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Abstract of the Dissertation

Interaction between Alternating Magnetic Fields

and a Relativistic Collisionless Shock

by

Kentaro Nagata

Doctor of Philosophy in Department of Physics

Osaka University, 2008

The non-thermal spectrum is usual in our universe. This means that a part of particles

should be strongly accelerate in collisionless plasma, although the precise mechanism is not

clear yet. The relativistic astrophysical objects with non-thermal spectrum are, for instance,

pulsar nebulae, active galactic nuclei (AGN) jets and γ-ray bursts (GRBs). Additionally cosmic-

ray also represents non-thermal spectrum including extremely high energy particles. On the

other hand, the energy conversion from magnetic field to particles is also an important problem

for these objects. In the pulsar nebulae the energy conversion of the stellar wind between the

neutron star and the surrounding shock wave should be solved to explain the theoretical and

observational model. In AGN jets and GRBs, the energy conversion is expected to explain the

highly relativistic bulk flow.

In this thesis, we focus on two ordinary phenomena to solve the above problems. One is

a shock wave, and the other is dissipation of alternating magnetic field. The former exists

everywhere a supersonic flow collides other matters. The latter is also common feature on

“active” magnetized objects. Then we study the interaction between alternating magnetic fields

and a shock wave using numerical simulations. In order to investigate the realistic mechanism

of the particle acceleration and the magnetic dissipation, we choose the Particle-in-Cell (PIC)

method which can treat kinetic plasma processes.

First, we show the solution to the problem for the numerical simulation. The PIC simu-
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lations of relativistic plasma flows in two or three dimensions have a trouble of the numerical

Cherenkov radiation, it is excited because the speed of light is reduced numerically in such

simulations especially in large wavenumber region due to the effects of the finite size of spatial

grid and time steps. There is a method that can solve the dispersion relation of the electro-

magnetic waves correctly and the well-known cause of the numerical Cherenkov radiation is

removed with this method. However, there is another cause due to the numerical aliasing effect

of the current density, which involves the shape factor of particles used in the PIC simulations.

The aliasing component of the current density resonates with the electromagnetic waves and

causes the numerical Cherenkov radiation. When the flow of plasma is highly relativistic, the

numerical Cherenkov radiation can be avoided with an appropriate filter. On the other hand,

when the flow is mildly relativistic, one may have to use a higher-order shape factor to decrease

the aliasing effect.

Next, we investigate the interaction between alternating magnetic fields with cold current

sheets and a relativistic collisionless shock wave by one-dimensional PIC simulations. We found

that a precursor wave, propagating from the shock front to upstream, accelerates dense current

sheet plasma in the upstream. In case that the current sheet width and each clearance are

larger than the typical gyro-radius of the downstream plasma, the current sheet excites a large

amplitude magnetosonic wave in the downstream by the collision with a shock front. The

motional electric field accompanied with the magnetosonic wave can further accelerate the pre-

accelerated particles, forming a non-thermal energy spectrum. In addition, the current sheet

structure is stable against not only the collision but also compression by other current sheets.

On the other hand, in the small current sheet case, which means the case that the current

sheet width and each clearance is smaller than the downstream gyro-radius, the magnetic field

dissipates and the magnetosonic wave excitation is absent. This situation can be applied to

pulsar wind nebulae, and the result of the dissipation could solve the σ problem.

Finally, we study the two-dimensional interaction using the exact spectral method. The

particle with larger gyro-radius than the clearance of each current sheets flows back upstream

from the shock front. We found that such back-flow excites the Weibel instability. The insta-
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bility generate not only magnetic field, but also electric field in the shock downstream frame.

The electric field, different from alternating background component, accelerates particles. In

case that the current sheet width and each clearance are smaller than the typical gyro-radius of

the downstream plasma, the alternating magnetic fields completely dissipate within the shock

transition region. Particles are not affected the alternating magnetic fields but the magnetic

field excited by the Weibel instability. In case that the width and the clearance are compara-

ble or larger than the gyro-radius, partial magnetic reconnection make the shock downstream

nonuniformalize. So the large amplitude magnetosonic waves are dispersed during the prop-

agation. Unlike the small case, the alternating magnetic field accelerates back-flow particles.

