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Let R be a left and right artinian ring with identity, and / the Jacobson
radical of R. In [4], M. Harada has considered a left serial ring R satisfying
a condition (*, 2) that every maximal submodule of a direct sum of any two
hollow modules is also a direct sum of hollow modules, and characterized such
a ring by the structure of eR for each primitive idempotent e. Further it has
been shown that the condition (*, 2) is equivalent to saying that every factor
module of ejQ)eR is a direct sum of hollow modules for every primitive idem-
potent e. Modifying this, we here consider the following condition on a pro-
jective indecomposable right module eR over a ring R.

(A): Every factor module of eR®eR is a direct sum of hollow modules.

Clearly if R is a ring of right local type, then all protective indecomposable
right .R-modules satisfy the condition (A), and as well known ([6]), R is left
serial. The purpose of this paper is to characterize left serial rings over which
every projective indecomposable right module eR satisfies the condition (A)
(i.e. rings R in the title (see Theorem 1 for the equivalence)) in terms of the
structure of eR. Thus our result gives a generalization of rings of right local
type.

In the first section we consider various conditions equivalent to (A) (The-
orem 1). In particular, the condition 4) of Theorem 1 which is described in
terms of homomorphisms between factor modules of eR is frequently used
later to check whether eR satisfies (A) or not. We assume in the second and
third section that R is a left serial ring. In the second section we shall give
some properties induced from the condition (A) to prepare the proof of the
main theorem. In the third section we give the main theorem (Theorem 2).
In the last section we give some examples.

The author would like to thank Professor M. Harada for his suggestion
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of the problem and helpful advice, and Doctor H. Asashiba for his advice and
encouragement. She would also like to thank the referee for his useful com-
ments.

Preliminaries

Throughout this paper, R is a left and right artinian ring with identity, and
/ is the Jacobson radical of R. Since the property of R that the condition (A)
holds for all projective indecomposable right /?-modules is Morita invariant, we
may assume further that R is a basic ring. pi(R) denotes the set of all primi-
tive idempotents of JR. All modules are finitely generated unitary right jR-
modules. A module X is said to be hollow if the sum of any two proper sub-
modules of X is a proper submodule. By the assumption that R is an artinian
ring, a hollow module is precisely a local module, i.e., is isomorphic to a factor
module of eR for some e in pi(Λ). For a module X, we put X: =X/XJ, T(X): —
X\XJ, and denote by X(n) a direct sum of n copies of X, and by | X \ the length
of a composition series of X. For any / and g in ρi(Λ), we put T(fjkg): —

fjkg\fjk+1g F°r division rings Δ and Δ' with Δ^Δ', we use the symbol [Δ:
Δ']/ ([Δ: Δ']r) to mean the dimension of Δ as a left (right) Δ'-vector space. We
say that R is a left serial ring if as a left 72-module, R is a direct sum of uniserial
submodules. In the second and the third sections we assume that R is a left
serial ring. In this case the following hold, which we use without any refer-
ences. The first one follows from [6, Corollary 4.2], and the second one is
clear from the definition of left serial rings.

Lemma 1. If R is a left serial ring, then for every e in ρi(R) and for every
natural number j, eji is a direct sum of hollow modules y and eR has a structure
expressed by the following diagram:

eR

A

where each Aik is a hollow module, ej1 = ®Aik and
X

*J2

means XJ =
X, ... X5

Lemma 2. Suppose that R is a left serial ring. Let e, f be in pi(R), and
a, b^R. If a=eaf and b=eaf, then there exists either some d^eRe with a=db
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or else some d'^eRe with b=d'a.

1. The condition (A)

We use the following two lemmas from Sumioka [6] to prove Theorem 1.

Lemma 3 ([6], Lemma 1.3]). Let M{ (i=l, 2, 3) and T be submodules of a
module M such that M=M1+(M2®M3) and Γ=Λfi Γl (Afa®M8), and πz\ T-*M3

the restriction map of the projection M20M3->M3. Then πz is extended to a

homomorphism M1-^M3 if and only if M=(Mί+M^φM3 for some submodule M{
ofM.

