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Let R be a left and right artinian ring with identity, and J the Jacobson
radical of R. In [4], M. Harada has considered a left serial ring R satisfying
a condition (¥, 2) that every maximal submodule of a direct sum of any two
hollow modules is also a direct sum of hollow modules, and characterized such
a ring by the structure of eR for each primitive idempotent e. Further it has
been shown that the condition (*, 2) is equivalent to saying that every factor
module of ¢J@PeR is a direct sum of hollow modules for every primitive idem-
potent e. Modifying this, we here consider the following condition on a pro-
jective indecomposable right module eR over a ring R.

(A): Every factor module of eR®eR is a direct sum of hollow modules.

Clearly if R is a ring of right local type, then all projective indecomposable
right R-modules satisfy the condition (A), and as well known ([6]), R is left
serial. 'The purpose of this paper is to characterize left serial rings over which
every projective indecomposable right module eR satisfies the condition (A)
(i.e. rings R in the title (see Theorem 1 for the equivalence)) in terms of the
structure of eR. Thus our result gives a generalization of rings of right local
type.

In the first section we consider various conditions equivalent to (A) (The-
orem 1). In particular, the condition 4) of Theorem 1 which is described in
terms of homomorphisms between factor modules of eR is frequently used
later to check whether eR satisfies (A) or not. We assume in the second and
third section that R is a left serial ring. In the second section we shall give
some properties induced from the condition (A) to prepare the proof of the
main theorem. In the third section we give the main theorem (Theorem 2).
In the last section we give some examples.

The author would like to thank Professor M. Harada for his suggestion
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of the problem and helpful advice, and Doctor H. Asashiba for his advice and
encouragement. She would also like to thank the referee for his useful com-
ments.

Preliminaries

Throughout this paper, R is a left and right artinian ring with identity, and
J is the Jacobson radical of R. Since the property of R that the condition (A)
holds for all projective indecomposable right R-modules is Morita invariant, we
may assume further that R is a basic ring. pi(R) denotes the set of all primi-
tive idempotents of R. All modules are finitely generated unitary right R-
modules. A module X is said to be Aollow if the sum of any two proper sub-
modules of X is a proper submodule. By the assumption that R is an artinian
ring, a hollow module is precisely a local module, i.e., is isomorphic to a factor
module of eR for some e in pi(R). For a module X, we put X:=X/X], T(X):=
X\X]J, and denote by X™ a direct sum of z copies of X, and by | X| the length
of a composition series of X. For any f and g in pi(R), we put T'(fJ*g):=
fI*e\fJ**'g. For division rings A and A’ with A=A’, we use the symbol [A:
A']; ([A: A’],) to mean the dimension of A as a left (right) A’-vector space. We
say that R is a left serial ring if as a left R-module, R is a direct sum of uniserial
submodules. In the second and the third sections we assume that R is a left
serial ring. In this case the following hold, which we use without any refer-
ences. The first one follows from [6, Corollary 4.2], and the second one is
clear from the definition of left serial rings.

Lemma 1. If R is a left serial ring, then for every e in pi(R) and for every
natural number j, e]’ is a direct sum of hollow modules, and eR has a structure
expressed by the following diagram :

eR

|

4, A, oo A[ n e

léllzl '"Aztl Az,t1+1"'Azlz Az.t(nl—1)+1 Aznz ejz

" X s
where each A;, is a hollow module, e]' = D A;, and | means XJ] = @X,.
k=1 ~ v i=1
X, - X,

Lemma 2. Suppose that R is a left serial ring. Let e, f be in pi(R), and
a, beR. If a=eaf and b=eaf, then there exists either some d<eRe with a=db
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or else some d' €eRe with b=d'a.

1. The condition (A)
We use the following two lemmas from Sumioka [6] to prove Theorem 1.

Lemma 3 ([6], Lemma 1.3]). Let M; (:=1,2,3) and T be submodules of a
module M such that M=M,+(M,DM,) and T=M,N (M, DM,), and »,: T—M,
the restriction map of the projection M,PDM,—~M, Then x, is extended to a
homomorphism M,— M, if and only if M=(M{+M,)D M, for some submodule M}
of M.

