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Following Handelman [8] we call a ring R is a right strongly semiprime
ring provided if / is a two-sided ideal of R and is essential as a right ideal, then
it contains a finite subset whose right annihilator is zero.

In this paper, we first show that a ring R is a right strongly semiprime
ring if and only if

(1) Q(R) is a direct sum of simple rings, and
(2) eQ(R)eR=eQ(R) for all idempotents e in Q(R) where Q(R) denotes

the maximal ring of right quotients of R.
Using these conditions (1) and (2), we shall investigate the following con-

ditions:
(a) Every nonsingular quasi-injective right i?-module is injective.
(b) Any finite direct sum of nonsingular quasi-injective right i?-modules

is quasi-injective.
(c) Any direct sum of nonsingular quasi-injective right i?-modules is

quasi-injective.
(d) Any direct product of nonsingular quasi-injective right jR-modules

is quasi-injective.
It is shown that the conditions (a), (b) and (d) are equivalent; indeed, the

rings satisfying one of these conditions are determined as rings R such that
RjG(R) is a right strongly semiprime ring, where G(R) denotes the right Goldie
torsion submodule of R. A ring R satisfying the condition (c) is also charac-
terized as a ring R such that RjG(R) is a semiprime right Goldie ring.

1. Preliminaries and notations

Throughout this paper all rings considered have identity and all modules
are unitary.

Let R be a ring. Q(R) denotes its maximal ring of right quotients. Let
M be a right i?-module. By ER(M)y nM, Z(M) and G(M) we denotes its in-
jective hull, the direct product of w-copies, its singular submodule and its Goldie
torsion submodule, respectively. (Note that Z(MIZ(M))=G(M)IZ(M).) For
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a given two right i?-modules N and M, we adopt the symbol N^M to denote the

fact that N is isomorphic to a submodule of M, and use the symbol iVcz^M to

indicate N to be an essential submodule of M.

Now, for a nonsingular right i?-module M, the following statements hold:

(1) MG(R)=0; so M become a right i?/G(i?)-module by usual way,

(2) M is also nonsingular as a right i?/G(i?)-module, and

(3) M is i?-injective (i?-quasi-injective) if and only if M is i?/G(i?)-injective

(i?/G(i?)-quasi-injective).

Noting that RjG(R) is a right nonsingular ring, we conclude from [4, The-

orem 2.2] that any nonsingular injective right i?-module has a unique right

j2(i?/G(l?))-module structure compatible with the i?-module structure. So, for

a nonsingular right i?-module M, we have M^eMQ(RlG(R))^βR{M).

It is well known (e.g. [4, Theorem 3.2]) that every finitely generated non-

singular right module over a right self-injective regular ring is both projective

and injective. Therefore, if M is a finitely generated nonsingular injective

right jR-module, then M is both Q(i?/G(i?))-projective and <2(i?/G(i?))-injective.

For a subset S of a ring R, {0:S)R((0:S)R) denotes the right (left) annihi-

lator of S in R.

Lemma 1.1. Let R be a ring and set R=RjG(R) and Q=Q(R). If M is

a nonsingular right Q-ntodule, then the following statements hold:

(a) M is nonsingular as a right R-module. (Of course, M becomes a right i?-

module by a natural way.)

(b) M is Q-quasi-injective if and only if M is R-quasi-injective.

Proof, (a) Let x be an element in M such that (O ΛiJjc^fi. Inasmuch

as G(JR)C(0:A:)£C,/?, we see from [4, Proposition 1.28] that (0:x)rR^eR. Hence

it follows (0:x)r

Q^:eQ9 whence #=0.

(b) Clearly M^BER(M) as a right ^-module. It is also easily seen that

M^βQ(M) as a right ^-module. As a reuslt we get Eχ(M)=EQ(M)9 whence

ER(M)=EQ(M). On the other hand we see that EndR(ER(M))=EndR(ER(M))

=EndQ(ER(M)) and EndR(EQ(M))=EndR(EQ(M))=EndQ(EQ(M))\ consequently

EndR(ER(M))=EndQ(E'ρ(M)), where End*(#) denotes the endomorphism ring of

a right *-module #. The proof is now easily done by applying the well known

fact that a module is quasi-injective if and only if it is a fully invariant submodule

of its injective hull.