Lemma 4 ([6, Lemma 2.1]). Let S be a simple module and L19 •••, Ln hollow

modules of length^2 and Q-*S-* Σ L,—>M->0 an exact sequence with each at a
i = l

monomorphism, where a=(a1, •••, ctn)
τ, and n^2. Then M is decomposable if and

only if the identity map \s. of Sj is extended to a homomorphism: 0 L^Ljfor some

jy 1 ̂ j^n, where Sj .=( 0 Lt) Π L j . '*'
» φy

Now we state the theorem in this section.

Theorem 1. For e in pi(Λ), the following four statements are equivalent.

1) (A): Every factor module of eR 0 eR is a direct sum of hollow modules.
2) Every factor module of eRM is a direct sum of hollow modules for each

natural number n.
3) If M is an R-module such that M/MJ^^R^ for some n, then M— 0

eRjXh where each X{ is a submodule of eR.
4) Let C{ and ΐ>{ (ί=l, 2) be submodules in eR such that £#;> <?,•>£,•. If

f: (?!/£>!-* C2/Z)2 is an isomorphism, and ClIDl is simple, thenf or f"1 is extended to
some homomorphism from eRfDl to eR/D2 or one from eRjD2 to eRjD^ respec-
tively.

Proof. First, we introduce the following conditions 1') and 2') which are

useful in proving the theorem:

1') Let S be simple, X, Y be submodules of eR, and assume that the follow-

ing sequence is exact:

Q-+S-* eR\X 0 eR/Y->M-+ 0 .

Then M—eR\X'®eR\Y' for some submodules X' and Y' of eR.

2') Let n be any natural number, S a simple module, and Xi a submodule
of eR for each i(\ <^,i<^ri). Consider an exact sequence:
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Then M^ 0 eR/Y for some submodules Y4(l^i^n) of eR.
i = l

The proof proceeds as follows: 2)<^>3) and 1) =Φ Γ) => 4) =» 2') ==> 2) => 1).

2)=Φ 3): It follows from M/MJ^eR(n) that M is isomorphic to a factor

module of &R<">. So by 2), M^ φ eRfo for some ,̂«?.K (1 £i£n).
ί = l

3)«Φ2): Let M be a factor module of *#<«>. Then M/MJ^eR™ for
some Λ^w, so by 3), M is a direct sum of hollow modules.

1) -Φ Γ): This is clear from the fact that the module M in Γ) is an epi-
morphic image of eR@eR.

Γ)=>4): Let Q and D,. be submodules with eR^C^ D{(i=l, 2). We

assume that a homomorphism /: C1/Z)1~>C2/Z)2 is an isomorphism and CljD1 is
simple. To show that the assertion 4) holds, we may assume that Ci<eR(i=
1, 2). We consider an exact sequence:

0 -> Q/A (*^i/i eR/D, 0 eR/D2 -> X

where ij(j=ly 2) is the inclusion Cy/Z);— >d?/Z)y, and X is the cokernel of the

*

decomposable
extended to some homomorphism eR/D1-^eRjD2 (or j .

4) =^2'): We shall show the assertion by induction on n. When w=l,
the assertion is trivial. In the case that n=2, consider an exact sequence:

where S is simple, a(s): =a1(s)+a2(s) (a^^eR/X, a2(s)^eR/Y) for any
and X', Y'^eR. Here we may assume that aλ and a2 are monomorphisms. If
imor$rad(^Λ/JY"0^7?/F), then imα is a direct summand of eR/XQeRjY since
imα is simple, thus the assertion holds. So we may assume that imα^rad
(eR/X^eR/Y) and \eR/X\9 \eR/Y\ ^2. Put TJX: =^(3) and TJY: =a2(S)
for some Tλ and T2<^eR. Then TΊ/J5Γ is simple and a2aΐl : TJX-* TJ Y is an iso-
morphism. By 4), a2aϊl(or (cc2aϊ1)~1=a1a'ϊl) is extended to a homomorphism:
eR/X-^eR/ Y (or eR/Y-+eR/X). Hence by Lemma 4, M is decomposable and
M^eR/X'ξ&eR/Y' for some -SΓ', Y'^eR. Finally we assume that the assertion
holds for n— 1(^2). Suppose that the following sequence is exact:

