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Introduction

Let (X, U) be a P-harmonic space in the sense of Constantinescu-Cornea
[5] with a countable base. If we assume the Doob convegence property, the
proportionality axiom and the condition (A) (see [7]) on (X, U), then (X, U)
has a Green function and every potential on X is represented by the Green
function with a Radon measure on X [7]. In this paper we consider the
following problem: if we assume the existence of a Green function k(x,y) on
(X, U), what conditions derive the representation of all potentials by the function
k(x, y) with a Radon measure on X.

In 1979, A. Boukricha [3] proved that if any finite continuous potential
with compact harmonic support is represented by the function k(x, y) then the
proportionality axiom is satisfied. Furthermore, U. Schirmeier [9] proved
that if at least one bounded continuous strict potential is represented by k(x, y)
then the proportionality axiom is satisfied. In 1982, for a Brelot space H. Ben
Saad [1] proved that if the function k(x, y) is symmetric i.e. k(x, y)=Fk(y, x) or
if there exists an adapted cone P’ of continuous potentials which are represented
by k(x, y) such that P'—P’ is uniformly dense in C(K) for an arbitrary compact
subset K C X then every potential on X can be represented by the function
k(x, y) and also the proportionality axiom is satisfied.

We shall show, first of all in section 2 that for a general P-harmonic space
with a countable base which admits a Green function k(x, y), if the convex cone
P, of all continuous potentials which are represented by k(x, y) is adapted, inf-
stable and separates points of X, we obtain the same conclusions as those of
H. Ben Saad. In section 3, we shall show that if there exists a second P-
harmonic space (X, U*) which has the Green function k*(x, y)=Fk(y, x) then the
convex cone P, possesses the above properties. In section 4, we show that the -
assumptions of A. Boukricha and U. Schirmeier for concluding the propor-
tionality axiom coincide with the assumption that the convex cone P, possesses



332 H. MORINAKA

the above three properties.

I would like to express profound thanks to Prof. Ikegami for proposing
these problems and pointing out some mistakes in the original version; further
I thank him especially for proving Proposition 4.2 and for very helpful discus-
sions. Let me also express my gratitude to the refree for valuable instructions
and recomposing the contents.

1. Preliminaries

Let (X, U) be a P-harmonic space (a harmonic space will be called P-
harmonic space if for any point x& X, there exists a potential p such that p(x)>0)
in the sense of Constantinescu-Cornea with a countable base, where U denotes
the sheaf of cone of hyperharmonic functions.

Throughout this article we assume that constant 1 is superharmonic and
(X, U) admits a Green function k(x, y) which possesses the following properties:

1) (%) k(x,y): XxX— R, islower semicontonuous and finite con-
tinuous outside the diagonal,

2) k,: x> k(x,y) is a potential such that S(k,)={y} for every yeX
where S(k,) is the harmonic support of the function k,.

In this situation, we can easily show the next lemma by using the fact that
X has no isolated point ([5], p.31).

Lemma 1.1. For any point yE X, there is at least one point x= X such that
x%y and k(x, y)>0.

We list some basic notations which are used in the text.

N: the set of natural numbers

R,: the set of positive real numbers

R,: =R,U{+o}

B(X): the set of all Borel numerical functions on X

C(X): the space of all continuous real functions on X

S: the set of all superhamronic functions on X

P: the set of all potentials on X

Ay, AT, Ay the set of all functions in 4 which are bounded which are
positive, which have compact support, respectively

1,: the characteristic function of a set A

MH*(X): the set of all positive Radon measures on X

M3(X): the set of all positive Radon measures with compact supports on X

fuf (resp. f,\\f) means f, converges pontwise increasingly (resp. decre-
asingly) to f

(FVE) (®): = sup (f(), g(x))

(fAg) (x): = inf (f(x), &(x))
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uAv(u,vEM*(X)): the infimum of x and » with respect to the order
relation p <v(pu<v means u(f)<v(f) for any f € Ck(X))

)4z the restriction of a measure gy on A

&,: the unit mass (Dirac measure) at x€X

9A4: the boundary of 4

2. The convex cone P,
Let P, be the convex cone defined by
P: = {kpsPNC(X); peM*(X)},

where

kus(w): = | K(w,9) duly), #€X.

