

Title	On congruent axioms in linearly ordered spaces.
Author(s)	Terasaka, Hidetaka; Katayama, Shigeru
Citation	Osaka Journal of Mathematics. 1966, 3(2), p. 269-292
Version Type	VoR
URL	https://doi.org/10.18910/12504
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

ON CONGRUENT AXIOMS IN LINEARLY ORDERED SPACES, I

SHIGERU KATAYAMA and HIDETAKA TERASAKA

(Received September 2, 1966)

1. Introduction

In connection with the axioms of congruence of segments on a straight line given in Hilbert's Grundlagen der Geometrie, we will set up a group of axioms of congruence on a linearly ordered space and study their mutual dependency and independency.

In the following let L be a linearly ordered space, that is a set of points, in which for any pair of distinct points A and B either of the relations A < B and B < A holds, and for any three points A, B and C, if A < B and B < C then A < C.

When we write AB, it will be understood that A and B are distinct points of L such that A < B. AB will be called a *segment*. We write $AC \equiv AB + BC$ if and only if A < B < C.

The axioms we are going to study is the following:

Axiom E (UNIQUE EXISTENCE): $\forall AB \ \forall A' \ \exists_1 B'$: AB = A'B', that is, for any segment AB and for any point A' there is one and only one point B' such that

$$AB = A'B'$$

Axiom R (REFLEXIVITY): AB = AB.

Axiom S (Symmetricity): $AB = A'B' \Rightarrow A'B' = AB$.

Axiom T (Transitivity): AB=A'B', $A'B'=A''B'' \Rightarrow AB=A''B''$.

Axiom A (ADDITIVITY):

$$AC \equiv AB + BC$$
, $A'C' \equiv A'B' + B'C'$, $AB = A'B'$, $BC = B'C' \Rightarrow AC = A'C'$.

The following scheme will be used in application:

$$AC \equiv AB + BC,
A'C' \equiv A'B'
+B'C',
AB = A'B',
BC = B'C'$$

$$L \xrightarrow{A} \xrightarrow{B} \xrightarrow{C}
A'

B'

C'$$

Axiom C (COMMUTATIVE ADDITION):

$$AC \equiv AB + BC$$
, $C'A' \equiv C'B' + B'A'$, $AB = B'A'$, $BC = C'B' \Rightarrow AC = C'A'$.

In application we write:

$$\begin{array}{c}
AC \equiv AB + BC, \\
C'A' \equiv C'B' \\
+B'A', \\
AB = B'A', \\
BC = C'B'
\end{array}$$

$$\begin{array}{c}
C \\
AC = C'A'.$$

$$L \xrightarrow{A} \qquad B \quad C \\
C' \quad B' \qquad A'$$

Axiom I (Interchanging):
$$A < B < A' < B'$$
, $AB = A'B' \Rightarrow AA' = BB'$.

Under the assumption of Axiom E we studied in this paper all the relationship between the remaining axioms R, S, T, A, C, I as to their mutual dependency and independency, and obtaind among others the following Main Theorem.

Main Theorem: Under the assumption of Axiom E,

I. Axioms T and C are independent of each other, and Axioms R, S, A and I follow from them. In symbol:

II. Axioms T and I are independent of each other, and Axioms R, S, A and C follow from them. In symbol:

III. Axioms S, A and I are independent of one another, and Axioms R, T and C follow from them. In symbol:

IV. Axioms S, A and C are independent of one another, and Axioms R, T and I follow from them. In symbol:

V. Axioms R, A and C are independent of one another, and Axioms S, T and I follow from them. In symbol:

2. Theorems

In the following we always assume the unique existence of Axiom E, if not otherwise stated.

To make proofs as clear as possible we introduce first some useful notations.

- (a) $X \xrightarrow{(T)} Y$ means that Y follows from the left side X by the use of T.
- (b) A=B means that A coincides with B and $AB \equiv A'B'$ means that A=A',

B=B' at the same time.

(c) " $\exists_i X$:" means that "there exist one and only one X such that."

Theorem 1. If T is assumed, then $R \Leftrightarrow S$.

Proof. (i) $R \Rightarrow S$.

By Axiom E,
$$\exists_1 B' : AB = A'B'$$
.
By Axiom E, $\exists_1 B'' : A'B' = AB''$. (1)

Now by Axiom R,

$$AB = AB.$$
(1), (2) $\stackrel{\text{(E)}^{\text{(1)}}}{\Longrightarrow} B'' = B.$

(ii) $R \leftarrow S$.

Assume AB=A'B'. Then by Axiom S, A'B'=AB. Hence by Axiom T, AB=AB.

Theorem 2. R, $C \Rightarrow I$.

Proof. Let A < B < A' < B' and AB = A'B'.

Then we have

$$AA' \equiv AB + BA',$$

$$BB' \equiv BA' + A'B',$$

$$AB = A'B',$$

$$BA' = BA' \text{ (by Axiom R)}$$

$$(C)$$

$$AA' = BB'.$$

Lemma 1. Under the assumption of T: $AB = A'B' \Rightarrow A'B' = A'B'$. Especially: $AB = AB' \Rightarrow AB' = AB'$.

Proof. Let

$$AB = A'B' \qquad (1) \qquad \qquad B \qquad \qquad B$$

Then we have

By Axiom E,
$$\exists_{1}B'': A'B'=A'B''$$
 (2). $\xrightarrow{\text{(T)}} AB=A'B''$. By (1): $AB=A'B'$.

Therefore we have from (2) A'B'=A'B'.

¹⁾ If AB=A'B' and AB=A'B'' then we have by Axiom E B'=B''. As a special case, if AB=AB' and AB=AB then B'=B.

Theorem 3. $T, C \Rightarrow A$.

Proof. Let $AC \equiv AB + BC$, $A'C' \equiv A'B' + B'C'$,

$$AB=A'B'$$
, (1)

and

$$BC=B'C'$$
. (2)

(3)

Then by Axiom E, $\exists_i D': A'B' = C'D'$.

