

Title	On bilinear module and Witt ring over a commutative ring
Author(s)	Kanzaki, Teruo
Citation	Osaka Journal of Mathematics. 1971, 8(3), p. 485-496
Version Type	VoR
URL	https://doi.org/10.18910/12506
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Harada, M. and Kanbara, H.
Osaka J. Math.
8 (1971), 471-483

ON CATEGORIES OF PROJECTIVE MODULES

MANABU HARADA AND HIKOJI KANBARA

(Received March 2, 1971)

The authors have studied some structures in categories of completely indecomposable modules in [5], [6] and [7], respectively. Furthermore, one of the authors has given some characterization of semi-perfect modules, defined in [9], in terms of semi- T -nilpotent system in [6].

In this note, we shall work in the same frame and give generalizations of some results in [6], [9] and [11].

Let R be a ring with identity and \mathfrak{M}_R the category of R -right modules. By \mathfrak{A} (resp. \mathfrak{A}_f) we denote the full sub-additive category of \mathfrak{M}_R , whose objects consist of all R (resp. R -finitely generated)-projective modules and we denote the Jacobson radical of \mathfrak{A} by \mathfrak{J} or $J(\mathfrak{A})$, (see the definition in [3], [6] and [8]). Then we shall show, in the first section, that $\mathfrak{A}/J(\mathfrak{A})$ (resp. $\mathfrak{A}_f/J(\mathfrak{A}_f)$) is a C_3 -completely reducible (resp. completely reducible artinian) abelian category if and only if R is a right (resp. semi-) perfect ring, defined in [1]. In the second section, we shall study a directsum of projective modules $P = \sum_{\alpha \in I} \oplus P_\alpha$, and show that $J(P)$ is small in P if and only if $J(P_\alpha)$ is small in P_α for all $\alpha \in I$ and $\{P_\alpha\}$ is a (elementwise) semi- T -nilpotent system with respect to the Jacobson radical if the cardinal $|I|$ is infinite (see the section 2 for the definition or [6] and [7]). We have immediately [6], Theorems 6 and 7 and [7], Theorem from this theorem. In the third section, we define a quasi-perfect module, which is a generalization of perfect modules defined in [9] and give analogous results to [9]. In the final section, we shall give another proof of [7], Theorem.

In this note, we always assume that a ring R has the identity and R -modules are unitary. We shall use terminologies of categories in [6], [3], [10] and [8]. Let \mathfrak{B} be a full subcategory of \mathfrak{M}_R . We assume that Im., Ker. directsum etc. are considered in \mathfrak{M}_R (not in \mathfrak{B}), unless otherwise stated, and for any object P, P' in \mathfrak{M}_R we write $[P, P']_R$ or $[P, P']_{\mathfrak{M}_R}$ instead of $\text{Hom}_R(P, P')$.

1. A right perfect ring

Let M be a right R -module, and N an R -submodule of M . N is called *small in M* if $Q+N=M$ implies $Q=M$ for $Q \subseteq M$. By $J(M)$ we denote the

radical of M and hence $J(R)$ is the Jacobson radical of R . We denote $[M, M]_R$ by S_M . We shall make use of the definition of (semi-) perfect modules defined in [9].

Now, let \mathfrak{A} be a full sub-additive category of \mathfrak{M}_R . We define a subfamily \mathfrak{C} of morphisms in \mathfrak{A} as follows: for any objects P, P' in \mathfrak{A} , $\mathfrak{C} \cap [P, P']_R = \{f \mid \in [P, P']_R, \text{Im } f \text{ (in } \mathfrak{M}_R\text{) is small in } P'\}$. Then we have

Lemma 1. *Let \mathfrak{A} and \mathfrak{C} be as above. Then \mathfrak{C} is an ideal in \mathfrak{A} .*

Proof. Let f, f' be in $\mathfrak{C} \cap [P, P']_R$. Then $\text{Im}(f \pm f') \subseteq \text{Im } f + \text{Im } f'$. Hence, $f \pm f' \in \mathfrak{C} \cap [P, P']_R$. Let g be an element in $[P', P'']_R$ and $A = \text{Im } f$. We shall show that $g(A)$ is small in P'' . We assume $g(A) + N = P''$ for some N in \mathfrak{M}_R . Then for any p' in P' we have $g(p') = g(a) + n$, ($a \in A, n \in N$). Hence, $p' - a \in g^{-1}(N)$ and $g(g^{-1}(N) + A) = g(P')$. On the other hand, since $g^{-1}(N)$ contains $\text{Ker } g$, $P' = A + g^{-1}(N)$. A is small in P' and hence, $P' = g^{-1}(N)$. Therefore, $N \supseteq g(g^{-1}(N)) = g(P') \supseteq g(A)$ and $N = P''$. Hence, $gf \in \mathfrak{C} \cap [P, P'']_R$. It is clear that $fg' \in \mathfrak{C}$ for any g' in $[P'', P]_R$. Thus, \mathfrak{C} is an ideal.

Corollary. *If every object P in \mathfrak{A} is projective in \mathfrak{M}_R , then \mathfrak{C} is equal to the Jacobson radical of \mathfrak{A} .*

Proof. Since $\mathfrak{C} \cap [P, P]_R$ is the Jacobson radical of $[P, P]_R$ by [12], Lemma 1, \mathfrak{C} is the radical of \mathfrak{A} .

From now on, we shall denote the Jacobson radical of \mathfrak{A} by \mathfrak{J} .

Proposition 1. *Let P be a projective R -module. Then $J(P)$ is small in P if and only if $[P, J(P)]_R = J(S_P)$.*

Proof. It is clear from the above corollary that $J(S_P) \subseteq [P, J(P)]_R$ for any projective R -module. Hence, if $J(P)$ is small, $J(S_P) = [P, J(P)]_R$. Conversely, we assume $J(S_P) = [P, J(P)]_R$ and $P = N + J(P)$ for some N in \mathfrak{M}_R . Then we have a diagram:

$$\begin{array}{ccc} J(P) & \xrightarrow{\nu} & J(P)/N \cap J(P) \rightarrow 0 \\ & \Downarrow f & \\ & P/N & \\ & \uparrow \nu' & \\ & P & \end{array}$$

where ν and ν' are canonical epimorphisms.