Our purpose in this section is to prove that if P, possesses the following proper-
ties:
i) P, is adapted, i.e. there exists p,& P, such that p,>>0 and for any pEP,,
there exists g€ P, such that p=o(g),
ii) P, is inf-stable, i.e. p;, p,= P, implies p, A p,EP),
iii) P, separates points of X, i.e. for every pair of points x;, x,EX, %, x,;
there exist p;, p,E P, such that

Pi(x1) Pox,) = Pa(z) po(%1)

then every potential on (X, U) can be represented by the Green function k(x, y)
with a unique positive Radon measure on X and (X, U) satisfies the proportion-
ality axiom (P):
(P): two potentials with the same one point harmonic support are propor-
tional.
We begin with some fundamental lemmas.

Lemma 2.1. If kueP, p&M*(X), then
S(ku) = Supp .

Proof. To prove S(ku)CSupp u, we may assume Supp u+X. Let V
be a relatively compact open set such that ¥ € X \Supp u. For each xEV,

HE () = [ ku@) dul @) = [ | [ k@) duty) | aut@
= ([ {2 dut@ | aui»,

where p) is the harmonic measure on V at x and H}, is the solution of the
(generalized) Dirichlet problem of kx on V. Since y&Supp p &, is a positive
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harmonic function on X\Supp u. Hence

and this means kg is harmonic on X\Supp 4, that is S(ku) CSupp x. Assume
now that S(ku)=+Supp u. Then there is a point y in Supp u\S(ku). Let
feCi(X), f<1, f(y)=1 and f=0 on S(ku). Then

S(k(fu))Supp f NS (ku) = @
by the above result and k(fu)<ku. Hence
k(fu)=0.

On the other hand, by Lemma 1.1, for each point y&Supp pu, there is at least
one point ¥ X, x=+y such that k(x, y)>0. Since k(x, y) is continuous outside
the diagonal, there is a neighbourhood U, of y such that x& U, and k(x, y")>0
for each y'€U,. Then

k(fu) ()40

This is a contradiction; hence S(ku)=Supp wu.

Lemma 2.2. ([4], Prop. 1, p.2) Let E be a real vector space, E' be a sub-
space of E and V be a convex cone in E. If

E'+V=E,
then a linear functional { on E' such that
{>0on E'NV
can be extended to a linear functional [ on E such that
>0 0n V.

Let p€C3(X). For each U+ we define

1
sup ¢
where [p>a]:={xEX; p(x)>a}. RY is called the reduced function of u over
@ (Mokobodzki’s réduit [8]). It is known that R{ is superharmonic and
S(R¥)C Supp o if u is superharmonic.

Now we shall prove the next proposition by using Choquet’s representa-
tion theorem on an inf-stable function cone.

RY(x): = S“”" RY>*\(x) dat, xE X
0

Proposition 2.1. Let pM#(X) and o= C§(X) satisfy Supp N Supp @
=@. Then there exists a unique p®< M*(X) such that
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Ssd,ﬁ’:SRfdp, forall seS*,

and Supp u® CSupp @. If, in addition, p<1 on X and o=1 on 0U for a rela-
tively compact open set U C X such that Supp pC U, then

B*u = E*u® on X\U,

where
K u(y): = | kx,y) du(e), yEX .

Proof. Obviously T sr—»S R? dy is additive, positively homogeneous and

increasing on S*. Hence by the representation theorem of Choquet ([2], Prop.
1.4) we see that there exists a unique measure p?<&M*(X) such that T'(s)=

5sdp," for all s&S*. Since R¢=RY if s,s'€S* and s=s" on Supp @, we see
that Supp u’CSupp @. To prove the last assertion of the proposition, let

y€X\U. Then for every x€ U,
k(x)>RE (x) = g ' Rir>e(x) da2S’ R¥(x) da = R(x) = ky(x).
0 0

Therefore Rf =k, on Supp , so that

#*(y) = | A0) du@) = | RE(®) dute) = ( 102 du(2)
= k*p*(y), yeX\U .

Lemma 2.3. Let p=C§(X), <1 and p=Mi(X) satisfy Supp uN
Supp @=0. Then k*u? is continuous on X.