Then we have first from (1) and (3) by using T

$$AB=C'D'$$
. (4) $L \xrightarrow{A} \qquad \qquad B \qquad C$
 $L \xrightarrow{A'} \qquad X \stackrel{B'}{\longrightarrow} \stackrel{C'}{\longrightarrow} \stackrel{D'}{\longrightarrow}$

Further

$$\begin{vmatrix}
AC \equiv AB + BC, \\
B'D' \equiv B'C' + C'D', \\
(4): AB = C'D', \\
(2): BC = B'C'
\end{vmatrix} \xrightarrow{(C)} AC = B'D'. \tag{5}$$

By Axiom E,
$$\exists_1 X: C'D' = A'X$$
. (6)

Then by (3) and (6) we have by using T

$$A'B' = A'X. \tag{7}$$

Since by Lemma 1

$$A'B' = A'B', \tag{8}$$

we have from (7) and (8) by the use of Axiom E X=B'. Hence by (6)

$$C'D' = A'B'. (9)$$

Then

$$B'D' \equiv B'C' + C'D',$$

$$A'C' \equiv A'B' + B'C',$$

$$B'C' = B'C' \text{ (by Lemma 1)},$$

$$(9): C'D' = A'B'$$

$$(10)$$

From (5) and (10) we have finally by Axiom T AC=A'C'.

Theorem 4. $T, A \Rightarrow R$.

Proof. Let AB be a given segment. Then by Axiom E, $\exists_1 B'$:

$$AB \equiv AB' + B'B,$$

$$AX \equiv AB' + B'X,$$

$$AB' = AB' \text{ (by Lemma 1),}$$
by Axiom E, $\exists_1 X: B'B = B'X$

$$(2)$$

From (1) and (2) we would have by Axiom E B'=X, which is clearly a contradiction.

(ii) Next suppose B < B'.

Then we have

$$AB' \equiv AB + BB',
AX \equiv AB' + B'X,
(1): AB = AB',
\text{by Axiom E, } \exists_1 X: BB' = B'X$$

$$(3)$$

Since by Lemma 1 AB'=AB', we have from (3) X=B', which is clearly a contradiction.

From (i) and (ii) we conclude AB=AB.

Theorem 5. $T, C \Rightarrow R$.

This is an easy consequence of Theorem 3: T, $C \Rightarrow A$ and Theorem 4: T, $A \Rightarrow R$. In the following an alternative proof will be given without an intermediation of Axiom A.

Lemma 2. Under the assumption of Axiom C

$$AB = A'B', (1)
A < X < B,
XB = A'X' (2)$$

$$A = A'X'$$

$$AX = X'B'$$

$$AX = A'X'$$

Proof.

$$AB \equiv AX + XB,$$

$$A'B'' \equiv A'X' + X'B'',$$
by Axiom E, $\exists_{1}B''$: $AX = X'B''$ (3),
by (2): $XB = A'X'$ (4)

Then we have

$$(1), (4) \xrightarrow{\text{(E)}} B' = B''.$$

Thus AX = X'B' from (3) and clearly A' < X' < B'' = B'.

Proof of Theorem 5.

By Axiom E,
$$\exists_1 B': AB = AB'$$
. (1)

(i) Suppose first A < B' < B. By Lemma 2 there is an X such that

$$A < X < B'$$
, (2)

$$B'B=AX$$
, (3)

$$AB'=XB'. (4)$$

X'

Now by Axiom E, $\exists_1 X': AX = B'X'$ (5)and by Lemma 1 $XB'=XB' \qquad (6) \qquad L \qquad \stackrel{A}{\longrightarrow} \qquad X$

Thus

$$\begin{array}{c}
AB' \equiv AX + XB', \\
XX' \equiv XB' + B'X', \\
(5): AX = B'X', \\
(6): XB' = XB'
\end{array}$$

$$(C)$$

$$AB' = XX'.$$

$$(7)$$

Then

$$(4), (7) \xrightarrow{\text{(E)}} X' = B',$$

which is a contradiction.

(ii) Next suppose A < B < B'.

By Axiom E,
$$\exists_1 X: BB' = AX$$
. (8)

By Axiom E,
$$\exists_1 B'': AB' = XB''$$
. (9)

Then

$$(1), (9) \xrightarrow{\text{(T)}} AB = XB''. \tag{10}$$

Hence

$$\begin{array}{c}
AB' \equiv AB + BB', \\
AB'' \equiv AX + XB'', \\
(10): AB = XB'', \\
(8): BB' = AX
\end{array}$$

$$\begin{array}{c}
\text{(C)} \\
AB' = AB''. \\
By Lemma 1 & AB' = AB'
\end{array}$$

$$\begin{array}{c}
\text{(E)} \\
B'' = B'.
\end{array}$$

Consequently, we have from (9)

$$AB' = XB' \tag{11}$$

Now

$$AB' \equiv AX + XB',$$

$$XX' \equiv XB' + B'X',$$
by Axiom E, $\exists_1 X' : AX = B'X',$
by Lemm 1, $XB' = XB'$

$$(12)$$

Then we have

te have
$$L \xrightarrow{A} \xrightarrow{B B'}$$

$$(11), (12) \xrightarrow{(E)} B' = X', \qquad L \xrightarrow{A X} \xrightarrow{B B'} \xrightarrow{X'}$$

which is a contradiction.

From (i) and (ii) we conclude AB=AB.

Theorem 6. $T, I \Rightarrow R$.

Proof.

By Axiom E,
$$\exists_1 B': AB = AB'$$
. (1)

(i) Suppose first A < B' < B.

By Axiom E,
$$\exists_{1} C: AB' = BC$$
. (2)

Then

$$(1), (2) \xrightarrow{\text{(T)}} AB = BC. \tag{3}$$

and

$$A < B' < B < C$$
, (2) $\stackrel{\text{(I)}}{\Longrightarrow} AB = B'C$. (4)

By Axiom E,
$$\mathbf{a}_1 D \colon B'B = CD$$
. (5)

Then

$$B' < B < C < D, (5) \xrightarrow{\text{(1)}} B'C = BD, \tag{6}$$

and

$$(4), (6) \xrightarrow{\text{(T)}} AB = BD. \tag{7}$$

Hence

$$(3), (7) \xrightarrow{\text{(E)}} C = D.$$

which is a contradiction.

(ii) Next suppose A < B < B'.

By Axiom E,
$$\exists_1 C: AB=B'C$$
. (8)

$$A < B < B' < C, (8) \xrightarrow{\text{(I)}} AB' = BC. \tag{9}$$

$$(1), (9) \xrightarrow{\text{(T)}} AB = BC. \tag{10}$$

By Axiom E,
$$\exists_1 D: BB' = CD$$
. (11)

$$B < B' < C < D$$
, (11) $\stackrel{\text{(I)}}{\Longrightarrow} BC = B'D$. (12)

$$(10), (12) \xrightarrow{\text{(T)}} AB = B'D. \tag{13}$$

Hence

$$(8), (13) \stackrel{\text{(E)}}{\Longrightarrow} C = D,$$

which is a contradiction.