Furthermore the residual magnetic fields often reflect the accelerated particles to the upstream.

This can yield the long term acceleration process.

This thesis consists of the following chapters and appendixes. In chapter 1, general informa-

tion of this study is introduced. In chapter 2, the solution to the numerical Cherenkov radiation

is resented. In chapter 3, one-dimensional study of the interaction between alternating mag-

netic fields and a shock is presented. In chapter 4, the two-dimensional study is presented. In

chapter 5, we summarize and conclude this thesis.

xix



CHAPTER 1

General Introduction

1.1 General introduction

Plasma is one of the most common material in our universe. Plasma is a group of a mixture of

positively and negatively charged particles. Curiously, such simple components yield extremely

complicated phenomena. The plasma physics has been developed in the field of the nuclear

fusion, the earth’s ionosphere, the earth’ magnetosphere and so on. In laboratories people can

generate plasma and measure it by using various instruments. Around the earth, people cannot

control these natural plasma, but can measure via radio wave or instruments on satellites. In

these cases people can get the precise data of the plasma phenomena. However, astrophysical

objects are too far from the earth to be precisely observed in spite of the fact that they also

include the complicated plasma phenomena.

For a long time, the astrophysics are mainly developed as the macro physics, because the

observed parameters are the value integrated over the global scale. These studies explain the

phenomena well in many cases, but some cases are not explained or not so well, because the

plasma density is too small and the kinetic effect is important in such collisionless plasma. For

example, macro physical approach can not treat particle acceleration mechanism in a precise

sense.

The particle acceleration is common problem everywhere in our universe. Non-Thermal par-

ticles are observed on the earth magnetosphere, solar flares, super nova shocks, pulsar nebulae,

active galactic nuclei (AGN) jets and γ-ray burst (GRB), and as cosmic-rays. The diffusive

shock acceleration (DSA) is a plausible solution to this problem (Blandford and Ostriker, 1978;
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Bell, 1978a,b), but not available for every cases (Chiueh, 1989; Begelman and Kirk, 1990). For

example, the DSA is not efficient for the shock with highly relativistic upstream flow. In such

case the magnetic field angle to the shock normal is almost perpendicular, called a perpen-

dicular shock, because the perpendicular component of the magnetic field in the proper frame

increases the “Lorentz factor” times in the shock frame. In the DSA process the particle must

move back and forth between the upstream and the downstream to gain their energy. In case

of perpendicular shock, the particles are bounded along the magnetic field line (Hudson, 1965),

and hardly across the shock front.

The major instances accompanying such a highly relativistic shock are pulsar nebulae, AGN

jets and GRBs. The central engine of these objects radiates huge energy, so the radiation exceed

the electron rest mass generates electron-positron pair. Then the plasma of the outflow would

mainly consist of electron and positron, which is called pair-plasma. Then the micro physical

process in pair-plasma is considered to overcome the difficulty of the particle acceleration. For

example, Hoshino (2001) showed the shock surfing acceleration in pair-plasma. Originally the

shock surfing acceleration in electron-ion plasma was advanced by Sagdeev (1966), which is a

direct acceleration at the shock front. Zenitani and Hoshino (2001) also showed the acceleration

by the magnetic reconnection, which is energy release process by an alternating magnetic fields

(e.g., Jaroschek et al., 2004; Zenitani and Hoshino, 2005, 2007).

For the pulsar nebula, recently the magnetic field reversal and the shock wave in the stellar

wind are focused as a plausible solution to the particle acceleration and the magnetic field

dissipation problem (σ-problem). The alternating magnetic field and the shock wave are not

unique structure of the pulsar nebulae but would be common for AGN jets and GRBs. The

interaction between supersonic flow and interplanetary medium should generate a shock wave,

and rotating magnetized objects should form magnetic field reversal.

Such relativistic collisionless shock and alternating magnetic field in pair-plasma can not be

generated in a laboratory. On the astrophysical objects, the physical parameters are completely

different from the ones in the other fields. On the basis of the knowledge of the plasma physics

developed in the other fields, people need numerical simulations to study the complicated micro
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plasma processes on the astrophysical objects.