The following lemma is frequently used in this paper.

Lemma 1.2. // M is a quasi-injective right R-module such that Rζ^nM

for some positive integer ns then M is injective.

Proof. By virtue of Harada [9, Proposition 2.4], nM is also quasi-injective.



STRONGLY SEMIPRIMG RTNGS 43

Hence we can easily see from RξinM that nM is injective, whence so is M.

2. Strongly semiprime rings

We recall some definitions introduced by Handelman and Lawrence [7]
and Handelman [8]. An right ideal / of a ring R is insulated if there exists a
finite set c:/ whose right annihilator in R is zero. For a non-zero element a
in R, a finite set {rly •• ,rn} <Ξi? is a right insulator of a if the right annihilator of
{aru "-,arn} is zero. A ring R is said to be a right strongly prime ring pro-
vided every non-zero ideal of R is insulated as a right ideal, and said to be a
right strongly semiprime ring if every ideal / of R with I^fi as a right ideal is
insulated as a right ideal. As is easily seen, a ring R is right strongly prime if
and only if every non-zero element in R has a right insulator.

The notion 'insulated' coincides with 'cofaithfuΓ in Beachy-Blair [1] and
is connected with 'finite intersection property on annihilator right ideals' in
Zermanowitz [14]. The class of right strongly prime rings is just that of right
absolutely torsion-free rings in the sense of Rubin [11], For details of strongly
prime rings and strongly semiprime rings, the reader is refered to [1], [6], [7], [8]
and [11].

DEFINITION. For an element a in a ring R> we call a finite set {rly •• ,rn;i}
c l? is a right semi-insulator of a when RaRΓ\RbR=0 and the right annihilator
of {aru " ,arn} U bR is zero.

Proposition 2.1. If R is a ring such that every element in R has a right
semi-insulator, then R is a semiprime right nonsingular ring.

Proof. Let a^R. Then there exists a finite set {rly ~ ,rn; b} ̂ R satisfy-

ing RaRΠRbR=0 and [IΊ(0: art)
r

R] Π(0: bR)r

R=0. If a£ίZ{R) and αφO, then

ar^Z^R) for each / and 0 Φ a τ e Π (0: artfR for some r^R. But it follows from
ί = 1

bRar=0 that ar=0, a contradiction. If aRa=0, then a=0 because α e [ Π

(0: ar^x] Π (0: bR)r

R=0. Thus R is a semiprime right nonsingular ring.

Lemma 2.2. Let Rbe a semiprime ring.
(a) If I is an ideal of R and J is a right ideal of R such that I Π J = 0 , then

If]RJ=0 and moreover Q(R)IQ(R)Γ)Q(R)JQ(R)=Q.
(b) For ideals I and J of R,I<^eJ as a right ideal if and only if I^LeJ as a

left ideal.
(c) If {/ λ |λeΛ} is an independent family of ideals of R, then so is

Proof, (b) and (c) easily follow from (a).
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(a). Set Q=Q(R). Since / Π / = 0 , we see / 7 = 0 and it follows (IQJ Π R)2

=0. Hence IQJ=O, from which we have (QIQ Π QJQ Π i?)2=0 and therefore

NOTE. Let / and / be ideals of a semiprime ring R. When we use ' / £ ! * / '

instead of cI^eJ as a right ideal' or */Q e / as a left ideal', no confusion arisies

by Lemma 2.2(b).

Proposition 2.3. Tλe following conditions are equivalent for a semiprime

right nonsingular ring R:

(a) Q(R) is a direct sum of prime rings.

(b) The set of all central idempotents of Q(R) is a finite set.

(c) R contains no infinite direct sums of ideals.

(d) Every ideal of R is essentially cyclic generated, i.e., if I is an ideal of R,

then there exists a in I such that

Proof. Set Q=Q(R). (a)^(b) is clear.