From (i) and (ii) we conclude AB=AB.

Lemma 3. A < A' < B, $AB = A'B' \xrightarrow{\text{(1)}} B < B'$, AA' = BB'. Proof.

By Axiom E,
$$\exists_{1} B'': AA' = BB''$$
. (1)

$$A < A' < B < B'', (1) \stackrel{\text{(1)}}{\Longrightarrow} AB = A'B''. \tag{2}$$

Let AB = A'B'. Then we have

$$AB=A'B'$$
, (2) $\stackrel{\text{(E)}}{\Longrightarrow} B'=B''$.

Therefore we have from (1) B < B' and AA' = BB'.

Theorem 7. $T, I \Rightarrow A$.

Proof. (i) First let A < B < C < A' < B' < C' and AB = A'B', BC = B'C'.

$$A < B < A' < B', AB = A'B' \xrightarrow{\text{(1)}} AA' = BB',$$

$$B < C < B' < C', BC = B'C' \xrightarrow{\text{(1)}} BB' = CC'$$

$$A < C < A' < C'$$

(ii) Next let A < B < C, A' < B' < C' with AB = A'B', BC = B'C', but let C < A' fail to be true.

Take points A'', B'', C'' such that A < B < C < A'' < B'' < C'' and A' < B' < C' < A'' < B'' < C'' with A'B' = A''B'', B'C' = B''C''. Then by (i)

$$AC = A''C'' \tag{1}$$

and

$$A'C' = A''C''. \tag{2}$$

Now, since T, $I \Rightarrow R$ by Theorem 6 and T, $R \Rightarrow S$ by Theorem 1, Axiom S holds by our assumption of T and I.

Therefore

$$A'C' = A''C'' \xrightarrow{\text{(S)}} A''C'' = A'C'. \tag{3}$$

Hence

(1), (3)
$$\stackrel{\text{(T)}}{\Longrightarrow} AC = A'C'$$
.

Theorem 8. $T, I \Rightarrow C$.

Proof. Notice that Axiom S is a consequence of our assumption of T and I as we have shown in the proof of Theorem 7 and that Axiom A is a consequence of T and I by Theorem 7.

Let A < B < C, C' < B' < A' and let

$$AB=B'A', \qquad (1) \qquad \stackrel{A}{\longleftarrow} \qquad \stackrel{B}{\longrightarrow} \qquad \stackrel{C}{\longleftarrow}$$

$$BC=C'B'. \qquad (2) \qquad \stackrel{L}{\longleftarrow} \qquad \stackrel{B}{\longleftarrow} \qquad \stackrel{C}{\longleftarrow}$$

$$AC \equiv AB+BC, \qquad \qquad B'C'' \equiv B'A'+A'C'', \qquad AC=B'C'', \qquad (1): AB=B'A', \qquad AC=B'C'', \qquad (2): BC=C'B', \qquad (1): AB=B'A', \qquad AC=B'C'', \qquad (2): BC=C'B' = A'C'' \qquad (2): BC=A'C'' \qquad (3): AC=B'C'', \qquad (4): AC=B'C'', \qquad (5): BC=C'A' \qquad (T): AC=C'A'. \qquad (T): AC=C'A'.$$

Theorem 9. S, $A \Rightarrow R$.

Proof.

By Axiom E,
$$\exists_1 B' : AB = AB'$$
. (1)

(i) Let A < B < B'.

By Axiom E,
$$\exists_1 X: BB' = B'X$$
 (2)

$$\begin{array}{c}
AB' \equiv AB + BB', \\
AX \equiv AB' + B'X, \\
(1): AB = AB', \\
(2): BB' = B'X
\end{array}$$

$$\stackrel{\text{(A)}}{\Longrightarrow} AB' = AX. \quad (3)$$

$$(1) \xrightarrow{\text{(S)}} AB' = AB.$$

$$(3), (4) \xrightarrow{\text{(E)}} X = B,$$

which is a contradiction.

(ii) Let A < B' < B.

By Axiom S AB'=AB, A < B' < B and the case (ii) reduces to that of (i). From (i) and (ii) we conclude AB=AB.

Lemma 4. Under the assumption of Axioms S, A and I, if AB=A'B', then

1)
$$A < A' \Rightarrow B < B', AA' = BB'$$
.

2)
$$A' < A \Rightarrow B' < B, A'A = B'B$$
.

3)
$$A=A'\Rightarrow B=B'$$
.

Proof. 1) follows from Lemma 3.

- 2) reduces to 1) by Axiom S.
- 3) follows from Theorem 9 which asserts S, $A \Rightarrow R$.

Lemma 5. PQ=P'Q' (1), P < X < Q, PX=P'X' (2) $\stackrel{\text{(A)}}{\Longrightarrow} P' < X' < Q'$, XQ=X'Q'.

Proof.

$$PQ \equiv PX + XQ,$$

$$P'Q'' \equiv P'X' + X'Q'',$$

$$(2): PX = P'X',$$
by Axiom E, $\exists_1 Q'': XQ = X'Q''$

$$(1): PQ = P'Q'',$$

$$(1): PQ = P'Q'$$

Lemma 6. PQ=P'Q', PQ=P''Q', P<P', $P<P'' \xrightarrow{(A,I)} P'=P''$.

Proof. We may assume without loss of generality that P' < P''.

$$PQ = P'Q' \xrightarrow{\text{(I or Lem. 3)}} PP' = QQ'. \tag{1}$$

$$PQ = P''Q' \xrightarrow{\text{(I or Lem. 3)}} PP'' = QQ'. \tag{2}$$

$$\begin{array}{c} PP'' \equiv PP' + P'P'' \;, \\ QX \equiv QQ' + Q'X \;, \\ \text{(1): } PP' = QQ' \;, \\ \text{by Axiom E, } \; \mathbf{A}_{_{1}}X \colon P'P'' = Q'X \end{array} \right) \stackrel{\text{(A)}}{\Longrightarrow} PP'' = QX \;, \\ \text{(2): } PP'' = QQ' \end{array} \right\} \stackrel{\text{(E)}}{\Longrightarrow} X = Q' \;,$$

which is a contradiction.