Since P is projective, we have h in $[P, J(P)]_R$ such that $\nu h = f \nu'$. Hence, $J(P) = h(P) + N \cap J(P)$ and $P = N + J(P) = N + h(P)$. On the other hand $h(P)$ is small in P , since h is in $J(S_P)$. Hence, $P = N$.

Let I be any well ordered set. By R_I we denote the ring of column finite

matics of R over I . An ideal \mathfrak{J} of a ring R is called *right T -nilpotent*, if for any set $\{a_i\}_{i=1}^\infty$ of elements a_i in \mathfrak{J} , there exists n so that $a_n a_{n-1} \cdots a_1 = 0$, (n depends on $\{a_i\}$, cf. [1]).

Corollary 1 ([11], [13] and [14]). *Let I be an infinite set. Then $J(R)$ is right T -nilpotent if and only if $J(R_I) = J(R)_I$.*

Proof. Let $P = \sum_I \bigoplus R$. If $J(R)$ is T -nilpotent, then $J(P) = \sum \bigoplus J(R)$ is small by [9], Theorem 7.2. On the other hand R_I is equal to S_P . Hence, $J(S_P) = [P, J(R)]_R = J(R)_I$. Conversely, If $J(R_I) = J(R)_I$, $J(R)$ is small. Hence, $J(R)$ is T -nilpotent from the argument of [9], Theorem 7.4.

Corollary 2 ([6]). *Let P be a projective module. We assume P is a directsum of completely indecomposable modules. Then P is semi-prefect if and only if $[P, J(P)]_R = J(S_P)$.*

Proof. It is clear from [9], Theorem 5.1 and [6], Theorem 5.

Lemma 2. *If R has a family of mutually orthogonal non-zero idempotents $\{e_i\}_{i=1}^\infty$, then R_I is not regular in the sense of Von Neumann for any infinite set I .^o*

Proof. We may assume that (the cardinal of I) = $|I| = \aleph_0$. We denote a family of matrix units in R_I by $e_{i,j}$. Put $B = \sum e_i e_{i,i}$. If R_I is a regular ring, then there exists A in R_I so that $BAB = B$, say $A = \sum a_{i,j} e_{i,j}$. We may assume $a_{i,i} = 0$ if $i > t$ for a large t . Then $BAB = B$ implies that $\sum_{i=1}^t e_i a_{i,i} e_j = e_j$ for all j . If $j > t$, then $e_j = e_j^2 = \sum_{i=1}^t e_j e_i a_{i,j} e_j = 0$, which is a contradiction.

Corollary. *Let R be a regular ring in the sense of Von Neumann. Then R_I is regular for any set I if and only if R is artinian.*

Proof. If R is artinian, then it is clear that R_I is regular for any set I . We assume that there exists an infinite series of principal left ideals of R : $Ra_1 \supset Ra_2 \supset \dots$. Since R is regular $Ra_n = Re'_n$ for some idempotent e'_n . Hence, R has an infinite set of non-zero mutually orthogonal idempotents $\{e_i\}$, which is a contradiction to Lemma 2. Therefore, R has the non zero socle, which is artinian and hence, R is artinian, since R is equal to the socle.

Let \mathfrak{A} be an additive category in \mathfrak{M}_R and \mathfrak{C} an ideal of \mathfrak{A} . Then we can define the factor category $\mathfrak{A}/\mathfrak{C}$ with respect to \mathfrak{C} . Let P and f be an object and a morphism in \mathfrak{A} , respectively. Then P is also an object in $\mathfrak{A}/\mathfrak{C}$, however we shall denote it by \bar{P} if P is regarded as an object in $\mathfrak{A}/\mathfrak{C}$. Similary, \bar{f} means a class of f in $\mathfrak{A}/\mathfrak{C}$.

Let $\{M_\alpha\}$ be a family of R -modules, We consider the full sub-additive category \mathfrak{B} (resp. \mathfrak{B}_f) in \mathfrak{M}_R , whose objects consist of all directsums of M_α 's (resp. all

Added in proof. 0) It was obtained by M. Tsukerman; Siberian Math. J. 7 (1966).

directsums of finite number of M_α 's), and of their isomorphic images. We call \mathfrak{B} (resp. \mathfrak{B}_f) the *induced category from* $\{M_\alpha\}$.

Proposition 2. *Let \mathfrak{A} be the induced additive category from a family of projective modules, and \mathfrak{J} the radical of \mathfrak{A} . We assume $\mathfrak{A}/\mathfrak{J}$ is a spectral abelian category. Then*

- 1) *For every P in \mathfrak{A} , $J(P)$ is small in P .*

Furthermore, we assume $\mathfrak{A}/\mathfrak{J}$ is C_3 -abelian.

- 2) *If P in \mathfrak{A} is a directsum¹⁾ of subobject P_α in \mathfrak{A} , then $\bar{P} = \sum \oplus \bar{P}_\alpha$ in $\mathfrak{A}/\mathfrak{J}$.*
- 3) *If \bar{P} is a directsum of minimal objects in $\mathfrak{A}/\mathfrak{J}$, then P is semi-perfect.*
- 4) *If Q in \mathfrak{A} is a finitely generated R -module, then Q is perfect.*

Proof. 1). Put $S_P = [P, P]_R$ and $J'(S_P) = [P, J(P)]_R$. We assume $J'(S_P) \neq J(S_P)$. Since $S_P/J(S_P)$ is a regular ring and $J'(S_P)$ is a two-sided ideal in S_P , there exists non zero element e' in $J'(S_P)$ so that $e' \equiv e'^2 \pmod{\mathfrak{J}}$. Hence, we obtain an idempotent e in $J'(S_P)$ so that $e \equiv e' \pmod{\mathfrak{J}}$ by [5], Lemma 2. Therefore, $eP \subset J(P)$, which is a contradiction. Thus, we obtain $J'(S_P) = J(S_P)$ and $J(P)$ is small in P by Proposition 1.