One of the effective methods to simulate the micro scale plasma phenomena is Particle-

in-Cell (PIC) method. In this method the equation of motion solves the particle trajectory

and a full set of the Maxwell equations solve electro-magnetic field. Therefore, although the

calculation consumes a large amount of computational resources, the PIC method can simulate

all kind of plasma phenomena in principle. Fortunately tremendous increase in processing

power of computers makes large scale numerical simulations possible in late years.

In this Ph.D thesis we study the interaction between current sheets and a relativistic shock

via numerical simulations with PIC method. We are mainly interested in the particle accelera-

tion and the magnetic field dissipation process by the interaction. In this chapter we show the

general feature of the relativistic collisionless shock in pair plasma and the introduction of the

astrophysical objects to be applied our scenario.

1.2 Uniform Collisionless Shock in Relativistic Pair Plasma

The major difference between electron-ion plasma and electron-positron (pair) plasma is their

mass ratio. In the electron-ion plasma the asymmetrical motion due to the mass difference can

generate a strong electro-static field, and waves with the electro-static field play a key role in

many kind of phenomena. On the other hand the symmetrical mass of the pair plasma does

not yield such a large electro-static field. Of cause some waves consist of the electro-static field,

but do not have much effect on the phenomena. Furthermore pair-plasma is usually relativistic,

because only the extremely high energy source can generate such nearly pure pair plasma. If the

bulk velocity of the upstream flow is relativistic, the magnetic field component perpendicular

to the flow direction is boosted the “Lorentz factor” times. Therefore in case that the Lorentz

factor of the bulk velocity is much larger than unity, the magnetic field direction against the

shock normal is almost perpendicular in the shock frame.

This shock structure can be characterize a Lorentz invariant parameter σ (Kennel and
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Coroniti, 1984a),

σ =
B2

1

8πmc2n1γ1

, (1.1)

where the parameters noted “1” are upstream quantities in the shock frame, and B, n and γ are

the magnetic field, number density of electron/positron and the Lorentz factor of the upstream

bulk flow, respectively. The notation is common in this chapter, but not used the following

chapters. Basically the Rankine-Hugoniot relations describe the shock profiles.

n1u1 = n2u2, (1.2)

u1B1

γ1

=
u2B2

γ2

, (1.3)

γ1µ1 +
B2

1

4πγ1n1

= γ2µ2 +
B2

2

4πγ2n2

, (1.4)

µ1u
2
1n1 + P1 +

B2
1

8π
= µ2u

2
2n2 + P2 +

B2
2

8π
, (1.5)

where notation “2” means the downstream quantities in the shock frame. u is the four-velocity

of the bulk flow and γ is its Lorentz factor (γ =
√

1 + u2/c2). µ is the specific enthalpy written

by

µ = mc2 +
Γ

Γ − 1

(

P

n

)

, (1.6)

where P is the gas pressure and Γ is a adiabatic index. In case of relativistic gas, the Γ is

4/3 for three-dimensional distribution of the particle velocity and 3/2 for the two-dimensional

one. For example, in case that the magnetic field is perpendicular to the simulation space,

the adiabatic index Γ is 3/2. Equation (1.2)-(1.5) mean conservation of mass flux, magnetic

flux, energy and momentum, respectively. On the assumption of cold and highly relativistic

upstream flow, P1 ≪ n1mc2 and u1 ≫ c, equation (1.2)-(1.5) can be solved for each parameters.

The downstream velocity is

v2

c
=

u2

cγ2

=
1

2 (σ + 1)





(

Γ

2
σ + Γ − 1

)

+

√

(

Γ

2
σ + Γ − 1

)2

+ 4σ (σ + 1)

(

1 − Γ

2

)



 , (1.7)
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and the compression ratio of the number density and magnetic field between the upstream and

the downstream are

n2

n1

=
B2

B1

= 1 +
1

v2/c
. (1.8)

Figure 1.1 shows the behavior of equation (1.7) and (1.8) for σ. Although the above parame-

ters are defined in the shock frame, the shock simulations are usually performed in the shock

downstream frame. In the shock down stream, the shock front propagates with the shock

downstream velocity v2 defined in the shock frame, and the compression ratio is not changed.