Lemma 7.
$$PQ=P'Q', P $\Longrightarrow P'$$$

Proof. By Lemma 3 we have first $L \xrightarrow{P} X Q$ $PQ = P'Q', P < P' \stackrel{\text{(I)}}{\Longrightarrow} Q < Q'.$

From

$$XQ = X'Q' \tag{1}$$

we have X'Q'=XQ by Axiom S, and combined with Q<Q' we obtain by Lemma 4

$$X < X'$$
. (2)

Now,

by Axiom E,
$$\exists_1 X''$$
: $PX=P'X''$, (3)

by Lemma 5
$$P' < X'' < Q'$$
 and $XQ = X''Q'$, (4)

by Lemma 4
$$X < X''$$
. (5)

Then (1), (4), (2) and (5) yield by Lemma 6 X'=X''. Consequently we have P' < X' < Q' and PX = P'X'.

Theorem 10. S, A, $I \Rightarrow T$.

Proof. Let AB=A'B', A'B'=A''B''.

- (i) The case where at least two of A, A' and A'' coincide:
- (i), A=A'. Since S, $A \Rightarrow R$ by Theorem 9 we have B=B' and hence AB=A''B''.
 - (i)₂ A'=A''. The same as (i)₁.

(i)₃
$$A=A''$$
. $AB=A'B' \xrightarrow{\text{(S)}} A'B'=AB$, $A'B'=A''B''$, $A=A'' \Rightarrow A'B'=AB''$ $B=B''$.

Hence

$$AB = A''B''$$
.

(ii) The case where A, A' and A'' are distinct: there are six cases to be considered.

I.
$$A < A' < A''$$
, II. $A < A'' < A'$, III. $A' < A < A''$,

I'.
$$A'' < A' < A$$
, II'. $A'' < A < A'$, III'. $A' < A'' < A$.

Proof of Case I.

$$AB = A'B' \xrightarrow{\text{(I or Lem. 3)}} AA' = BB',$$

$$A'B' = A''B'' \xrightarrow{\text{(I or Lem. 3)}} A'A'' = B'B'',$$

$$A < A' < A'' \xrightarrow{\text{(Lem. 4)}} B < B' < B''$$

$$A > A'' = BB'' \xrightarrow{\text{(I or Lem. 3)}} AB = A''B''.$$

Proof of Case II.

$$AB = A'B' \xrightarrow{\text{(I or Lem. 3)}} AA' = BB'. \tag{1}$$

$$A'B' = A''B'' \xrightarrow{\text{(S)}} A''B'' = A'B'^{\text{(I or Lem. 3)}} A''A' = B''B'. \tag{2}$$

$$\begin{array}{c} (1), \\ (2), \\ A < A'' < A' \end{array} \right\} \stackrel{\text{(Lem. 7)}}{\Longrightarrow} \left\{ \begin{array}{c} B < B'' < B' \\ AA'' = BB'' \end{array} \right\} \stackrel{\text{(I or Lem. 3)}}{\Longrightarrow} AB = A''B'' \ .$$

Proof of Case III.

$$A'B' = A''B'' \xrightarrow{\text{(I or Lem. 3)}} A'A'' = B'B''. \tag{1}$$

$$AB = A'B' \xrightarrow{\text{(S)}} A'B' = AB^{\text{(I or Lem. 3)}} A'A = B'B.$$
 (2)

$$\begin{array}{c} \text{(1)',} \\ \text{(2)',} \\ A' < A < A'' \end{array} \right\} \stackrel{\text{(Lem. 5)}}{\Longrightarrow} \left\{ \begin{array}{c} B' < B < B'', \\ AA'' = BB'' \end{array} \right\} \stackrel{\text{(I or Lem. 3)}}{\Longrightarrow} AB = A''B''.$$

Proof of Case I'.

$$AB = A'B' \xrightarrow{\text{(S)}} A'B' = AB. \tag{1}$$

$$A'B' = A''B'' \xrightarrow{\text{(S)}} A''B'' = A'B'. \tag{2}$$

$$A'' < A' < A$$
, $(2)''$, $(1)'' \stackrel{\text{(Case I)}}{\Longrightarrow} A''B'' = AB \stackrel{\text{(S)}}{\Longrightarrow} AB = A''B''$.

Similarly the proofs of II' and III' may be reduced to those of II and III respectively.

Theorem 11. S, A, $I \Rightarrow C$.

Proof. S, A, $I \Rightarrow T$ by Theorem 10. Then by Theorem 8 T, $I \Rightarrow C$.

Lemma 8. Under the assumption of Axioms R and C, if AB=A'B', then

- 1) $A < A' \Rightarrow B < B'$.
- 2) $A=A'\Rightarrow B=B'$.
- 3) $A' < A \Rightarrow B' < B$.

Proof. 1) A < A'. B < B' is clear if B < A' or if B = A'. Let A < A' < B, and suppose either B' < B or B' = B.

By Axiom E,
$$\exists_1 X: AA' = BX$$
. (1)
 $A < A' < B < X$, $\underbrace{(1)}_{AB' = BX} AB = A'X$.
By assumption $AB = A'B'$ $\underbrace{(E)}_{AB' = B'} X = B'$,

which is a contradiction.

- 2) Clear.
- 3) A' < A. Suppose either B < B' or B = B'.

$$A'B \equiv A'A + AB,$$

$$A'X \equiv A'B' + B'X.$$
By Axiom E, $\exists_1 X$: $A'A = B'X.$

$$AB = A'B'.$$
By Axiom R $A'B = A'B.$

$$(E) X = B.$$
So a contradiction

which is a contradiction.

Theorem 12. R, A, $C \Rightarrow S$.

Proof. Let

$$AB = A'B'. (1)$$

Case I. A' < A.

By Axiom E,
$$\exists_1 X$$
: $A'A = B'X$. (2)

$$A'A = B'X \xrightarrow{\text{(I or Lem. 3)}} A'B' = AX. \tag{3}$$

$$A'B \equiv A'A + AB,$$

$$A'X \equiv A'B' + B'X,$$

$$(2): A'A = B'X, \quad (1): AB = A'B'$$

$$By Axiom R \quad A'B = A'B.$$

$$(E) \qquad X = B.$$

Hence from (3) A'B'=AB.

Case II. A < A'.

