rightarrow 1 \) is exact, where the map \(\phi: F \rightarrow G_n \) is given by \(\gamma \mapsto \gamma_n, \delta \mapsto \delta_n, \varepsilon \mapsto \varepsilon_n \).

(ii) \(R \cap [F, F]/[F, F] = \langle [\varepsilon, \varepsilon \gamma^2], C, D \rangle[R, F]/[R, F] \).

Proof. Using (7), we find \(C, D \in R \cap [F, F] \) since \(T \mid Q(T) \). Then, in the same way as in the proofs of Lemmas 3.8 and 3.10, we obtain the lemma.

Lemma 4.6. For any polynomial \(f(\gamma - 1) \) with degree 1, put

\[W_f := \varepsilon^{Q(\gamma - 1)} f(\gamma - 1), \quad E := \varepsilon^{q_1 \gamma + q_0}, \]

where the action of a factorized polynomial is defined in the same way as Lemma 3.7. Then

\[[\varepsilon^{f(\gamma - 1)}, \gamma]^0 \equiv ((W_f E^{-1})^{(\gamma - 1)})^{-1}(\varepsilon^{Q(\gamma - 1)})^{-1}[\varepsilon, \varepsilon \gamma^2]_{i=1}^{q_1 \gamma + q_0 + q_0^2} \].
Proof. Describe $f(\gamma - 1)$ as $f(\gamma - 1) = f_1 \gamma + f_0$ ($f_1, f_0 \in \mathbb{Z}_3$). Since $C \in R$ and $[(\varepsilon f(\gamma - 1))\delta, C] \in [R, F]$,

$$[\varepsilon f(\gamma - 1), \gamma]^\delta = [(\varepsilon f(\gamma - 1))\delta, \gamma^\delta]$$

$$= [(\varepsilon f(\gamma - 1))\delta, C \varepsilon^{Q(\gamma - 1)} \gamma]$$

$$= [(\varepsilon f(\gamma - 1))\delta, C][(\varepsilon f(\gamma - 1))\delta, \varepsilon^{Q(\gamma - 1)} \gamma]C^{-1}$$

$$= [(\varepsilon f(\gamma - 1))\delta, \varepsilon^{Q(\gamma - 1)} \gamma] = [[(\varepsilon^\delta)^\delta f_1(\varepsilon f_0)^\delta, \varepsilon^{Q(\gamma - 1)} \gamma].$$

We find

$$(\varepsilon f_0)^\delta = (\varepsilon f_0) = (D_{\varepsilon}^{Q(\gamma - 1) + 1} f_0)$$

$$= D_{\varepsilon}^{f_0} (D_{\varepsilon}^{Q(\gamma - 1) + 1} f_0),$$

$$(\varepsilon f_1 \gamma)^\delta = ((\varepsilon^\delta)^\delta f_1 = (\{\delta, \gamma\} (\varepsilon^\delta)^\delta [\delta, \gamma]^{-1}) f_1$$

$$= (C \varepsilon^{Q(\gamma - 1)} (D_{\varepsilon}^{Q(\gamma - 1) + 1} \gamma (\varepsilon^{Q(\gamma - 1) - 1} C^{-1} f_1)$$

$$= r(\varepsilon^{Q(\gamma - 1) + 1} f_1 \gamma$$

for some $r \in R$ by (7). Therefore we obtain

$$[\varepsilon f(\gamma - 1), \gamma]^\delta = [[(\varepsilon^{Q(\gamma - 1) + 1} f_1 \gamma (\varepsilon^{Q(\gamma - 1)} f_0) \varepsilon^{Q(\gamma - 1)} \gamma]$$

$$= [r' \varepsilon^{Q(\gamma - 1) + 1} (f_1 \gamma f_0) \varepsilon^{Q(\gamma - 1)} \gamma]$$

(for some $r' \in R$ by (7))

$$= [W f, \varepsilon^{Q(\gamma - 1)} \gamma]$$

$$= W_f \varepsilon^{Q(\gamma - 1)} W_f^{-\gamma} (\varepsilon^{Q(\gamma - 1) - 1}.$$

