<table>
<thead>
<tr>
<th>Title</th>
<th>On congruent axioms in linearly ordered spaces. I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Terasaka, Hidetaka; Katayama, Shigeru</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 3(2) P.269-P.292</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1966</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/12504</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/12504</td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/repo/ouka/all/

Osaka University
ON CONGRUENT AXIOMS IN LINEARLY ORDERED SPACES, I

SHIGERU KATAYAMA and HIDETAKA TERASAKA

(Received September 2, 1966)

1. Introduction

In connection with the axioms of congruence of segments on a straight line given in Hilbert’s Grundlagen der Geometrie, we will set up a group of axioms of congruence on a linearly ordered space and study their mutual dependency and independency.

In the following let \(L \) be a linearly ordered space, that is a set of points, in which for any pair of distinct points \(A \) and \(B \) either of the relations \(A < B \) and \(B < A \) holds, and for any three points \(A, B \) and \(C \), if \(A < B \) and \(B < C \) then \(A < C \).

When we write \(AB \), it will be understood that \(A \) and \(B \) are distinct points of \(L \) such that \(A < B \). \(AB \) will be called a segment. We write \(AC = AB + BC \) if and only if \(A < B < C \).

The axioms we are going to study is the following:

Axiom E (Unique Existence): \(\forall AB \ \exists A', B' : AB = A'B' \), that is, for any segment \(AB \) and for any point \(A' \) there is one and only one point \(B' \) such that \(AB = A'B' \).

Axiom R (Reflexivity): \(AB = AB \).

Axiom S (Symmetry): \(AB = A'B' \Rightarrow A'B = AB \).

Axiom T (Transitivity): \(AB = A'B', A'B' = A''B'' \Rightarrow AB = A''B'' \).

Axiom A (Additivity):

\[
\]

The following scheme will be used in application:

\[
AC = AB + BC, \quad A'C' = A'B' + B'C', \quad AB = A'B', \quad BC = B'C'.
\]

\[
\begin{align*}
\frac{AC = AB + BC}{A'C' = A'B' + B'C', AB = A'B', BC = B'C'} & \Rightarrow AC = A'C'.
\end{align*}
\]
Axiom C (Commutative Addition):

\[AC = AB + BC, \quad C'A' = C'B' + B'A', \quad AB = B'A', \quad BC = C'B' \Rightarrow AC = C'A'. \]

In application we write:

\[
AC = AB + BC, \\
C'A' = C'B' + B'A', \\
AB = B'A', \\
BC = C'B'
\]

\[\to \]

Axiom I (Interchanging):

\[A < B < A' < B', \quad AB = A'B' \Rightarrow AA' = BB'. \]

Under the assumption of Axiom E we studied in this paper all the relationship between the remaining axioms R, S, T, A, C, I as to their mutual dependency and independency, and obtain the following Main Theorem.

Main Theorem: Under the assumption of Axiom E,

I. Axioms T and C are independent of each other, and Axioms R, S, A and I follow from them. In symbol:

\[R, S, T, A, C, I \]

II. Axioms T and I are independent of each other, and Axioms R, S, A and C follow from them. In symbol:

\[R, S, T, A, C, I \]

III. Axioms S, A and I are independent of one another, and Axioms R, T and C follow from them. In symbol:

\[R, S, T, A, C, I \]

IV. Axioms S, A and C are independent of one another, and Axioms R, T and I follow from them. In symbol:

\[R, S, T, A, C, I \]

V. Axioms R, A and C are independent of one another, and Axioms S, T and I follow from them. In symbol:

\[R, S, T, A, C, I \]

2. Theorems

In the following we always assume the unique existence of Axiom E, if not otherwise stated.

To make proofs as clear as possible we introduce first some useful notations.

(a) \[X \xrightarrow{(T)} Y \] means that \(Y \) follows from the left side \(X \) by the use of \(T \).

(b) \[A = B \] means that \(A \) coincides with \(B \) and \(AB \equiv A'B' \) means that \(A = A' \),
\(B = B' \) at the same time.

(c) "\(\exists X: \)" means that "there exist one and only one \(X \) such that."

Theorem 1. If \(T \) is assumed, then \(R \iff S \).

Proof. (i) \(R \Rightarrow S \).

By Axiom E, \(\exists B' : AB = A'B' \).

By Axiom E, \(\exists B'' : A'B'' = AB'' \).

\[
\begin{align*}
(1) & \quad AB = AB'' \\
(2) & \quad (E') \quad B'' = B.
\end{align*}
\]

Now by Axiom R,

\[
AB = AB.
\]

(ii) \(R \Leftrightarrow S \).

Assume \(AB = A'B' \). Then by Axiom S, \(A'B' = AB \). Hence by Axiom T, \(AB = AB \).

Theorem 2. \(R, C \Leftrightarrow I \).

Proof. Let \(A < B < A' < B' \) and \(AB = A'B' \).

Then we have

\[
\begin{align*}
AA' &= AB + BA' \\
BB' &= BA' + A'B' \\
AB &= A'B' \\
BA' &= BA' \quad \text{(by Axiom R)}
\end{align*}
\]

\[
\begin{align*}
(1) & \quad AB = A'B' \\
(2) & \quad (E) \quad B'' = B.
\end{align*}
\]

Lemma 1. Under the assumption of \(T \): \(AB = A'B' \Rightarrow A'B'' = A'B' \).

Especially: \(AB = AB' \Rightarrow AB'' = AB' \).

Proof. Let

\[
\begin{align*}
L & \quad \underline{A} \quad \underline{B} \\
L & \quad \underline{A'} \quad \underline{B''} \quad \underline{B'}
\end{align*}
\]

Then we have

\[
AB = A'B'.
\]

By Axiom E, \(\exists B'' : A'B'' = A'B'' \).

\[
\begin{align*}
(1) & \quad AB = A'B'' \\
(2) & \quad (T) \quad AB = A'B'' \\
& \quad (E) \quad B'' = B'.
\end{align*}
\]

Therefore we have from \((2) \quad A'B'' = A'B' \).

\[
1) \quad \text{If } AB = A'B' \text{ and } AB = A'B'' \text{ then we have by Axiom } E \quad B'' = B'. \quad \text{As a special case, if } AB = AB' \text{ and } AB = AB \text{ then } B' = B.
\]
Theorem 3. \(T, C \Rightarrow A \).