By Axiom E,
$$\exists B'': A'B' = AB''$$
. (4)

Then we have from (4) by Case I

$$AB'' = A'B'. \tag{5}$$

(i) Suppose first A < B'' < B.

By Axiom E,
$$\exists_1 X$$
: $B''B = B'X$. (6)

From (5) and (6) we have by Axiom A AB=A'X. This, combined with (1), would yield by Axiom E X=B', which is a contradiction.

(ii) Next suppose B < B''.

By Axiom E,
$$\exists_1 X$$
: $BB'' = B'X$.

On account of (1) we have then by Axiom A AB''=A'X, which, combined with (5), would yield by Axiom E X=B', again a contradiction.

Corollary. AB=A'B', $A' < A \xrightarrow{(R, C)} A'B' = AB$.

Theorem 13. S, C, $I \Rightarrow R$.

Proof.

By Axiom E, $\exists_1 B'$: AB = AB'.

(i) First suppose A < B' < B.

By Lemma 2 there is an X such that

$$A < X < B'$$
, $B'B = AX$,
 $AB' = XB'$. (1)

By Axiom E, $\exists_1 X'$: AX = B'X'.

Since A < X < B' < X' we have by Axiom I

$$AB'=XX'$$
. (2)

From (1) and (2) we would have by Axiom E B'=X, which is a contradiction.

(ii) Next suppose B < B'.

Since we have from (1) by Axiom S AB'=AB, the argument of (i) gives again a contradiction.

Thus we conclude from (i) and (ii) B'=B and then AB=AB follows from (1).

3. Models

By a *model* of a geometry denoted for example by M(S, C) we mean a linearly ordered space L with congruent relations which satisfy among our group of seven Axioms E, R, S, T, A, C and I Axioms S and C alone besides Axiom E but not the remaining ones.

In the following models the space L is for the most part given by the real line $-\infty < x < \infty$ or by the half line $0 \le x < \infty$. In these cases points denoted by A, B, A', X etc. will be those points of the real line having coordinates a, b, a', x etc. respectively. A < B is defined by a < b, |AB| denotes the distance b-a of points A and B.

M(R): A model of a geometry in which Axiom R alone holds besides Axiom E.

Let L be the real line $-\infty < x < \infty$.

Definition of AB = A'B':

If A=A', then let AB=A'B' if and only if B=B'.

If $A \neq A'$, then let AB = A'B' if and only if |A'B'| = 1.

This model satisfies Axioms E and R but fails to satisfy the remaining Axioms S, T, A, C, I.

M(S): A model of a geometry in which Axiom S alone holds besides Axiom E. Let L be the real line $-\infty < x < \infty$.

Definition of AB=A'B':

In case A=A', let AB=A'B'

- (i) if |AB| = 1 and |A'B'| = 3
- or (ii) if |AB| = 3 and |A'B'| = 1
- or (iii) if |AB| and |A'B'| are both different from 1 and 3, and |AB| = |A'B'|.

In case A < A', let AB = A'B' and A'B' = AB if 2|AB| = |A'B'|. This model satisfies Axioms E and S but fails to satisfy the remaining Axioms R, T, A, C, I.

M(T): A model of a geometry in which Axiom T alone holds besides Axiom E. Let L be the real line $-\infty < x < \infty$.

DEFINITION OF AB=A'B': For any AB and for any A', let AB=A'B' if and only if |A'B'|=1.

This model satisfies Axioms E and T but fails to satisfy the remaining Axioms R, S, A, C, I.

M(A): A model of a geometry in which Axiom A alone holds besides Axiom E. Let L be the real line $-\infty < x < \infty$.

Definition of AB = A'B':

- (i) In case A < A' or A = A', then let AB = A'B' if and only if 2|AB| = |A'B'|.
 - (ii) In case A' < A, then let AB = A'B' if and only if |AB| = |A'B'|.

This model satisfies Axioms E and A but fails to satisfy the remaining Axioms R, S, T, C, I.

M(I): A model of a geometry in which Axiom I alone holds besides Axiom E. Let L be the real line $-\infty < x < \infty$.

Definition of AB=A'B':

In case A=A', let AB=A'B' if and only if 2|AB|=|A'B'|.

In case $A \neq A'$, let AB = A'B' if and only if |AB| = |A'B'|.

This model satisfies Axioms E and I but fails to satisfy the remaining Axioms R, S, T, A, C.

M(A, C): A model of a geometry in which Axioms A and C alone hold besides Axiom E.

Let L be the real line $-\infty < x < \infty$.

DEFINITION OF AB=A'B': Let AB=A'B' if and only if 2|AB|=|A'B'|. This model satisfies Axioms E, A and C but fails to satisfy the remaining Axioms R, S, T, I.

M(S, I): A model of a geometry in which Axioms S and I alone hold besides Axiom E.

Let L be the real line $-\infty < x < \infty$.

Definition of AB = A'B':

In case A=A', let AB=A'B' if |AB|=1 and |A'B'|=2 or if |AB|=2 and |A'B'|=1 or if |AB| and |A'B'| are both different from 1 and 2, and |AB|=|A'B'|.

In case $A \neq A'$, let AB = A'B' if |AB| = |A'B'|.

This model satisfies Axioms E, S and I but fails to satisfy the remaining Axioms R, T, A, C.

M(R, S, A): A model of a geometry in which Axioms R, S and A alone hold besides Axiom E.

Let L be the real line $-\infty < x < \infty$.

Definition of AB = A'B':

In case A=A', let AB=A'B' if B'=B.

In case A < A', let AB = A'B' and A'B' = AB if 2|AB| = |A'B'|.

This model satisfies Axioms E, R, S and A but fails to satisfy the remaining Axioms T, C, I.

M(R, A, I): A model of a geometry in which Axioms R, A and I alone hold besides Axiom E.

Let L be the real line $-\infty < x < \infty$.

Definition of AB = A'B':

In case A=A' or A < A', let AB=A'B' if |AB|=|A'B'|.

In case A' < A, let AB = A'B' if 2|A'B'| = |AB|.

This model satisfies Axioms E, R, A and I but fails to satisfy the remaining Axioms S, T, C.

M(R, S, T): A model of a geometry in which Axioms R, S and T alone hold besides Axiom E.

Let a point of the space L be defined as an ordered pair (x, y) of real numbers x and y such that either $x \ge 0$ and y = 0 or x = 0 and $y \ge 0$.