2). We shall show that $\sum \oplus \bar{P}_\alpha = \sum \oplus \bar{P}_\alpha$ in $\mathfrak{A}/\mathfrak{J}$. Let J be a finite subset of I , then $P_J = \sum_{\alpha \in J} \oplus P_\alpha$ is a direct summand of $P = P_I$. Hence, $\sum_J \bar{P}_\alpha = \bar{P}_J$ is a direct summand of \bar{P} , (use the method in the proof of Proposition 1 or see [5], Lemma 2). Therefore, $\cup \bar{P}_J = \sum \oplus \bar{P}_\alpha$ is a subobject of \bar{P} by [10], p. 82, Proposition 1.2. Let $\bar{P} = \sum \oplus \bar{P}_\alpha \oplus \bar{Q}$ and f a projection of \bar{P} to \bar{Q} . Then $fg \equiv 1 \pmod{\mathfrak{J}}$ for some $g \in [Q, P]_R$. Since \mathfrak{J} is the radical, fg is isomorphic as R -modules. $f(\sum \oplus \bar{P}_\alpha) = 0$ implies $f(\sum \oplus P_\alpha) \subset J(Q)$. Hence, $J(Q) \supset f(P) \supset fg(Q) = Q$. Therefore, $Q = 0$.

3). We assume $\bar{P} = \sum \oplus \bar{P}'_\alpha$. Put $P' = \sum \oplus P'_\alpha$. Then $\bar{P} \approx \bar{P}'$ from 2). Therefore, $P \approx P'$ as R -modules, since \mathfrak{J} is the radical. Furthermore, P'_α is semi-perfect and so is P by 1), (see [9], Theorem 5.2 and [5], Theorem 5).

4). Let Q be a finitely generated R -projective module in \mathfrak{A} , and $S_Q = [Q, Q]_R$. Put $Q^* = \sum_{i=1}^{\infty} \oplus Q_i$; $Q_i \approx Q$ for all i . Since Q is finitely generated, S_{Q^*} is the ring $(S_Q)_{\infty}$ of column finite matrices with entries in S_Q . From the assumption $S_{Q^*}/J(S_{Q^*})$ is regular and hence $(S_Q/J(S_Q))_{\infty}$ is a regular ring. Therefore, $S_Q/J(S_Q)$ is an artinian ring by Corollary to Lemma 2. Thus, $\bar{Q} = \sum_{i=1}^n \oplus \bar{Q}'_i$ in $\mathfrak{A}/\mathfrak{J}$, where Q'_i 's are minimal objects in $\mathfrak{A}/\mathfrak{J}$. Hence, $Q = \sum_{i=1}^n \oplus Q_i$ and Q'_i 's are completely indecomposable by [5], Lemma 2. It is clear from the first half that Q is perfect.

Theorem 1. *Let \mathfrak{A} be the full sub-additive category of all R -projective*

1) Directsum is considered in \mathfrak{M}_R .

modules in \mathfrak{M}_R and \mathfrak{J} the radical of \mathfrak{A} . Then the following statements are equivalent.

- 1 $\mathfrak{A}/\mathfrak{J}$ is a C_3 -abelian completely reducible category.
- 2 $\mathfrak{A}/\mathfrak{J}$ is a C_3 -spectral abelian category.
- 3 R is a right perfect ring.

Proof. 1→2. It is clear. 2→3. Since R is a finitely generated R -module, R is right perfect from Proposition 2. 3→1. If R is right perfect, then every object P in \mathfrak{A} is perfect by [1] or [9] and hence, P is a directsum of completely indecomposable modules. Furthermore, $\mathfrak{J} \cap [P, P]_R = [P, J(P)]_R$ is equal to the ideal defined in [5], §3, (see [6], §3). Hence, $\mathfrak{A}/\mathfrak{J}$ is a C_3 -completely reducible abelian category by [5], Theorem 7.

Similarly to Theorem 1, we obtain

Theorem 2. Let $\{P_\alpha\}$ be a family of finitely generated projective R -modules, and \mathfrak{A}_f the induced category from $\{P_\alpha\}$. Then the following two conditions are equivalent.

- 1 $\mathfrak{A}_f/\mathfrak{J}$ is a completely reducible and artinian abelian category.
- 2 Every object in \mathfrak{A}_f is semi-perfect.

Especially, let \mathfrak{A}'_f be the full sub-category of all R -finitely generated projective modules. Then $\mathfrak{A}'_f/\mathfrak{J}$ is a completely reducible and artinian abelian category if and only if R is semi-perfect.

REMARK. If we omit the assumption “artinian” in Theorem 2, then the theorem is not true in general. For example, let K be a field and $R = [P, P]_K$, where P is a K -vector space with infinite dimension. It is well known that R is self injective as a right R -module and R has the socle $S = \sum_{i=1}^{\infty} \oplus e_i R$. Let \mathfrak{A}'_f be as above. Then \mathfrak{A}'_f is a spectral abelian category from [12], Theorem 2, since R is a regular ring. First, we shall show that $R = \sum \oplus e_i R^{(2)}$ in \mathfrak{A}'_f . It is clear that $S_J = \sum_{i \in J} e_i R$ is in \mathfrak{A}'_f for every finite set J and is a direct summand of R in \mathfrak{A}'_f via the inclusion. Let $\{f_i\}$ be a set of R -homomorphisms $f_i: e_i R \rightarrow R$. Then $f = \sum f_i$ is in $[S, R]_R$. Since R is self-injective and a prime ring, we have a unique extension $g \in [R, R]_R$ of f . Therefore, $R = \sum e_i R$ in \mathfrak{A}'_f , since every object in \mathfrak{A}'_f is a finitely generated R -module. Noting that \mathfrak{A}'_f is spectral and $R = \sum e_i R$ in \mathfrak{A}'_f even though \mathfrak{A}'_f is not co-complete, we can easily show that \mathfrak{A}'_f is completely reducible. However, R is not semi-perfect.

We have shown in Proposition 2 that $\sum \oplus P_\alpha = \sum \oplus \bar{P}_\alpha$ in $\mathfrak{A}/\mathfrak{J}$ if $\mathfrak{A}/\mathfrak{J}$ is a C_3 -abelian spectral category. However, as above this fact is not true if $\mathfrak{A}/\mathfrak{J}$ is not co-complete, since $\sum \oplus P_\alpha \notin \mathfrak{A}'_f$.

2) Directsum is considered in \mathfrak{A}'_f .

Proposition 3. *Let \mathfrak{A}_f be the induced additive category from a family of semi-perfect modules. Then $\mathfrak{A}_f/\mathfrak{J}$ is an abelian spectral category.*

Proof. It is clear that every object in \mathfrak{A}_f is semi-perfect from [9], Theorem 5.1. Therefore, $\mathfrak{A}_f/\mathfrak{J}$ is an abelian spectral category by [12], Theorem 2.