On the other hand, $E^{\gamma - 1} = \varepsilon^{Q(\gamma - 1)} [\varepsilon, \varepsilon^\gamma]^{q_1 q_0}$ by (7). Therefore, again by (7),

$$\varepsilon^{Q(\gamma - 1)} = [E^\gamma, E^{-1}] E^{-1} E^{\gamma} [\varepsilon, \varepsilon^\gamma]^{q_1 q_0}$$

$$= E^{-1} E^{\gamma} [\varepsilon, \varepsilon^\gamma]^{q_1 q_0 + q_1 q_0 + q_0^2}. $$

Combining this with the above, we obtain the lemma.

Lemma 4.7. (i) $[\delta \varepsilon^{B(\gamma - 1)}, \gamma] \equiv C[\varepsilon, \varepsilon^\gamma]^{q_1^2 + q_1 q_0 + q_0^2}$,

(ii) $[\delta, \gamma \varepsilon^{-\gamma}] \equiv C D^{-1}$,

(iii) $[\delta \varepsilon^{J(\gamma - 1)}, \gamma \varepsilon^{-\gamma}] \equiv C D[\varepsilon, \varepsilon^\gamma]^{q_1^2 + q_0^2 - q_1 - q_0 - J(0)}.$

Proof. By Lemma 4.5 (i), the relation $P_k(T) | -Q(T)/T + (1 + T)B(T)$ in Lemma 4.3 implies that $W_B E^{-1} \in R$. Hence, by Lemma 4.6, we get

$$[\delta \varepsilon^{B(\gamma - 1)}, \gamma] = [\varepsilon^{B(\gamma - 1)}, \gamma]^\delta [\delta, \gamma]$$

$$= ((W_B E^{-1})^{-1} (\varepsilon^{Q(\gamma - 1)) - 1} [\varepsilon, \varepsilon^\gamma]^{q_1^2 + q_1 q_0 + q_0^2} [\delta, \gamma]$$

$$= C[\varepsilon, \varepsilon^\gamma]^{q_1^2 + q_1 q_0 + q_0^2}. $$
In the same way,
\[
[\delta, \gamma e^{-\gamma^{-1}}] = [\delta, e^{-1}\gamma] = [\delta, e^{-1}][\delta, \gamma]e^{-1} = e^{-1}[\delta, \gamma]e^{-1} = e^{-1}(e^Q)^{-1}D^{-1}e^{-1}C e^Q e^{-1}e
\]
\[
\equiv CD^{-1}.
\]

Finally, we compute \([\delta e^{J(\gamma^{-1})}, \gamma e^{\gamma^{-1}}] = [\delta e^{J(\gamma^{-1})}, e][\delta e^{J(\gamma^{-1})}, \gamma]^e\). Note that the relation \(P_k(T) | J(T)(1 + Q(T)) - 2Q(T)/T\) implies that \(W_j E^{-2} \in R\). Since \(J(T) = J(0)T + J(0)\), it turns out that
\[
\begin{align*}
[\delta e^{J(\gamma^{-1})}, e] = [e^{J(\gamma^{-1})}, e]^e[\delta, e] &\equiv [\delta, e^\gamma]^{-J(0)}D e^Q e^{-1},

[\delta e^{J(\gamma^{-1})}, \gamma] = [e^{J(\gamma^{-1})}, \gamma]^e[\delta, \gamma] &\equiv ((W_j E^{-1})^{\gamma^{-1}}) e^Q e^{-1} C[e, e^\gamma]^{q_1 + q_0 + q_0^2} e
\end{align*}
\]
\[
\equiv (W_j E^{-1})^{\gamma^{-1}}C[e, e^\gamma]^{q_1 + q_0^2}.
\]

In fact, the last congruence follows from the congruences
\[
(W_j E^{-1})^{\gamma^{-1}} = [\gamma, W_j E^{-2} E] \equiv E^{\gamma^{-1}} \equiv e^Q e^{-1} e^{q_1 + q_0}.
\]

Therefore
\[
[\delta e^{J(\gamma^{-1})}, \gamma e^{\gamma^{-1}}] \equiv [e, e^\gamma]^{-J(0)}D e^Q e^{-1} e^{e^Q e^{-1} C[e, e^\gamma]^{q_1 + q_0^2} e^{-1}}
\]
\[
\equiv [e, e^\gamma]^{-J(0)}D[e, e^Q e^{-1}] C[e, e^\gamma]^{q_1 + q_0^2}
\]
\[
\equiv CD[e, e^\gamma]^{q_1 + q_0^2} = J(0).
\]

This completes the proof.