Proof. Let \(AC = AB + BC \), \(A'C' = A'B' + B'C' \),

\[
AB = A'B', \\
BC = B'C'.
\]

Then by Axiom E, \(\exists D' : A'B' = C'D' \).

Then we have first from (1) and (3) by using T

\[
AB = C'D'. \\
\]

Further

\[
AC = AB + BC, \\
B'D' = B'C' + C'D', \\
(4): AB = C'D', \\
(2): BC = B'C'.
\]

By Axiom E, \(\exists X : C'D = A'X \).

Then by (3) and (6) we have by using T

\[
A'B' = A'X. \\
\]

Since by Lemma 1

\[
A'B' = A'B', \\
\]

we have from (7) and (8) by the use of Axiom E \(X = B' \).

Hence by (6)

\[
C'D' = A'B'. \\
\]

Then

\[
B'D' = B'C' + C'D', \\
A'C' = A'B' + B'C', \\
B'C' = B'C' \text{ (by Lemma 1)}, \\
(9): C'D' = A'B'.
\]

From (5) and (10) we have finally by Axiom T \(AC = A'C' \).

Theorem 4. \(T, A \Rightarrow R \).

Proof. Let \(AB \) be a given segment. Then by Axiom E, \(\exists B' \):

\[
AB = AB'. \\
\]

(i) Suppose first \(A < B' < B \).

Then we have
\[AB \equiv AB' + B'B, \quad AX \equiv AB' + B'X, \quad AB' = AB' \text{ (by Lemma 1)}, \]

by Axiom E, \(\exists X: B'B = B'X \) \hspace{1cm} (A)

\[AB = AX. \] \hspace{1cm} (2)

From (1) and (2) we would have by Axiom E \(B' = X \), which is clearly a contradiction.

(ii) Next suppose \(B < B' \).

Then we have

\[AB' \equiv AB + BB', \quad AX \equiv AB' + B'X, \quad (1) \text{: } AB = AB', \]

by Axiom E, \(\exists X: BB' = B'X \) \hspace{1cm} (A)

\[AB' = AX. \] \hspace{1cm} (3)

Since by Lemma 1 \(AB' = AB' \), we have from (3) \(X = B' \), which is clearly a contradiction.

From (i) and (ii) we conclude \(AB = AB \).

Theorem 5. \(T, C \Rightarrow R \).

This is an easy consequence of Theorem 3: \(T, C \Rightarrow A \) and Theorem 4: \(T, A \Rightarrow R \). In the following an alternative proof will be given without an intermediation of Axiom A.

Lemma 2. Under the assumption of Axiom C

\[AB = A'B', \quad A' < X < B, \quad XB = A'X' \quad (2) \]

Then we have

\[AB = AX + XB, \quad A'B'' = A'X'' + X'B'', \]

by Axiom E, \(\exists, B'': AX = X'B'' \) \hspace{1cm} (3),

by (2): \(XB = A'X' \) \hspace{1cm} (E)

Then we have

\[(1), (4) \Rightarrow B' = B''. \]
Thus $AX = X'B'$ from (3) and clearly $A' < X' < B'' = B'$.

Proof of Theorem 5.

By Axiom E, $\exists B': AB = AB'$.

(i) Suppose first $A < B' < B$.

By Lemma 2 there is an X such that

$$A < X < B', \quad B'B = AX, \quad AB' = XB'. \quad (4)$$

Now by Axiom E, $\exists X': AX = B'X'$

and by Lemma 1

$$XB' = XB'. \quad (5)$$

Thus

$$AB' \equiv AX + XB', \quad XX' \equiv XB' + B'X', \quad (5): AX = B'X', \quad (6): XB' = XB'$$

Then

$$(4), (7) \xrightarrow{(E)} X' = B', \quad (7)$$

which is a contradiction.

(ii) Next suppose $A < B < B'$.

By Axiom E, $\exists X: BB' = AX$.

By Axiom E, $\exists B^*: AB' = XB^*$.

Then

$$(1), (9) \xrightarrow{(T)} AB = XB^*. \quad (10)$$

Hence

$$AB' \equiv AB + BB', \quad AB^* \equiv AX + XB^*, \quad (10): AB = XB^*, \quad (8): BB' = AX \xrightarrow{(T)} AB' = AB^*. \quad (E) B'' = B'$$

By Lemma 1 $AB' = AB'$

Consequently, we have from (9)

$$AB' = XB'$$

(11)
ON CONGRUENT AXIOMS IN LINEARLY ORDERED SPACES, I

Now
\[AB' \equiv AX + XB', \]
\[XX' \equiv XB' + B'X', \]
by Axiom E, \(\exists X': AX = B'X', \)
by Lemm 1, \(XB' = XB' \)

Then we have
\[(11), (12) \xrightarrow{(E)} B' = X', \]
which is a contradiction.

From (i) and (ii) we conclude \(AB = AB. \)

Theorem 6. \(T, I \Rightarrow R. \)

Proof.

By Axiom E, \(\exists B': AB = AB'. \) (1)

(i) Suppose first \(A < B' < B. \)

By Axiom E, \(\exists C: AB' = BC. \) (2)

Then
\[(1), (2) \xrightarrow{(T)} AB = BC. \] (3)

and
\[A < B' < B < C, (2) \xrightarrow{(1)} AB = B'C. \] (4)

By Axiom E, \(\exists D: B'B = CD. \) (5)

Then
\[B' < B < C < D, (5) \xrightarrow{(1)} B'C = BD, \] (6)

and
\[(4), (6) \xrightarrow{(T)} AB = BD. \] (7)

Hence
\[(3), (7) \xrightarrow{(E)} C = D. \]

which is a contradiction.

(ii) Next suppose \(A < B < B'. \)

By Axiom E, \(\exists C: AB = B'C. \) (8)

\[A < B < B' < C, (8) \xrightarrow{(1)} AB' = BC. \] (9)

\[(1), (9) \xrightarrow{(T)} AB = BC. \] (10)
By Axiom E, $\exists D: BB' = CD$.
\[B < B' < C < D, \quad (11) \xrightarrow{(1)} BC = B'D. \]
\[(10), (12) \xrightarrow{(T)} AB = B'D. \]
Hence
\[(8), (13) \xrightarrow{(E)} C = D, \]
which is a contradiction.

From (i) and (ii) we conclude $AB = AB$.