Corollary. *Let P and Q be semi-perfect modules and f an element in $[P, Q]_R$. Then we have decomposition $P=P_1 \oplus P_2$, $Q=Q_1 \oplus Q_2$ such that $f(P_2)$ is small in Q and $f|P_1$ gives an isomorphism of P_1 to Q_1 . Furthermore, under those conditions, P_i and Q_i are unique up to isomorphism.*

Proof. Let \mathfrak{A}_f be the induced category from P and Q . Put $\bar{P}'_2=\text{Ker } f$. Since $\mathfrak{A}_f/\mathfrak{J}$ is abelian spectral, $\bar{P}=\bar{P}'_1 \oplus \bar{P}'_2$. Hence, we have $P=P_1 \oplus P_2$ so that $\bar{P}_1=\bar{P}'_1$ by [5], Lemma 2. Then $\bar{f}_1=\bar{f}|\bar{P}_1$ is monomorphic in $\mathfrak{A}_f/\mathfrak{J}$. Hence, there exists $g \in [Q, P]_R$ such that $g\bar{f}_1$ is equal to the identity of P_1 modulo \mathfrak{J} . Hence, $Q=\text{Ker } g \oplus \text{Im } f_1$. Since $\bar{f}(\bar{P}_2)=0$, $f(P_2)$ is small in Q . If P_i , Q_i satisfy the above conditions, then $\bar{P}_2=\text{Ker } f$, $\bar{P}_1=\text{Coim } f$ and $\bar{Q}_1=\text{Im } f$, $\bar{Q}_2=\text{Coker } f$. Hence, they are unique up to isomorphism as R -modules.

2. Directsum of projective modules

It is known by [9], Corollary 5.3 that every semi-perfect module is a directsum of completely indecomposable projective modules. Thus, we shall study, in this section, a projective module which is a directsum of some submodules. First, we shall generalize the definition of T -nilpotent.

Let $\{M_\alpha\}_I$ be a family of R -modules M_α , \mathfrak{A} the induced category from $\{M_\alpha\}$ and \mathfrak{C} an ideal of A . We call $\{M_\alpha\}_I$ a (elementwise) *T -nilpotent* (resp. *semi- T -nilpotent*) system with respect to \mathfrak{C} if the following conditions are satisfied: for any sequence $\{f_i\}_{i=1}^\infty$ of morphisms f_i in $\mathfrak{C} \cap [M_{\alpha_i}, M_{\alpha_{i+1}}]_R$ and any element x in M_{α_1} , there exists n , depending on x and $\{f_i\}$, such that $f_n f_{n-1} \cdots f_1(x)=0$, where M_i 's are in $\{M_\alpha\}$, (resp. $\alpha_i \neq \alpha_j$, if $i \neq j$), (cf. [5], §3).

Let I be a well ordered set and put $M=\sum_I \bigoplus M_\alpha$, then $[M, M]_R=S_M$ is equal to the ring of column summable matrices, whose entries $a_{\sigma\tau}$ consist of elements in $[M_\tau, M_\sigma]_R$, namely for $f \in S_M$ and $x_\tau \in M_\tau$, $f=(b_{\sigma\tau})$ and $b_{\sigma\tau}(x_\tau)=0$ for almost all $\sigma \in I$. In this case $\sum_{\sigma \in I} b_{\sigma\tau}$ has a meaning and it is an element in $[M_\tau, M]_R$.

We shall make use of those notations in the following. Let $b_{\alpha_i \alpha_{i-1}}$ be in $[M_{\alpha_{i-1}}, M_{\alpha_i}]_R$ for $i=1, 2, \dots, n$. If $\alpha_1 < \alpha_2 < \dots < \alpha_n$, we denote briefly $b_{\alpha_n \alpha_{n-1}} b_{\alpha_{n-1} \alpha_{n-2}} \cdots b_{\alpha_2 \alpha_1}$ by $b(\alpha_n, \alpha_{n-1}, \dots, \alpha_2, \alpha_1)$.

Lemma 3. *Let $\{M_\alpha\}_I$, M and \mathfrak{C} be as above with $|I|$ infinite and $f=(b_{\sigma\tau})$ in $\mathfrak{C} \cap [M, M]_R$. We assume $\{M_\alpha\}_I$ a semi- T -nilpotent system with respect to \mathfrak{C} . We put $F_\tau=\{b(\alpha_n, \alpha_{n-1}, \dots, \alpha_1) \mid \alpha_1=\tau \text{ and } n \text{ is any integer } \geq 2\}$. Let x_τ be an*

element in M_τ , then $b(\alpha_n, \alpha_{n-1}, \dots, \alpha_1)(x_\tau)=0$ for almost all $b(\alpha_n, \alpha_{n-1}, \dots, \alpha_1)$ in F_τ .

Proof. Since \mathfrak{C} is an ideal, $b_{\sigma\tau}$ is in $\mathfrak{C} \cap [M_\tau, M_\sigma]_R$. Now, $\{b_{\alpha_2\tau}\}_{\alpha_2}$ is summable and hence, there exists a finite set T_1 such that $b_{\alpha_2\tau}(x_\tau)=0$ if $\alpha_2 \notin T_1$. Since $\{b_{\alpha_3\alpha_2}\}_{\alpha_3}$ is summable for $\alpha_2 \in T_1$, there exists a finite set T_2 such that $b(\alpha_3, \alpha_2, \tau)(x_\tau)=0$ for $\alpha_3 \in T_2$, $\alpha_2 \in T_1$. Repeating this argument, we obtain a family of finite set T_i such that $b(\alpha_t, \alpha_{t-1}, \dots, \tau)(x_\tau)=0$ if $\alpha_k \notin T_k$ for some k . Hence, we obtain the lemma from Koning Graph Theorem and the assumption.

From Lemma 3, we know that $\sum_{\alpha_i} b(\sigma, \alpha_{n-1}, \dots, \alpha_2, \tau)$ is in $[M_\tau, M_\sigma]_R$.

Lemma 4. *Let $M, \{M_\alpha\}_I$ and \mathfrak{C} be as above and we assume $\{M_\alpha\}_I$ is a semi-T-nilpotent system with respect to \mathfrak{C} . Let $(b_{\sigma\tau})$ be in $S_M \cap \mathfrak{C}$ so that $b_{\sigma\tau}=0$ if $\sigma \geq \tau$ (resp. $\sigma \leq \tau$), then $(b_{\sigma\tau})$ is quasi-regular in S_M .*

Proof. It is clear from the proof of [5], Lemma 10.