Lemma 4 ([6, Lemma 2.1]). Let S be a simple module and L,, -+, L, hollow
modules of length=2 and 0—->S> Ei} L,-—p>M—>O an exact sequence with each o; a

monomorphism, where a=(a, -+, a,)T, and n=2. Then M is decomposable if and
only if the identity map 15, of S;is extended to a homomorphism.: GB L,—L; for some
L1=j=n, where S;:=( 69 L)nL

Now we state the theorem in this section.

Theorem 1. For e in pi(R), the following four statements are equivalent.

1) (A): Every factor module of eR @ eR is a direct sum of hollow modules.

2) Every factor module of eR™ is a direct sum of hollow modules for each
natural number n. .

3) If M is an R-module such that M|MJ==¢R™ for some n, then M= @
eR|X;, where each X, is a submodule of eR. -

4) Let C; and D; (i=1, 2) be submodules in eR such that eR=C;>D;. If
[+ C\/D—C,D, is an isomorphism, and C,|D, is simple, then f or f~* is extended to
some homomorphism from eR|D, to eR|D, or one from eR|D, to eR|D,, respec-
tively.

Proof. First, we introduce the following conditions 1’) and 2’) which are
useful in proving the theorem:

1) Let S be simple, X, Y be submodules of eR, and assume that the follow-
ing sequence is exact :

0—>S—>eRIXPeR|]Y>M—-0.
Then M=—eR|X'@eR|Y’ for some submodules X' and Y' of eR.

2"y Let n be any natural number, S a simple module, and X; a submodule
of eR for each i(1<i=<n). Consider an exact sequence :

0~ S—> @ eR/X,—>M—0.
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Then M~ é eR|Y; for some submodules Y (1<i=n) of eR.
The proof proceeds as follows: 2)3) and 1) = 1) =>4)=2")=>2)=>1).

2)=>3): It follows from M/MJ==¢R™ that M is isomorphic to a factor
module of eR™. So by 2), M= ) eR|X; for some X;<<eR (1=iZn).
i=1

3)=2): Let M be a factor module of eR®™. Then M/MJ=eR® for
some k=n, so by 3), M is a direct sum of hollow modules.

1)=>1'): This is clear from the fact that the module M in 1) is an epi-
morphic image of eR@eR.

1'Y=4): Let C; and D; be submodules with eR=C;=D,(i=1,2). We
assume that a homomorphism f: C,/D,—C,/D, is an isomorphism and C,/D, is
simple. To show that the assertion 4) holds, we may assume that C;<eR(i=
1,2). We consider an exact sequence:

. G i)
— C,/D, " — eR|D, @ ¢eR/D,— X — 0,

where #;(j=1, 2) is the inclusion C;/D;—~eR/D;, and X is the cokernel of the
homomorphism (7, 7, /). Then 7, and 7, f are monomorphisms and not epimor-
phisms since C;<<eR(i=1, 2). By 1'), X=eR/X'@PeR|Y" for some X', Y'<eR,
so X is decomposable. Then by Lemma 4, (3, f) (ii')=f (or (i, f)"'=f"") is
extended to some homomorphism eR/D,—¢R/D, (or eR/D,—>eR/D;).

