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Abstract
The aim of this paper is to derivéP-L9 estimates for strictly hyperbolic
equations with time-dependent coefficients which are ofstliitz class. Further-
more, LP-L% estimates for Kirchhoff equation can be obtained by appglyihe
Schauder-Tychonoff fixed point theorem.

1. Introduction

Let us consider the following strictly hyperbolic Cauchyblem of second order:

L {(at2 —c(t)®>A)u(x, t) =0, (X, t) €e R" x R,

u(x, 0) =up(x), au(x, 0) =uy(x), x e R",

where c(t) is positive onR, 9; = 9/dt and A is Laplacian inR" defined by A =
>7=182/0%¢. In this paper we shall deriveP-L% decay estimates of solutions both
to (L) and to the Cauchy problem of Kirchhoff equation.

In the case wheu(t) = const.,LP-LY% estimates are well-known in [16, 17] (cf. [3,
9, 14, 18]), while the treatment of time-dependent caselig d@elicate. In fact, Reissig
and Smith obtained thé& P-L9 estimates for (L) in the case whesft) is bounded,
sufficiently smooth and oscillating (see [15]). The core lo¢it argument is to gain
the WKB representation of solutions to the ordinary différ@ equation correspond-
ing to (L) through the Fourier transform, and apply the stary phase method to
the Fourier images. But then, the method in [15] is not effecin the case when
c(t) e C1, since we cannot construct, in general, the WKB representatf solutions.
Fortunately, the another representation formulae have bbtained through the theory
of asymptotic integrations of ordinary differential eqoas (see [11, 12]), and an ap-
plication of the stationary phase method to these reprasentformulae gived.P-L¢
estimates. But we note that there is a quite difference kmtvtieese two representation
formulae. Actually, the amplitude functions in the WKB repentation of solutions be-
long to Q]O (Hoérmander'’s class) in the high frequency part, while thesoim asymp-
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492 T. MATSUYAMA

totic integrations method belong &), which would cause to need a more delicate
analysis to gain the decay inin high frequency region.

As to LP-LY estimates for Kirchhoff equation, D’Ancona and Spagnoldaoted
them by reducing the principal term difiear equationto the D’Alembertian operator
through the Liouville transform (see [5]). But this can bendoonly if the data have
compact supports, since their argument is essentiallydbasethe finite propagation
property of linear hyperbolic equations. Such a conditisrido restrictive, hence our
second aim is to remove this condition on data ($¢e On accout of these estimates,
we can obtain the global existence theorem of non-lineaestupbed Kirchhoff equa-
tion without any compactly supported condition on data, tay to [5], and will be
discussed in a forthcoming paper [13].

We make the following assumption aft):

Assumption A. The function @) is of classLip,,.(R) and satisfies
(i) infier c(t) > O,
(i) (1 +t)"c(t) € LY(R).

In order to state results, we introduce the notation usedii paper. Fors € R
and 1< p < oo, let HSP(R") and HSP(R") be the Riesz and Bessel potential spaces
which are the subspaces 8f = S§’(R") (the space of tempered distributions &R) with
semi-norm or norm

ull s oy = IFHIEPAE) ILe@ny = 11D IPUllLogn),
IUllks @y = 17 1E)AE)]ILe@ny = 1{D)°ullLen),

respectively. Here "~ denotes the Fourier transfaffn’ is its inverse andg) = /1 + |£|2.
Throughout this paper, we fix the notation as follows:

Hs,p - Hs,p(Rn), HSP = Hs,p(Rn), Hs - Hs,2(Rn), HS = HS’2(]Rn).

We denote byC the various constants changing from line to line.
Our result reads as follows:

Theorem 1.1. Let n> 2. Suppose that(t) satisfiesAssumption A.Let1l < p <
2<g<+ooandl/p+1/q=1. Then each solution (%, t) of the problem(L) has the
following properties

3¢ Bu(- Olle < L+ ) O DAWPVD Y T | npenr-i
i=0,1

for j =0, 1, 2and every multi-indexx = («q, ..., an) With j +|a| > 1 as long as the
norms of data are finitewhere N, = ((3n+ 1)/2)(1/p — 1/9).
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This paper is organized as follows: B2 we develop the asymptotic integrations
of ordinary differential equations. 1§3 we will prove Theorem 1.1, and in the last
section we will present.P-L9 estimates for the Kirchhoff equation.