0 -> S -* 0

where S is simple. Put Lί:=φ(eR/Xi) for each i(l<£i^n). Then by [6, Section
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2], we have M=Lί+( 0 L{) and T:=Lt Π ( 0 A )—S. Let />: 0 Lt -* A, be the
ι=2 ι=2 »=2

canonical projection. Then />|Γ (or (plr)"1) is extended to a homomorphism:
L1-^Ln (or Ln-^L1). In the case that ^> | Γ is extended to some Φ: Z -̂̂ L,,, we put

L{ := {#—Φ(#) IxεLJ . Then by Lemma 3, we obtain M=Lα+( 0 Lf)=(L{+

®Lt)®Ln. Put M':=Lί+( 0Lt.) and S':=L{ Π( 0 L,), then 5" is simple.
*=2 » = 2 ί = 2

Noting that Lί and each L^l^i^n— 1) are factor modules of ^Λ, the following
«-l

exact sequence implies that M'=^ φ (eR/Yf) for some Y;^&R by induction hy-
pothesis :

0 -* S' ̂  L{ 0 0 Lt. £ M' -> 0,
ί = 2

where a'=(a{, ••-, αί_ι)τ, αί is the inclusion map and a{:=pi\S' (pi is the can-
onical projection) (2^i<^n— 1); and β=(βv •• ,/Sn_1)» —A and βi(2^i<^n—l)

are the inclusion maps. Hence M=M'0Ln^± 0 (eR/Y^eRIX^ The re-
maining case is proved similarly.

2') => 2): Put D:= {H\H^ 0 ^/^ for some n and for some J^dS}.
ί = l

Then we have only to show that D is closed under factor modules. Thus it
suffices to verify the following for all m^ 1, by induction on m\ For each H^D
and for each X^H, \X\=m implies H/X^D. When m=ly this follows from
2'). Let m^2. Take OΦ Y<X. Then | Y\ <m and \X/Y\ <m, which imply
HIX^(H/Y)I(X/Y)€ΞD by induction hypothesis.

2)-»l) is trivial. Q.E.D.

We shall characterize later the structure of eR satisfying the condition (A),
i.e., the conditions of the above theorem, using mainly 4) of it.

2. Properties of eR with (A)

From now on we assume that R is a left serial ring. Further throughout
this section, we assume that e is a fixed primitive idempotent, and eR satisfies
the condition (A). Then we have several properties similar to ones in [4] as
follows, by using 4) of the theorem.

Proposition 1 ([4, Proposition 1]). If eR/eJ* is uniserial and eJi=Ail@Ai2

® @Aip for some i, wherep^Z and each Aik(l^k^p) is a hollow module, then
we have Af^Ai2^=^ ^^Aip> and each Aik is simple.

Proposition 2 ([4, Proposition 5]). If eR/eJ* is uniserial and eJi=Ail@
Ai2y where A{1 and Ai2 are hollow modules, then each Aik is uniserial.
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We putΔ:=eRe/eJe and Δ(-4): = {#eΔ \x'A<LA, x'=% for some #' in
where A is a hollow submodule of eR and X is the coset of x in Δ. Then Δ is
a division ring and Δ(-4) is a division subring of Δ (see [4]). In the case that
eJi=Ail®Ai2® ®Aip(p^2)9 we put Δ(Aι)=Δί. Now we consider the case
jp^3 in more detail. Since eje(eji)=eji+1=0, we have xc=Xc for any c^ej*
and any xξΞeRe. Proposition 1 shows that each Aik(l^k^p) is simple, so we
may put Afl=aR and a=eaf for some /in pi (12). Then for any i(ΦO) in Ail9

b=ebf since ̂  is simple and 1? is basic. Noting here that R is left serial, there
exists some x^eRe\eJe with b=xa=%a. Here # is in Δ/ since xAn=xaR=bR
=Aίl, whence b is in Δ^. Thus -4fl=Ai«. For each k(ί^k^p)y put -4,-*=
αΛ12. Similarly taking ak instead of 6, we have ak—eakf, ak=xk a=Xk a for some
xk^eRe\eJe and Aik=Xk aR=Xk Δ, tf. Using this fact, we obtain

