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1. Existence of Green functions on transient covers

Let : → be a Galois covering of an orientable Riemannian manifold ,
with as the deck transformation group. In the case where is compact, it is known
since Royden [14] that and share same properties. Namely, the canonical Brow-
nian motion on induces a Brownian motion on and vice versa. Moreover, if one
of them is transient, then so is the other one. It is also well known that the transience
of the canonical Brownian motion on is equivalent to the existence of Green func-
tions on (See [1] and references therein). However, much less is known in the case
where the base is a non-compact manifold. In this paper, we prove the following
result in this direction:

Theorem 1.1. Let : → be a Galois covering of a Riemannian manifold
whose deck transformation group is an extension of a finitely generated transient

group. Then is transient also, i.e., carries Green functions.

Question. Is Theorem 1.1 valid for an arbitrary transient group ?

Before passing to the proof, let us note that if is compact, then is a finitely
generated group. For such groups, there is a nice characterization of transience given
by Guivarch [4], Lyons-Sullivan [8] and Varopoulos [17] : A finitely generated group
is recurrent (i.e. not transient) if and only if it is a finite extension of one of the
groups{0}, Z, or Z2.

In what follows, ∈ means that has Green functions (equivalently, is
transient) and ∈ means that do not carry Green functions (equivalently, is
recurrent).

Theorem 1.1 is based on the following generalization of a theorem of Kusunoki-
Mori [5], which was originaly stated for Riemann surfaces (See also [15] III.1.2G).
The proof for Riemannian manifolds given below is a mere repetition of their proof,
which involves the concept of Royden compactification. Existence of the Royden com-
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pactification for Riemannian manifolds and all the related results that we use in the
proof have been established by Glasner-Katz [3].

Theorem 1.2. Let be a Riemannian manifold of class , and let be an
open submanifold of with a smooth boundary∂ . Then the doubledbl of
along ∂ is also of class .

Recall that the double dbl of is obtained by gluing together two copies of
along their boundaries, metric structure on dbl being the natural one.

NOTATION. For a non-compact orientable Riemannian manifold , a continuous
function : → R with locally integrable first partial derivatives is called aTonelli
function. The setM( ) of all bounded Tonelli functions on with finite Dirichlet
integrals ( ) is an algebra, theRoyden algebraof . Let { } ∈N be a bounded se-
quence of functions inM( ) converging uniformly to on compact subsets of . We
say that = -lim if lim ( − ) = 0. The Royden algebra is complete under
this topology. There is a unique compact Hausdorff space∗, which is called theRoy-
den compactificationof , satisfying (i) is dense in ∗, (ii) Every ∈ M( ) ex-
tends continuously to ∗, (iii) M( ) separates the points of∗. The Royden boundary
is the set := ∗\ . The ideal ofM( ) consisting of functions with compact sup-
port is denoted byM0( ), and the closure ofM0( ) in the -topology is denoted
by M ( ). The subset of consisting of points with the property that ( ) = 0
for all ∈ M ( ) is called theharmonic boundaryof , and denoted by . Ex-
istence of Green functions on implies that the harmonic boundary is nonempty, in
fact, ∈ ⇐⇒ 6= ∅.

Proof of Theorem 1.2. Let ∗ be the Royden compactification of , be its
harmonic boundary, and let be the closure of in ∗. Since ∈ , we know that

= ∅. Hence, for all ∈ one can find an ≥ 0 in M ( ) with ( ) > 1. The
set being compact in ∗, one can choose a finite number of points1 2 . . .

such that

⊂
⋃

=1

{ : ∈ ∗ ( ) > 1}

Thus, the function =
∑

=1 ∈ M ( ) satisfies > 1 on . Let { } ∈N be a
sequence of functions inM0( ) such that = -lim . Putˆ , ˆ for the symmet-
ric extensions of | , | to dbl . Then one haŝ ∈ M(dbl ), ˆ ∈ M0(dbl ),
and ˆ = -lim ˆ . This implies that ˆ ∈ M (dbl ). Since > 1 on dbl ,
1 = (1/ ˆ ) ˆ ∈ M (dbl ), which shows that the harmonic boundary of dbl is empty,
i.e., dbl ∈ .
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Proof of Theorem 1.1. The proof will be achieved in two steps. First assume
that is finitely generated. Set :=⋆π1( )⊳π1( ). As is finitely generated, one
can choose a finite number of loopsγ1 . . . γ in such that [γ1] . . . [γ ] ∈ π1( )
generate =π1( )/ in the quotient. Let be a relatively compact, connected
open submanifold of with smooth boundary∂ such that contains the loops
γ1 . . . γ . Then the open submanifold :=−1( ) of is connected, and its bound-
ary ∂ = −1(∂ ) is smooth. Consider the manifold dbl . It is easy to see that
the action of on passes to dbl . Thus, dbl is a Galois covering of the dou-
ble dbl of , with as the deck transformation group. The manifold dbl being
compact, dbl is of class , and Theorem 1.2 implies that is of class .