(b)=φ(c). Suppose that R contains an infinite independent set {7 λ |λeΛ}

of non-zero ideals. Lemma 2.2 (c) says that {QIλQ\X^A} is independent

and so is {EQ(QIλQ)\\EiA}. However, inasmuch as each EQ(QIλQ) is an

ideal of Q, each EQ(QIλQ) is generated by a central idempotent in Q by [5,

Corollary 1.10]. This contradicts (b).

(c)=φ(d). Let / be a non-zero ideal of R. For O φ α ^ / , if Rafl is not

essential in 7, we can take 0Φ#2

 m I such that {Rafl, Ra2R} is independent by

Lemma 2.2(a). Similarly when RaιR®Ra2R is not essential in 7, then there

exists a3 in 7 such that {RaχR9 Ra2R> Ra3R} is independent. Continuing

this manner, by (c), we must reach to n such that {Rafi, '",RanR} is inde-

pendent and RaλR® ®RanRc J. Here we claim R{aλ-\ \-an)R c J. From

Lemma 2.2(c), {QaλQy •••, QanQ} is independent. This implies

®anQ=(a1-\ \-an)Q since Q is a regular ring. Hence we see

®RattR)Q=R(a1-\ \-an)Q, which shows Λ ^ + . + α ^ c ^ i Λ Θ

Therefore surely JR(ΛH \-an)R<^J.

(d)=#>(a). It is easily seen from (d) that Q is a direct sum of indecomposable

rings, say Q=Qi®~-(BQn> To show that each Q{ is prime, let X be an ideal

of Qj. Then EQ.(X) is generated by a central idempotent in Q{ by again [5,

Corollary 1.10]. So, X^eQ{ as a right £)Γmodule from which we see that

Qi is a prime ring.

REMARK. The equivalence of (a) and (b) is due to J. Kado (see [10, Proof

of Proposition 3.2]).

Lemma 2.4 ([8]). If R is a right strongly semiprime ring, then

(a) R is a semiprime right nonsingular ring, and
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(b) Q(R) is a direct sum of simple rings.

Proof, (a). Let / be an ideal of R such that 7 2=0. Clearly 7 2 =0
implies (0: 7)*C<i? as a right ideal. So (0: I)ι

R is insulated as a right ideal.
Inasmuch as (0:1)l

RI=0, it follows 7=0. Hence R is a semiprime ring. Since
R is semiprime, using Lemma 2.2(a), there exists an ideal K^R such that
Z(R)®K^eR. Since Z(R)@K is insulated as a right ideal, there exists a

finite set fo, •••, zn) ^Z(R) and {̂ , •••, kn} ^K such that ή(0: #,-+&,•)£ =

( Π (0 :#,•)£) n(Π(0 :&,•)£). Let a<=Z(R) and suppose αφO. ThenOφαre Π(0 :*,.)£
ί = l ί = l » = 1

for some r in i?. But, since each kj(zr=O, we infer dr=0, a contradiction. Thus

(b). Inasumuch as every non-zero essential ideal of R is insulated, clearly,
R contains no infinite direct sums of non-zero ideals. Hence, by Proposition 2.3,
Q(R) is a direct sum of prime rings, say Q(R)=Qi® ζBQ,r In order to
show that each Q{ is simple, let X{ be a non-zero ideal of Qh i = l , « ,Λ. Since
Qi is a prime right self-injective regular ring, we see X^jQi by [5, Proposition
1.10]. As a result, {Xx®-®Xn) Π-RcΛ So (-XΊ0 —0X,) ΠΛ is insulated
as a right ideal, whence Rξ^k((X1(B~-@Xn)ΓϊR)^k(X1®- -(BXn) for some
positive integer k. Since -XΊ0 0-Xn is an ideal of Q, it is (g-quasi-injective
and so is by Lemma 1.1, i?-quasi-injective. Therefore we see that -XΊ0 0-Xn

is jR-injective, whence Q(R)=Xι®"'®XH. Therefore Q~Xiy i=l,---,n.