4)=2'): We shall show the assertion by induction on z. When n=1,
the assertion is trivial. In the case that n=2, consider an exact sequence:

0> SZ eRIX@®eR]Y > M—0,

where S is simple, a(s): =a,(s)+a,(s) (a,(s)EeR/ X, a,(s)ceR[Y) for any sE€ S,
and X', Y'<eR. Here we may assume that o, and @, are monomorphisms. If
im @ xrad(eR/X@eR|Y), then im a is a direct summand of eR/X@eR|Y since
im o is simple, thus the assertion holds. So we may assume that im ¢ =<rad
(eR/X@®eR|Y)and |eR/X ]|, |eR/Y|=2. Put T,/X: =a,(S)and T,/Y: =a,(S)
for some T; and 7T,=<eR. Then T;/X is simple and a,ar': T,/ X—T,/Y is an iso-
morphism. By 4), a,ar!(or (a,a7") '=a,az’) is extended to a homomorphism:
¢R/X—eR|Y (or eR|Y—eR/X). Hence by Lemma 4, M is decomposable and
M=—eR|X'®PeR|Y’ for some X', Y'<eR. Finally we assume that the assertion
holds for n—1(=2). Suppose that the following sequence is exact:

0> S— & (RX)E M0,

where Sis simple. Put L;:=¢(eR/X;) for each i(1=<i=<#n). Then by [6, Section
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2], we have M=L,+( QZ L)and T:=L,n( ea L)=S. Letp: ee Li~L,be the
canonical projection. '_Then plr (or (_1)!,)";)~ is extended to a '};omornorphism:
Li—L,(or L,—L,). Inthe case that p|, is extended to some ®: L,—L,, we put
Li:={x—®(x)|xL}. Then by Lemma 3, we obtain M=L,4( ﬁé L)=(L{+
& L)DL,. Put Mi=L{+(@ L) and §":=L{N(§ L), then S is simple.
Noting that L{ and each L,(1=<i<n—1) are factor modules of eR, the following

exact sequence implies that M'—~ ”E_DI (eR]Y;) for some Y;<eR by induction hy-
pothesis: =

0>sELearn o,
i=2

where a'=(af, :*+, @;-1)7T, a1 is the inclusion map and af:=p;|s (p; is the can-
onical projection) (2=i<n—1); and 8=(B,, ***, Ba-1), —F; and B;2=Zi<n—1)

are the inclusion maps. Hence M=M'@L,~= "6_91 (eR|Y;)PeR/X,. The re-
maining case is proved similarly. =

2'y=2): Put D:={H|H= GIB eR/X; for some n and for some X;<eR}.

Then we have only to show that D is closed under factor modules. Thus it
suffices to verify the following for all m>1, by induction on m: For each HED
and for each X<H, | X|=m implies H/ XeD. When m=1, this follows from
2"). Let m=2. Take 0fY<X. Then |Y|<m and | X/Y|<m, which imply
H|X=(H|Y)/(X|/Y)eD by induction hypothesis.

2)=>1) is trivial. Q.E.D.

We shall characterize later the structure of eR satisfying the condition (A),
i.e., the conditions of the above theorem, using mainly 4) of it.

2. Properties of eR with (A)

From now on we assume that R is a left serial ring. Further throughout
this section, we assume that e is a fixed primitive idempotent, and eR satisfies
the condition (A). Then we have several properties similar to ones in [4] as
follows, by using 4) of the theorem.

Proposition 1 ([4, Proposition 1]). If eR/e]* is uniserial and eJ'=A,DA;,
DDA, for some i, where p=3 and each A,;(1=k=p) is a hollow module, then
we have A;~=A;,~--=A,,, and each A, is simple.

Proposition 2 ([4, Proposition 5]). If eR/e]’ is uniserial and eJ'=A,D
A,,, where A, and A;, are hollow modules, then each A;, is uniserial.
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We put A:=eRefeJe and A(4):={#€A|x'A< A, '=% for some x’ in eRe},
where A is a hollow submodule of eR and & is the coset of x in A. Then A is
a division ring and A(4) is a division subring of A (see [4]). In the case that
eJi=A,PA;,P- DA, (p=2), we put A(4;;)=A;. Now we consider the case
p=3 in more detail. Since efe(e])=eJ+*'=0, we have xc==c for any ceJ’
and any x€eRe. Proposition 1 shows that each 4,,(1<k=<p) is simple, so we
may put 4;=aR and a=eaf for some fin pi(R). Then for any b(=0) in 4;,,
b=ebf since A4;, is simple and R is basic. Noting here that R is left serial, there
exists some xEeRe\eJe with b=xa==Xa. Here % is in A, since xA4;;=xaR=>bR
=4, whence b is in Aja. Thus A;;=A;a. For each k(1<k=<p), put 4=
a,R. Similarly taking a, instead of b, we have a,=ea, f, a,=x, a=%, a for some
x,EeRe\eJe and A,,—%, aR=2x%, A; a. Using this fact, we obtain