2. Asymptotic integration of ODE

By applying the Fourier transform oRY}, to problem (L), we get
(2.1) v +c(t)?EPv =0, (' =d).

In this section we introduce an asymptotic integration ofiampn (2.1) along the ar-
gument of Ascoli [1] and Wintner [19] (see also [11, 12]). metfollowing we shall
use the notation:

?H(t) = /t c(r) dr.
0
We set

vo(§, t) w6, 1)

We. = ( W) V(e D)

> = fundamental matrix of the ODE (2.1).
This means thato(&, t) is the solution of (2.1) withve(§, 0) = 1, vi(&, 0) = 0, while
v1(€, 1) is the solution of (2.1) withvy(§,0) =0, v;(£, 0) = 1. Hence the solution(¢, t)
of (2.1) can be written by

v, 1) _ v(§, 0)
(22 (v, o) e (e o)
We introduce some notation as follows:
cos(1)lz]) %
Y, t)=
—c(t)lg] sin@ (1)l ) %

= fundamental matrix of the perturbed ODE:

L0

(2.3) 0

w’ +c(t)?€?w = 0.

Hence,

Y(E,0)=1, detr(s,t)= %,
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cos@ ()£ ) _w
Y(E 1) L= o(t) £|
cO)\g| sin@ (t)|& 1) %

Sincec/(t) decays, in general, as— +oc, we may call (2.3) the perturbed equation
of (2.1). Notice thatY (g, t) and W(¢, t) satisfy the equations

(24) BIY(é! t) = AO(S/-:v t)Y(Sa t)a atW(év t) = A(év t)W(S, t)a

respectively, where we set

0 1
0 1
Ao(s,t):( c’(t)). AED=( o o)
e oy ( o(t)2lé| 0>

In what follows, for non-negative function§(x) and g(x), we denotef (x) < Cg(x)
by f < g, whereC > 0 is a certain constant.
Then we prove

Lemma 2.1 (see Ascoli [1] and Wintner [19]). Suppose Assumption A. Then
there existdim_ 1o {Y (&, t)"*W(£, t)}, which is C* in £ € R"\ 0. Putting

_ 1 _ (@) &)

(2.5) Q. )= Y(, 1) W(s't)_<bo(§,t) bl(s,t)>'

we have

(2.6) supa (5, 1)l S 117", sugbi(s, I S 1EMY, 1=0, L.
teR teR

Furthermore Q(¢, t) satisfies the following initial value problem

2.7) %Q(£, 1) =C(§,1)Q(, 1), Q,0)=1,
where

, SR (1)1€1) _ Sin@ 1)I£1)
(2.8) CE, 1) = _(;((tt)) 2c(0)|¢|

—SCO)I SN@ Ol cofDIE)

Proof. The existence of lim...{Y (&, t)"*W(&, t)} follows from the argument
of [1, 19], and we may omit its proof. Differentiating (2.5hd using (2.4) we get

XQE, 1) =Y(E, ) HAE, t) — Ao, )Y (E, 1)Q(E, 1).
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It can be readily checked that
Y(E, 1) H(AG, 1) — AoE, D)Y(E, 1) = CE, 1),

which proves (2.7).
SinceW(&, t) = Y(&, 1)Q(&, t), we can write

(2.9) w(E, t) = a(g, t) cos@(t)E]) + biE, t)_sw::((z;()té”a)
(2.10) v(E, t) = —c(t)Ela (&, t) sin@(t)IE]) + %b,(g, t) cos@ (t)£]),

for | =0, 1. By the standard energy method we have the hyperboéoggrestimates:
211) [ D2 +c?E R (E, DI < el % 2EEIEdr(g(0) )20,

On the other hand, multiplying (2.9) bg(t)|£] and combining (2.10), we get, for
I =0,1,

c(t)?

op "¢ t)1°.

[((&, )%+ c)?1E1Pu €, I = ct)?IEPla &, t)° +

Hence this equation and (2.11) imply that

2 2 .
(212) 2((:)))2 aolt, D2+ E((f)))4 [£1721bo8, DI < '~ 2@V,
2612 2, C(t)? 2 _ 726 /o) dr
(2.13) Ol Plans, D + a5 1biE, D) <el .