Definition of the linear order: If A=(x,y), A'=(x',y'), then let A < A' if x < x' or if y > y'.

Definition of AB = A'B':

If
$$A=(x_1, y_1)$$
, $B=(x_2, y_2)$, $A'=(x_1', y_1')$, $B'=(x_2', y_2')$, then let $AB=A'B'$ if $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}=\sqrt{(x_2'-x_1')^2+(y_2'-y_1')^2}$.

This model satisfies Axioms E, R, S and T but fails to satisfy the remaining Axioms A, C, I.

M(A, C, I): A model of a geometry in which Axioms A, C, and I alone hold besides Axiom E.

Let L be the half real line $0 \le x < \infty$, and let O denote the point with coordinate 0.

Definition of AB=A'B':

In case A=0, let AB=A'B' if |AB|+1=|A'B'|.

In case O < A, let AB = A'B' if |AB| = |A'B'|.

This model satisfies Axioms E, A, C and I but fails to satisfy the remaining Axioms R, S, T.

M(R, S, I): A model of a geometry in which Axioms R, S and I alone hold besides Axiom E.

Let L be the half real line $0 \le x < \infty$ with the origin O.

DEFINITION OF AB=A'B': Let $f(x)=x^3$.

In case A=O or A'=O, let AB=A'B' if f(b)-f(a)=f(b')-f(a').

In case $A \neq O$ and $A' \neq O$, let AB = A'B' if |AB| = |A'B'|.

This model satisfies Axioms E, R, S and I but fails to satisfy the remaining Axioms T, A, C.

M(R, S, C, I): A model of a geometry in which Axioms R, S, C and I alone hold besides Axiom E.

Let L be the half real line $0 \le x < \infty$.

For any s>0 make correspond to each x with $0 \le x \le s$ an x' with $s \le x' \le 3s$ and vice versa, by the relation

$$\frac{2x+x'}{3} = s.$$

Call this correspondence σ a skew symmetrization with centre s.

$$L \stackrel{Q}{\circ} \begin{array}{cccc} X & S & X' \\ \hline s & s & s' & 3s \end{array}$$

It should be observed that for any pair of non negative numbers a and b there is one and only one skew symmetrization σ that interchanges a and b: $\sigma(a)=b$, $\sigma(b)=a$; indeed, if a < b, then we are only to set

$$\frac{2a+b}{3}=s.$$

Definition of AB = A'B':

Let AB=A'B', if there is a skew symmetrization σ such that $\sigma(a)=b'$, $\sigma(b)=a'$, where a, b, a' and b' are coordinates of A, B, A' and B' respectively.

Clearly Axiom E holds by the above observation. Likewise for Axioms R, S.

As for Axiom C, let AB=B'A', BC=C'B'. Then there must be one and only one skew symmetrization σ with centre s that carries A to A', B to B' and C to C', hence AC=C'A'.

Axiom I follows then from Theorem 2.

 \rightarrow T: To show that Axiom T does not hold, let O, A_1 , A_3 , A_5 , and A_7 be points with coordinates 0, 1, 3, 5 and 7 respectively. Then $OA_1 = A_1A_3$, $A_1A_3 = A_3A_7$ but $OA_1 = A_3A_5$. Therefore $OA_1 = A_3A_7$ fails to hold, as will be seen by a simple calculation.

 \rightarrow A: Axiom A does not hold, for otherwise T would follow by Theorem 10 which asserts S, A, I \Rightarrow T.

REMARK. Instead of $0 \le x < \infty$ in our M(R, S, C, I) we may take as L the real line $-\infty < x < \infty$.

In this case the skew symmetrization σ should be modified as follows, according as the centre s lies <0, =0 or >0, the range of symmetrization spreading along the whole line:

Case I: s>0.

(i) Points x with $0 \le x \le s$ and x' with $s \le x' \le 3s$ interchange by the relation

$$\frac{2x+x'}{3}=s.$$

(ii) Points x with $x \le 0$ and x' with $x' \ge 3s$ interchange by the relation x+x'=3s.

Case II: s < 0.

(i) Points x with $s \le x \le 0$ and x' with $3s \le x' \le s$ interchange by the same relation

$$\frac{2x+x'}{3}=s$$

as above.

(ii) Points x with $x \ge 0$ and x' with $x' \le 3s$ interchange by the same relation x+x'=3s as above.

Case III: s=0. For any real numbers, points x and x' interchange by the relation x'+x=0.

M(C): A model of a geometry in which Axiom C alone holds besides Axiom E. Let L and \bar{L} be the half real lines $0 \le x < \infty$ and let φ be a mapping of points X of L with coordinates x onto points \bar{X} of \bar{L} with coordinates \bar{x} such that $\bar{x}=3x$ and let i be an identical mapping $\bar{x}=x$.

DEFINITION of AB = A'B': Given AB and A'B' on L, let AB = A'B' if and only if $i(A)i(B) = \varphi(A')\varphi(B')$ on \overline{L} in the sense of the Model M (R, S, C, I).

Verification that this gives an M(C) is easy.

M(R, S, T, A): A model of a geometry in which Axioms R, S, T and A alone hold besides Axiom E.

Let L be the real line $-\infty < x < \infty$.

Definition of AB=A'B':

For any integer n consider for a pair of real numbers x and y in [n-1, n) with x < y a function d(x, y) defined by

$$d(x, y) = e^{1/(n-y)} - e^{1/(n-x)}$$
.

In the following a, b, a', b' etc. denote the coordinates of points A, B, A', B' respectively as usual.

I. In case $a, b \in [n-1, n)$ and $a', b' \in [m-1, m)$, provided m, n denote arbitrary integers, let AB = A'B' if d(a, b) = d(a', b').

$$L \xrightarrow[n-1 \ a']{A} \xrightarrow{B} \xrightarrow{A'} \xrightarrow{B'} \xrightarrow{B'} \xrightarrow{m-1 \ a'} \xrightarrow{b' \ m}$$

II. In case

$$a \in [n-1, n), \quad b \in [n+p-1, n+p),$$

 $a' \in [m-1, m), \quad b' \in [m+p-1, m+p)$

for any natural number p, let AB=A'B' if d(n+p-1, b)=d(m+p-1, b').

$$L \xrightarrow[n-1 \ a']{A} \xrightarrow[n+p-1 \ b']{B} \xrightarrow[n+p-1 \ b']{B'}$$

$$L \xrightarrow[m-1 \ a']{A'} \xrightarrow[m+p-1 \ b']{B'} \xrightarrow[m+p-1 \ b']{B'} \xrightarrow[m+p-1 \ b']{B'}$$

Especially then, AB=A'B' if $a \in [n-1, n)$, b=n and $a' \in [n-1, n)$, b'=n for any choice of a and a'.