Theorem 2.5. For a given ring, R, the following conditions are equivalent:
(a) R is a right strongly semiprime ring.
(b) (1) Q(R) is a direct sum of simple rings, and

(2) Q(R)eR==Q(R)eQ(R), or equivalently, eQ(R)eR=eQ(R) far all
idempotents e in Q(R)

(c) (1) R contains no infinite direct sums of ideals,
(2) every element of R has a right semi-insulator.

(d) Q(R)I=Q(R) for any essential right ideal I of R.
(e) There exists a ring extension S of R with the same identity satisfying

SI=S for any essential right ideal I of R.

Proof. Set Q=Q(R). (a)=φ(b). According to Lemma 2.4, Q is a direct
sum of simple rings. So every ideal of Q is a direct summand. Let e=e2^Q
and take an ideal T of Q such that QeQ®T=Q. Since (QeRΠi?)θ(ΓΓiR) is
essential in R, it is insulated as a right ideal, hence there exists a positive integer
k such that Rc:k((QeRΓ[R)®(Tf]R)) as a right i?-module. Since QeR@T is
a left ideal of Q, QeR®T is ζ)-quasi-injective and so is i?-quasi-injective
(Lemma 1.1). Hence Lemma 1.2 says that QeR®T is i?-injective, whence we
have QeR=QeQ.
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(b)=>(c). In order to show R to be semiprime, let a^R such that aRa=0.
Since Q is a direct sum of simple rings, clearly it is a right nonsingular ring;
whence it is a regular ring. Thus Qa=Qe for some e=e2 in Q. Since QaR=
QeR=QeQ=QaQ, we see O=QaRa=QaQa, from which we have a=0. (1)
now follows from Proposition 2.3. Let us write j2=<2iΘ ΘQΛ, where each
Qi is simple, and let \=ex-\ \-en in this decomposition. {eu ••-,£„} is a

set of non-zero central orthogonal idempotents. Now, to show (2), let a^R.

Then QaR=QaQ=^®Qi f° r s o m e ^ { 1 , —>*}• Without loss of genera-

lity, we can assume 7={1, •••, s}. Let us express ei+ + £ s in QeR as

+£,=Σ?»Λ rί> where q^Q and r^R. We can take r in i? satisfying
1 = 1

Gi?, m = ί + l , ,w. Put b=r(es+1-\ \-en). Here we claim that {rly •• ,r/; b}

is right semi-insulator for a. RaR Π RbR=0 is obvious. If # is in [ Π (0: art )*](

Π(0: W?)#, then (^i+ "+^s)^=0. Further, inasmuch as QemrQ=Qm for m=
H-l, —,Λ, we infer QW2=^.+i® —®δ»5 whence (es+1^ \-en)x=0. There-
fore x=0 as required.

(c)=^(a). Proposition 2.1 says that R is a semiprime right nonsingular
ring. If I is an essential ideal of R, then there exists a in I such that RaR^J
( c ^ ) by Proposition 2.3. Let {rly •• ,rM;i} be a right semi-insulator of a.

Since RaR^JR and RaRΓίRbR=0, we see δ=0. Consequently Π(0: αrf.)=0.

Therefore / is insulated as a right ideal.
(b)=#(d). If I is an essential right ideal of R, then QI^jQ as a right R-

module. As is seen in the proof of (b)==> (c), it follows from (1) that Q is regular.
Therefore (2) easily implies QI=QIQ. As a result QI=QIQ<φQ and hence

(d)==>(e)=#>(a) is obvious.

Corollary 2.6. 4̂ πwg 2? is a right strongly prime ring if and only if Q(R)
is simple and Q(R)eR=Q(R)eQ(R) for all idempotents e in Q(R).

Corollary 2.7. The following conditions are equivalent for a given ring R.
(a) R is a semiprime right Goldie ring.
(b) R is a right finite dimensional right strongly semiprime ring.
(c) IQ(R)=Q(R)I=Q(R) for every essential right ideal I of R.

Proof. (a)=#>(b). Since every essential ideal of R contains a regular el-
ement, clearly R is a right strongly semiprime ring.