Proof. If x&Supp @, then the function y— Rf () is continuous on X (cf.
[6], Prop. 2.1). Let y,€X be any point. If y,& Supp u, then there is a neigh-
bourhood U,, of , such that k(x, ) is bounded on Supp ux U,. Then RE (x)
is bounded for x&Supp x and y€U,,. If y,ESupp p, then y,e& Supp @.
Thus, for a relatively compact open neighbourhood U, of y, such that U, N
Supp p=0, k(x, y) is bounded on Supp ¢ X U, , since 1€S* and &, is a poten-
tial and is harmonic on X\U,. It follows that R (x)= S: RY>*(x)da is

bounded for x&X and yeU,,. Hence, in any cace, (Rf,),e7,, is uniformly
bounded on Supp x. Thus, by Lebesgue’s bounded convergence theorem

lim B*(,) = lim | RY,, () du () = | RE,, () dutx) = k2730
for any sequence y,—>Y,.

Remark 2.1. T. Ikegami assumed that every potetnial with compact
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support can be represented by the Green function in his paper [6]. But the
continuity of the function

¥+ Rf(x), xe&Supp p
is shown without this hypothesis there.

Lemma 2.4. For any pEP and x€ X
p(x) = sup {R}(x); pECk(X), @<1, x&Supp o} .

Proof. Since Rj(x)< p(x) for any p=Cx(X) with <1, we may assume
p(x)>0. Let & be a positive harmonic function on a neighbourhood U, of x
such that A(x)=1. For any a>0, with a<p(x), there is a relatively compact
open neighbourhood U of X such that UcC U, and ah<p on U. Choose p&
C#(X) such that xe£Supp @, <1 on X and p=10n9U. Then R}(E)=p(&)>
ah(g) on 0U. Since R} is superharmonic, it follows that Rf>ak on U, in par-
ticular Rj(x)>a.

Lemma 2.5. (cf. [1], Lemma 6) If o,vEM™*(X) and ko=kvEP, then

o—=V.

Proof. First assume o Av=0. Then we can find increasing sequences
(K,)sen and (L,),en of compact sets such that K,NL,=@ for each n and
o(K,) /o(X), v(L,) /v(X). Leto,=0c|g, v,=v|,, 61=0—0, and v;=v—v,.
Then

ko,—kv,=Fkv,—ko, on X\4,

where A={x€X; ka(x)=kv(x)=-+oc}. Set p,=R(ko,—kv,)=R(kv,—kao})
(see [5], pp. 3940 for the definition of Rf). Then by [5], Proposition 4.1.5, we
see that p,€P, p,<ko, and p,<kv,. Hence, in view of Lemma 2.1,

S(p.)cS(ko,)NS(kv,) = Supp o, NSuppv, = 0.

This implies p,=0, and that k¢,<kw; on X\A4. Since 4 is polar, it follows
that ko,<kwv, on X. Letting n—co, we conclude that £ =0, namely o=0.
Similarly we obtain »=0.

In the genreal case, k o=k v implies k(c—v)*=Fk(v—c)*. By the above,
we obtain (c—v)*=(»—o)", and hence o=v.

Lemma 2.6. Let pcP N C(X) and p<<k u, k wEP, then p<P,.

Proof. (X, U") is a balayage space in the sense of Bliedtner-Hansen [2],
and the map

Vif k(fu), fEBY(X)
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satisfies
1) Vi=kp
2) VfePNC(X) and S(Vf)CSuppf forany feBi(X).

That is, V is the potential kernel associated with 2 u. Hence by [2] Prop. 7.11,
there exists a g€B*(X) such that g<1 and Vg=Fk(g u)=p. Therefore pcP,.

We set

Q*: = {F*ueC(X); peMi(X) and Sp dp<oo, forevery pEP}
Q*: = {feC(X); | fI <k*p forsome k*pcQ*}.
Remark 2.2. If veM#(X), p€C¥(X) and Supp » NSupp =0, then
k¥ eQ*.
Lemma 2.7. Cy(X)C@*.
Proof. It is enough to show that for any function f & C%(X) there eixsts
a function £*p EQ* such that f <k*p.
Let y&Suppf. Then there exists a point x€ X, x= y and a neighbourhood

U, of y such that x&U, and k(x, y')>0 for each y'€U,. Let y,,y,, +=*, ¥, be
points in Supp f such that

SupprUle U,,2U U Uyn

and x, x,, -+, ¥, €EX be the points corresponding to y, Yoyt I which have
the above property. Let @,€C(X), ;<1, @,=1 on U, and x;&Supp @;
(=1,2,.,n). We set

p'i= ZEE',‘:

Then for each yESupp f, there is an U,, such that ye U,, and
k¥ E2(y) = Sl RIE>(x,) dor> RI%(w;) = k(>0
0

Therefore, k*u’(y)>0 for all y&Supp f. Hence ck*u'> f for some constant
¢>0. Let pu=cp’. Then k*peQ* by Lemma 2.3 and Remark 2.2.