Lemma 3. $A < A' < B$, $AB = A'B'$ \(\xrightarrow{(1)}\) $B < B'$, $AA' = BB'$.

Proof.

By Axiom E, $\exists B': AA' = BB'$.
\[A < A' < B < B', \quad (1) \xrightarrow{(1)} AB = A'B'. \]
Let $AB = A'B'$. Then we have
\[AB = A'B', \quad (2) \xrightarrow{(E)} B' = B'. \]
Therefore we have from (1) $B < B'$ and $AA' = BB'$.

Theorem 7. $T, I \Rightarrow A$.

Proof. (i) First let $A < B < C < A' < B' < C'$ and $AB = A'B'$, $BC = B'C'$.

\[A < B < A' < B', \quad AB = A'B' \xrightarrow{(1)} AA' = BB', \]
\[B < C < B' < C', \quad BC = B'C' \xrightarrow{(1)} BB' = CC', \]
\[A < C < A' < C' \xrightarrow{(Lem 3)} AC = A'C'. \]

(ii) Next let $A < B < C$, $A' < B' < C'$ with $AB = A'B'$, $BC = B'C'$, but let $C < A'$ fail to be true.

Take points A'', B'', C'' such that $A < B < C < A'' < B'' < C''$ and $A' < B' < C' < A'' < B'' < C''$ with $A'B' = A''B''$, $B'C' = B''C''$. Then by (i)
\[AC = A''C'' \quad (1) \]
and
\[A'C' = A''C''. \quad (2) \]

Now, since $T, I \Rightarrow R$ by Theorem 6 and $T, R \Rightarrow S$ by Theorem 1, Axiom S holds by our assumption of T and I.

Therefore
\[A'C' = A''C'' \xrightarrow{(S)} A'C'' = A'C'. \quad (3) \]
Hence

\[(1), (3) \xrightarrow{(T)} AC = A'C'.\]

Theorem 8. \(T, I \Rightarrow C.\)

Proof. Notice that Axiom S is a consequence of our assumption of T and I as we have shown in the proof of Theorem 7 and that Axiom A is a consequence of T and I by Theorem 7.

Let \(A \prec B \prec C, C' \prec B' \prec A'\) and let

\[
\begin{align*}
AB &= B'A', \quad (1) \\
BC &= C'B'. \quad (2)
\end{align*}
\]

\[
\begin{align*}
AC &\equiv AB + BC, \\
B'C'' &\equiv B'A' + A'C'\end{align*}
\]

(2): \(BC = C'B',\) by Axiom E,

\[
\exists_{C''}: C'B' = A'C''
\]

\[
C' < B' < A' < C', \quad C'B' = A'C'' \xrightarrow{(1)} C'A' = B'C'' \xrightarrow{(S)} B'C'' = C'A' \xrightarrow{(T)} AC = C'A'.
\]

Theorem 9. \(S, A \Rightarrow R.\)

Proof.

By Axiom E, \(\exists_{B'}: AB = AB'.\)\((1)\)

(i) Let \(A < B < B'.\)

By Axiom E, \(\exists_{X}: BB' = B'X\)\((2)\)

\[
\begin{align*}
AB' &\equiv AB + BB', \\
AX &\equiv AB' + B'X, \quad (1): AB = AB', \\
(2): BB' = B'X
\end{align*}
\]

\[
(1) \xrightarrow{(S)} AB' = AB. \quad (4)
\]

which is a contradiction.

(ii) Let \(A < B' < B.\)

By Axiom S \(AB' = AB, A < B' < B\) and the case (ii) reduces to that of (i).

From (i) and (ii) we conclude \(AB = AB.\)
Lemma 4. Under the assumption of Axioms S, A and I, if $AB=A'B'$, then

1) $A < A' \implies B < B'$, $AA' = BB'$.
2) $A' < A \implies B' < B$, $A'A = B'B$.
3) $A = A' \implies B = B'$.

Proof. 1) follows from Lemma 3.
2) reduces to 1) by Axiom S.
3) follows from Theorem 9 which asserts $S, A \Rightarrow R$.

Lemma 5. $PQ = P'Q'$ (1), $P < X < Q$, $PX = P'X'$ (2) $\implies P' < X' < Q'$, $XQ = X'Q'$.

Proof.

\[PQ \equiv PX + XQ, \]
\[P'Q'' \equiv P'X' + X'Q'', \]
(2): $PX = P'X'$,

by Axiom E, \exists, Q'': $XQ = X'Q''$ (1): $PQ = P'Q'$ \[\begin{array}{c}
\text{(A)} \\
\text{(E)}
\end{array} \]

Proof. We may assume without loss of generality that $P' < P''$.

\[PQ = P'Q' \quad \text{or} \quad \text{lem. 3} \]
\[PP' = QQ' \quad \text{(1)} \]

\[PQ = PQ' \quad \text{or} \quad \text{lem. 3} \]
\[PP'' = QQ'' \quad \text{(2)} \]

by Axiom E, \exists, X: $P'P'' = Q'X$

which is a contradiction.

Lemma 7. $PQ = P'Q'$, $P < P'$, $P < X < Q$, $XQ = X'Q'$ $\implies P' < X' < Q'$, $PX = P'X'$.

Proof. By Lemma 3 we have first

\[PQ = P'Q', P < P' \quad \text{(1)} \]
\[P < P' \quad \text{(1)} \]

\[PQ = P'Q', P < P' \quad \text{(1)} \]

\[PQ = PQ', XQ = X'Q' \quad \text{(2)} \]
\[XQ = X'Q' \quad \text{(2)} \]

first

\[L \]
\[P \quad Q \]
\[P' \quad P'' \quad Q' \quad X' \quad Q' \]
From
\[XQ = X'Q' \]
(1)
we have \(X'Q' = XQ \) by Axiom S, and combined with \(Q < Q' \) we obtain by Lemma 4
\[X < X' \]
(2)
Now,
by Axiom E, \(\exists X'': PX = P''X'' \),
(3)
by Lemma 5 \(P' < X'' < Q' \) and \(XQ = X''Q' \),
(4)
by Lemma 4 \(X < X'' \).
(5)
Then (1), (4), (2) and (5) yield by Lemma 6 \(X' = X'' \). Consequently we have \(P' < X' < Q' \) and \(PX = P'X' \).

Theorem 10. S, A, I \(\Rightarrow \) T.
Proof. Let \(AB = A'B' \), \(A'B'' = A''B'' \).