Lemma 5. Suppose eJi=A4,PD--PA;,(p=3), and let Ay=aR. Put L
(eJ):=the lattice of submodules of e]* and _L(A):=the lattice of subspaces of Aa,.
Then we have a bijection a: L(A)—L(e]?) defined by a(V):=Va for every V&
L(A). Further a preserves and reflects the linear independence, i.e., for any {V;} S
L(A), {V;} is independent if and only if so is {V; a}.

Proof. Since VaR=VA; a=Va for any Ve _L(A), a is well defined. Itis
easy to show that a preserves and reflects the linear independence. To show
that « is a surjection, let 7' be any submodule (#0) of eJ*. Then T is ex-
pressed as T=X,@---DX, with X;—~A,(1=k=t). So we have X,=3§, 4;,=

8 A; a for some §, in A by the consideration above. Hence 7'=( é 8, A)a
k=1

since a reflects the independence. Thus a is a surjection. « being an injection
is immediate from the fact that ya=0(y < A) implies y=0. Q.E.D.

Lemma 5 implies the following (see [4] for p=2).

Proposition 3 ([4, Proposition 2]). It holds [A: A;],= |eJ?| except for the
case that e]'=A;DB; and A F#B;, where A; and B; are hollow modules (in this
exceptional case, we have A=A,;).

We consider the following condition (#) on A as a right A;-vector space.

(B) Let V, and V, be subspaces of A,i and v, and v, be elements of A satisfy-
ing | V|| V,| and v, A;NV,=0=v, A;NV,. Then there exists ® in A such that
xV\ £V, and xv,=v, (mod V).

The following is immediate from Lemma 5.

Proposition 4. If |eJ?| =3, then the following are equivalent.
(1) Lete]i=T,>T,, e]i=S,>S,, and T,|T, be simple, and f: T,|T,—S,/S,
be an isomorphism. Then f is extended to a homomorphism : eR|T,—eR|S,.
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(2) A and A; satisfy the condition (§).
Hence in particular, if eR satisfies the condition (A), then A and A; satisfy
the condition (#).

By [4, Lemma 5], the following holds.

Proposition 5. Let A=A, be division rings. If A and A, satisfy the condi-
tion (#), then [A: A;),=2. In particular, if eR satisfies the condition (A), then
[A:A]L=2.

3. The structure of eR with (A)

Also in this section, we assume that R is left serial. Using Propositions 1
and 2, eR with the condition (A) has one of the following structures.

(a) eR is a uniserial module.

(b)) For some natural number i, eRle]t is uniserial and eJ'=A, DA,
where A;, and A;, are uniserial modules which are not isomorphic to each other.

(b,) For some natural number i, eR|e]! is uniserial and eJ'=A,, B A;,, where
A;=A,, are uniserial modules.

(c) For some natural number i, eRle]* is uniserial and e]'=A,D - DA,

(p=3), where A;~A,,~---=A,, are simple modules.
Thus we can illustrate the structures (b,), (b,) and (c) as follows.
(b,) eR (b,) eR (c) eR
ejf e!] ej[
ej"‘l e: i-1 e:]"'I
LEE g A =B g A=dmemd, o
S T Tl A S S
0 0 0 0 p=3

Now we state the main theorem.

Theorem 2. Let R be a left serial ring. The following are equivalent for
each e pi(R).

1)  eR satisfies the condition (A).

2) eR has one of the structures (a); (b,); (by) with [A:A;],=2; and (c)
with the condition (§) for A and A,.