Now assume that is an extension of a finitely generated transient group, i.e.,
assume that there is an exact sequence 0→ → → ′ → 0 where ′ is finitely
generated and transient. Consider the intermediate covering/ → . Since this
covering has ′ as the deck transformation group,/ has Green functions by the
first part of the proof. Since → / is a covering, is of class , too. This
completes the proof.

REMARK. To illustrate the “doubling” procedure described above, let exp : :=
C → := C\{0} be the usual covering. One can choose to be the annulus{ :
1< | | < }, so that is the strip{ : 0< Re z< 1}. After the doubling, one obtains
a covering of the torus dbl by the cylinder dbl .

Some Corollaries of Theorem 1.1
1. On commutator subgroups of Fuchsian groups. According to a theorem of

Myrberg [11], if a Riemann surface is covered by the unit disc , and is the
corresponding Fuchsian group acting on , then∈ if and only if is of con-
vergence type; that is,

∑

∈

(1− | ( )|) <∞

for one, and hence for all ∈ (see also [16], X.13). The following statement is an
immediate corollary of Myrberg’s characterization and Theorem 1.1.

Corollary 1.3. Let be a Riemann surface covered by the unit disc , and let
π1( ) = ⊂ Aut( ) be its covering group. A normal subgroup ⊳ is of conver-
gence type if the quotient group/ is an extension of a finitely generated transitive
group.

Now we shall consider the particular case of abelian coverings; that is Galois cov-
erings whose deck transformation groups are abelian. Rank of an abelian covering is
defined to be the rank of its deck transformation group. Theorem 1.1 and the Varopou-



298 M. ULUDAĞ

los’ characterization of finitely generated transitive groups imply that for 3≤ ≤ ∞,
an abelian covering of rank of a Riemannian manifold is of class . This latter as-
sertion is a generalization of a theorem proved in 1953 by Mori [10] in the case where
the base is a compact Riemann surface.

It has been shown by McKean-Sullivan and Lyons-McKean [9], [7] that the maxi-
mal abelian (hence,Z2-) covering ofC\{0 1} is of class . Hence, we have a com-
plete list of Riemann surfaces which do not have an abelian cover of class : Since
the deck transformation group of the maximal abelian cover is the abelianization of
the fundamental group, the genus of such a surface should be≤ 1 and it cannot have
too many punctures. Namely, these are the sphere2 = P1

C
, the complex planeC,

the punctured planeC\{0}, the tori T, and the punctured toriT\{ }. The only non-
trivial case is that of a punctured torus, so we describe its maximal abelian cover. If

: C → T is the universal covering ofT, then C\ −1( ) is the maximal abelian
cover of T\{ }, which is easily seen to be not of class . Also, note thatT\{ } is
the only surface in the above list which is covered by the unit disc . So, we have
the following consequence of Theorem 1.1:

Corollary 1.4. Let a Riemann surface be covered by the unit disc , and let
π1( ) = ⊂ Aut( ) be its covering group. Then
(i) If 6= T\{ }, then the commutator subgroup[ ] is of convergence type.
(ii) If is a subgroup of such that[ ] ⊂ ⊂ , and the rank of the abelian
group / is ≥ 3, then is of convergence type.

2. Carathéodory hyperbolicity of metabelian covers. A Riemann surface is
called Carath́eodory hyperbolicif bounded holomorphic functions separate the points
of . It is interesting to know when Carathéodory hyperbolic surfaces appear as
“small” covers of Riemann surfaces. In [6] Lin and Zaidenberg shows that if a Rie-
mann surface has an abelian cover of class , then has a Carathéodory hy-
perbolic, abelian cover , such that is a metabelian (i.e. two-step solvable) Galois
covering of . Hence, Theorem 1.1 implies the following corollary.

Corollary 1.5. If is not one of the surfaces2, C, C\{0}, T, T\{ }, then it
admits a metabelian, Carathéodory hyperbolic Galois covering → .

The converse of this corollary is also true, for it is obvious that the surfaces2,
C, C\{0}, T do not possessany cover carrying bounded analytic functions. For the
surfaceT\{ }, recall that its maximal abelian cover is of class . One of the results
in [8] asserts that an abelian cover of an -manifold is of class , that is it has
no bounded non-constant harmonic functions (sometimes such a surface is also called
a Liouville surface). This shows that a metabelian cover ofT\{ } is of class ,
so in particular it has no bounded analytic functions, and it cannot be Carathéodory
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hyperbolic.