(i) The case where at least two of \(A, A' \) and \(A'' \) coincide:

(i)_1. \(A = A' \). Since \(S, A \Rightarrow R \) by Theorem 9 we have \(B = B' \) and hence \(AB = A''B'' \).

(i)_2. \(A' = A'' \). The same as (i)_1.

(i)_3. \(A = A'' \). \(AB = A'B' \) \(\xrightarrow{(S)} A'B'' = AB \), \(A'B'' = A'B'' \), \(A = A'' \) \(\xrightarrow{(E)} B = B'' \).

Hence \(AB = A''B'' \).

(ii) The case where \(A, A' \) and \(A'' \) are distinct: there are six cases to be considered.

I. \(A < A' < A'' \), II. \(A < A'' < A' \), III. \(A' < A < A'' \),
I'. \(A'' < A' < A \), II'. \(A'' < A < A' \), III'. \(A' < A'' < A \).

Proof of Case I.

\[
\begin{align*}
AB &= A'B' \quad (I \text{ or Lem.} 3) \quad \xrightarrow{A} AA' = BB' , \\
A'B' &= A''B'' \quad (I \text{ or Lem.} 3) \quad \xrightarrow{A} A'A'' = B'B'' , \\
A < A' < A'' \quad (\text{Lem.} 4) \quad B < B' < B'' \\
\end{align*}
\]

Proof of Case II.
Proof of Case III.
\[AB = A'B' \implies AA' = BB'. \]
\[A'B' = A''B'' \implies A''B'' = A'B' \implies A'' = B''B'. \]

Proof of Case I'.
\[AB = A'B' \implies A'B' = AB. \]
\[A'B' = A''B'' \implies A''B'' = A'B'. \]
\[A'' < A'< A, \text{ (2)'}, (1)' \implies AB = AB \implies AB = A''B''. \]

Similarly the proofs of II' and III' may be reduced to those of II and III respectively.

Theorem 11. S, A, I ⊨ C.
Proof. S, A, I ⊨ T by Theorem 10. Then by Theorem 8 T, I ⊨ C.

Lemma 8. Under the assumption of Axioms R and C, if \(AB = A'B' \), then

1) \(A < A' \implies B < B' \).
2) \(A = A' \implies B = B' \).
3) \(A < A' \implies B < B' \).

Proof. 1) \(A < A' \). B < B' is clear if \(B < A' \) or if \(B = A' \). Let \(A < A' < B \), and suppose either \(B < B' \) or \(B' = B \). By Axiom E, \(\exists X: AA' = BX \).

\[A < A' < B < X, \text{ (1)} \implies AB = A'B' \implies X = B'. \]
which is a contradiction.

2) Clear.

3) \(A' < A\). Suppose either \(B < B'\) or \(B = B'\).

\[
\begin{align*}
A'B &\equiv A'A + AB, \\
A'X &\equiv A'B' + B'X.
\end{align*}
\]

By Axiom E, \(\exists X: A'A = B'X\).

\[
AB = A'B'.
\]

By Axiom R \(A'B = A'B\).

which is a contradiction.

Theorem 12. \(R, A, C = S\).

Proof. Let \(AB = A'B'\). (1)

Case I. \(A' < A\).

By Axiom E, \(\exists X: A'A = B'X\). (2)

\[
A'A = B'X \quad \text{(I or Lem. 3)} \quad A'B = AX.
\]

\[
A'B = A'A + AB, \\
A'X = A'B' + B'X.
\]

(2) \(A'A = B'X\), (1) \(AB = A'B'\)

By Axiom R \(A'B = A'B\).

Hence from (3) \(A'B' = AB\).

Case II. \(A < A'\).

By Axiom E, \(\exists B'': A'B' = AB''\). (4)

Then we have from (4) by Case I

\(AB'' = A'B'\). (5)

(i) Suppose first \(A < B'' < B\).

By Axiom E, \(\exists X: B''B = B'X\). (6)

From (5) and (6) we have by Axiom A \(AB = A'X\). This, combined with (1), would yield by Axiom E \(X = B\), which is a contradiction.

(ii) Next suppose \(B < B''\).

By Axiom E, \(\exists X: BB'' = B'X\).

On account of (1) we have then by Axiom A \(AB'' = A'X\), which, combined with (5), would yield by Axiom E \(X = B\), again a contradiction.
Corollary. \(AB = A'B' \), \(A' < A \) \((R,C)\) \(A'B' = AB \).

Theorem 13. \(S, C, I \Rightarrow R \).

Proof.

By Axiom E, \(\exists B' : AB = AB' \).

(i) First suppose \(A < B' < B \).

By Lemma 2 there is an \(X \) such that

\[
A < X < B' , \quad B'B = AX ,
\]

\[
AB' = XB'. \tag{1}
\]

By Axiom E, \(\exists X' : AX = B'X' \).

Since \(A < X < B' < X' \) we have by Axiom I

\[
AB' = XX'. \tag{2}
\]

From (1) and (2) we would have by Axiom E \(B' = X \), which is a contradiction.

(ii) Next suppose \(B < B' \).

Since we have from (1) by Axiom S \(AB' = AB \), the argument of (i) gives again a contradiction.

Thus we conclude from (i) and (ii) \(B' = B \) and then \(AB = AB \) follows from (1).

3. **Models**

By a *model* of a geometry denoted for example by \(M(S, C) \) we mean a linearly ordered space \(L \) with congruent relations which satisfy among our group of seven Axioms E, R, S, T, A, C and I Axioms S and C alone besides Axiom E but not the remaining ones.

In the following models the space \(L \) is for the most part given by the real line \(- \infty < x < \infty \) or by the half line \(0 \leq x < \infty \). In these cases points denoted by \(A, B, A', X \) etc. will be those points of the real line having coordinates \(a, b, a', x \) etc. respectively. \(A < B \) is defined by \(a < b \), \(|AB| \) denotes the distance \(b - a \) of points \(A \) and \(B \).

M(R): A model of a geometry in which Axiom R alone holds besides Axiom E.

Let \(L \) be the real line \(- \infty < x < \infty \).

Definition of \(AB = A'B' \):
- If \(A = A' \), then let \(AB = A'B' \) if and only if \(B = B' \).
- If \(A \neq A' \), then let \(AB = A'B' \) if and only if \(|A'B'| = 1 \).