Figure 1.2 shows the result of the one-dimensional perpendicular shock simulation for

σ = 0.14. Cold magnetized pair plasma is injected from the left boundary x = 0, and the

right boundary (x = 30Rc) reflects the particles and electro-magnetic fields, where the spa-

cial unit is gyro-radius defined by the upstream magnetic field and the bulk Lorentz factor

Rc = γ0mc2/(eBz0). Here the notation “0” means the initial upstream value. The shock front

is located at x ∼ 15.5Rc. The right-side of the shock front is the shock downstream. In the shock

downstream the average of the perpendicular electric field Ey is zero, because of the plasma

has no bulk motion. The perpendicular magnetic field Bz is compressed as the suggestion by

equation (1.8). The downstream plasma is strongly thermalized.

In the upstream the large amplitude extraordinary mode (X-mode) wave, so called precursor

wave, propagates leftward from the shock front with nearly light velocity. The collective motion

of the upstream plasma on the shock front generates the X-mode wave via the synchrotron

maser instability (Hoshino and Arons, 1991). The excitation of the precursor wave means that

the wave absorbs the energy in the downstream and on the shock front. Actually the energy

absorption by the precursor wave requires the Rankine-Hugoniot relations, equation (1.2)-(1.5),

to be modified (Gallant et al., 1992). They showed that the precursor has peak-energy with 10%

of the injection total energy for σ ≃ 0.1. The Poynting flux of the precursor wave is far from

negligible. However the upstream plasma does not resonant with the precursor because the

X-mode wave does not satisfy the cyclotron resonance condition. In particular, the dispersion
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relation of the X-mode for cold plasma is

c2k2

ω2
=

ω2/Ω2 − 1 − ω2
p/Ω

2

ω2/Ω2 − 1
< 1, (1.9)

where ωp is plasma frequency in pair plasma, ωp =
√

8πne2/m, and Ω is gyro frequency,

Ω = eB/(mc). These parameters are defined for cold plasma in the plasma proper frame.

Equation (1.9) can be rewritten by

ω2

Ω2
= 1 +

ω2
p

Ω2 (1 − c2k2/ω2)
> 1. (1.10)

This result shows no cyclotron resonance. In the phase space plot for uy in figure 1.2, one can

see modulation of the upstream flow by the precursor but no heating.

1.3 Application to Astrophysical Objects

Both of the alternating magnetic field and the relativistic shock can be ordinary structures

on the relativistic astrophysical objects. For example pulsar nebulae, GRBs and AGNs can

include these structures. The radiation from these objects show the power-law spectrum, which

suggests the existence of the non-thermal electrons/positrons. We introduce the model of the

pulsar nebulae and the one of GRBs and AGNs briefly.

1.3.1 Pulsar Wind Nebula

The pulsar nebula is driven by the rotational energy of the central neutron star (Michel, 1982).

Despite observational and theoretical researches for a long time, the detailed mechanism in-

cludes open questions (Gaensler and Slane, 2006; Arons, 2004). Radio pulsars which is driven

by its rotation energy are rapidly spinning and strongly magnetized neutron stars. With a

typical radius of rNS ∼ 10 km, magnetic field strengths of 1012 G are reached on the surface.

Rotation periods Tr are about one second and co-rotation of the pervasively dipolar magnetic

field extends towards the light cylinder rL = cTr/2π, see figure 1.3. In case of the Crab nebula

the rotation period is Tr ≈ 33 ms and the light cylinder is rL ≈ 158rNS. Electrostatic gap
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in the magnetosphere accelerates electrons (positrons) to relativistic energy, then they radiate

γ-ray which generate pair plasmas. The pairs fill the magnetosphere (Goldreich and Julian,

1969) escape along the open magnetic field line outward, which is called pulsar wind.

The Crab Nebula is well observed in broad band and in high resolution due to the compar-

atively small distance of 2 kpc. Chandra X-ray observatory shows the double ring structure

(Weisskopf et al., 2000), see figure 1.6. The inner ring generated by the interaction between the

pulsar outflow and the supernova remnant is located about 0.1 pc from the center. Schmidt

et al. (1979) showed the “winding up” of the magnetic field lines by the pulsar rotation via the

optical polarization by observation (e.g., Bietenholz and Kronberg, 1990; Hickson and van den

Bergh, 1990)).