Lemma 5. Suppose eJi=Ail® -®Aip(ρ^)ί and let An=aR. Put X
(eji):=the lattice of submodules of ej* and -£(Δ):=the lattice of subspaces of ΔΔf.
Then we have a bijection a: -C(&)-*-C(eJi) defined by a(V):=Va for every

Further a preserves and reflects the linear independence, i.e., for any {F, }
), {V{} is independent if and only if so is {V{ a} .

Proof. Since VaR=VΔi a=Va for any Fe^7(Δ), a is well defined. It is
easy to show that a preserves and reflects the linear independence. To show
that or is a surjection, let T be any submodule (ΦO) of ej*. Then T is ex-
pressed as Ϊ1=J5Γ10 — 0J?i with Xk—A^ί^k^t). So we have Xk=SkAil=

δ*Δ, tf for some Sk in Δ by the consideration above. Hence Γ=( 0 δ A Δ/)α

since a reflects the independence. Thus a is a surjection. a being an injection
is immediate from the fact that ya=0(y eΔ) implies y=Q. Q.E.D.

Lemma 5 implies the following (see [4] for p=2).

Proposition 3 ([4, Proposition 2]). It holds [Δ: ΔJr= \ej*\ except for the
case that eJi=Ai®Bi and A^Biy where A{ and B{ are hollow modules (in this
exceptional case, we have Δ=Δ/).

We consider the following condition (#) on Δ as a right Δ,-vector space.

(ίf) Let Vl and V2 be subspaces of ΔΔ» and v1 and v2 be elements of Δ satisfy-
ing \ Vl \ ̂  I V2 1 and v1 Δ£ Π V1=0=v2 Δ, Π V2. Then there exists X in Δ such that
xV^Vz and xvλ=vz (mod V2).

The following is immediate from Lemma 5.

Proposition 4. If \ej*\ ^3, then the following are equivalent.
(1) Let ej<^ 7\>Γ2, eJ'^S^S^ and TJT, be simple, andf: T1/T2-^S1/S2

be an isomorphism. Then f is extended to a homomorphism : eRIT2-*eRIS2.
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(2) Δ and Δ, satisfy the condition (#).
Hence in particular, if eR satisfies the condition (A), then Δ and Δt satisfy

the condition (#).

By [4, Lemma 5], the following holds.

Proposition 5. Let Δ^Δf be division rings. If Δ and Δf satisfy the condi-
tion ($), then [Δ:Δj/^2. In particular, if eR satisfies the condition (A), then

3. The structure of eR with (A)

Also in this section, we assume that R is left serial. Using Propositions 1
and 2, eR with the condition (A) has one of the following structures.

(a) eR is a unίserial module.
(bj) For some natural number i, eR\e]* is uniserial and eJi=Ail®Ai2ί

where Aϊγ and Ai2 are uniserial modules which are not ίsomorphic to each other.
(b2) For some natural number i, eRjeJ* is unίserial and eJi=Ail®Ai2, where

Ail'=^Ai2 are uniserial modules.
(c) For some natural number ί, eR/eJ* is uniserial and eJi=Ail@

(^>^3), where Aft—Aiz— —Aip are simple modules.
Thus we can illustrate the structures (b^, (b2) and (c) as follows.

eR (b2) eR (c) eR
I I I

ej eJ eJ

A, ̂  B, ef A, ^ B, ej* An ̂  Ai2^-^Aip ej*
I I I I I I I

A B A B > 0 0 • • • 0

0 0 0 0 ρ^3

Now we state the main theorem.