Thus the estimates (2.6) follow from (2.12)—(2.13). Thegbrof Lemma 2.1 is now
complete. ]

Summarizing the above argument, we conclude that the solwii, t) = (;’(étt)))
of (2.1) with datavo() = (J ) is represented by
v(§, 1) = Y(§, )Q(E, t)vo(8).
Since the solutioru(x, t) of our problem (L) is represented by
u(x, t) = F[uo(&, t)0o(&) + va(&, 1)02(£)1(¥),
du(x, 1) = F up(§, DUo(€) + v(§, )02(E)(X),

we arrive at the following:
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Proposition 2.2. Suppose that(t) satisfiesAssumption A.Let u=u(x, t) solve
the problem(L). Then the Fourier transformé(&,t) and 0’(&,t) can be represented by

¢, t) = a(g, t) cos@(t)[5]) +b(, t) sin@(t)|51),
U, 1) = —c(t)a(g, )& sin@ (1)I€]) + c(t)b(&, t)I§] cos@ (t)I€])

for t € R, where

a(gr t) = Z 84(5. t)0| (E)l b(%‘, t) =

1=0,1

Y biE HuE).

_r
c(0)E] 5

The next aim is to gain the estimates of higher order devigatdf amplitude func-
tions with respect te¢ (see Lemma 2.5 below), which will be used to develop the
stationary phase method. Go back to the initial value prab{2.7). Then it follows
from the theory of ordinary differential equations th@f&, t) can be written by Picard
series:

t t T1
(2.14) Q(é.t)=l+/0 C(s,rl)dr1+f0 c<s,r1)dr1fo Cle, ) dra+-- -,

whereC(&, t) is given by (2.8).
We prepare the following two lemmas.

Lemma 2.3. Let ck(£,t), j,k=1,2, be the entries of matrix &, t). Then for
every multi-indexu with |u] > 1 and j, k=1, 2, we have

(2.15) 9 cik(&, V) S ©LMIET, g > 1,

where we set

191" |c'(1)]

1<yl
Proof. Noting

1
|& |1l !

1
<
= g

1 §
(2.16) N S ‘V§<E)

<
~

()

@17) ol sin@®)IgN)], |af cos@MIEN| s D] [@)IMEM M

1=py|=|ul

for |u| > 1, we get
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If |&] > 1, then the left-hand side of (2.17) is uniformly boundedéinHence (2.15)
is true forcyi(&, t) andcpa(&, t), since

SIP(r 0] = (1~ cos@ (D),

cog (9 (V) = (1 + cos(D D)

Writing f (£, t) = |&] sin(29(t)|£]) and g(£, t) = |&|~L sin(29(t)|£]), we prove by in-
duction,

(2.18) L fE DS D POIMEL BEeE IS Y 1pmMET

1=pvi=lul 1=vl<|ul

for every u with |x| > 1 and|&| > 1. We suppose that (2.18) holds ferwith |«| =

1,...,|ul—1. Then we have, by the Leibniz rule,
IV B .
(2.19) > cu,u<ag° E)ag f(&, 1) = 8 sin(2(t)I£]),
0<|vi<|pl
(2.20) > Cun(@TIENEG(E, 1) = 0L sin(20 (1) £]).
0<[v|=|u|

Using (2.16)—(2.17) and (2.19)—(2.20), we conclude that§Pis true fork = u. Thus
(2.15) is also true focyo(&, t) and c1(&, t). The proof is complete. ]

The following lemma is well-known.

Lemma 2.4. Let f(t) € B(R) and K, s) be satisfied with
t t 1
F(t,S):1+/ f(Tl)d‘El+/ f(‘[l)df]_/ f(r))dp+---.
S S S

Then Ht, s) = e f@dr,
Recalling®,(t) in Lemma 2.3, we have the following:

Lemma 2.5. Suppose that(t) satisfiesAssumption A.Then for |¢] > 1 and ev-
ery multi-indexu with 1 < |u| < n, the following estimates hold for# 0, 1:

supd'a (¢, O] < (e~ % — 1) g,
teR

supal‘bi(, 1)l < (efi’; O, () dr _ l)lsllfl.