(b)=φ(a) follows from Lemma 2.4, and (b)«=>(c) follows from Theorem 2.5
and [12, Theorem 1.6].

Corollary 2.8 ([8, Corollary 16]). A regular right strongly semiprime ring R
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is a direct sum of simple rings. Therefore R is also a left strongly semiprime ring.

Proof. Inasmuch as R contains no infinite direct sums of ideals, it is suffi-
cient to show that R contains no proper essential ideals. Let I be an essential
ideal of R. Then QI=Q by Theorem 2.5, whence it follows from regularity
of R that ί=qe for some q<=Q and e=#<=I. Then, clearly, l=e. So I=R.

3. Nonsingular quasi-injective modules

L e m m a 3.1 ([1]). If R is a right strongly prime ring, then every nonsingular

quasi-injective right R-module is injective.

Proof. Let M (Φθ) be a nonsingular quasi-injective right i?-module
and let Oφtf^Λf. Since xQ(R) is £)(i?)-projective there exists e in Q(R) and
an isomorphism ψ: xQ(R)^eQ(R) with ψ(x)=e. We can take r in R such
that OΦerei?. Then Rζin(erR) for some positive integer w, since er has a right
insulator. Inasmuch as Rξ^n(erR)£&n(xrR)<^nM, M is injective by Lemma
1.2.

Lemma 3.2. Let R be a right self-injective regular ring such that every

nonsingular quasi-injective right R-module is injective. Then R is a direct sum

of simple rings.

Proof. According as every ideal of R is a nonsingular quasi-injective
right i?-module, every ideal of R is a direct summand. Hence R contains no
infinite direct sums of ideals. Hence by Proposition 2.3, R is written as a
direct sum of prime rings, say R=R1®"®Rn. Since R{ is prime and every
ideal of i?, is a direct summand, i?, must be simple, / = 1 , •••,«.

Proposition 3.3. // R is a right nonsingular ring, then the following condi-

tions are equivalent'.

(a) Q{R) is a direct sum of simple rings.

(b) ER(M)=MQ(R) for all nonsingular quasi-injective right R-module M.

Proof. Set Q=O(R). (a)==> (b). If M is a nonsingular quasi-injective right
i?-module, then MQ is nonsingular ^-quasi-injective. Hence, by Lemma
3.1, MQ is g-injective; whence MQ is i?-injective.

(b)=#>(a). If M is a nonsingular quasi-injective right Q-module, then M
is nonsingular i?-quasi-injective (Lemma 1.1). Hence M=MQ=ER(M)=EQ

(M), which shows that M is g-injective. Thus, by Lemma 3.2, we conclude
that Q is a direct sum of simple rings.

We are now in a proposition to show our main theorem.

Theorem 3.4. For a given ring R, the following conditions are equivalent:

(a) RjG(R) is a right strongly semiprime ring.
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(b) Every nonsίngular quasi-injectίve right R-module is injective.

(c) Any finite direct sum of nonsingular quasi-infective right R-module is

also quasi-injecίive.

(d) Any direct product of nonsίngular quasi-injectίve right R-module is quasi-

injective.

Proof. Set R=RIG(R) and Q=Q(RjG(R)). (b)=>(d)==>(c): Obvious.
(a)=^(b). Since R is a right strongly semiprime ring, Theorem 2.5 says

that Q is a direct sum of simple rings and eQeR=eO for all idempotenls e in Q.
Now, let M(Φ0) be a nonsingular quasi-injective right JR-module. In order
to show M is injective, we may show M=MQ by Proposition 3.3. Let 0 Φ # e
M. Since xQ is jj-projective, there exists an idempotent e in Q and an isomor-
phism ψixQ^eQ with ψ(x)=e. Inasmuch as xQ is (J-injective, ER(M)=
xQξ&Y for some submodule Y. Since M is quasi-injective, this yields M =
(xQf]M)(B(Yf)M). As a result, xQΓ\Mis quasi-injective. Put Z=ψ(xQf)M).
Inasumuch as xRc= ̂ QftMceχQ, we infer that ER(xQf]M)=xQ; whence
ER(Z)=eQ. Observing eQ==eQeR=EndQ(eQ)eR=EndR(eQ)eR^EndR(eQ)Z==Zi

we see eQ=Z=ψ(xQ Π M). Consequently xQ=xQ Π M and it follows #0 cjlf.
Therefore MQ=M as desired.