The proof of 1)=>2) is already done. So we show that each of the con-
ditions in 2) implies the condition 1). This is immediate from Proposition 4
in the case of the structure (c), and in the case of (a) this follows from Lemma
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2 and Theorem 1 (see case (i) in Lemma 8). For the proof of the other cases,
we divide the argument to some lemmas.

Lemma 6. In the diagram (b,), the following statements hold.
1) For any j and k with i< j<k and k—j<i, we have A, 7#B,.
2) For any j and k with i < j<k and k—j<i, we have 4,74,

Proof. 1) For j(i<j), we have 4;#B, from [3, Lemma 3]. Next sup-
pose that A;~B, for some j, k with i/<j<k and k—j<i. Put 4;=a;R, B,=b,R
and a,=ea;f, b,=eb,f for some f in pi(R). Then there exists d in T(¢J*"?) such
that da;=b,. So eJ*7e=0, and there exists an epimorphism: eR—¢J*™/. This
epimorphism induces an epimorphism: eJ~*=D—¢Ji. Thus we have ¢/~ ¢ =
eJ'. But this is a contradiction since 1>i—(k—j). We conclude that 4,%#B,.

2) Suppose that 4;~4, for some j, k with ¢<j<k and 0<<k—j<i¢. Then
we may put 4;=a,;R and 4,=a,R. So there exists d in ¢J*~/ ¢ such that da;=
a;, thus eJ*7 e=40 and this yields the similar contradiction as in 1). Q.E.D.

Lemma 7. In the diagram (b,), we have that A;#B, for each j, k with
i=j<k.

Proof. Suppose that 4;~B, in the case k—j<<i. Put A,=a;R and B,=
b.R, and a;=a;g, b,=b,g for some g in pi(R). Then there exists d in T(eJ* )
such that da;=b,, and this yields the contradiction similar to that in the proof
of Lemma 6. Next suppose that 4,~—~B, in the case k—j=i. Then there
exists a;, b, and d as above. It follows from k—j=7 that d=d,+d, for some
d, in 4; and 4, in B;. So b,=da;=d, a;+d,a; and b, is in B;, thus b,=d, a;,
where d, in T(B*7/). Then for b; with B;=b;R, we have that b;=b,g and
d,b;%0is in T(B,) by A;~—B,. There exists 7 in T(gRg) such that d, b, r=b,,
and hence T'(eJ’ g)>d,(a;—b;r)=b,—b,=0, a contradiction. Q.E.D.

Using Lemmas 6 and 7, we show the implication 2)=>1) of Theorem 2
as the following two lemmas.

Lemma 8. Let the diagram (b,) be the structure of eR. Then eR satisfies
the condition (A).

Proof. Let C; and D; be submodules of eR such that eR=C;>D; and
C;/D; is simple for j=1, 2, and f: C,/D,—C,/D, be an isomorphism. We may
assume that C;=c;R-+D; for some ¢; in C;(j=1, 2) satisfying f(c,+D,)=c,+D,,
and ¢,g=c,g for some g pi(R).

(i) In the case where both ¢, and ¢, are in T'(eJ*) for some #<C7, there
exists a unit x in eRe such that xc,=c¢,. Then x, (the left side multiplication
of x) induces f.

(ii) Suppose that ¢, is in T'(eJ*) for some t<¢ and ¢J'=C,>D, Then



LerF1 SErRIAL Rinegs 131

there exists some x in efe such that xc,=¢, So xD,=xC, J=x¢, J<C, J<D,,
whence x; induces f

iii) In the case that eJ*=>C,;>D; for each j=1, 2.

First, we show that for any C, D such that D<C=e]J? and C/D is simple,
there exists a unit x in eRe satisfying

(P): xC = A, BB, (orxC = A,DB,_,)
xD = A,B, where t,s=7.