teR
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Proof. Notice that the behaviour of@ 1)-th term (n > 1) in the right-hand side
of (2.14) with respect t& is similar to m-th powerC(&, t)™ of C(g, t), andC(&, t)™
is given by

c’(t))m< pu(E, t) plz(é,t)lél‘l) meN,

CE )" = <C(t) P21(§, t)[§] P22(§, t)

where pjk(¢,t), j, k=1, 2, are polynomials of sif(t)|£]) and cosg(t)|&]). Hence,
taking account of this observation and Lemma 2.3, we dedure 2.14) thatQ(&,t) =
(Qjk (&, 1)) k=1, satisfies

. [t It 7
(2.21)|a;qjk(s.t)|5|5|kJ(/o O, (r2) dry + /O O,(r2) da /O GH(Tz)d1’2+---)

for |€] > 1 and|u| > 1. Now, in view of our assumptions, we hay"éooo O,(r)dr <
+oo for |u| < n, and hence, applying Lemma 2.4 to (2.21), we get, |fr> 1,

o a(s, O] 5 (e~ —1)gfl,jk=1,2.

Taking account of this estimate and recalling equation)(®dn Lemma 2.1, we arrive
at the desired estimates. This ends the proof of Lemma 2.5. O

3. Proof of Theorem 1.1

The idea of proof is similar to [15] (see also [14]). Propiosit2.2 assures that
the solution of the Cauchy problem (L) is of the form

=5 Y 7 @08+ 100 6, ae)

1=0,1

+ (70 _ e—i“‘)‘f‘).b'(é—'t)ﬁ (é)}(x)-

ic(0)i]
To simplify the notation we consider the Fourier transforfritee model multiplier
FHe "% as, Hp)(x),
wherea(t, t) is defined by
either a(, t)g]' or b, t)g|
for 1 =0, 1. Then taking account of Lemmas 2.1 and 2.5, we may asshate

(3.1) sup la(§, t) <Cy,  sup |dFa(E, 1) <Cp 1< |ul<n,
teR,£cRN teR,|&[>1
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for someCy, C; > 0.
We often use the Littlewood-Paley theorem.

Lemma 3.1 ([8] (Theorem 1.11)). Let f = f(¢) be a tempered distribution on
RY (n > 1) such that

sup 1°meags; | f(£) > 1} < +o00

O<l <+o00

for somel < b < +o00. Then the convolution operator witi—[ f] is LP-L9 bounded
provided thatl < p<2=<q < +oo, 1/p — 1/q = 1/b, i.e, there exists a constant
C > 0 such that

|F Y f] % ullLa < ClullLs, uelLP.

In the proof of Therem 1.1 it suffices to consider the casé¢ of0, because the
problem (L) withc(t) replaced byc(—t) can be treated in the same way. Let us choose
a non-decreasing functiopp € C* such thaty(¢) =0 for |£| < 1/2, and 1 for|§| > 1.

In what follows we setK (t) = (1 +t)~* for t > 0.

Proposition 3.2. For any n> 1 and p q satisfyingl < p <2 <q < +o0, the
following estimate holds for all + 0:

00 [ (o () o]

where C depends on, mp, g, and the normjja| ~.

< C(L+t) WP YD g,
La

Proof. The estimate (3.2) witlp = q = 2 follows from the Plancherel theorem.
Hence we may prove the cage# q. Passing to the transformatios= K(t)n and
y = K(t)x, we have

[0 (- v{ig ) ot v

= KO F e OO — y(m)a(K ©)n, K OmI Lo

Defining
Ty o = F MO OM@ — 3 () Inl " a(K (E)n, 1)]1(X)

with the parameter > 0, we have

(oo ) e

= K ()" Tox * FH{P(K €)m)]l La.

La
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Notice that the support of & () is contained in{n € R";0 < |n| < 1}. Then the set
{n; |F[T: ]| =1} is monotone increasing in for eachl > 0, i.e.,

(3.3) measy; |F[Tr il = 1} = measn; [F[T,dl =1}, if 0=<r <ro.
It follows from the estimate (3.1) o(&, t) that

meagn; | [Ty, | = 1} < measgy; In| < Cy/"I=*r} = cCy/rol=ro
for eachl > 0. This together with (3.3) implies that

meagy; | F[To]| > 1} < CC}/™o1 /o,
and hence, we can apply Lemma 3.1 to conclude that the cdimmloperator with
Tot is LP-LY bounded provided that £ n/ro < +oo andro/n=1/p—1/q, i.e.,ro=
n(1/p — 1/q). Hence we have
ITox * FH@(K On)]llLe < CIF (K@M e = CKEO ™™ PllgllLe.