Theorem 2. Let R be a left serial ring. The following are equivalent for
each e^pi(R).

1) eR satisfies the condition (A).
2) eR has one of the structures (a); (bj); (b2) with [Δ:Δt ]/=2; and (c)

with the condition (#) for Δ and Δ, .

The proof of 1)=^2) is already done. So we show that each of the con-
ditions in 2) implies the condition 1). This is immediate from Proposition 4
in the case of the structure (c), and in the case of (a) this follows from Lemma
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2 and Theorem 1 (see case (i) in Lemma 8). For the proof of the other cases,

we divide the argument to some lemmas.

Lemma 6. In the diagram (bj, the following statements hold.

1) For any j and k with i ̂ j^k and k—j<.i, we have

2) For any j and k with ι<^j<k and k~j<i, we have

Proof. 1) For j(i^j), we have A^Bj from [3, Lemma 3]. Next sup-
pose that Ά^Bk for some j, k with i^j<k and k—j<i. Put A—afί, Bk=bkR
and a~eajf, bk—ebkf for some/ in pi(Λ). Then there exists d in T(eJk~J] such
that da~bk. So ejk~je^0, and there exists an epimorphism: eR-^eJk~j. This

epimorphism induces an epimorphism: £/'~(*~;) ->£/'. Thus we have ejl~(k~^—

ej*. But this is a contradiction since i>i—(k—j). We conclude that
2) Suppose that Άp^Ak for some;', k with i^j<k and 0<k—j<i. Then

we may put A —aft and Ak=akR. So there exists d in ejk~j e such that da~
ak, thus ejk~j £ΦO and this yields the similar contradiction as in 1). Q.E.D.

Lemma 7. In the diagram (b2), we have that A^Bk for each j, k with

Proof. Suppose that A^Bk in the case k—j<i. Put A—a^R and Bk=

bkRy and a~ajg, bk=bkg for some g in pi(-R). Then there exists d in T(ejk~se)
such that da~bk, and this yields the contradiction similar to that in the proof

of Lemma 6. Next suppose that A^Bk in the case k—j^i. Then there
exists <2y, bk and d as above. It follows from k—j^i that d=^d1-}-d2 for some
dl in Ai and d2 in B{. So bk=daj=d1aj

jrd2aj and £^ is in #,-, thus iA= dz ajy

where J2 in T(Bk~j). Then for 6y with B~bjR, we have that 6^=6^ and
d2 δ yΦO is in Γ(5*) by Aj—Bk. There exists r in Γ^/ζf) such that dz bj r=bk,
and hence T(ejj g)^d2(aj—bjr)=bk—bl!=^09 a contradiction. Q.E.D.

Using Lemmas 6 and 7, we show the implication 2)==>1) of Theorem 2
as the following two lemmas.

Lemma 8. Let the diagram (bj) be the structure of eR. Then eR satisfies
the condition (A).

Proof. Let Cy and Dj be submodules of eR such that eR^Cj>Dj and
Cj/Dj is simple for j=l, 2, and/: C1/Z)1->C2/Z>2 be an isomorphism. We may
assume that C~CjR-{-Dj for some Cj in Cj(j=l, 2) satisfying /(^1+Z)1)=r2+Z)2,
and cλg=c2g for some £epi(.R).

(i) In the case where both cl and £2 are in T(ejt] for some ί<i, there
exists a unit ΛJ in eRe such that ^q=ί:2. Then xl (the left side multiplication

of Λ;) induces /.
(ii) Suppose that cλ is in T(eJ*) for some t<i and eJ*^C2>D2 Then
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there exists some x in eje such that xc1=c2, So xD1=xC1J=xc1J<.C2J<D2,
whence xl induces /

iii) In the case that eJ^C^Dj for each; — 1, 2.
First, we show that for any C, D such that D<C^eJi and C/D is simple,