(c)=#>(a). In view of Theorem 2.5, it is enough to show that eQeR=eQ
for all idempotents e in Q and £) is a direct sum of simple rings.

Let e=e2(=Q and set T=eQeR®(l—e)Q(\— e)R. Then T is a nonsin-
gular quasi-injective right i?-module because both eQeR and (1—e)Q{\— e)R
are so. Since i?£Γ, it follows that T is injective; whence so is eQeR. Thus
we get eQeR=eQeQ=eQ. Now, assume that £) can not be expressed as a
direct sum of prime rings. Then, by Proposition 2.3, we see that there exist
infinite orthogonal non-zero central idempotents {̂  | i = l , 2 , } in Q. Since

CO

2 eQ is nonsingular ζ)-quasi-injective, it is also nonsingular i?-quasi-injective
i = l

CO

(Lemma 1.1). Putting T=(ί—e1)Qx(ΣιeiQ)y T is then a nonsingular quasi-

injective right i?-module, since both (1—^)^ and Σ ^ £ ? are so. As a result,

it follows from i?£ T that T is injective and 2 ^(X® 0> a contradiction. Hence
ί = l ~

Q must be written as a direct sum of prime rings, say Q=Qi@ ®Qn Let
X be a non-zero ideal of ζ),-. Then X is a nonsingular quasi-injective right
jj-module and hence it is nonsingular i?-quasi-injective by Lemma 1.1. Take
a non-zero idempotent e in X and consider Xx(l— e)Q. Since both X and
(\—e)Q are nonsingular quasi-injective right i?-module, so is Xχ(l—e)Q.
Inasmuch as i ? £ J χ ( l - e ) Q , it follows that Xx{\—e)Q is injective; whence
X<φj2, . Since Q{ is a prime ring, this shows X— Q{. Accordingly each Qt

is simple.
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Combining Theorem 3.4 with Corollary 2.8, we have

Corollary 3.5. If R is a regular ring, then the following conditions are equi-
valent:

(a) R is a direct sum of simple rings.
(b) Every nonsingular quasi-injective right R-module is injective.
(b') Every nonsingular quasi-injective left R-module is injective.

Corollary 3.6. If R is a right strongly semiprime ring, then its right socle
is a direct summand of R as a ring.

Proof. By Theorem 3.4(b), we conclude that the right socle S of R is a
direct summand of R as a right jR-module. Since R is a semiprime ring and
S is a two-sided ideal of Ry it follows that S is a direct summand of R as a ring.

Boyle and Goodearl [3] showed that every nonsingular quasi-injective
right module over a semiprime right Goldie ring is injective. However, ac-
cording as every essential ideal of a semiprime right Goldie ring R has a regular
element, R is a right and left strongly semiprime ring. Hence Theorem 3.4
guarantees the following result.

Corollary 3.7. If R is a semiprime right Goldie ring, then every nonsingular
quasi-injective right R-module is injective and, at the same time, every nonsingular
quasi-injective left R-module is also injective.

Finally we show the following result.

Theorem 3.8. For a given ring R, the following conditions are equivalent:
(a) R/G(R) is a semiprime right Goldie ring.
(b) Any direct sum of nonsingular quasi-injective right R-modules is quasi-

injective.

Proof. As is well known ([13]), the following conditions are equivalent:
(1) Q(R/G(R)) is a semisimple artinian ring.
(2) RjG{R) is right finite dimensional
(3) Any direct sum of nonsingular injective right Jf?-modules is injective.
Convining this fact with Theorem 3.4 and Corollary 3.7, the proof is es-

tablished.

REMARK. It seems to be also meaningful to study those rings whose nonsin-
gular quasi-injective right modules are written as direct sums of indecomposable
modules. Such rings were determined by Berry [2] as rings R such that R/G
(R) is right finite dimensional.
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