Lemma 5. *Let $\{M_\alpha\}_I, M$ and \mathfrak{C} be as above. We assume the following.*

1) $\mathfrak{C} \cap S_\alpha \subseteq J(S_\alpha)$ for every $\alpha \in I$. 2) if $\{a_i\}_i$ is a summable set in $\mathfrak{C} \cap [M_\sigma, M_\tau]_R$, then $\sum_i a_i$ is in $\mathfrak{C} \cap [M_\sigma, M_\tau]_R$, where $S_\alpha = S_{M_\alpha} = [M_\alpha, M_\alpha]_R$, 3) $\{M_\alpha\}_I$ is a semi-T-nilpotent system with respect to \mathfrak{C} . Then $\mathfrak{C} \cap S_M \subseteq J(S_M)$.

Proof. Let $A'=(a'_{\sigma\tau})$ be in $\mathfrak{C} \cap S_M$ and put $A=E-A'=(a_{\sigma\tau})$, where E is the unit matrix. We shall show by the fundamental transformation of A that A is regular in S_M . Since \mathfrak{C} is an ideal and $\mathfrak{C} \cap S_\alpha \subseteq J(S_\alpha)$, $a_{\sigma\sigma}=1-a'_{\sigma\sigma}$ is unit in S_σ . We put $b_{\sigma_1}=-a_{\sigma_1}a_{11}^{-1}$ for $\sigma < 1$, then $\{b_{\sigma_1}\}_\sigma$ is summable and b_{σ_1} is in $\mathfrak{C} \cap [M_1, M_\sigma]_R$. We shall define $b_{\sigma\tau}$ for $\sigma < \tau$, satisfying the following conditions, by the transfinite induction on τ

- 1) $\{b_{\sigma\tau}\}_\sigma$ is summable and $b_{\sigma\tau}$ is in $\mathfrak{C} \cap [M_\tau, M_\sigma]_R$.
- 2) $b_{\sigma\tau}=-y_{\sigma\tau}y_{\tau\tau}^{-1}$, where for $\sigma \geq \tau$

$$y_{\sigma\tau}=a_{\sigma\tau}+\sum_{\tau > \alpha_i} b(\sigma, \alpha_t, \alpha_{t-1}, \dots, \alpha_1)a_{\alpha_1\tau} \dots (*)$$

We note that $\sum b(\sigma, \alpha_t, \dots, \alpha_2, \alpha_1)a_{\alpha_1\tau}$ is defined and in $\mathfrak{C} \cap [M_\tau, M_\sigma]_R$ by 1), 2), the assumption and Lemma 3, and hence $y_{\tau\tau}$ is unit in S_τ , (note that $\{a_{i\tau}\}_i$ is summable). We assume $\{b_{\sigma\rho}\}$ is defined for all $\rho < \tau$, which satisfy the conditions 1) and 2). Then we can define $y_{\sigma\tau}$ for $\sigma \geq \tau$ from (*) and define $b_{\sigma\tau}$ by 2). Since $\{y_{\sigma\tau}\}_\sigma$ is summable by Lemma 3, so is $\{b_{\sigma\tau}\}_\sigma$. Next, we put $c_{\sigma\tau}=\sum b(\sigma, \alpha_t, \dots, \alpha_2, \tau) \in \mathfrak{C} \cap [M_\tau, M_\sigma]_R$ and $c_{\sigma\tau}=0$ if $\sigma < \tau$. Then $C=(c_{\sigma\tau})$ is in S_M by Lemma 3. We calculate the (σ, τ) -component $d_{\sigma\tau}$ is CA . For $\sigma > \tau > 1$ we have $d_{\sigma\tau}=\sum_p c_{\sigma p}a_{p\tau}=\sum_{\sigma \geq p} c_{\sigma p}a_{p\tau}=\sum b(\sigma, \alpha_t, \dots, \alpha_1)a_{\alpha_1\tau}+a_{\sigma\tau}=a_{\sigma\tau}+\sum_{\tau > \alpha_i} b(\sigma, \alpha_t, \dots, \alpha_1)a_{\alpha_1\tau}+b_{\sigma\tau}(\sum b(\tau, \alpha_t, \dots, \alpha_1)a_{\alpha_1\tau}+a_{\tau\tau})+\sum_{\sigma > \alpha_i > \tau} b_{\alpha\sigma\tau}(\sum b(\alpha_t, \dots, \alpha_1)a_{\alpha_1\tau}+a_{\alpha\tau})$. Hence, we have

$$3) \quad d_{\sigma\tau} = y_{\sigma\tau} + b_{\sigma\tau}y_{\tau\tau} + \sum b_{\sigma\alpha_t}d_{\alpha_t\tau}.$$

It is clear that $d_{21}=0$. Now, we assume $d_{\alpha\beta}=0$ for $\sigma>\alpha>\beta$, then we obtain from 2) and 3), $d_{\sigma\tau}=0$ for $\sigma>\tau$. Thus, we have proved $d_{\sigma\tau}=0$ for all $\sigma>\tau$. Furthermore, $d_{\sigma\sigma}=\sum b(\sigma, \alpha_1, \dots, \alpha_1)a_{\alpha_1\sigma}+a_{\sigma\sigma}$ is unit in S_σ from the assumptions. Finally, we put $C_1=\sum e_{\sigma\tau}d_{\sigma\tau}^{-1}$, where $\{e_{\sigma\tau}\}$ is a family of matrix units in S_M . Then $D=E-C_1CA=\sum e_{\sigma\tau}x_{\sigma\tau}$ and $x_{\sigma\tau}$ is in $\mathfrak{C} \cap [M_\tau, M_\sigma]_R$, since $b_{\sigma\tau}$ (resp. $a_{\sigma\tau}$) is in $\mathfrak{C} \cap [M_\tau, M_\sigma]_R$ if $\sigma>\tau$ (resp. $\sigma<\tau$). Hence, C_1CA is regular in S_M by Lemma 4. We know similarly that C is regular in S_M . Therefore, A is regular in S_M , which implies that $\mathfrak{C} \cap S_M \subseteq J(S_M)$.

Theorem 3. *Let $\{P_\alpha\}$ be a family of projective modules and $P=\sum_I \bigoplus P_\alpha$.*

Then $J(P)$ is small in P if and only if $J(P_\alpha)$ is small in P_α for every $\alpha \in I$ and $\{P_\alpha\}_I$ is a semi- T -nilpotent system if I is infinite.