For a module X=Ze¢Ji, put XO=z,,(X), XO=z;(X), Xy=XNA4; and
Xpy=XNB,, where z4,: eJ'>A; and =y, : eJ*—B; are the canonical projections.
Then it is easy to see that X, <X (j=1, 2) and X®/X;,=X®/X,). Now, if
DW=D,, then D®=D,, and we can take x=e¢ for x in (P). Thus we may
assume Dg<<D®. Then by the above, Du<<D® and D®|Dy=D®|D,.
Since R is left serial, there exists some d<efe (by Lemma 6) such that either
SDV=D® and 8Dyy=D,; or 8D®P=D® and 6D, =D;. We may assume
that the former holds. There exists a unique s such that D, <eJ°’<D. Then
D=(e+8) DOPDyy=(e+8) D¥+eJ°. Noting that u:=e-+-5 is a unit in eRe
and u'eJ*=eJ*, we have u'D=DW+4y ' e['=DW+e]'=DOPD. Put C':
=u~'C, D":=u"'D. When C{,,=C'", we can take x=u"!. So suppose that
ChHy<C'®. Then C{,=D®, Cly=D¢y and C'O|ChH=C'®|C{, is simple
because so is C’'/D'=C/D. By an argument similar to one for D, we can take
some wEefe such that wC'PV=C"® and «C{;,=C(;. Hence putting y:=e+w,
we have C'=yC'VPCl,y and y~'C'=C'VPChy. It follows from C{,y=D® and
Cly=D, that «D®P=D,. Then D'=DOPD,=yDVPD,,, whence y'D'=
DOYPDyy. Consequently, we can take x=y ' u™%.

Next, we consider the case that C; and D;(j=1, 2) have the following forms:
C;=4;, ,PB;, (or C;=A,,BB,,.,) and D;=A4, DB,,. Considering the struc-
ture of (b,) and C,/D,=C,/D,, we see that the possible cases are the following.

() C,= A, DB, D = A4,DB,
C,=A,®B,,, D,=A,DB, (t,—1t,=1)
(B) C= At—l@le , D= At@le
C,= A4, ,®B,,, D,=A®DB,
(v) C,=A4, @B, D = A4,PB,
C,= A4, ,9B,, D,=A4,DB, (t,—t,=1)

In the case (a), we put f(a,+-D,)=b,+D,, A, _,=aR and B,,_,=b,R. There
exists some d in eJ'27"1 ¢ such that da,=b,. Since #,—t,=1, we have d=d,+d,
for some d, in 4; and d, in B;, and b,—=da,=d,a,+d,a,. Then b,=d,a,. Hence
d,B;=0. Indeed if not, for some x&T(4;) and some ye T(B;), both d,x and

d,y are in T(B;,,,-,,) and non-zero. Thus, 4;=B;, a contradiction. Thus (d,),
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induces f. The similar argument works for the cases (@) and (7).
Finally in the general case, there exist units x and y in eRe for C; and D;
(7=1,2) as in (P). Using the isomorphism f, we put

271
f': (4, ®B,)/(A,BB,)=> C,/D, A 2/ D2 % (A1,-1DB.,)/(4,DB,,)

and apply the argument above. Q.E.D.

Lemma 9. Let the diagram (b,) be the structure of eR, and assume [A: A}];
=2. Then eR satisfies the condition (A).

Proof. Let C; and D; be submodules of eR such that eR=C;>D; and
C;/D; are simple for j=1,2, and f: C,/D,—C,/D, be an isomorphism. Then
C;=c;R+4-D; for some ¢; in C;(j=1, 2), where we may assume that f(c,+D,)=
¢,+D, and ¢,=¢,g, c,=c,g for some gepi(R).

The proof similar to that of Lemma 8 works in the following two cases:

(i) both ¢, and ¢, are in T'(e]?) (t<<7).

(ii) ¢ is in T(eJ?) (¢<7) and ¢J'=C,>D,.

So we show only the following case:

(i) eJt=C;>Dj for both j=1, 2.