Thus we conclude that

H]_——l[ei D(0)IE] (1 —y (%))a@, t)@(é):|
La

< CK(Q)MMaEB) o)l » = CK(E)"WPYD g 5.

The proof of Proposition 3.2 is complete. ]

Next we want to estimate the9-norms of Fourier transform of multipliers

F1 [é POIEl (%)a@, t)@(&)] ().

For this purpose we will develop the stationary phase metlhod need some lemmas.
The first one is a special version of well-known Littman’s lam as follows:

Lemma 3.3 ([10]). Let n> 2. Then forv € C§° with suppv ¥ 0,

17 ][l < CIIT™ Y2 Y T lag v, t #O.

le]<n

In order to state useful lemmas, let us introduce a non-iveghainction ®(&) hav-
ing its compact support ifg € R";1/2 < €] < 2} such thatd ,>°  ®(27%¢)=1 (¢ #0).
Let us definedy(€) = ®(27%¢), k € N, and ®g(&) = 1— Y ;23 ®k(£). Then the function
dy(£) has its support ifé € R™; |&] < 2}.
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Lemma 3.4 ([2], cf. [3] (Lemma 1)). Letl<p<2<qg<+ooandl/p+1l/q=
1. Then

LPc ByP, L9>BYY,
where B'P is the Besov spagd.e., the subspace of’ with the norm

r

+00
lvllger = 3> @CIF @udllle) § . r=1, seR
k=0

Lemma 3.5 ([3] (Lemma 2)). Let ac L*® and assume that
IF {a®kd]lia < Cllvle, k=0,1,2,....
Then there exists a constant A independent of a such that

| F~ad] || goa < AC|Jv]| for r>1.

B> B>?

Now we are in position to estimate our Fourier multipliers.

Proposition 3.6. Letn>2, 1< p<2<g<+o0 andl/p+1/q=1. Then for
all t > 1, the following estimate holds

<C@+ t)—((n—l)/z)(l/p—l/q) @l e,

La

) | @ 0y (5 Jate v

where N, = ((3n+1)/2)(1/p — 1/0).

Proof. Let®dy(¢) (k=0,1,..) be functions as introduced before, and we consider
the following Fourier images of multipliers

Fleviy (o o o |, k=01

We divide the proof into three steps.
FIRST STER L-L™ continuity Notice that

HF e () o ) vaee

= [l (s )i e o) v

Lo

(3.5)

Loo
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for all r > 0. Passing to the transformatign/(2€K (t)) = n we obtain

1| g o] ( § ) < § ) - }
(3.6) Hf [ v K(t) ¢ K(t) £17aE Y Lo
= 200K @) | F PO Oy, ) e,

where we set

w(n, t) = Y (2n) (2 n)a@*K (), t).

Notice that the functionsy(n, t) have their supports iy € R";1/2 < |n| < 2} on
account of sup@ C [1/2, 2], and in particular, we have

d(n)a(2¥K (t), t) for k=1,2,...,

0= hakion o for k=0 on Suppe:

Then we can apply Lemma 3.3 to get, for 1,

_ j ok _
| F e Z KO Omly i, )]~ L~

C(2K ()l ()12 9 (Il v, ) 2
(3.7) < C@KmIBL) Ign” y (1™ vk, D)

< C2H D2 g (Inl " vk, )l

Jel=n

Now using the estimates (3.1) we have, for 1, 2,...,

15 (1™ vk (n, t)IlLe

= / |32 (@(n) |~ 22K By, 1) dy
1/2<n|=2
(3-8) = C, 9P (d () |n|™") (2K (1)) #!](8P a)(2XK (t)n, t)| d
wglal ,ﬁfmimn (@)™ K 0)#[(38a) 2K (t)n, 1)] dy

<Cy Y (K@)

1BI=lal

In case ofk =0, (3.8) can be obtained fab(n) replaced byy (n)®o(n). Givent > 1,
taking a least integek, such that ®K(t) > 1, we have