Rees and Gunn (1974) outlined the hydrodynamic model. The morphology is basically

consistent with recent observations. Furthermore Kennel and Coroniti (1984a,b) proposed a

one-dimensional spherical MHD model (KC model, see figure 1.5) (e.g., Emmering and Cheva-

lier, 1987). The model suggested that the ratio of magnetic field energy flux to kinetic energy

flux (σ parameter, defined by equation (1.1)) and bulk Lorentz factor of the upstream flow at

the immediate shock upstream are 3 × 10−3 and 106, respectively. The σ value means that

the kinetic energy is dominant around the shock in contrast to the situation close to the light

cylinder σ ∼ 104 (Rees and Gunn, 1974; Arons, 1979; Coroniti, 1990), so called “σ problem”.

The spectrum of the Crab Nebula shown in figure 1.4 exhibits highly non-thermal features

(Aharonian and Atoyan, 1998; Mori et al., 2004) which is indicative for the presence of some

particle acceleration process. Because of extremely high Lorentz factor 106 of the flow, the

toroidal magnetic field perpendicular to the flow direction is relativistically boosted. In such

a perpendicular shock case the diffusive shock acceleration, the standard theory of particle ac-

celeration, is not an efficient mechanism of particle acceleration. The particle acceleration and

the magnetic dissipation (σ-problem) are two of the unsolved issues.

Although the KC model neglected the magnetic field structure in the pulsar wind, the mag-

netic field polarity is alternating around the equatorial plane due to oblique rotation of the

pulsar (Michel, 1973; Kirk et al., 2002) The structure of the pulsar wind propagates toward ter-

9



mination shock from the central pulsar (Michel, 1971; Coroniti, 1990; Michel, 1994; Lyubarsky

and Kirk, 2001). Kirk and Skjæraasen (2003) calculated a dissipation of the alternating mag-

netic field during the propagation with three dissipation processes; slow, fast and tearing mode

instability. According to the article the magnetic field does not dissipate enough to explain the

σ value ∼ 3.0 × 10−3, required by the KC model in case of standard pair creation rate in the

pulsar magnetosphere (Hibschman and Arons, 2001a,b). In this case the σ parameter is larger

than 0.003 suggested by KC model. This means that the alternating magnetic fields remains

until the shock front. On the one hand, Kirk (2004) proposed the acceleration by the magnetic

reconnection in the shock upstream (e.g., Kirk, 2006). On the other, Lyubarsky (2003) showed

current sheets dissipation on the shock front yield a consistent result with KC model and also

discussed the possibility of particle acceleration. The dissipation process in this article is that

the alternating magnetic fields annihilate due to magnetic reconnection which is driven by

strong compression from highly relativistic bulk pressure of inflow. They have shown that high

energy particles are generated on the assumption that magnetic reconnection form a power law

spectrum via induction electric field (Zenitani and Hoshino, 2001). Lyubarsky (2005) and Pétri

and Lyubarsky (2007) studied a dissipation of the alternating magnetic field with relativistic

hot current sheet plasma in the pulsar wind nebula by means of full particle simulations (PIC).

Pétri and Lyubarsky (2007) found a criterion of the dissipation in the high-σ case.

We apply some of our results to the particle acceleration problem and the σ problem.

The scale of alternating magnetic field pitch should be comparable to the radius of the light

cylinder. The radius of light cylinder for the Crab nebula is rL ∼ 1600km as noted above.

On the other hand the typical gyro-radius of the particles in the shock downstream is roughly

Rg ∼ 1.7 × 108km by using a particle Lorentz factor ∼ 3 × 106 (Kennel and Coroniti, 1984a,b;

de Jager and Harding, 1992) and the magnetic field ∼ 3× 10−4G determined by Marsden et al.

(1984) due to a turnoff point of the spectrum at infrared (Green et al., 2004). So the alternating

magnetic field scale is much smaller than the gyro-radius of the downstream particles. Of course

one can not cover both scales in one time by numerical simulations. We extrapolate the pulsar

case by the simulation in the case of rL < Rg.
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Figure 1.3: Schematic diagram showing the corotation magnetosphere and the wind zone (from

Goldreich and Julian (1969)). The neutron star is at lower left.

Figure 1.4: The photon spectrum of the Crab nebula in multi-wavelength (from Horns and

Aharonian (2004)).
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Figure 1.5: Schematic relation between the Crab nebula and supernova remnant (from Kennel

and Coroniti (1984a)).