We have that for any C and D with ¢J'=C>D, there exists a unit x in eRe
such that xC=A4, DB, >xD=A,PB, (or xC=A4,PB,_,>xD=A,PB,) for
some ¢, s=7 (the proof is in Lemma 8). Further we have that for C=A4,®B,
(k, r=1), there exists a unit y in eRe such that yC=A4,B,. So we may assume
that C;>D; are of the following form:

Cl = At1—1EBBs1 ’ D1 = AI1®B51
C,= A4, ®B,, D,=A,PB,.

It follows from C,/D,=C,/D, that #,—=1,=¢.

(o) In the case that t<max(s,, 5,). We may assume §;=s,. Let C;=¢,R-}
D, and ¢,R=A,_,. Then there exists a unit 2 in eRe such that f(c,+D,)==c,+
D,. 1t follows from 2D, < A4, B, =D, that z; induces f

(B) In the case that £>max (s, 5,). We may assume s,=s,. Let B, ;=bR
and 8B;=A4;. Then A4, ,=8bR and f(8b+D,)=8wb-+D, for some w in eRe
with @wB,_;=B,_,, i.e. W is in A;. Since [A: A;],;=2, there exist J, and ¥, in A,
such that §w=3),+7,5. So we have dw=y,+y,8-+j for some j in eJe, whence
9,0b=(8w—y,—71) b=0wb(mod D,), since y,b is in B,_;<D, and jb isin 4,PR, =
D,. 'Then f(8b+D,)=y,(6b)+-D,and y,D, <A, DB, =D,. So we have that(y,),
induces f. Q.E.D.

2°

Remark. If R is a finite dimensional algebra over a field, then [A: A;],=
[A: Aj]; holds. So for a primitive idempotent e, if eR satisfies the condition
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(A), it follows from [A: A;];=2 (by Proposition 5) that [A: A;],=<2. Hence eR
never has the structure (c). Further suppose that R is a finite dimensional
algebra over an algebraically closed field. Then we have [A: A;],=[A: A;],=1.
Hence eR has the structure (a) or (b,).

4. Examples

Here we give some examples of left serial rings having projective indecom-
posable modules with structures (b,), (b,), and (c) which satisfy the condition
(A).

ExampLE 1. Let & be a field and put

kR k kE 1000
0 k2 k & 0000
R: = e: =
00¢FkO 0000
000 %), 0000O0).

Then every projective indecomposable R-module satisfies the condition (A) and
eR has the structure (b;). Note that R is not of right local type (Cf. [6]).

ExampLE 2. Let K<L be fields with [L: K]=2. Put

L L L 100
R:=|0 L L and e:=|0 0 0
0 0 K 000

Then eR has the structure (b,) and satisfies the condition on the left dimension
in Theorem 2. Also in this case every projective indecomposable module sat-
isfies the condition (A) but R is not of right local type (Cf. [6]).

ExampLE 3 (Asashiba [1]). Let F and G be division rings and M an
(F, G)-bimodule having the dimension sequence (3, 1, 2, 2, 1) (see Dowbor,
Ringel and Simson [2]). The existence of such an M follows from Schofield [5,

F M
section 13] and [2, Proposition 1]. Then R:z[ 0 G} has exactly 5 non-
isomorphic indecomposable modules and [M: G],=3, say M;=A4,PH A, P A, with

each 4,—=G;. Put el:z[(l) gJ and ez::[g (ﬂ Then we can identify e, J,=
M. Since the set S:={¢,R, ¢,R, e, R|A,, e,R/(A,BA,), e,R/e,J} consists of 5
non-isomorphic local modules, S is a complete set of representatives of iso-
morphism classes of indecomposable R-modules. Thus R is of right local type.
Hence every projective indecomposable R-module satisfies the condition (A).
In particular so does ¢,R. Further since e, ] is isomorphic to a direct sum of
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three copies of a simple module, ¢, R has the structure (c) and satisfies the condi-

tion ().

(1]

[2]
(3]
4
(3]
(6]
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