there exists a unit x in eRe satisfying

(P): xC=At.l®B, (or xC =

xD = At@Bs where *,

For a module -X^έ?/, put X^=τeAi(X)9 Xw=πBi(X), Xω=XΓ(Ai and
Xω=XΓiBh where πAi : eJ'-^Ai and πBi : £/'->#, are the canonical projections.
Then it is easy to see that X^X® (;=!, 2) and X^IXω=^X^IXω. Now, if
Z)W=Z)(1), then Z>(2)=D(2), and we can take #— £ for # in (P). Thus we may

assume Dω<D&. Then by the above, Dω<D& and Z^/Ai)— °(2)/A2)
Since 72 is left serial, there exists some δ^eje (by Lemma 6) such that either

8D«=Z)W and 8D(1)=Z>(2); or SZ)«=Z)(1) and δA«)=Aι) We may assume
that the former holds. There exists a unique s such that D(2)^eJs^D. Then

Z)=(έ?+δ)D(1)0Z>(2)=(H-δ) D^+eJ*. Noting that w:=^+δ is a unit in *,&?
and u-lej'=ej', we have u^D^D^+u'1 eJs=D^+eJs=D^®Dω. Put C r:

=tt"1C, D''.=u~lD. When C(

/ι)=C/(1), we can take x=u~1. So suppose that
C(

/i)<C/w. Then C(

/

1)=Z)W, Ch=D& and C'^/C^^C'^/C^ is simple
because so is C'/D'—C/D. By an argument similar to one for Z), we can take
some ω^eje such that ωC/(1)=C'(2) and ωC(

/ι)=C(

/

2). Hence putting y:=e-f-ω,

we have C'-yC'^eC^ and y^C^C'WθCfo. It follows from C'(l}=D™ and

C(/

2)=A2) that ωZ)(1)-D(2) Then Df=D^®Dω=yD^®Dω, whence y-1/)^
Z)(1)0Z)(2). Consequently, we can take jc^^"1 w"1.

Next, we consider the case that Cy and Dj(j=l, 2) have the following forms:
C—At.^^B,. (or Cy=^4ίy0jBJy.ι) and D~Atj®BSj. Considering the struc-
ture of (b:) and C1/Z)1^^C2/D2, we see that the possible cases are the following.

(a) C^

Caa

C2 - ^.iθfi,, , D2 = At®BS

'2

In the case (or), we put f(a1+ A)=*2+ Aι At^-ι=^ and J5ί2_1=62/Z. There
exists some rf in ς/^"*! e such that da1=b2. Since t2—t1^iy we have d=dl-\-d,

for some ̂  in ^4t and rf2 in B, > and b2=da1=d1a1+d2a1. Then b2—d2a1. Hence
Q. Indeed if not, for some tfeΓ^ ) and some y^.T(Bt), both J2# and

are in T(Bi+t2_tl) and non-zero. Thus, A^Biy a contradiction. Thus (d2)/
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induces/. The similar argument works for the cases (β) and (γ).

Finally in the general case, there exist units x and y in eRe for Cy and Dj

(/=!, 2) as in (P). Using the isomorphism/, we put

/': OV^MΛΦ^A Q/A i CJD^ (A.r&BJKA.&BJ

and apply the argument above. Q.E.D.

Lemma 9. Let the diagram (b2) be the structure of eRy and assume [Δ : Δ, ]/

=2. Then eR satisfies the condition (A).

Proof. Let Cy and Dj be submodules of eR such that eR^>Cj>Dj and

Cy/Z)y are simple for /=!, 2, and /: C1/Z)1->C2/Z)2 be an isomorphism. Then

Cj=CjR-{-Dj for some cy in Cy(j=l, 2), where we may assume that /(^+ A)—
c2+A and c1=c1g, c2=c2g for some £epi(R).

The proof similar to that of Lemma 8 works in the following two cases:

(i) both cλ and c2 are in T(ejt) (t<i).