Proof. We assume $J(P)$ is small in P . Then $J(P_\alpha)$ is small in P_α . Let $\{P_{\alpha_i}\}_{i=1}^\infty$ be a sub-family of $\{P_\alpha\}$ and $f_i \in [P_{\alpha_i}, P_{\alpha_{i+1}}]_R \cap \mathfrak{J}$, where $\alpha_i \neq \alpha_j$, if $i \neq j$. Put $P'_i=\{p_i+f_i(p_i) \mid p_i \in P_{\alpha_i}\}$. Then $f_i(p_{\alpha_i})$ is in $J(P_{\alpha_{i+1}})$ by the definition and $P=\sum_{i=1}^\infty P'_i + \sum_{\beta \neq \alpha_i} P_\beta + J(P)$. Hence, $P=\sum \bigoplus P'_i \oplus \sum_{\beta \neq \alpha_i} \bigoplus P_\beta$. Therefore, $\{P_\alpha\}$ is a semi- T -nilpotent system, (see [5], Lemma 9). Conversely, if I is finite, the theorem is trivial. Hence, we assume that I is infinite. If $J(P_\alpha)$ is small in P_α , then $J(S_\alpha)=[P_\alpha, J(P_\alpha)]_R$ from Proposition 1. Now, we define an ideal \mathfrak{C} in \mathfrak{A} induced from $\{P_\alpha\}$ as follows: $\mathfrak{C} \cap [P_\alpha, P_\beta]_R=[P_\alpha, J(P_\beta)]_R$. Then \mathfrak{C} satisfies the conditions in Lemma 5 by Corollary to Lemma 1 and hence, $\mathfrak{C} \cap S_P=[P, J(P)]_R \subseteq J(S_P)$. Therefore, $J(P)$ is small in P by Proposition 1.

Corollary 1 ([6], Theorems 6 and 7). *Let P and $\{P_\alpha\}_I$ be as above with I infinite. Then P is perfect (resp. semi-perfect) if and only if P_α is semi-perfect and $\{P_\alpha\}_I$ is a T -nilpotent (resp. semi- T -nilpotent) system.*

Proof. It is clear from Theorem 3 and [9], Theorem 5.1.

Corollary 2. *Let P be a projective module in which $J(P)$ is small. Then $J(F)$ is small in F for any directsum F of any copies of P if and only if $\{P\}^3$ is a T -nilpotent system with respect to $J(S_P)$.*

Proof. It is an immediate consequence of Theorem 3.

Corollary 3. *Let $\{P_\alpha\}$ be a family of perfect modules. Then $P=\sum_I \bigoplus P_\alpha$ is perfect if and only if $J(P)$ is small in P .*

Proof. “only if” part is clear. We may assume that $J(P)$ is small in P and P_α is completely indecomposable. If $|I|<\infty$, P is perfect. If $|I|=\infty$,

3) $\{P\}$ means $\{P_i\}$; $P_i \approx P$ for all i .

$\{P_\alpha\}$ is a semi- T -nilpotent system by Corollary 2. Since P_α is perfect, P is a T -nilpotent system. Therefore, P is perfect from Corollary 1.

3. Quasi-perfect modules

We know from Corollary 1 to Theorem 3 that the perfect modules are special ones in projective modules with properties in Corollary 2. Thus, we call such a projective modules P *quasi-perfect*; namely $J(P)$ is small in P and $\{P\}$ is a T -nilpotent system with respect to $J(S_P)$, or equivalently $\{P\}$ is a T -nilpotent system with respect to $[P, J(P)]_R$ by Proposition 1.

If $J(R)$ is right T -nilpotent, then for every projective module P , $J(P)$ is small in P and P is quasi-perfect by Theorem 3 and vice versa. If $R/J(R)$ is not artinian, then R is quasi-perfect, but not perfect. It is clear that a directsum of any copies (or direct summand) of a quasi-perfect module is also quasi-perfect. Hence, if a projective generator in \mathfrak{M}_R is quasi-perfect, then so is every projective modules.

Lemma 6. *Let P be a projective module. We assume that $J(P)$ is small in P and $P/J(P) = \sum_I \bigoplus \bar{P}'_\alpha$ as $R/J(R)$ -modules. If there exist projective R -modules Q_α so that $Q_\alpha/J(Q_\alpha) \approx \bar{P}'_\alpha$ for each $\alpha \in I$, then we have a direct decomposition $P = \sum_I \bigoplus P_\alpha$, which induces the above decomposition, and hence $J(Q_\alpha)$ is small in Q_α , (cf. [9], Theorem 4.3).*

Proof. Put $Q = \sum \oplus Q_\alpha$, then we have a diagram

$$0 \longrightarrow J(P) \longrightarrow P \xrightarrow{\nu} P/J(P) \longrightarrow 0$$

where ν and ν' are natural epimorphisms from the assumption. Since Q is projective and $J(P)$ is small, P is a direct summand of Q via g ; $Q=P\oplus Q'$. Hence, $Q=P+J(Q)=P\oplus J(Q')$. Therefore, $Q'=0$. It is clear that $J(Q_\alpha)$ is small in Q_α .

Theorem 4. Let P be a quasi-perfect module. Then every direct decomposition of $P/J(P)$ is lifted to one of P .

Proof. We assume that $P/J(P) = \bar{P}'_1 \oplus \bar{P}'_2$ as $R/J(R)$ -modules, and show that there exist P_i so that $P = P_1 \oplus P_2$ induces the above decomposition. It is clear that $[P/J(P), P/J(P)]_{R/J(R)} = S/\mathfrak{J}$, where $S = S_P$ and $\mathfrak{J} = J(S_P)$. Let $a^2 \equiv a \pmod{\mathfrak{J}}$ for $a \in S$. We shall show that there exists an idempotent e in S such that $e \equiv a \pmod{\mathfrak{J}}$. We use the same argument in [2], p. 546. We can find the following

identities for each n from $1=(x-(1-x))^{2n}=\sum \binom{2n}{i} x^i (1-x)^{2n-i}$