2. Existence of bounded harmonic functions on finite covers ofPG-surfaces

An unwritten rule in the classification theory of Riemann surfaces states that “pas-
sage to covers produces more and more functions”. In this section we consider the fol-
lowing question: While passing to covers, exactly when the bounded harmonic func-
tions appears?

Let be a Riemann surface of class , and let be a rank≥ 3 abelian cover
of . Then, as we have noticed above, ∈ by a result in [8]. On the other
hand, Theorem 1.1 implies that ∈ . So there are many Riemann surfaces∈
∩ . Let us denote by the maximal abelian (hence,Z∞-) cover of . Lyons

and Sullivan [8] observed that is of class , that is, it does carry a non-constant
bounded harmonic function. The theorem below states that has afinite Galois cover

which is of class . However, by an argument due to V. Lin, does not carry
any non-constant bounded analytic functions (see Remark 3 below).

Theorem 2.1. Any Riemann surface of class has a finite cover which is
of class and, moreover, carries a Dirichlet finite bounded harmonic function.

Proof of Theorem 2.1. A -surface of genus = 0 already carries a Dirichlet
finite non-constant bounded harmonic function (see [15], III.5G). Hence, setting =
we are done. If 6= 0 then there exists a closed analytic curveγ on which does not
divide the surface. We denote two sides ofγ by γ+, γ−, and we cut alongγ. Let
˜ be a second copy of , ˜γ be the copy ofγ in ˜ with corresponding sides ˜γ+, γ̃−.
Gluing to ˜ via natural identificationsγ+ ←→ γ̃−, γ− ←→ γ̃+, we obtain aZ2-
covering of .

CLAIM . The surface is of class .

An immediate way to see this is to observe that the harmonic boundary of
consists of two points, which implies the existence of a Dirichlet finite non-constant
bounded harmonic function on (see [13], or [15], III.3F). However, we shall give a
more elementary proof based on the following theorem:

Theorem 2.2 (Bader-Parreau [2], Nevanlinna [12]).Let 1, 2 be two disjoint
subsurfaces of with analytic boundaries∂ 1, ∂ 2. Assume that there exists two non-
constant bounded harmonic functions1 on 1 and 2 on 2 such that 1 ≡ 0 on ∂ 1

and 2 ≡ 0 on ∂ 2. Then carries a non-constant bounded harmonic function. More-
over, if 1, 2 have finite Dirichlet integrals, then carries a non-constant bounded
harmonic function with finite Dirichlet integral.
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Proof of Claim. The surface being of class , the harmonic measureω of
the ideal boundary of with respect toγ is non-vanishing, that is,ω is a bounded
non-constant harmonic function with finite Dirichlet integral on\γ which vanishes
on γ (See [16] X.1). Let ˜ω be the same function oñ \γ̃. Setting 1 := \γ, 2 :=
˜ \γ̃, 1 := ω, 2 := ω̃, the hypotheses of Theorem 2.1 are satisfied, hence carries a
bounded non-constant harmonic function with finite Dirichlet integral.

REMARKS. 1. A sufficient condition for a Galois cover of a -surface to
be of class is the compactness of the boundary of a fundamental region of the
corresponding group action on ; this can be proved in the same way as in the proof
above. Looking at the Royden boundary shows that this latter condition is valid for
Riemannian manifolds, too.
2. It should be observed that a finite (even infinite) cover of a -Riemann surface
can be of class . For example, if is a rank-3 abelian cover of a compact Rie-
mann surface of genus = 2, and is the maximal abelian (i.e. rank-4) cover of

, then ∈ by Theorem 1.1. On the other hand, an abelian cover of a compact
surface is of class by a theorem of Lyons-Sullivan [8], so∈ , but is a
Z-cover of .
3. In contrast with the possible existence of bounded non-constant harmonic func-
tions as stated in Theorem 2.1, a finite cover of an surface cannot carry
non-constant bounded analytic functions. The proof goes as follows1: Let be the
degree of a finite covering : → , and let be a bounded analytic function
on . Let ∈ and −1( ) = { 1 . . . }. For = 1 . . . define ( ) :=
σ ( ( 1) . . . ( )), whereσ is the elementary symmetric polynomial of degree
in variables. Then each is a bounded analytic function on . The real parts of
the ’s, being bounded harmonic functions, are constant, hence = , which
implies that = .
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[11] P.J. Myrberg:Über die existenz der Greenschen funktionen auf einer gegebenen Riemannschen
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