Proposition 2.2. Let pEP, (ku,),enT P such that ky, /p (n—o0). Then
there exists a p s M*(X) such that p=kpu.

Proof. If k*o,k*»=Q* and k*o <k*p, then
Sp do = li”mSk pndo — 1i“mS Ko dp,,,slil;ns K dp,

=li”mSk/.a,,du=Spdv.
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Therefore the map
z:k*a.—»Spda: Q* >R,

is additive, positively homogeneous, increasing functional and £ can be extended
to a positive linear functional on @*—@*. This map will be denoted by £ as well.

Let E:=Q* E":=Q*—Q*, V:=Q*n C*(X). Then for each fEE, there
is a function k*p €@Q* such that | f| <k*u. Hence

f+E*usV, —k*ucE’

and
f=ft+kp—Fk*u
so that
EcCE+V.
The converse inclusion relation is trivial. Therefore
E=E+V.

Then by Lemma 2.2, there exists a positive linear functional { on Q* such that
{=1{on Q*—Q*.

By Lemma 2.7 wi={ |cxtx is a positive Radon measure on X.
For any k*v»=Q*, let (U,),en be an exhaustion of relatively compact open
sets of X such that

U,cU,,, UU,=2X, SupprCU,.
neN
Let (Yrn)penC CE(X), ¥, <1, ¥r,=1 on U,_; and 4»,=0 on X\U,. Then

UR*v) = Ly B*9)+-L(1—pra) B*D) (1)
Choose @, eC*(X), n=1, 2, .-+, such that ¢,<1, ¢,=1 on 8U, and ¢,=0 on
U,-,. By Proposition 2.1,

(1—p,) B*» <k*» = k*»®»-1 on X\U,-,

and hence
(1—Ap,) B*v <k*p*-1 on X.
By Lemma 2.3 and Remark 2.2.
k*ptai e Q*

and

0 <I((1—npr,) k*v) <IL(k*v¥n-1) = L(R*p¥s-1)

= [pavrs = [ Rprav N 0 (1>c0) @)
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becasuse

lims Rordy — limS [ S’ Rifa-r>a1 da] dv<lim S RAVuidy = 0.
n n 0 n

Letting n— oo and by (1), (2)

U(k*v) = lim Iy, k¥9) = lim (e, K*v)
— Slinmqf,,k*vd,u — Sk*yd,b - Sk,bdy.
Therefore
S pdv = S Ry dv

for every ve M i(X) such that k*»EQ*.
Suppose there is a point ¥€X such that p(x)=ku(x). Then by Lemma
2.4, there is a function g C#(X) such that <1, x& Supp @ and

Sp dE® = RY(x)+ Reu(x) = S Ry de? .

Since & € M#(X) and k*ef €@Q%*, this is a contradiction. Hence p==Fku.
Lemma 2.8. Suppose that for each o =Ci(X) there exists an increasing
sequence (R p1,)yenC Py such that
li”m ku,=Rep on X

where

Rep: = inf {ucU; u>¢} ([5], p. 39).
Then for any pE P, there exists p & M*(X) such that

p=rFku.

Proof. Let (@,),enCCx%(X) be an increasing sequence of functions such
that

li:‘n¢,,=p on X.
Then
Re, /p (n—>oc0) on X.

By the hypothesis of the lemma and Prop. 2.2, there exists a sequence (z,),enC
M*(X) such that

Rop,=Fku,, neN.

Here k p,€P, (n€N) because R, is continuous on X ([5], Prop. 2.2.3). The-
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refore by Prop. 2.2, there is u & M*(X) such that

p=kp,.

In the following we assume that the cone P, possesses the properties i),
ii) and iii) which we mentioned at the beginning of this section.