$$4) \quad f_n(x)=f_{n-1}(x)+g_n(x)(x^2-x)^{n-1}$$

$$5) \quad f_n(x)^2=f_n(x)+h_n(x)(x^2-x)^n,$$

where $f_n(x)$, $g_n(x)$ and $h_n(x)$ are polynomials with coefficients of integers. From 4) we have $f_n(x)=x+g_0(x)(x^2-x)+\dots+g_n(x)(x^2-x)^{n-1}$. Put $b=a^2-a\in\mathfrak{J}$ and $g_i(a)=c_i\in S$. Let p be an element in P , then $b^{n(p)}(p)=0$ for some integer $n(p)$ by the assumption. Put $A=a+\sum_{i=0}^{\infty} c_i b^{i+1}$. Since $\{c_i b^{i+1}\}_i$ is summable as above, A is in S . Furthermore, $(A^2-A)(p)=AA_{n(p)}(p)-A_{n(p)}(p)$, where $A_{n(p)}=a+\sum_{i=0}^{n(p)-1} c_i b^{i+1}$. Now, let $A_{n(p)}(p)=q$, and put $m=\max(n(p), n(q))$, then $AA_{n(p)}(p)=A_mA_{n(p)}(p)=A_mA_m(p)$. Hence, $(A^2-A)(p)=A_m^2(p)-A_m(p)$. We have similarly from 5) that $(A_{n'}^2-A_{n'})(p)=0$ for any $n'\geq$ some n . Therefore, $A^2=A$. On the other hand, $A-a=\sum_i c_i b^{i+1}$ and $(\sum_i c_i b^{i+1})(p)\in J(P)$. Hence, $\sum_i c_i b^{i+1}\in [P, J(P)]_R=\mathfrak{J}$ by Corollary to Proposition 1. Therefore, we have proved the theorem by Lemma 6.

Corollary 1. *We assume that $R/J(R)$ is artinian. Then every quasi-perfect module is perfect.*

Proof. Since $P/J(P)$ is semi-simple, P is perfect from Theorem 4, Corollary to Theorem 3 and [9], Theorem 5.1.

Corollary 2. *We assume $J(R)$ is right T -nilpotent, then for a projective R -module P , a direct decomposition of $P/J(P)$ is lifted to one of P , and every idempotent in $R_I/J(R_I)$ is lifted to one in R_I for any set I . Furthermore, if $R/J(R)$ is a regular ring, then $\mathfrak{A}'/\mathfrak{J}$ is a spectral abelian category, where \mathfrak{A}' is the full sub-category of finitely generated projective R -modules.*

If P is perfect, then $P/J(P)$ is semi-simple and hence, $S_P/J(S_P)=\prod_T \Delta_{I_\alpha}^*$, where Δ^* are division rings. It is clear that $P'/J(P')$ is not semi-simple even though $S_{P'}/J(S_{P'})=\prod_T \Delta^*$ for a projective module P' . We consider this situation.

Proposition 4. *Let P be a quasi-perfect module so that $S_P/J(S_P)=\prod_T \Delta_{I_\alpha}^*$, then P contains a perfect module P_0 such that $S_{P_0}/J(S_{P_0})=\prod_T \Delta_{I'_\alpha}^*$ and P is perfect if and only if P_0 is a direct summand of P , where $|I_\alpha| \geq |I'_\alpha|$ and $|I'_\alpha| \geq n_0$ if $|I_\alpha| \geq n_0$.*

Proof. Let $\bar{S}=S_P/J(S_P)$, $\bar{P}=P/J(P)$, and \bar{e}_α a projection of \bar{S} to $\Delta_{I_\alpha}^*$. Then there exists P_α in P which is a direct summand of P and $S_{P_\alpha}/J(S_{P_\alpha})=\bar{e}_\alpha \bar{S} \bar{e}_\alpha \approx \Delta_{I_\alpha}^*$. Let \mathfrak{S} be the socle of $\Delta_{I_\alpha}^*=\bar{S}_\alpha$, and $\mathfrak{S}\bar{P}(\bar{P}_0)\subseteq \bar{P}$. Then the restriction φ of \bar{S}_α to \bar{P}_0 gives elements of $S_{P_0}=[\bar{P}_0, \bar{P}_0]_{R/J(R)}$. We first show

that φ is a ring isomorphism. If $\text{Ker } \varphi = \mathfrak{A} \neq 0$, then $\mathfrak{A} \supseteq \mathfrak{S}$. Since $\mathfrak{S} = \mathfrak{S}^2$, $\mathfrak{A} \mathfrak{S} \bar{P} = \bar{P}_0 \neq 0$. Hence, $\text{Ker } \varphi = 0$. Since $\bar{P}_0 = \sum e_{ii} \bar{P}$, where $\{e_{ij}\}$ is a family of matrix units of \bar{S}_α , $\varphi(\mathfrak{S})$ is equal to the socle \mathfrak{S}' of $S_{\bar{P}_0}$. Furthermore, $\bar{S}_\alpha = [\mathfrak{S}, \mathfrak{S}]_{S_\alpha}$, and $S_{\bar{P}_0} = [\mathfrak{S}', \mathfrak{S}']_{S_{\bar{P}_0}}$ as right modules. We may regard \bar{S}_α as a sub-ring of $S_{\bar{P}_0}$ by φ . Then $S_{\bar{P}_0} = [\mathfrak{S}', \mathfrak{S}']_{S_{\bar{P}_0}} \subseteq [\mathfrak{S}, \mathfrak{S}]_{\bar{S}_\alpha} = \bar{S}_\alpha$. Hence, φ is isomorphic. Now, since $\bar{P}_0 = \sum \bigoplus e_{ii} \bar{P}$, P_α contains a direct summand $P_{\alpha J}$ for every finite set $J \subseteq I$ so that $\bar{P}_{\alpha J} = \sum_{i \in J} \bigoplus e_{ii} \bar{P}$. Let \mathbf{S} be a family of projective submodules Q of P_α so that $Q = \sum_{i \in K} \bigoplus Q_i$, $\bar{Q}_i \approx e_{ii} \bar{P}$, for all i in K , and Q_J is a direct summand of P for any finite subset J of K . We can find a maximal element Q_α in \mathbf{S} by defining a natural relation in \mathbf{S} . We assume that Q_α is a direct summand of P and $\bar{Q}_\alpha \neq \bar{P}_0$. Since \bar{Q}_α is a direct summand of \bar{P}_α we can obtain a submodule U of P_α such that $P_\alpha = Q_\alpha \oplus U \oplus P'_\alpha$, which contradicts to the maximality of Q_α . Hence, $\bar{P}_0 = \bar{Q}_\alpha = \bar{P}_\alpha$ in this case. On the other hand, since φ in the above is isomorphic, $\bar{P}_0 = \bar{Q}_\alpha = \bar{P}_\alpha$. Finally, we put $P^* = \sum_{\alpha \in I} \bigoplus Q_\alpha = \sum_{\alpha} \sum_{i \in K_\alpha} \bigoplus Q_{i\alpha}$, and define a natural homomorphism $f: P^* \rightarrow P$. For any finite set J of $\cup K_\alpha$, $f|P_J^*$ splits as $R/J(R)$ -module. Hence, $f|P_J^*$ splits as an R -module, since $J(P_J^*)$ is small in P_J^* . Hence, f is monomorphic. Since $Q_{i\alpha}$ is projective and completely indecomposable, $Q_{i\alpha}$ is perfect from Corollary 2 to Theorem 3. Therefore, P^* is perfect by Corollary 1 to Theorem 3. If P^* is a direct summand of P , then Q_α is a direct summand of P_α , and hence, $Q_\alpha = P_\alpha$ from the first part. Let $P = P^* \oplus P_1$ and \bar{g} a projection of \bar{P} to \bar{P}_1 . If $\bar{g} = \Pi f_\alpha (f_\alpha \in e_\alpha \bar{S}_P e_\alpha)$ is not zero, then $f_\alpha \neq 0$ for some α . However, φ is isomorphic, and hence $f_\alpha = 0$. Therefore, $P^* = P$. Conversely, if P is perfect, P^* is a direct summand of P from Proposition 5 below.