1.3.2 Relativistic flow by GRB and AGN

GRBs and AGN jets are also plausible sources of relativistic flow. Because GRBs are located at

cosmological distance, it is impossible to resolve spacially by observations. However the models

are advanced using indirect evidences. The standard is “fire ball model” (Piran, 1999; Mészáros,

2001). This model requires high Lorentz factor jet γ ∼ 100 with multiple shock to explain

several observations. For example, non-thermal spectrum, pulse time scale, temporal difference

of pulses and energy flux are well explained via Lorentz contraction, time delay and beaming

by the special relativity. Although AGNs are also located at large distance, the jet is directly

observable due to its huge scale 100kpc - 1Mpc. In addition to the GRB case, the superluminal

motion of the jet also requires the high Lorentz factor of γ ∼ 10 − 20 (Vermeulen and Cohen,

1994). The central engines in both objects radiate huge energy, so the radiation exceed the

electron rest mass generates electron-positron plasma. Therefore the jets include the pair at a

high rate, compared to proton. Furthermore both objects show the non-thermal spectrum. At

present the acceleration mechanism is explained by the diffusive shock acceleration. However
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Figure 1.6: The images of the Crab nebula. Left top is the X-ray image by the Chandra X-ray

Observatory. Right top is the optical image by the NASA Hubble Space Telescope. Bottom is

the infrared image by the Spitzer Space Telescope. The view angles of the images are 2.24, 8.2

and 8 arcmin across, respectively.
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Figure 1.7: Schematic view of the striped wind. Left shows a plausible magnetic topology for a

relativistic MHD wind from an oblique rotator (from Coroniti (1990)). The toroidal magnetic

field has an alternating polarity near the rotational equator. Right top shows the toroidal

magnetic field with Parker spiral pattern as seen from the rotational axis, and right bottom

shows the magnetic neural sheet structure (solid line) as seen from the rotational equatorial

plane (from Kirk and Skjæraasen (2003)).
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the specific acceleration process is not clear yet. The existence of the magnetic field is believed

both on AGN jets (Larrabee et al., 2003) and on GRB (Drenkhahn and Spruit, 2002). If

the object include magnetic fields with active motion of the central engine, the anti-parallel

structure of the magnetic fields would naturally arise. We envision the interaction between the

shock and anti-parallel magnetic fields to accelerate particles.
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CHAPTER 2

A Practical Solution for Numerical Cherenkov Radiation

Problem

The Particle-in-Cell (PIC) simulations of relativistic plasma flows in two or three dimensions

have a trouble of the numerical Cherenkov radiation; it is excited because the speed of light

is reduced numerically in such simulations especially in large wavenumber region due to the

effects of the finite size of spatial grid and time steps. There is a method that can solve the

dispersion relation of the electromagnetic waves correctly and the well-known cause of the

numerical Cherenkov radiation is removed with this method. However, there is another cause

due to the numerical aliasing effect of the current density, which involves the shape factor of

particles used in the PIC simulations. The aliasing component of the current density resonates

with the electromagnetic waves and causes the numerical Cherenkov radiation. When the flow

of plasma is highly relativistic, the numerical Cherenkov radiation can be avoided with an

appropriate filter. On the other hand, when the flow is mildly relativistic, one may have to use

a higher-order shape factor to decrease the aliasing effect.

2.1 Introduction

Astrophysical objects are studied from the standpoint of the microscopic plasma physics in late

years. Accordingly, the Particle-in-Cell (PIC) simulation is often used to study phenomena

involved with the relativistic plasma dynamics. In such simulations, the phase velocity of

electromagnetic wave that is reduced by a numerical effect and so relativistic particles can

move faster than it. These particles excite the Cherenkov radiation as real, which is called the
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numerical Cherenkov radiation (Godfrey, 1974). In the following, we review how the numerical

effects modify the dispersion relation of electromagnetic waves.

In the PIC simulation, two of the Maxwell’s equations are used to advance the electromag-

netic fields,

1

c

∂E

∂t
= ∇ × B − 4π

c
J , (2.1)

1

c

∂B

∂t
= −∇ × E. (2.2)

The other equations

∇ · B = 0, (2.3)

∇ · E = 4πρ (2.4)

are used as constraints. The correct dispersion relation of the electromagnetic wave in vacuum

is derived from equation (2.1) and (2.2) ignoring the current term J ,

ω = kc, (2.5)

where c is the speed of light, ω is a frequency and k is a wavenumber.