This model satisfies Axioms E and R but fails to satisfy the remaining Axioms S, T, A, C, I.
M(S): A model of a geometry in which Axiom S alone holds besides Axiom E.
Let L be the real line $-\infty < x < \infty$.

Definition of $AB=A'B'$:

In case $A=A'$, let $AB=A'B'$

(i) if $|AB|=1$ and $|A'B'|=3$

or (ii) if $|AB|=3$ and $|A'B'|=1$

or (iii) if $|AB|$ and $|A'B'|$ are both different from 1 and 3, and $|AB|=|A'B'|$.

In case $A<A'$, let $AB=A'B'$ and $A'B'=AB$ if $2|AB|=|A'B'|$. This model satisfies Axioms E and S but fails to satisfy the remaining Axioms R, T, A, C, I.

M(T): A model of a geometry in which Axiom T alone holds besides Axiom E.
Let L be the real line $-\infty < x < \infty$.

Definition of $AB=A'B'$: For any AB and for any A', let $AB=A'B'$ if and only if $|A'B'|=1$.

This model satisfies Axioms E and T but fails to satisfy the remaining Axioms R, S, A, C, I.

M(A): A model of a geometry in which Axiom A alone holds besides Axiom E.
Let L be the real line $-\infty < x < \infty$.

Definition of $AB=A'B'$:

(i) In case $A<A'$ or $A=A'$, then let $AB=A'B'$ if and only if $2|AB|=|A'B'|$.

(ii) In case $A'<A$, then let $AB=A'B'$ if and only if $|AB|=|A'B'|$.

This model satisfies Axioms E and A but fails to satisfy the remaining Axioms R, S, T, C, I.

M(I): A model of a geometry in which Axiom I alone holds besides Axiom E.
Let L be the real line $-\infty < x < \infty$.

Definition of $AB=A'B'$:

In case $A=A'$, let $AB=A'B'$ if and only if $2|AB|=|A'B'|$.

In case $A\neq A'$, let $AB=A'B'$ if and only if $|AB|=|A'B'|$.

This model satisfies Axioms E and I but fails to satisfy the remaining Axioms R, S, T, C, I.

M(A, C): A model of a geometry in which Axioms A and C alone hold besides Axiom E.
Let L be the real line $-\infty < x < \infty$.

Definition of $AB=A'B'$: Let $AB=A'B'$ if and only if $2|AB|=|A'B'|$.

This model satisfies Axioms E, A and C but fails to satisfy the remaining Axioms R, S, T, I.
M(S, I): A model of a geometry in which Axioms S and I alone hold besides Axiom E.

Let L be the real line $-\infty < x < \infty$.

Definition of $AB = A'B'$:

In case $A = A'$, let $AB = A'B'$ if $|AB| = 1$ and $|A'B'| = 2$ or if $|AB| = 2$ and $|A'B'| = 1$ or if $|AB|$ and $|A'B'|$ are both different from 1 and 2, and $|AB| = |A'B'|$.

In case $A \neq A'$, let $AB = A'B'$ if $|AB| = |A'B'|$.

This model satisfies Axioms E, S and I but fails to satisfy the remaining Axioms R, T, A, C.

M(R, S, A): A model of a geometry in which Axioms R, S and A alone hold besides Axiom E.

Let L be the real line $-\infty < x < \infty$.

Definition of $AB = A'B'$:

In case $A = A'$, let $AB = A'B'$ if $B' = B$.

In case $A < A'$, let $AB = A'B'$ and $A'B'' = AB$ if $2|AB| = |A'B'|$.

This model satisfies Axioms E, R, S and A but fails to satisfy the remaining Axioms T, C, I.

M(R, A, I): A model of a geometry in which Axioms R, A and I alone hold besides Axiom E.

Let L be the real line $-\infty < x < \infty$.

Definition of $AB = A'B'$:

In case $A = A'$ or $A < A'$, let $AB = A'B'$ if $|AB| = |A'B'|$.

In case $A' < A$, let $AB = A'B'$ if $2|A'B'| = |AB|$.

This model satisfies Axioms E, R, A and I but fails to satisfy the remaining Axioms S, T, C.

M(R, S, T): A model of a geometry in which Axioms R, S and T alone hold besides Axiom E.

Let a point of the space L be defined as an ordered pair (x, y) of real numbers x and y such that either $x \geq 0$ and $y = 0$ or $x = 0$ and $y \geq 0$.

Definition of the linear order:

If $A = (x, y), A' = (x', y')$, then let $A < A'$ if $x < x'$ or if $y > y'$.

Definition of $AB = A'B'$:
If \(A = (x_1, y_1), \ B = (x_2, y_2), \ A' = (x_1', y_1'), \ B' = (x_2', y_2'), \)
then let \(AB = A'B' \) if \(\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(x_2' - x_1')^2 + (y_2' - y_1')^2}. \)
This model satisfies Axioms E, R, S and T but fails to satisfy the remaining Axioms A, C, I.

\(M(A, C, I) \): A model of a geometry in which Axioms A, C, and I alone hold besides Axiom E.

Let \(L \) be the half real line \(0 \leq x < \infty \), and let \(O \) denote the point with coordinate 0.

Definition of \(AB = A'B' \):

In case \(A = O \), let \(AB = A'B' \) if \(|AB| + 1 = |A'B'| \).

In case \(O < A \), let \(AB = A'B' \) if \(|AB| = |A'B'| \).

This model satisfies Axioms E, A, C and I but fails to satisfy the remaining Axioms R, S, T.

\(M(R, S, I) \): A model of a geometry in which Axioms R, S and I alone hold besides Axiom E.

Let \(L \) be the half real line \(0 \leq x < \infty \) with the origin \(O \).

Definition of \(AB = A'B' \): Let \(f(x) = x^2 \).

In case \(A = O \) or \(A' = O \), let \(AB = A'B' \) if \(f(b) - f(a) = f(b') - f(a') \).

In case \(A \neq O \) and \(A' \neq O \), let \(AB = A'B' \) if \(|AB| = |A'B'| \).

This model satisfies Axioms E, R, S and I but fails to satisfy the remaining Axioms T, A, C.

\(M(R, S, C, I) \): A model of a geometry in which Axioms R, S, C and I alone hold besides Axiom E.

Let \(L \) be the half real line \(0 \leq x < \infty \).