Lemma 2.9. P, is linearly separating, i.e. for any x,, %,€X x,+x, and
a >0, there is a pE P, such that

@ p(%) F p(%2) -

Proof. Suppose there exists x;, %, € X, 5,4, and 8>0 such that B p(x,)=
p(x,) for every peP,. By the property iii) of P, there are p,, p,& P, such that
D1(%1) Po(%5) F Pi(%z) po(%1).  On the other hand

D) pa(23) = B pa(x1) Po(1) = Pa(2) Pa%1) »
which is a contradiction.

Lemma 2.10. Let p,< Py, p,>0. For any o ECx(X) and €>0 there exist
p, p' € P, such that

0<p—p' <p<p—p'+p €& on X.

Proof. The assertion follows from the assumptions on P, and Lemma 2.9
(cf. [2], Prop. 1.2).

Lemma 2.11. For each @&Ck(X), there exists an increasing sequence
(8x)aenC Pr—P, such that

limg,=¢ on X.

Proof. Let p,€P;, p,>0. For each nEN, there exists an f,&P,—P,
such that

0L fu<p<fotpo/n on X
by Lemma 2.10. Since P, is inf-stable and

fmvfn =fm+fn_fm/\fn (m>nEN) ’
&n = Sup {fl’fZ) s fdER—P.

Then (g,),en 1s increasing and
0<g,<@p<g,+po/n on X, neN.

Theorem 2.1. Assume that p, possesses the properties i), ii) and iii). Then
Jfor any pE P, there exists a unique positive Radon measure y such that
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p=rFkp.
Proof. For any o= Cx(X), by Lemma 2.11, there exists

(gn)nENEPI_PI, g”ZO (nEN)

such that
/@ (1>) on X.
Then
Rg, / Rp (n—>o0) on X.
We set
Zni=ku,—ku,, nEN.
Then

Rg,<kp,, neN

by [5], Proposition 4.1.5 and Theorem 5.1.1. Therefore, by Lemma 2.6 Rg, &
P,. Thus the hypothesis of Lemma 2.8 is fulfilled, and hence there exists
w€ M*(X) such that

p=Fku.
The uniqueness of representation follows from Lemma 2.5.

Theorem 2.2. If we assume that P, possesses the properties i), ii) and iii),
then (X, U) satisfies the proportionality axiom (P).

Proof. Let p&P such that S(p)={y} with y€X. Then there exists
pnEM*H(X) such that p=kyu by Theorem 2.1. By Lemma 2.1, we see that
Supp p={y}, so that y=a &, for «>0. Hence p=a k,.

3. The case where there exists the dual P-harmonic structure

In this section, we shall prove the following theorem:

Theorem 3.1. Assume that there exists a second P-harmonic space (X, U*)
such that k¥: y— k(x, y) is a potential with harmonic support {x} with respect U¥*.
Then P, possesses the properties i), ii) and iii) in section 2.

Hereafter we assume the existence of such (X, U*). The reduced func-
tion of u€ U**+ over o= C§(X) with respect to U* will be denoted by RX?.

Lemma 3.1. Set Py={kusP; uc€Mi(X)}. Forany pc Py, £>0 and
any compact set K C X, there exist gE Py and a compact set K'C X such that
g<€on K and p=q on X\K'.

Proof. Let (U,),en be an exhaustion of X by relatively compact open sets
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such that U,CU,,, and Supp pC U, Choose ¢,EC*(X), nEN, such that
¢, <lon X, ¢,=1 on X\U,, Supp @,+1NU,=0 and @, =@, Let p=kp,
wEMi(X). Applying Proposition 2.1 and Lemma 2.3 to the P-harmonic space
(X, U*), we find p**»< M+(X) such that

Ssd,u,*vﬂ = S R:Wﬂ d;l,
for all positive superharmonic functions s with respect to U¥, kp*»€ C(X) and
ku*»=ky on X\U,. Set g,—ku**. Since Supp p**»=S(q,)CU,U S (k)
=U,, q,EP,. Furthermore, since Supp @,NU,-,=0, qn(x)zg R;’fg” du<
S R*X'U" tdy for all x& X. For each xe X, R*X'U" 1\ 0 uniformly on Supp u

as n—>oo, Hence ¢, 0 (n—>o0). By Dini’s theorem, this convergence is uni-
form on K. Therefore, given £>0, there is NN such that gy<€ on K.
Thus, g=qy and K'=U), satisfy the required conditions.

Lemma 3.2. Plz{i}p,,EC(X);p,,EPK, neN}.