In the PIC simulation, one of the most popular methods to advance the electromagnetic fields

in time with the Maxwell’s equations is the finite-difference-time-domain (FDTD) method (Yee,

1966). The reasons many people use the FDTD method would be its flexibility and simplicity.

In case of the FDTD methods, the phase velocity of the electromagnetic wave becomes smaller

than the true value, equation (2.5), especially in the large wavenumber region.

Using the leap-frog algorithm with the explicit time integration, the dispersion relation of

the electromagnetic wave becomes

(

1

c∆t
sin

ω∆t

2

)2

=
∑

j=x,y,z

(

1

∆j
sin

kj∆j

2

)2

, (2.6)

where ∆j and kj (j = x, y, z) are the size of the spatial grid and the wavenumbers in the j

direction, respectively. ∆t is the time step. In the following, let us consider the dispersion
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relation of the electromagnetic wave in the x direction for simplicity.

1

c∆t
sin

ω∆t

2
=

1

∆x
sin

kx∆x

2
. (2.7)

We see that the above relation gives the correct dispersion relation (ω = kc) when the Courant

number (c∆t/∆x) is unity, although it holds only along one of the axes. However, the explicit

method becomes unstable when the Courant number is larger than unity, the case of c∆t/∆x =

1 is marginally stable in numerical simulations, and so it is impractical. When the Courant

number is smaller than unity, the method is stable, although the dispersion relation is deviated

from the correct relation as is shown in figure 2.1.
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Figure 2.1: Dispersion relations of electromagnetic wave in vacuum. These five plots (“ex-

act,” “explicit,” “implicit,” “explicit+spectral” and “implicit+spectral”) are described by equa-

tion (2.5), (2.7), (2.8), (2.13) and (2.14), respectively. The Nyquist wavenumber is given by

kx,max∆x = π. For all numerical schemes, the Courant number (c∆t/∆x) is 0.5. Therefore, the

slope of the exact solution in this figure is also 0.5.

The implicit time integration schemes can avoid the restriction of the Courant condition,

because of their stability for any Courant number. For example, the dispersion relation of the
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electromagnetic wave for Crank-Nicolson scheme is given by

1

c∆t/2
tan

(

ω∆t

2

)

=
1

∆x/2
sin

(

kx∆x

2

)

. (2.8)

This relation also does not give the correct solution (see figure 2.1).

One of the ways to improve the dispersion relation in PIC simulation is to use the spectral

method. This method solves the Maxwell’s equations in the Fourier space, then the Maxwell’s

equations become as follows,

1

c

∂Ẽ

∂t
= ik × B̃ − 4π

c
J̃ , (2.9)

1

c

∂B̃

∂t
= −ik × Ẽ, (2.10)

k · B̃ = 0, (2.11)

k · Ẽ = 4πρ̃, (2.12)

where k = (kx, ky, kz) is a wave vector, and the tilde means the Fourier transform. Although the

effect of the finite grid size (∆x) still emerges through the Nyquist wavenumber, the numerical

dispersion of the electromagnetic wave caused by the spatial finite differences is eliminated in

this method. The dispersion relation of electromagnetic wave by the spectral method with

explicit and implicit schemes are respectively given by as follows:

sin
ω∆t

2
=

kxc∆t

2
, (2.13)

tan
ω∆t

2
=

kxc∆t

2
. (2.14)

The dispersion relations of the electromagnetic wave in vacuum obtained from the above meth-

ods (equation (2.13) and (2.14)) are shown in figure 2.1. It should be noted that the dispersion

relations obtained from the spectral methods (both explicit and implicit) approach the true

relation when we take ∆t → 0, whereas the phase velocity of equation (2.13) is always larger

than the true value in the explicit spectral method and always smaller than the true value in

the implicit spectral method.

The above methods cannot solve the dispersion relation of the electromagnetic wave cor-

rectly, especially in large wavenumber region. This yields the numerical Cherenkov radiation.
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In the following section, we show a method that leads the correct dispersion relation even in

the large wavenumber region.