For any \(s > 0 \) make correspond to each \(x \) with \(0 \leq x \leq s \) an \(x' \) with \(s \leq x' \leq 3s \) and vice versa, by the relation
\[
\frac{2x + x'}{3} = s.
\]

Call this correspondence \(\sigma \) a skew symmetrization with centre \(s \).

It should be observed that for any pair of non negative numbers \(a \) and \(b \) there is one and only one skew symmetrization \(\sigma \) that interchanges \(a \) and \(b \): \(\sigma(a) = b, \ \sigma(b) = a; \) indeed, if \(a < b \), then we are only to set
\[
\frac{2a + b}{3} = s.
\]
DEFINITION OF \(AB=A'B' \):
Let \(AB=A'B' \), if there is a skew symmetrization \(\sigma \) such that \(\sigma(a)=b' \), \(\sigma(b)=a' \), where \(a, b, a' \) and \(b' \) are coordinates of \(A, B, A' \) and \(B' \) respectively.

Clearly Axiom E holds by the above observation. Likewise for Axioms R, S.

As for Axiom C, let \(AB=B'A', BC=C'B' \). Then there must be one and only one skew symmetrization \(\sigma \) with centre \(s \) that carries \(A \) to \(A' \), \(B \) to \(B' \) and \(C \) to \(C' \), hence \(AC=C'A' \).

Axiom I follows then from Theorem 2.

\(\rightarrow T \): To show that Axiom T does not hold, let \(O, A_1, A_3, A_5, \) and \(A_7 \) be points with coordinates 0, 1, 3, 5 and 7 respectively. Then \(OA_1=A_1A_3 \), \(A_5A_7=A_3A_5 \), but \(OA_1=A_3A_7 \). Therefore \(OA_1=A_3A_7 \) fails to hold, as will be seen by a simple calculation.

\(\rightarrow A \): Axiom A does not hold, for otherwise T would follow by Theorem 10 which asserts S, A, I \(\Rightarrow T \).

REMARK. Instead of \(0 \leq x < \infty \) in our M(R, S, C, I) we may take as \(L \) the real line \(-\infty < x < \infty \).

In this case the skew symmetrization \(\sigma \) should be modified as follows, according as the centre \(s \) lies \(<0, =0 \) or \(>0 \), the range of symmetrization spreading along the whole line:

Case I: \(s>0 \).
(i) Points \(x \) with \(0 \leq x \leq s \) and \(x' \) with \(s \leq x' \leq 3s \) interchange by the relation
\[
\frac{2x+x'}{3} = s.
\]
(ii) Points \(x \) with \(x \leq 0 \) and \(x' \) with \(x' \geq 3s \) interchange by the relation
\[x+x'=3s. \]

Case II: \(s<0 \).
(i) Points \(x \) with \(s \leq x \leq 0 \) and \(x' \) with \(3s \leq x' \leq s \) interchange by the same relation
\[
\frac{2x+x'}{3} = s
\]
as above.
(ii) Points \(x \) with \(x \geq 0 \) and \(x' \) with \(x' \leq 3s \) interchange by the same relation
\[x+x'=3s \]
as above.

Case III: \(s=0 \). For any real numbers, points \(x \) and \(x' \) interchange by the relation \(x'+x=0 \).

M(C): A model of a geometry in which Axiom C alone holds besides Axiom E.
Let \(L \) and \(\bar{L} \) be the half real lines \(0 \leq x < \infty \) and let \(\varphi \) be a mapping of points \(X \) of \(L \) with coordinates \(x \) onto points \(\bar{X} \) of \(\bar{L} \) with coordinates \(\bar{x} \) such that \(\bar{x}=3x \) and let \(i \) be an identical mapping \(\bar{x}=x \).
DEFINITION of $AB = A'B'$: Given AB and $A'B'$ on L, let $AB = A'B'$ if and only if $i(A)i(B) = \varphi(A')\varphi(B')$ on L in the sense of the Model $M(R, S, C, I)$.

Verification that this gives an $M(C)$ is easy.

Let L be the real line $-\infty < x < \infty$.

DEFINITION of $AB = A'B'$:

For any integer n consider for a pair of real numbers x and y in $[n-1, n)$ with $x < y$ a function $d(x, y)$ defined by

$$d(x, y) = e^{\frac{1}{2}(x-y)} - e^{\frac{1}{2}(y-x)}.$$

In the following a, b, a', b' etc. denote the coordinates of points A, B, A', B' respectively as usual.

I. In case $a, b \in [n-1, n)$ and $a', b' \in [m-1, m)$, provided m, n denote arbitrary integers, let $AB = A'B'$ if $d(a, b) = d(a', b')$.

II. In case $a \in [n-1, n), b \in [n+p-1, n+p)$, $a' \in [m-1, m), b' \in [m+p-1, m+p)$ for any natural number p, let $AB = A'B'$ if $d(n+p-1, b) = d(m+p-1, b')$.

Especially then, $AB = A'B'$ if $a \in [n-1, n), b = n$ and $a' \in [n-1, n), b' = n$ for any choice of a and a'.

T: To see that Axiom T holds, let A, B, A', B', A'' and B'' be points with
coordinates, \(a, b, a', b', a'' \) and \(b'' \) respectively such that \(AB = A'B' \), \(A'B'' = A''B'' \).

If \(a, b \in [n-1, n) \) for some integer \(n \), then by the definition of equality =, \(a', b' \in [n'-1, n') \) and \(a'', b'' \in [n''-1, n'') \) for some integers \(n' \) and \(n'' \). Then we have \(d(a, b) = d(a', b') \) and \(d(a', b') = d(a'', b'') \), hence \(d(a, b) = d(a'', b'') \), therefore \(AB = A''B'' \).

If \(a \in [n-1, n), b \in [m-1, m) \) for some integers \(n \) and \(m \) with \(n < m \), then as before \(a' \in [n'-1, n'), b' \in [m'-1, m'), a'' \in [n''-1, n''), b'' \in [m''-1, m'') \). Then we have by the definition of \(AB = A'B' \) and \(A'B'' = A''B'' \), \(d(m-1, b) = d(m'-1, b'), d(m'-1, b') = d(m''-1, b'') \), hence \(d(m-1, b) = d(m''-1, b'') \), therefore \(AB = A''B'' \).

A: Similarly for Axiom A.