@K D) for all k= ko,
m%l(zk'((t))w = { for k=0,1,... k-1,
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and hence, we get, by (3.8),

k n
(3.9) Z||a$(|n|—ka(n,t))||us{C(zK(t)) o k=01 ko= 1,

le|=n

with a cetain constant independent lof Thus we have, by (3.7) and (3.9),

C 2k(n+1)/2 K (t)n ,

— j ok 7 — k Z k01
”f 1[e|2 K®2 O ”Uk(ny t)|’7| r]”L”C < {CZ‘k(”—l)/z, k=0

k=1

for all t > 1. Therefore, combining this estimate with (3.5)—(3.6), areive at the
following estimate fort > 1 andk > kq:

7@y (g o ) 0ot

If we setr =(3n+1)/2, we get

(3.10) H}" [él’“"g ly ( Ké(t)> c1>k( Ké(t)>a(§, t)@(é)]

< CHE™2=NK ()"~ ||| D] g1

Lo

<C K(t)(n_l)/2||g0|| H@n+1y2,1

Lo

where we used the relatioHSP c HSP for s > 0 and 1< p < +oco. As for the case
t>1andk=0,1,...,ky —1, we have

HF e (o )2 t)“”@)]

Thus, puttingr = (n+1)/2 we arrive at

=1 Hf e (g o ) veee)

forallt >1andk=0,1,...,k — 1. Summarizing (3.10) and (3.11), we conclude
that (3.10) holds for alt > 1 andk € N U {0}.
SECOND STEPR L2-L? continuity Noting

‘éﬂ(t)'é‘”“(t))q’ <K(t))a@ g

for all t > 0, we conclude from the Plancherel theorem that

HF [éﬁ(t)g"’@é(t))q’ <r<(t))""(s t)‘”@)}

< C2AMZOK ()" |||D|" ¢l 2

< CKO)" V2g) genen

Loo

= sup a5, )l =Cy

Lo 2k-1<lg]/K(t)<2k+t

= Clell.
L2
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THIRD STEP. Interpolating betweer.® and L? (see [2, Bergh and Loéfstrom],
we see that, fot > 1,
(3.12)

Hf @0 (g ) o< e 070

with Np = ((3n + 1)/2)(1/p — 1/q). Passing to the transformatiogs= K(t)y andy =
K(t)x, we have

Hf oo (g o )2 ”“’@}

= K" F e OOy yd(ma(K (tn, DK O] |,

<C K(t)((n—l)/Z)(l/ p—1/q) @l e,

La

for k=NU {0}, and hence, applying Lemma 3.5 to (3.12) with this form artdrréng
to the original form through the transformations= K (t)~'& and x = K (t)~'y, we get

(3.13) Hf-l[éﬂm'f'w(K(t))a(s t)go(s)}

. <C K(t)((ﬂ—l)/Z)(l/p—l/Q)”(p”BZWp

provided that 1< p<2<q < +oo0 and ¥p+1/q=1. Thus, applying Lemma 3.4 to
(3.13), we get the desired estimate (3.4). The proof of Fsitipn 3.6 is now finished.
Ul

It remains to estimate

= [é“"%( ())a@ t)w(é)}

La

neart = 0.

Proposition 3.7. Letn>2, 1< p<2<q<+oco andl1l/p+1/q=1. Then the
following estimate holds for all & 0O:

(3.14) Hf‘l[é POy, ( K(t)>a(%‘ t)w(%‘)]

= C”(p”Hvapv

La
where N = n(1/p — 1/q).

Proof. In the following argument we need not Littman’s lem(aae Lemma 3.3),
and the proof relies only on the Littlewood-Paley theoremnathe proof of Proposi-
tion 3.2. It suffices to prove (3.14) fop # g, since the case = q = 2 follows from
the Plancherel theorem. Passing to the transformaffgis(t) = n and y = K(t)x we
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obtain
(3.15)

Hf— [é“t”w( (t)) a(z, t)tp(é)}

with the parameter > 0, where we set

§ o= F OOy (minl~ a(K (O)n, 1)].