Proof. It is easy to see that P, is included in the set of the right hand
side. To porve the converse inclusion, let

p=Sku,CX) with p,EMHX).

Since p is a potential (cf. [5], Proposition 2.2), it is sufficient to show that
= zm} i, is a2 Radon measure, i.e., f} wy(K)<<oo for any compact set K C X.

As in the proof of Lemma 2.7, we can find » &€ M#(X) such that k*» € C(X)
and £*»>1on K. Then

gllm(K)SgSk*vdpn ZgSk,u,,, dv = Spdu<0<> .

Proof of Theorem 3.1:
i) By the proof of Lemma 2.7 considered with respect to (X, U*), for any
compact set K C X there exists ux & M#(X) such that &k uzE Py and 0<kp,K<1

on K. Let (K,),en be a compaat exhaustion of X and let p,= 2 27" kpg,.
Then p,& P, by Lemma 3.2 and p,>0 on X.
Next, let p= Z P.E P, with p,,EPK For each kE N there is myE N such

that 2 P.<27*1'on K,. Let p,= Ep,, Then p,€Py, Hence by Lemma

n=m, +1

3.1 there are §,E Py and a compact set K;c X such that §,<<27*"! on K, and
dv=0, on X\K}. Set q,,~q,,—|— Z‘, P Then ¢, P, by Lemma 3.2., ¢,<2~*

on K, and ¢,=p on X\Kj. Then q:= z}q,,EP1 For any &€>0, choosing
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mE N with m>1/8, we see that
> S1g, = mp>e-'p on X\ U Ki,
k=1 k=1

which means that p=o0(g). Therefore P, is adapted.
ii) Let kv, kv,=P, and set g=kv,Akv, Consider the map /: P¥=
{k*uelC(X); ueMi(X)}— R, defined by

Uity = (g dp, peMi(X).

We show that / is increasing, ie., Sqdcrgqu,u if K*o<E*u. Set m=

| timy>au,1 and pp=p— ;. Since the set of all potentials for U* has the Riesz
decomposition property (cf. [5], Theorem 5.1.1), there exist potentials ¢¥, ¢g¥ for
U* such that

gF<k*u, ¢ <k*p, and ¢f+q¥ = k*o.

By Lemma 2.6 applied for U*, there exists oy, o, M%(X) such that gf=k*0o,
and ¢¥f=k*s,. Then by Lemma 2.5 applied for U*, o,+0,=0c. Hence,

S gdo = S qd«rnLg qdo,
< S kv, da'l—{—S kv do, = S gt du2+s gF dv,
< fk*m dvz—f—Sk*,uzdul - Skvzdy,l—f—Skuldp,,
= S qdu1+Sqdﬂz = S qdp .

Then ¢ can be extended to a positive linear functional on P¥—P¥%, which will
be again denoted by /. Let

0¥ = {fE€C(X); | fI<k*p for some k*pEP}%}.

Then Cyx(X)C Q% by Lemma 2.7, and by the same argument as in the proof
of Proposition 2.2, we obtain a positive linear functional { on Q% such that
/={on P¥—P% and

Sqdﬂzz(k*,b)=Skyd,L forall k*,eP¥,

where »=/| cxo- Then, again by the same argument as in the last part of
the proof of Proposition 2.2, we see that kv=g=P N C(X). Hence P, is inf-
stable.

i) Let xy, x,€ X, x,%x,. By Lemma 2.7 applied for U*, there is pEP,
such that p(x;)=1. Since k¥ # p(x;) k¥, there is yEX such that &¥(y)=+ p(x1)
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k¥(y). Hence, by Lemma 2.4 applied for U¥*, there exists ¢ € Cx(X) such that
@<1 on X, y&Supp @ and

REE (y) + p(x) REE (9)
Thus
(%) RET¥(3,) = p(x1) kETO(xz)
and k&¥* = P, by Remark 2.2 applied for U*. Hence P, separates points of X.
In view of Theorems 2.1 and 2.2, we obtain the following corollaries:

Corollary 3.1. Under the same assumptions as in Theorem 3.1, for any pEP
there exists a positive Radon measure y, such that p=Fk p.

Corollary 3.2. Under the same sasumptions as in Theorem 3.1, both (X, U)
and (X, U*) satisfy the proportionality axiom.