(ii) cλ is in T(ejt) (t^i) and £/'^C2>A
So we show only the following case:

(iii) ej* ̂  Cy >Z)y for both ;= 1 , 2.
We have that for any C and D with eJ'^C>D, there exists a unit # in eRe

such that tfC^^e^^D^ At@B3 (or Λ?C=24ί0JBβ_1>Λ?D=^0JB,) for

some t, s^i (the proof is in Lemma 8). Further we have that for C=Ak@Br

(k, r^i), there exists a unit y in eRe such that yC=Ar®Bk. So we may assume

that Cj>Dj are of the following form:

, A =

It follows from Q/A— Q/A that /1=/2=ί.
(α) In the case that ί^max(ί1, J2). We may assume s^s2. Let C1=c1R+

A and c1R=At_l. Then there exists a unit # in eRe such that^q+Aί^^iH"
A It follows from zDl^At®BSl^D2 that #f induces/.

(/5) In the case that ί>max (ί1? ί2). We may assume s^s2. Let Bt^1=bR
and SB—A;. Then A^^δbR and f(8b+D1) = 8wb+D2 for some «σ in d&?

with wBf^—Bf,^ i.e. ^ is in Δz . Since [Δ: ΔJ/ = 2, there exist ̂  and y2 in Δr

such that 'Sw=yl+ J2δ. So we have δa^j^+j^δ+j' for some in eje, whence
y2Sb=(8fo—y1—j) b = 8zob(mod A)> since yλb is in Bt_l^D2 andjb is in -4/0^ ̂

A- Then/(δ6+A)=y2(Sδ)+ A andj;2A^ AΘA^ A So we have that ( 2̂)7

induces/. Q.E.D.

REMARK. If R is a finite dimensional algebra over a field, then [Δ: Δ, ]Γ=

[Δ: Δt ]/ holds. So for a primitive idempotent e, if eR satisfies the condition
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(A), it follows from [Δ: Δj/^2 (by Proposition 5) that [Δ: Δ, ]r^2. Hence eR

never has the structure (c). Further suppose that R is a finite dimensional

algebra over an algebraically closed field. Then we have [Δ: Δt ]r=[Δ: Δf ]/=l.

Hence eR has the structure (a) or

4. Examples

Here we give some examples of left serial rings having projective indecom-

posable modules with structures (bx), (b2), and (c) which satisfy the condition

(A).

EXAMPLE 1. Let k be a field and put

(k k k k

0 k k k

0 0 k 0

,0 0 0 k

R: = e: —

1 0 0 0\

0 0 0 0

0 0 0 0

0 0 0 0

Then every projective indecomposable jR-module satisfies the condition (A) and

eR has the structure (bj). Note that R is not of right local type (Cf. [6]).

EXAMPLE 2. Let K ̂ L be fields with [L: K]=2. Put

R: =

L L L

0 L L

0 0 K

and e i '—

1 0 0

0 0 0

0 0 0

Then eR has the structure (b2) and satisfies the condition on the left dimension

in Theorem 2. Also in this case every projective indecomposable module sat-

isfies the condition (A) but R is not of right local type (Cf. [6]).

EXAMPLE 3 (Asashiba [1]). Let F and G be division rings and M an

(Fy G)-bimodule having the dimension sequence (3, 1, 2, 2, 1) (see Dowbor,

Rίngel and Simson [2]). The existence of such an M follows from Schofield [5,

[F M~]
section 13] and [2, Proposition 1]. Then R' = \ has exactly 5 non-

L O G J
isomorphic indecomposable modules and [M: G]r=3, say MG= A^A2φA3 with

l 01 ΓO 0
each A^GG. Put ̂ := and e: =2 . Then we can identify e1JR=

MG. Since the set S: = {e2R, eft, eftjA^ e^A^A^, e^ej} consists of 5

non-isomorphic local modules, S is a complete set of representatives of iso-

morphism classes of indecomposable Λ-modules. Thus R is of right local type.

Hence every projective indecomposable Λ-module satisfies the condition (A).

In particular so does eft. Further since eλj is isomorphic to a direct sum of
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three copies of a simple module, el R has the structure (c) and satisfies the condi-
tion (ΰ).
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