Proposition 5. *Let P be a semi-perfect module and P_0 a projective R -module in P . Then P_0 is a direct summand of P if and only if $P_0 \cap J(P) = J(P_0)$.*

Proof. We assume $J(P) \cap P_0 = J(P_0)$. Then $P_0/J(P_0)$ is a $R/J(R)$ -submodule of $P/J(P)$ and $P/J(P) = P_0/J(P_0) \oplus P_1/J(P_1)$ for some R -projective module P_P by [9], Theorem 4.3. Hence, $J(P_0)$ is small in P_0 by Lemma 6. Next, we have a diagram

$$\begin{array}{ccccccc}
 0 & \longrightarrow & J(P_0) & \longrightarrow & P_0 & \xrightarrow{k} & P/P_1^* \longrightarrow 0 \\
 & & \downarrow & & \downarrow & & \downarrow \\
 & & i & & & & \nu \\
 & & \searrow & & \uparrow & & \\
 & & & & P & &
 \end{array}$$

where i is an inclusion map of P_0 to P and $k = \nu i$ and $P_1^* = P_1 + J(P)$. Since P is projective, we obtain $g: P \rightarrow P_0$ so that $kg = \nu$. Let p_0 in P_0 , then $(gi(p_0) - p_0)$ is in $J(S_{P_0})$. Therefore, gi is isomorphic, which means P_0 is a direct summand of P . The converse is clear.

Proposition 6. *There exists a semi-perfect module if and only if R contains a completely indecomposable and projective right ideal.*

Proof. If P is semi-perfect, then P contains a completely indecomposable semi-perfect module P_0 by [9], Corollary 5.3. Hence, $P_0/J(P_0)$ is a minimal $R/J(R)$ -projective module. Since $J(P_0)$ is small, $P_0=pR$ for some $p \in P_0$. Hence, $P_0 \approx eR$ for some idempotent e in R . The converse is clear from [6], Theorem 5.

4. Krull-Remak-Schmidt-Azumaya's theorem

In this section, we shall prove Kanbara's theorem in [7] as a corollary of Lemma 5. Let $\{M_\alpha\}_I$ be a family of completely indecomposable R -modules and \mathfrak{A} the induced category from $\{M_\alpha\}$. We denote the ideal of \mathfrak{A} defined in [5], §3 by \mathfrak{J}' . It is sufficient to prove that $J(S_M) = \mathfrak{J}' \cap S_M$ under the condition that $\{M_\alpha\}$ is a semi- T -nilpotent system with respect to \mathfrak{J}' , where $M = \sum_I \bigoplus M_\alpha$. However, if we use the argument in the proof of Lemma 5 in [5], we know that $\{M_\alpha\}$ satisfies the condition 2 in Lemma 5 if we take $\mathfrak{C} = \mathfrak{J}'$. It is clear that the conditions 1 and 3 are satisfied. Therefore, we obtain $J(S_M) = \mathfrak{J}' \cap S_M$ from Lemma 5.

OSAKA CITY UNIVERSITY

References

- [1] H. Bass: *Finite-dimensional and a homological generalization of semi-primary rings*, Trans. Amer. Math. Soc. **95** (1960), 466–488.
- [2] C.W. Curtis and I. Reiner: *Representation Theory of Finite Groups and Associative Algebras*, Interscience, New York, 1962.
- [3] C. Ehresmann: *Categories et Structures*, Dunod, Paris, 1965.
- [4] M. Harada: *On semi-simple categories*, Osaka J. Math. **7** (1970), 89–95.
- [5] M. Harada and Y. Sai: *On categories of indecomposable modules I*, Osaka J. Math. **7** (1970), 323–344.
- [6] M. Harada: *On categories of indecomposable modules II*, Osaka J. Math. **8** (1971), 309–321.
- [7] H. Kanbara: *Note on Krull-Remak-Schmidt-Azumaya's theorem*, Osaka J. Math. **9** (1971), to appear.
- [8] G.M. Kelly: *On the radical of a category*, J. Austral. Math. Soc. **4** (1964), 299–307.
- [9] E. Mares: *Semi-perfect modules*, Math. Z. **83** (1963), 347–360.
- [10] B. Mitchell: *Theory of Categories*, Academic Press, New York and London, 1965.
- [11] E.M. Patterson: *On the radicals of rings of row-finite matrices*, Proc. Roy. Soc. Edinburgh Sect. A. **66** (1962), 42–46.

- [12] Y. Sai: *On regular categories*, Osaka J. Math. **7** (1970), 301–306.
- [13] N.E. Sexauer and J. E. Warnock: *The radical of the row-finite matrices over an arbitrary ring*, Trans. Amer. Math. Soc. **139** (1965), 287–295.
- [14] R. Ware and J. Zelmanowitz: *The radical of the endomorphism ring of a projective module*, Proc. Amer. Math. Soc. **26** (1970), 15–20.