\(\rightarrow \) C, \(\rightarrow \) I: To see that Axioms C and I do not hold, let \(A, B, A' \) and \(B' \) be points with coordinates \(a, b, a' \) and \(b' \) respectively such that

\[
a \in [n-1, n), \quad b = n, \quad a' \in (n, n+1), \quad b' = n+1.
\]

Then by definition \(AB = A'B' \) but not \(AA' = BB' \), thus Axiom I does not hold. Axiom C fails to hold too.

Notice that this model \(M(R, S, T, A) \) is non-Archimedean.

M(S, C): A model of a geometry in which Axioms S and C alone hold besides Axiom E.

Let \(L \) be a linearly ordered space with points \(A_i^\pm, i, n \) ranging over all integers \(0, \pm 1, \pm 2, \ldots \), with the order relation

1. \(A_m^+ < A_n^+ \), if \(m < n \),
2. \(A_m^- < A_n^- \), if \(i < j \) (for any integers \(m, n \)).

Definition of \(AB = A'B' \): Let \(A_m^+ A_n^+ = A_m^- A_n^- \), if

(i) \(j-i = j'-i' = 0 \) and \(n-m = n'-m' > 0 \),

or (ii) \(j-i = j'-i' \) is an even number \(> 0 \) and \(m-n = m'-n' \),

or (iii) \(j-i = j'-i' \) is an odd number \(> 0 \) and \(m+n+m'+n' = -1 \).

E, S: Axioms E and S evidently hold.

C: To see that Axiom C holds, let

\[
A_m^+ A_n^+ = A_m^- A_n^- + A_i^+ A_i^- , \quad (1)
\]

and

\[
A_m^- A_i^+ = A_i^- A_m^+ , \quad (2)
\]

\[
A_i^- A_i^+ = A_i^- A_m^+ , \quad (3)
\]

\[
A_i^+ A_i^- = A_i^- A_i^+ . \quad (4)
\]

Then by the definition (i), (ii), (iii) of =, we have first of all from (3) and (4)
ON CONGRUENT AXIOMS IN LINEARLY ORDERED SPACES,

\[p - i = j' - p' , \]
(5)

\[j - p = p' - i' , \]
(6)

whence

\[j - i = j' - i' \]
(7)

follows. Next we have to consider three cases:

(i) The case: \(j - i = j' - i' = 0 \). We have from (1) and (2):

\[p = i = j \quad \text{and} \quad p' = i' = j'. \]

From (3) and (4) we have then

\[q - m = n' - q', \quad n - q = q' - m', \]

whence

\[m - n = m' - n', \]

which is evidently different from 0 because \(A_m \leq A'_m \).

Thus in this case we have

\[A_m A'_n = A_m' A'_n' \quad \text{(\(* \))} \]

(ii) The case: \(j - i = j' - i' \) is an even number \(> 0 \).

Subcase 1): If \(p - i \) is even, so is \(j - p = (j - i) - (p - i) \) and we have from (3) and (4) by the definition of \(= \),

\[m - q = q' - n', \]

\[q - n = m' - q', \]

whence

\[m - n = m' - n', \]

and (\(* \)) is proved.

Subcase 2): If \(p - i \) is odd, so is \(j - p = (j - i) - (p - i) \) and from (3) and (4) we obtain

\[m + q + q' + n' = -1 , \]

\[q + n + m' + q' = -1 , \]

whence

\[m - n = m' - n', \]

and (\(* \)) is again proved.

(iii) The case: \(j - i = j' - i' \) is an odd number \(> 0 \)

Subcase 1): If \(p - i \) is even, then \(j - p = (j - i) - (p - i) \) is odd and we have from (3) and (4)

\[m - q = q' - n', \]

\[q + n + m' + q' = -1 , \]
whence
\[m + n + m' + n' = -1, \]
and again (*) holds.

Subcase 2): If \(p - i \) is odd, then \(j - p \) is even and similarly as above we have (*).

The following examples show that Axioms R, T, A and I do not hold true.

\(- R: \) \(A_0 A_0 = A_0 A_2 \) but not \(A_0 A_2 = A_0 A_0 \), so Axiom R fails to hold.

\(- T: \) \(A_0 A_0 = A_0 A_2, A_0 A_2 = A_1 A_2, A_1 A_2 = A_1 A_0 \) and \(A_0 A_0 = A_0 A_2 \) but not \(A_0 A_2 = A_1 A_2, \) so Axiom T fails to hold.

\(- A: \) \(A_0 A_1 = A_0 A_0, A_1 A_2 = A_2 A_0 \) and \(A_1 A_2 = A_1 A_0 \) but not \(A_1 A_0 = A_1 A_2, \) so Axiom A fails to hold.

\(- I: \) \(A_0 A_1 = A_2 A_0 (A_0 < A_2 < A_1 < A_0) \) and \(A_0 A_2 = A_1 A_2 \) but not \(A_0 A_2 = A_1 A_2, \) so Axiom I fails to hold.

A model \(M(R, C, I) \) will be given in the second part of this paper.

4. Proof of Main Theorem

I. \(T \) and \(C \) are independent, and \(T, C \Rightarrow R, S, A, I. \)

Proof. (i) \(T, C \Rightarrow A \) by Theorem 3.

(ii) \(T, A \Rightarrow R \) by Theorem 4.

(iii) \(T, R \Rightarrow S \) by Theorem 1.

(iv) \(R, C \Rightarrow I \) by Theorem 2.

By Models \(M(T) \) and \(M(C) \) we see that \(T \) and \(C \) are independent.

II. \(T \) and \(I \) are independent, and \(T, I \Rightarrow R, S, A, C. \)

Proof. (i) \(T, I \Rightarrow R \) by Theorem 6.

(ii) \(T, R \Rightarrow S \) by Theorem 1.

(iii) \(T, I \Rightarrow A \) by Theorem 7.

(iv) \(T, I \Rightarrow C \) by Theorem 8.

By Models \(M(T) \) and \(M(I) \) we see that \(T \) and \(I \) are independent.

III. \(S, A \) and \(I \) are independent, and \(S, A, I \Rightarrow R, T, C. \)

Proof. (i) \(S, A \Rightarrow R \) by Theorem 9.

(ii) \(S, A, I \Rightarrow T \) by Theorem 10.

(iii) \(S, A \Rightarrow C \) by Theorem 11.