Recalling the estimate (3.1) @f(¢, t) we have

= KOS ¢ * F Il a(K ©)n)]llLe

La

mea$y; |F[S ]| > 1} < meagy; [nl < CY/'I"¥y=ccy/f1-r

for eachl > 0. Hence we conclude from Lemma 3.1 that the convolution atper
with S is LP-L9 bounded provided that £ n/r < +oo andr/n=1/p—1/q, i.e.,
r =n(l/p—1/q). Therefore we have, puttinﬁlp(: r)=n(l/p-—1/q9),

ISK,.¢ % F TN @K Om]lIe < CIFHInNe@(K O)m] e
= CKO) ™" No g 0,
where we performed the transformatiokgt)n = & and x/K(t) = z in the last step.
we combine this estimate with (3.15) for= N and use the relatioi Ne:P ¢ H N P,

then we obtain the required estimate (3.14). The proof op&siion 3.7 is complete
O

Completion of the proof of Theorem 1.1. Combining Proposisi 3.2, 3.6 and 3.7,
we getLP-L9 estimate

IF e OklaE, t)pE)]llLa < C(L+t)~ M= D2AP=YD| o L

provided that < p<2<q < +oo and ¥p+1/qg=1. We go back to the representa-
tions for G(&, t) and 0/(&¢, t) obtained in Proposition 2.2. Then applying the estimates
obtained now to the Fourier imagég¢t,t) andd’(¢,t), we conclude the proof of The-
orem 1.1. O

4. LP-LY estimates for the Kirchhoff equation

In this section we shall obtaibP-L9 estimates for the Kirchhhoff equation. Let
us consider the Cauchy problem for the Kirchhoff equation:

82u — (1+ |Vu|2dx)Au=0, x,t) e R" x R,
(K) Rn
u(x, 0) =up(x), du(x, 0) =uy(x), xeR".

The global-in-time existence theorem is well-known frone flellowing theorem:
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Theorem A ([20] (Yamazaki)). Let n> 1 and g > 3/2. If the data W, u; satisfy
{VUg, ug} € (H*™ )" x H®1 {ug, u1} € Yi for some k> 1, and

(4.1) g0 = [[VUollZ: + lluZ. + |{uo, us}ly, < 1 for some k> 1,

then the problen{K) has a unique solution (%, t) satisfying

(4.2) {Vu, ou} € ﬂ CJ(R; (Ho 1)) x Cj(R; (H® 1)),
j=0,1

Here
Yi = ({p, ¥} € H¥2 x HYZ; |{g, ¥}ly, < +00},

[ e a

o, ¥}y, = suRnl +]z|)

+sug(L + 7))
TeR

[ i de

+Suf(L + |7 )
7eR

[ e ie) de |
Based on Theorem A, we shall prove here the following:

Theorem 4.1. Letn>2and p g, N, be as inTheorem 1.1.Then each solution
u(x, t) satisfying(4.1)+4.2) in Theorem Awith k=n + 1 has the following estimate
for all § > O:

180 0gu( -, t)llLa < C(L+[t]) (D2 AP N g e,
i=0,1

for j =0, 1, 2and every multi-indexx with j + |¢| > 1 as long as the norms of data
are finite

The definition ofYy is somewhat complicated. We make explicit some examples
of spaces contained iM.

ExAmPLE 4.2. (i) Letn>4, 1<p<2(n—-1)/(n+1) and Yp+1/q=1. Then
it was proved in [12] that

H N/ p=1/a)+1.p o yn(t/p-1/a).p ~ Ykp), Where k(p) = n;1<1 — E) >1
1 2 p

(see also [21]).



LP-L9 ESTIMATES 507

(i) Let n>1 andk € (1,n+1]. Then it was proved in [20] (see also [4, 7]) that the
space of [5, 6]

(@, ¥) € HZ x HY 100Xz + [1(X) P Iz < +o0)

is contained inYy.
(i) It was proved in [12] that

(0™ IDIX) ™"} € Yauz, and {(x)7, IDI(X) "'} € Yneg for VI >n.

Now go back to the linear problem (L). Let us introduce a widtass forc(t)
than that in Assumption A as follows. Givel > 1, § > 0 andn > 2 we say that(t)
belongs tokC(A, §, n) if it belongs to Lig,:.(R) and satisfies

1<c(t) <A,
ICt)] <8 +]t)"™Y  (ae.t eR).

We shall prove here the following:

Lemma 4.3. Let (t) € K(A, 8, n). Then for |£] > 1 and every multi-indexu
with 1 < |u| < n, the following estimates hold for4 0, 1:

fuRrie+|t|)—“|a§‘a4(s, ) < 1E17,

tsuRr(e+|t|)“‘|8§‘h(§, Ol < gt

For || = 0 we have the estimates frobemma 2.1.