We apply Proposition 2.3 to the extension \(L(K_n)/k\). By Lemmas 4.3, 4.5 and 4.7, we obtain \(\bar{L}(K_n) = L(K_n)\) if and only if the three elements \(C[e, e^\gamma]^{q_1 + q_0 + q_0^2}, CD^{-1}, CD^{q_1 + q_0 - q_0 - J(0)}\) generate the group \([e, e^\gamma], C, D][R, F]/(R \cap [F, F])^3[R, F]\). Since \(J(0) \equiv -2(q_1 + q_0)^2 + 2q_1 \equiv 1 - q_1 \mod 3\) by (6), we see that this is equivalent to \((q_1 + q_0)^2 + q_1 + q_0 + J(0) \equiv q_0 - 1 \equiv 0 \mod 3\). To complete the proof of Theorem 1.2, we show the following:

Lemma 4.8. Put \(P_k(T) = T^2 + c_1 T + c_0 \ (c_1, c_0 \in 3\mathbb{Z}_3)\), then \(c_0 \equiv 3 \mod 3^2\) and \(q_0 \not\equiv 1 \mod 3\) if and only if \(P_k(-1) \equiv 4 - c_1 \not\equiv 1 \mod 3^2\).
Proof. Dividing by $P_K(T) = T^2 + c_1 T + c_0$, $Q(T)$ has the form $Q(T) = q_1 P_K(T) + r T - c_0 q_1$, where $r := q_1 + q_0 - c_1 q_1 \in \mathbb{Z}_3^*$. Then, by Proposition 2.1, $P_K(T)$ has the form

$$P_K(T) = (\Lambda \text{-unit})(Q(T)^2 + 3Q(T) + 3) \equiv (\Lambda \text{-unit})(r T^2 - c_0 q_1)^2 + 3(r T - c_0 q_1) + 3) \mod P_K(T).$$

Hence $P_K(T) | (r T - c_0 q_1)^2 + 3(r T - c_0 q_1) + 3$. Therefore we get

$$P_K(T) = (\Lambda \text{-unit})(r T^2 - c_0 q_1)^2 + 3(r T - c_0 q_1) + 3) = T^2 + r^{-1}(3 - 2c_0 q_1)T + r^{-2}(c_0 q_1^2 - 3c_0 q_1 + 3),$$

where note that the leading coefficient of the last polynomial is 1 since the characteristic polynomial $P_K(T)$ is distinguished. Therefore we obtain $c_1 r = 3 - 2c_0 q_1$, $c_0 r^2 = c_0^2 q_1^2 - 3c_0 q_1 + 3$. Put $c_i = 3\tilde{c}_i$ ($i = 1, 0$), then

$$\tilde{c}_0 \equiv 1 \mod 3, \quad \tilde{c}_1 \equiv r^{-1}(1 + q_1) \equiv (q_1 + q_0)(1 + q_1) \mod 3,$$

since $r^2 \equiv 1 \mod 3$. We can easily check that the lemma follows from these congruences and $q_1 + q_0 \not\equiv 0 \mod 3$. \qed

Finally, we give some examples:

Proposition 4.9. $P_K(-1) \not\equiv 1 \mod 3^2$ if and only if $A(K_1)$ has no element with order 3^3 i.e., $A(K_1) \simeq (\mathbb{Z}/3^2\mathbb{Z})^6$.