E, R, S: Clearly Axioms E, R and S hold.

T: To see that Axiom T holds, let A, B, A', B', A'' and B'' be points with

coordinates, a, b, a', b', a'' and b'' respectively such that AB = A'B', A'B' = A''B''.

If $a, b \in [n-1, n)$ for some integer n, then by the definition of equality=, $a', b' \in [n'-1, n')$ and $a'', b'' \in [n''-1, n'')$ for some integers n' and n''. Then we have d(a, b) = d(a', b') and d(a', b') = d(a'', b''), hence d(a, b) = d(a'', b''), therefore AB = A''B''.

If $a \in [n-1, n)$, $b \in [m-1, m)$ for some integers n and m with n < m, then as before $a' \in [n'-1, n')$, $b' \in [m'-1, m')$, $a'' \in [n''-1, n'')$, $b'' \in [m''-1, m'')$. Then we have by the definition of AB = A'B' and A'B' = A''B'', d(m-1, b) = d(m'-1, b'), d(m'-1, b') = d(m''-1, b''), hence d(m-1, b) = d(m''-1, b''), therefore AB = A''B''.

A: Similarly for Axiom A.

 \rightarrow C, \rightarrow I: To see that Axioms C and I do not hold, let A, B, A' and B' be points with coordinates a, b, a' and b' respectively such that

$$a \in [n-1, n), b = n, a' \in (n, n+1), b' = n+1.$$

Then by definition AB=A'B' but not AA'=BB', thus Axiom I does not hold. Axiom C fails to hold too.

Notice that this model M(R, S, T, A) is non-Archimedean.

M(S, C): A model of a geometry in which Axioms S and C alone hold besides Axiom E.

Let L be a linearly ordered space with points A_n^i , i, n ranging over all integers $0, \pm 1, \pm 2, \cdots$, with the order relation

- (i) $A_m^i < A_n^i$, if m < n,
- (ii) $A_m^i < A_n^j$, if i < j (for any integers m, n.)

Definition of AB = A'B': let $A_m^i A_n^j = A_{m'}^{i'} A_{n'}^{j'}$, if

- (i) j-i=j'-i'=0 and n-m=n'-m'>0,
- or (ii) j-i=j'-i' is an even number>0 and m-n=m'-n',
- or (iii) j-i=j'-i' is an odd number>0 and m+n+m'+n'=-1.

E, S: Axioms E and S evidently hold.

C: To see that Axiom C holds, let

$$A_m^i A_n^j \equiv A_m^i A_q^p + A_q^p A_n^j, \tag{1}$$

$$A_{m'}^{i'}A_{n'}^{j'} \equiv A_{m'}^{i'}A_{q'}^{p'} + A_{q'}^{p'}A_{n'}^{j'}, \qquad (2)$$

and

$$A_m^i A_q^p = A_{q'}^{p'} A_{n'}^{j'}, (3)$$

$$A_{\mathbf{q}}^{\mathbf{p}}A_{\mathbf{n}}^{\mathbf{j}} = A_{\mathbf{m}'}^{\mathbf{i}'}A_{\mathbf{q}'}^{\mathbf{p}'}. \tag{4}$$

Then by the definition (i), (ii), (iii) of =, we have first of all from (3) and (4)

$$p - i = j' - p', \tag{5}$$

$$j - p = p' - i' \,, \tag{6}$$

whence

$$j - i = j' - i' \tag{7}$$

follows. Next we have to consider three cases:

(i) The case: j-i=j'-i'=0. We have from (1) and (2):

$$p=i=j$$
 and $p'=i'=j'$.

From (3) and (4) we have then

$$q-m=n'-q', \quad n-q=q'-m',$$

whence

$$m-n=m'-n'$$

which is evidently different from 0 because $A_n^i < A_n^i$.

Thus in this case we have

$$A_m^i A_n^j = A_{m'}^{i'} A_{n'}^{j'} \tag{*}$$

(ii) The case: j-i=j'-i' is an even number >0.

Subcase 1): If p-i is even, so is j-p=(j-i)-(p-i) and we have from (3) and (4) by the definition of =,

$$m-q=q'-n'$$
, $q-n=m'-q'$,

whence

$$m-n=m'-n'$$

and (*) is proved.

Subcase 2): If p-i is odd, so is j-p=(j-i)-(p-i) and from (3) and (4) we obtain

$$m+q+q'+n' = -1$$
,
 $q+n+m'+q' = -1$,

whence

$$m-n=m'-n'$$

and (*) is again proved.

(iii) The case: j-i=j'-i' is an odd number>0

Subcase 1): If p-i is even, then j-p=(j-i)-(p-i) is odd and we have from (3) and (4)

$$m-q=q'-n'$$
,
 $q+n+m'+q'=-1$,

whence

$$m+n+m'+n'=-1$$
,

and again (*) holds.

Subcase 2): If p-i is odd, then j-p is even and similarly as above we have (*).

The following examples show that Axioms R, T, A and I do not hold true.

- \rightarrow R: $A_0^1 A_0^2 = A_0^1 A_{-1}^2$ but not $A_0^1 A_0^2 = A_0^1 A_0^2$, so Axiom R fails to hold.
- \rightarrow T: $A_0^1 A_0^2 = A_0^1 A_{-1}^2$, $A_0^1 A_{-1}^2 = A_1^1 A_{-1}^2$ and $A_0^1 A_0^2 = A_1^1 A_{-2}^2$ but not $A_0^1 A_0^2 = A_1^1 A_{-1}^2$, so Axiom T fails to hold.
- \rightarrow A: $A_0^1 A_{-1}^2 = A_0^1 A_0^2$, $A_{-1}^2 A_0^2 = A_0^2 A_1^2$ and $A_0^1 A_0^2 = A_0^1 A_{-1}^2$ but not $A_0^1 A_0^2 = A_0^1 A_1^2$, so Axiom A fails to hold.
- \rightarrow I: $A_0^1A_1^1 = A_{-1}^2A_0^2 (A_0^1 < A_1^1 < A_{-1}^2 < A_0^2)$ and $A_0^1A_{-1}^2 = A_1^1A_{-1}^2$ but not $A_0^1A_{-1}^2 = A_1^1A_0^2$, so Axiom I fails to hold.