Proof. Since|®(z)| < 1+|z|, we have, forju| < n,

. - (M5 P@MIEE)
/0 0,(r)dt _/0 > @ dr < §log(e +]t)).

v=p
Hence the proof can be done along the same line as in the pfdofroma 2.5. [

Based on Lemma 4.3, we can prove the following theorem by dimeesargument
as in the proof of Theorem 1.1.

Theorem 4.4. Let dt) € K(A, 48, n). Let p g and N, be as inTheorem 1.1.
Then for each solution (i, t) of (L) the following estimate holds

43)  190ogu(-, Dlle < C(L+[t) 2P Sy juer-io
i=0,1
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for j =0, 1, 2and every multi-indexx with j +|«| > 1 as long as the norms of data
are finite

Proof. In order to prove Theorem 1.1 we have derived Propaosit3.2, 3.6 and 3.7.
But here, Propositions 3.2, 3.7 ahd-L? continuity from Proposition 3.6 hold also for
our case, since the higher order derivativesat, t) (see Lemma 2.5) was used only
in L1-L> continuity from Proposition 3.6. Hence if we study*-L> continuity for
t > 1, we can conclude the proof of Theorem 4.4 for the estimat®).(4

We prove

@4 Hf e (o ) vace)

for t > 1. Go back to the proof of.1-L> continuity from Proposition 3.6 and recall
(3.5)—(3.6). Then (3.7) becomes

<C K(t)(nil)/zis lell qeEnsyar

Loo

|72 KOOy, (i, )] Tl L

< C27K=D2KR ()7 Y K ()P0 (1n1 ™ vi(m, D) L

le|=n

(4.5)

Noting Lemma 4.3 and recalling the choice of the intelggrwe get

(4.6) Y UK 9 (10l vk(n, )L~ <

le|=n

CEKM)", if k= ko,
{c, if k=0,1,..., k—1.

Hence we combine (4.5)—(4.6) to get, foe 1,

I _ C2KMI2K (1)=%,  if k> ko,
|7~ Z KOOy (n, )0 T < {CZ K0-D2K (1)3, if k=0,1, ..,k —1
Therefore, we arrive at
H]_-_ [e“’“"“lﬂ( 5 )q>< 5 )a(g t)w(s)]
K (t) K(t) Lo
CKE 20K ()™ Pl pllnes, i k= ko,
CKMD2NK ()|l o[yra, if k=0,1,...,k —1,

for t > 1, where we used the relatiod"* c H"1, Puttingr = (3n +1)/2 for k > ko
andr =(n+1)/2 fork =0, 1,..., ks — 1, we have the required estimate (4.4). The
proof of Theorem 4.4 is complete. ]

Once we obtainLP-L9 estimates for linear problem (L), we can also obtain the
same estimates for the Kirchhoff equation through the fixaedtpargument as in [4, 5].
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Proof of Theorem 4.1. Fixing the data satisfying the assionptof Theorem A,
we consider the solution(x, t) of linear problem (L) in Theorem 4.4, and define

&(t) = /1 +1Vu(-, ..
This defines the mappin®: c+— €. By using the method of [21], we obtain

Lemma 4.5. Let u(x, t) be the solution of(L) with data satisfying{Vug, u;} €
(H2* )" x H%~! for some g > 3/2 and {uo, U1} € Yn+1. Then there exist a constant
M depending only on n such that

1< &(t) < 1+|[Vuol 2+ Meo,

B )] < Meo(L +]t))" ™,
where gg = g¢(Ug, Uy) is the size of datdsee(4.1)).

It follows from Lemma 4.5 and the Schauder-Tychonoff fixedihptheorem that®
has a fixed point ifC(A, §,n) for suitableA and§, i.e., &(t) =c(t), and hence, (K) has
a unique solutioru(x,t) as in Theorem A. In conclusion, it follows from Theorem 4.4
that the solutionu(x, t) of (L) is a solution of (K) havingLP-L9 estimate (4.3). The
proof of Theorem 4.1 is now complete. 0

Final Remark. We can remove the constahfrom the decay rate of Theorem 4.1,
if {ug, U1} € Yk for somek > n+ 1 (see Example 4.2 (iii)). In fact, we can obtain Lem-
ma 4.3 withs = 0, and prove thaf'(t)| < §(1+|t)~ provided thal{Uo, U1}l 512y, <
1. Hence, by the fixed point argument, the decay rate of Theatd coincides with
the one of Theorem 1.1.
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