ReMaRk 3.1.  Let (X, U) be a P-Brelot space with a countable base which
admits a Green function k(x,y). If k(x,y) is symmetric, then we can take
U*=9. Therefore, Corollary 3.1 and 3.2 are extensions of [1], Theorem 9
and 10, respectively. In case k(x,y) is not necessarily symmetric, Theorem
3.1 shows that the existenec of the dual P-harmonic structure U¥* is a sufficient
condition for the existence of the convex cone P’ considered in [1], p.47.

Remark 3.2. T. Ikegami [6] proved that if any potential p with compact
harmonic support is represented as p—Fk p with a Radon measure y, then there
exists the dual P-harmonic structure U*. Thus, in view of Theorem 2.1 and
3.1, the condition that P satisfies 1), ii) and iii) in section 2 is equivalent to the
existence of the dual P-harmonic space (X, U*).

ExampLE 3.1. Let X=R"XR(nEN) and consider the harmonic space
(X, U) induced by the heat equation

»0*h 0h "
o ot 0, (x,2))ER"XR.
It is well known that
[x—y|®
ex — , I>§
W ((x, £), (3, 5)) = { [4m (t—9)]"" p( 4(1—8))
0, t<s

is a Green function for (X, U) satisfying conditions in section 1, and further-
more, W*((x, t), (¥, $))=W((, s), (x, t)) is a Green function for the harmonic
space (X, U*) induced by the adjoint heat equation
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”n 2
Zah_,_ah

——+—=0.
=10x Ot

Thus we can deduce the possibility of the representation p=W y for any poten-
tial p on (X, U) from Corollary 3.1, and the proportionality axiom for (X, U)
from Corollary 3.2.

4. Some equivalent conditions

In this section, we are first concerned with the following three conditions:

(B) (cf. [3]) Any continuous potential p with compact harmonic support
is represented as p=Fk y, with a Radon measure p on X.

(S) (cf. [9]) At least one bounded continuous strict potential p, is repre-
sented as p,—=k\ with a Radon measure ) on X.

(P,) P, possesses the properties 1), ii) and iii) in section 2.

By the Theorem 2.1, condition (P,) implies conditions (B) and (S). If we
assume condition (B), then P, contains all continuous potentials with compact
harmonic support, so that the conclusion of Lemma 2.10 holds by [5], Theorem
2.3.1. Hence the same arguments as in section 2 leads to the conclusion of
Theorem 2.1, in particular, condition (S).

The implication (S)=>(P,) is essentially proved in [9]. In fact, [9], Satz 2
contains the following result:

Proposition 4.1. If we assume condition (S), then P, coincides with the set
of all continuous potentials.

In view of [2], II, Proposition 5.2 and [5], Proposition 2.3.2, the st of all con-
tinuous potentials possesses the properties i), ii), iii) in section 2, so that we
obtain the implication (S)= (P,).

Thus we have shown

Theorem 4.1. Under the assumptions in section 1, conditions (B), (S) and
(P,) are equivalent to each other.

The proof of [9], Satz 2, or our Proposition 4.1, is based on the following
results:

Lemma 4.1. ([9], Satz 1). If we assume condition (S), then (X, U) has
the Doob convergence property.

Lemma 4.2. ([9], Lemma 3). Under the assumptions in section 1, (X, U)
possesses the property (A) of K. Janssen [7].

Lemma 4.3. ([9], Lemma 4). If we assume condition (S), then (X, <U)
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satisfies the proportionality axiom.

The conclusion of proposition 4.1 then follows from [7], Theorem 3.4.
By this observation, we can also state

Theorem 4.2. Under the assumptions in section 1, the proportionality axi-
om together with the Doob convergence property is equivalent to amy onme of the
conditions (B), (S), (Py).

ReEMARK 4.1. We do not know whether the proportionality axiom implies
the Doob convergence property or not, under the assumptions in section 1.

In the rest of this section, we shall be concerned with the proof of Lemma
4.3. In the proof of [9], Lemma 4, the following result is used:

Proposttion 4.2. Let p, be a bounded continuous strict potential on X and
let V' be the associated potential kernel (cf. [2]). Then for any s€S™* and any open
set U in X, there exists (g,),enC B3 (X) such that g,=0 on X\U and V,,/RY
on X.

This result is shown in [9], Bemerkung 2 (p. 73), by probabilistic argu-
ments. Here we shall give a proof of this proposition which does not appeal to
the probability theory.