A model M(R, C, I) will be given in the second part of this paper.

4. Proof of Main Theorem

- I. T and C are independent, and T, $C \Rightarrow R$, S, A, I.
- Proof. (i) $T, C \Rightarrow A$ by Theorem 3.
 - (ii) $T, A \Rightarrow R$ by Theorem 4.
 - (iii) $T, R \Rightarrow S$ by Theorem 1.
 - (iv) R, C \Rightarrow I by Theorem 2.

By Models M(T) and M(C) we see that T and C are independent.

- II. T and I are independent, and T, $I \Rightarrow R$, S, A, C.
- Proof.
- (i) T, I \Rightarrow R by Threoem 6.
- (ii) $T, R \Rightarrow S$ by Theorem 1.
- (iii) T, I \Rightarrow A by Theorem 7.
- (iv) T, I \Rightarrow C by Theorem 8.

By Models M(T) and M(I) we see that T and I are independent.

- III. S, A and I are independent, and S, A, I ⇒ R, T, C.
- Proof. (i) S, $A \Rightarrow R$ by Theorem 9.
 - (ii) S, A, $I \Rightarrow T$ by Theorem 10.
 - (iii) S, A, $I \Rightarrow C$ by Theorem 11.
- 1) M(R, S, A) shows that S and A do not yield I.
- 2) M(R, S, C, I) shows that S and I do not yield A.
- 3) M(A, C, I) shows that A and I do not yield S.

Hence S, A and I are independent.

IV. S, A and C are independent, and S, A, $C \Rightarrow R$, T, I.

Proof. (i) S,
$$A \Rightarrow R$$
 by Theorem 9.

- (ii) R, $C \Rightarrow I$ by Theorem 2.
- (iii) S, A, $I \Rightarrow T$ by Theorem 10.
- 1) M(R, S, A) shows that S and A do not yield C.
- 2) M(R, S, C, I) shows that S and C do not yield A.
- 3) M(A, C, I) shows that A and C do not yield S.

Hence S, A and C are independent.

V. R, A and C are independent, and R, A, $C \Rightarrow S$, T, I.

Proof. (i) R,
$$C \Rightarrow I$$
 by Theorem 2.

- (ii) R, A, C \Rightarrow S by Theorem 12.
- (iii) S, A, I \Rightarrow T by Theorem 10.
- 1) M(R, S, A) shows that R and A do not yield C.
- 2) M(R, S, C, I) shows that R and C do not yield A.
- 3) M(A, C, I) shows that A and C do not yield R.

Hence R, A and C are independent.

REMARK: By the use of our Theorems and Models it may easily be proved that there is no further theorem of the above type I-V.

5. Tables

Baisic	I neorems ²

R	S	T			
R	S	${f T}$			
R				C	I
		T	\mathbf{A}	C	
R		${f T}$	A		
R		${f T}$		\mathbf{C}	
R		${f T}$			I
		\mathbf{T}	A		I
		${f T}$		C	I
R	S		A		
	S	\mathbf{T}	A		I
	S		A	\mathbf{C}	I
R	S		A	C	
R	S			C	I
	R R R R R	R S R R S S S S R S	R S T R T R T R T R T R T R T S T T S S	R S T A A R S T A A R S A A A A A A A A A A	R S T R T A C R T A C R T C C R T A C R S A C R S A C R S A C R S A C R S A C R S A C

²⁾ In the following tables R, S, T indicates for example that Axiom S follows from Axioms R, T and Axiom E. T_n means Theorem n.

[2]	Models						
	M(R)	R	→S	$\neg T$	\rightarrow A	\rightarrow C	⊸I
	M(S)	$\rightarrow R$	S	$\neg T$	\rightarrow A	$\neg C$	⊸I
	M(T)	$\rightarrow R$	\rightarrow S	${f T}$	\rightarrow A	$\neg C$	⊸I
	M(A)	$\rightarrow R$	\rightarrow S	\rightarrow T	A	$\neg C$	⊸I
	M(C)	$\rightarrow R$	$\neg S$	\rightarrow T	\rightarrow A	C	\rightarrow I
	M(I)	$\rightarrow R$	$\neg S$	$\neg T$	\rightarrow A	\rightarrow C	I
	M(A, C)	$\rightarrow R$	$\neg S$	$\neg T$	A	C	\rightarrow I
	M(S, C)	$\rightarrow R$	S	$\neg T$	→A	C	→I
	M(S, I)	→R	S	ightharpoonup T	$\rightarrow A$	$\neg C$	I
	M(R, S, A)	R	S	—T	A	→C	⊸ I
	M(R, A, I)	R	$\neg s$	\rightarrow T	A	$\neg C$	I
	M(R, S, T)	R	S	T	$\rightarrow A$	$\neg C$	⊸I
	M(A, C, I)	→R	$\neg S$	$\neg T$	A	C	I
	M(R, S, I)	R	S	\rightarrow T	$\rightarrow A$	$\neg C$	I
	M(R, S, C, I)	R	S	$\neg T$	$\rightarrow A$	C	I
	M(R, S, T, A)	R	S	${f T}$	A	$\neg C$	$\neg I$
	$M(R, C, I)^{3}$	R	\rightarrow S	$\neg T$	$\rightarrow A$	C	I
[3]	Main Theorem4)					
	I	R	\mathbf{S}	T	\mathbf{A}	C	I
	II	R	S	${f T}$	\mathbf{A}	C	I
	III	R	S	${f T}$	A	C	I
	IV	R	S	${f T}$	A	C	I
	\mathbf{V}	R	\mathbf{S}	\mathbf{T}	A	C	I

NIIHAMA TECHNICAL COLLEGE, NIIHAMA SOPHIA UNIVERSITY, TOKYO

References

^[1] D. Hilbert: Grundlagen der Geometrie, 9te Aufl., Stuttgart, 1962.

^[2] U. Morin-F. Busulini: Prova esistenziale della geometria generale sopra una retta, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fiz. Mat. Natur. 35 (1963), 269–273.

^[3] H. Terasaka: Shotō Kikagaku (in Japanese), Tokyo, 1952.

³⁾ M(R, C, I) will be given in the second part of this paper.

⁴⁾ For the notation, see Main Theorem, p. 270.