Proof. We know

$$A(K_1) \simeq \Lambda/(P_K(T), T^3 + 3T^2 + 3T) \simeq \Lambda/(P_K(T), (3 - c_0 - 3c_1 + c_1^2)T - c_0(3 - c_1))$$

by (1). Then we can easily check $3^2 | (3 - c_0 - 3c_1 + c_1^2)T - c_0(3 - c_1)$, since $c_0 \equiv 3 \mod 3^2$. If $P_K(-1) \not\equiv 1 \mod 3^2$ i.e., $c_1 \not\equiv 3 \mod 3^2$, then

$$A(K_1) \simeq \Lambda/(P_K(T), 3^2) \simeq (\mathbb{Z}/3^2\mathbb{Z})^{18}.$$

On the other hand, if $c_1 \equiv 3 \mod 3^2$, then

$$A(K_1) \simeq \Lambda/(P_K(T), 3^2(s_1 T + 3s_0))$$

for some $s_1, s_0 \in \mathbb{Z}_3$. Consider the exact sequence

$$0 \rightarrow (P_K(T), 3^2) \rightarrow (P_K(T), 3^2(s_1 T + 3s_0)) \rightarrow \Lambda \rightarrow (P_K(T), 3^2) \rightarrow 0.$$
Assume that $A(K_1)$ has no element with order 3^3. Then $3^2 \in (P_K(T), 3^2(s_1T + 3s_0))$, and so that there exist some $f(T), g(T) \in \Lambda$ such that $3^2 = P_K(T)f(T) + 3^2(s_1T + 3s_0)g(T)$. This induces $3^2 \mid f(T)$. However, then $3^2 \equiv P_K(0)f(0) \equiv 0 \mod 3^3$. This is a contradiction. Since $\dim_{\mathbb{F}_3} A(K_1) \otimes_{\mathbb{Z}} \mathbb{F}_3 = 2$, we complete the proof. \hfill \Box

Example. Let $k = \mathbb{Q}(\sqrt{-m})$ and K^+ an abelian 3-extension of conductor $l = 43$. If $m = 7, 30, 37$, then $A(K_1) \simeq (\mathbb{Z}/3^2\mathbb{Z})^2$ and so that $\tilde{L}(K_n) = L(K_n)$ for any $n \geq 0$. On the other hand, if $m = 46$, then $A(K_1) \simeq \mathbb{Z}/3^2\mathbb{Z} \oplus \mathbb{Z}/3^3\mathbb{Z}$ and so that $\tilde{L}(K_n) \neq L(K_n)$ for any $n \geq 1$.

Remarks. If we discard the assumption $p = 3$ in Theorem 1.2, the author cannot compute $\dim_{\mathbb{F}_p} H_2(G_n, \mathbb{Z}_p) \otimes_{\mathbb{Z}_p} \mathbb{F}_p$ as in the same way similar to Lemma 4.4 since it seems to depend on the form of $Q(T)$.

Let p, l be odd prime numbers such that $p \mid l - 1$. Take k, K^+, and K as in the beginning of this section. Assume that p does not split in K. If we assume, on the contrary to the assumption in Theorem 1.1, that l splits in k, we do not succeed in classifying the field K such that $\tilde{L}(K_\infty) = L(K_\infty)$. Applying [15, Theorem 1.1], we have the following:

$$\tilde{L}(K_\infty) = L(K_\infty) \Rightarrow \begin{cases} (a) & p \nmid l - 1, \lambda_k = 1, \dim_{\mathbb{F}_p} A(K) = 1 \text{ or} \\ (b) & p \mid l - 1, \lambda_k = 0. \end{cases}$$

Theorem 1.2 is a special case of (b). In the case (a), we can prove the fact that $\dim_{\mathbb{F}_p} H_2(G_n, \mathbb{Z}_p) \otimes_{\mathbb{Z}_p} \mathbb{F}_p = 3$. However, the author cannot find any relations like (7).

References

THE COMMUTATIVITY OF THE GALOIS GROUPS II

Department of Mathematics
Faculty of Science and Technology
Tokyo University of Science
2641 Yamazaki, Noda, Chiba, 278-8510 Japan
e-mail: okano_keiji@ma.noda.tus.ac.jp