Let V==(V,).>o be the submarkov resollvent of kernels on X such that
Vf—supV.f, fEB*X)
>0

and the set E,, of all V-excessive functions on X coincides with U™ (cf. [2], II,
Theorem 7.8). For an open set U in X, define

WUf=V(fly), fEBX).

Lemma 4.4. WY is a bounded kernel and satisfies the complete maximum
principle.

Proof. Since WY1<V1<p,, WY is bounded. Next, suppose WV f<WUg
+aon [f>0] for aeR*, f,geB(X). Then V(f1,)<V(gly)+a on [f1,>0].
Since V satisfies the complete maximum principle ([2], II, Propostion 7.1), this
inequality holds on X, and hence WY f<WVg+a on X. Thus WV satisfies
the complete maximum principle.

By this lemma, there exists a (unique) submarkov resolvent of kernels
WU=(WY),s on X such that W{=W?V ([2], I1, Theorem 7.7).

Lemma 4.5. Given s€S*, there exists (f,),enCB;(X) such that Vf, /s
(n—>00).
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Proof. Lets,=sAmnand f,=n(s,—nV,s,). Then Vf,=nV,s, /s(n—c).
Lemma 4.6. For any a>0 and f €Bi(X), a W Vf<Vfon X.

Proof. Let hi=a(Vf—a W Vf). Then WYh=a WY Vf. Hence Vf=>
WU h=V (hly) on [k>0]. Then the complete maximum principle for ¥ implies
that Vf >WY h on X.

By Lemmas 4.5 and 4.6, we obtain
Corollary 4.1. Any s&S* is WU-supermedian, i.e., @ W{ s<s for all a>0.

For s& S, let §U=SI£ a WY s. By the above corollary, §,<s.
Lemma 4.7. WV 5,=WV s for any s€S™.

Proof. For simplicity, we omit super- or subscript U. Let s,=sAmn.
Since 1€8*, 5,&€87, so that B Wy s,<s, for any 8>0 by the above corollary.
Therefore Wys,<B7's,—~0 as 8—co. Thus, letting B8—>co in the resolvent
equation Ws,=Wgs,+ 8 WWys,, we obtain

Ws, = ‘lsim BWWgs, <W5.
Hence, Ws=sup Ws,<W5<Ws, which shows the lemma.
Lemma 4.8. For any x,€ U, lim a V ,(x,, X\U)=0.

Proof. Choose f&€C#(X) such that f<1 on X, f(x)=1 and f=0 on
X\U. For any £>0, there exist continuous potentials p, ¢ such that

0<p—qg<f<p—q+&on X

([5]), Theorem 2.3.1). Since a V,p—p, aV,q—>gand a V,1—-1 as a—>oo, it
follows that & V, f—f(a—>o0). On the other hand,

(24 Va l(xo)ZC( Vdf(x0)+a Vu 1X\U(x0) .
Hence, 1>1+1im a V,(x,, X\U), which implies the required assertion.
@y
Lemma 4.9. §;,==son U.
Proof. Let x,U. Then, for any m& N,

Sm(xo) = })22 aVl, sm(xo)

= lim {a V,(suly) (%)@ Va(swlxw) (%)} -

By Lemma 4.8,
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a V,(sulx\w) (%) <ma V,(x, X\U)—=0 (a—>0).
Hence s,,(x,) =}»23 a Vy(suly) (x). By Lemma 4.7, we see that V, (s,ly)=
V4(3x1y), where §,==(5,)y. Hence
Su(%0) = LI-EIQ a V(Suly) (%) <8p(0) <Sp(x) .
Letting m—> oo, we have s(x,) <8y(%,). Since § <s, it follows that s=3§, on U.

Proof. of Proposition 4.2. Let (f,),enCBi(X) be the sequence given in
Lemma 4.5, and set k,=n(Vf,—naW? Vf,),nEN. Then h,eB;j(X) and
V(h,1y)=WV h,=nW}] Vf, / §y(n—>0) by Lemma 4.6. Hence 3§, U™ and by
lemma 4.9, we see that §,>RY. On the other hand, V(4,1,)<s=RY on U.
Since RY is V-dominant ([2], II, Proposition 7.1), it follows that V'(k,1,)<RY
on X, and hence §,<RY. Therefore, §,=RY, so that g,=h,1,, nE N, satisfy
the required conditions.
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