1) \(M(R, S, A) \) shows that \(S \) and \(A \) do not yield \(I. \)

2) \(M(R, S, C, I) \) shows that \(S \) and \(I \) do not yield \(A. \)

3) \(M(A, C, I) \) shows that \(A \) and \(I \) do not yield \(S. \)

Hence \(S, A \) and \(I \) are independent.

IV. \(S, A \) and \(C \) are independent, and \(S, A, C \Rightarrow R, T, I. \)
Proof. (i) \(S, A \Rightarrow R \) by Theorem 9.
(ii) \(R, C \Rightarrow I \) by Theorem 2.
(iii) \(S, A, I \Rightarrow T \) by Theorem 10.
1) \(M(R, S, A) \) shows that \(S \) and \(A \) do not yield \(C \).
2) \(M(R, S, C, I) \) shows that \(S \) and \(C \) do not yield \(A \).
3) \(M(A, C, I) \) shows that \(A \) and \(C \) do not yield \(S \).

Hence \(S, A \) and \(C \) are independent.

V. \(R, A \) and \(C \) are independent, and \(R, A, C \Rightarrow S, T, I \).

Proof. (i) \(R, C \Rightarrow I \) by Theorem 2.
(ii) \(R, A, C \Rightarrow S \) by Theorem 12.
(iii) \(S, A, I \Rightarrow T \) by Theorem 10.
1) \(M(R, S, A) \) shows that \(R \) and \(A \) do not yield \(C \).
2) \(M(R, S, C, I) \) shows that \(R \) and \(C \) do not yield \(A \).
3) \(M(A, C, I) \) shows that \(A \) and \(C \) do not yield \(R \).

Hence \(R, A \) and \(C \) are independent.

Remark: By the use of our Theorems and Models it may easily be proved that there is no further theorem of the above type I–V.

5. Tables

[1] Basic Theorems\(^7\)

\[
\begin{array}{cccc}
T_1 & R & S & T \\
T_2 & R & S & T \\
T_3 & R & C & I \\
T_4 & T & A & C \\
T_5 & R & T & A \\
T_6 & R & T & C \\
T_7 & R & T & I \\
T_8 & T & A & I \\
T_9 & T & C & I \\
T_{10} & R & S & A \\
T_{11} & S & T & A \\
T_{12} & S & A & C \\
T_{13} & R & S & C \\
T_{14} & R & S & I \\
\end{array}
\]

2) In the following tables \(R, S, T \) indicates for example that Axiom \(S \) follows from Axioms \(R, T \) and Axiom \(E \). \(T_n \) means Theorem \(n \).

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>S</th>
<th>T</th>
<th>A</th>
<th>C</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>M(R)</td>
<td>→R</td>
<td>→S</td>
<td>→T</td>
<td>→A</td>
<td>→C</td>
<td>→I</td>
</tr>
<tr>
<td>M(S)</td>
<td>→R</td>
<td>S</td>
<td>→T</td>
<td>→A</td>
<td>→C</td>
<td>→I</td>
</tr>
<tr>
<td>M(T)</td>
<td>→R</td>
<td>→S</td>
<td>T</td>
<td>→A</td>
<td>→C</td>
<td>→I</td>
</tr>
<tr>
<td>M(A)</td>
<td>→R</td>
<td>→S</td>
<td>→T</td>
<td>A</td>
<td>→C</td>
<td>→I</td>
</tr>
<tr>
<td>M(C)</td>
<td>→R</td>
<td>→S</td>
<td>→T</td>
<td>→A</td>
<td>C</td>
<td>→I</td>
</tr>
<tr>
<td>M(I)</td>
<td>→R</td>
<td>→S</td>
<td>→T</td>
<td>→A</td>
<td>→C</td>
<td>I</td>
</tr>
<tr>
<td>M(A, C)</td>
<td>→R</td>
<td>→S</td>
<td>→T</td>
<td>A</td>
<td>C</td>
<td>→I</td>
</tr>
<tr>
<td>M(S, C)</td>
<td>→R</td>
<td>S</td>
<td>→T</td>
<td>→A</td>
<td>C</td>
<td>→I</td>
</tr>
<tr>
<td>M(S, I)</td>
<td>→R</td>
<td>S</td>
<td>→T</td>
<td>→A</td>
<td>→C</td>
<td>I</td>
</tr>
<tr>
<td>M(R, S, A)</td>
<td>R</td>
<td>S</td>
<td>→T</td>
<td>A</td>
<td>→C</td>
<td>→I</td>
</tr>
<tr>
<td>M(R, A, I)</td>
<td>R</td>
<td>S</td>
<td>→T</td>
<td>A</td>
<td>→C</td>
<td>I</td>
</tr>
<tr>
<td>M(R, S, T)</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td>→A</td>
<td>→C</td>
<td>I</td>
</tr>
<tr>
<td>M(A, C, I)</td>
<td>→R</td>
<td>→S</td>
<td>→T</td>
<td>A</td>
<td>C</td>
<td>I</td>
</tr>
<tr>
<td>M(R, S, I)</td>
<td>R</td>
<td>S</td>
<td>→T</td>
<td>→A</td>
<td>→C</td>
<td>I</td>
</tr>
<tr>
<td>M(R, S, T, A)</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td>A</td>
<td>→C</td>
<td>I</td>
</tr>
<tr>
<td>M(R, C, I)</td>
<td>R</td>
<td>→S</td>
<td>→T</td>
<td>→A</td>
<td>C</td>
<td>I</td>
</tr>
</tbody>
</table>

[3] Main Theorem

<table>
<thead>
<tr>
<th>Set</th>
<th>R</th>
<th>S</th>
<th>T</th>
<th>A</th>
<th>C</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td>A</td>
<td>C</td>
<td>I</td>
</tr>
<tr>
<td>II</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td>A</td>
<td>C</td>
<td>I</td>
</tr>
<tr>
<td>III</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td>A</td>
<td>C</td>
<td>I</td>
</tr>
<tr>
<td>IV</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td>A</td>
<td>C</td>
<td>I</td>
</tr>
<tr>
<td>V</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td>A</td>
<td>C</td>
<td>I</td>
</tr>
</tbody>
</table>

NIIHAMA TECHNICAL COLLEGE, NIIHAMA
SOPHIA UNIVERSITY, TOKYO

References

3) M(R, C, I) will be given in the second part of this paper.
4) For the notation, see Main Theorem, p. 270.