2.2 The Exact Spectral Method

Godfrey (1974) studied the methods to avoid the numerical Cherenkov radiation. One of the

remarkable methods mentioned in the article, which solves the Maxwell’s equations in the

Fourier space, can solve the electromagnetic waves in vacuum correctly. Here, we explain that

method.

By combining equation (2.9) and (2.10), a second order differential equation is obtained.

This differential equation can be solved exactly on the assumption that the current density (J̃)

is constant during a time interval [0, t], with equation (2.11) as follows,

Ẽ(t) = cos (kct)Ẽ(0) + i
sin (kct)

k
k × B̃(0) − sin (kct)

k

4π

c
J̃

+

{

(1 − cos (kct)) k · Ẽ(0) − kct − sin (kct)

k
k ·
(

4π

c
J̃

)}

, (2.15)

B̃(t) = cos(kct)B̃(0) − i
sin(kct)

k
k × Ẽ(0) + i

1 − cos(kct)

k2
k ×

(

4π

c
J̃

)

, (2.16)

where k = |k| =
(

k2
x + k2

y + k2
z

)1/2
.

Generally, a vector (A) can be separated into the longitudinal (A‖) and the transverse (A⊥)

component to a wave vector k considered,

A‖ ≡
k

k2
(k · A), A⊥ ≡ A − A‖. (2.17)

Then, the time integration equation for the electric field (2.15) is separated into those for the

longitudinal part and the transverse part, as follows,

Ẽ‖(t) = Ẽ‖(0) − 4πJ̃‖t, (2.18)

Ẽ⊥(t) = cos(kct)Ẽ⊥(0) +
sin(kct)

k

(

ik × B̃⊥(0) − 4π

c
J̃⊥

)

. (2.19)

equation (2.18) describes the time development of the longitudinal electric field. However, in

PIC simulations, the constraint condition (the Poisson equation) equation (2.12) is generally
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not satisfied with this equation. To ensure the condition, instead of equation (2.18), one can

use the following equation for the longitudinal electric field,

Ẽ‖(t) = −4πi
k

k2
ρ(t). (2.20)

Eventually, combining the longitudinal part and the transverse part again, we obtain a set of

equations to advance the electric and magnetic fields,

Ẽ(t) = cos(kct)Ẽ⊥(0) +
sin(kct)

k

(

ik × B̃(0) − 4π

c
J̃⊥

)

− 4πi
k

k2
ρ(t), (2.21)

B̃(t) = cos(kct)B̃⊥(0) − i
sin(kct)

k
k × Ẽ(0) + i

1 − cos(kct)

k2
k ×

(

4π

c
J̃

)

, (2.22)

where the longitudinal magnetic field B̃‖ is excluded from the first term in the right side of

equation (2.22) to ensure the constraint (2.11). For the discrete time step ∆t, for which the

time is given by t = n∆t where n is the step of simulation, the time advance equations from

the step n to the step n + 1 are written as

Ẽ
n+1 = cos(kc∆t)Ẽn

⊥ +
sin(kc∆t)

k

(

ik × B̃
n − 4π

c
J̃

n+1/2

⊥

)

− 4πi
k

k2
ρn+1, (2.23)

B̃
n+1 = cos(kc∆t)B̃n

⊥ − i
sin(kc∆t)

k
k × Ẽ

n + i
1 − cos(kc∆t)

k2
k ×

(

4π

c
J̃

n+1/2

)

. (2.24)

The representative value of the current density, which is assumed constant for the time interval

∆t in the time integration, is taken at the half time step n + 1/2, as usual in the leap-frog

algorithm. The dispersion relation of the electromagnetic wave in this method gives the cor-

rect solution for large wavenumber. In the following, we call this method “the exact spectral

method.” The dispersion relation obtained from a simulation with this method is shown in

figure 2.2 together with those obtained by other two methods.

2.3 Numerical Cherenkov Radiation Caused by Aliases

The method described in the previous section provides the exact dispersion relation for the

electromagnetic waves. However, the numerical Cherenkov radiation still can be caused by the

aliasing effect due to the finite time step and the finite spatial grid. There are two different
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Figure 2.2: The dispersion relations for electromagnetic wave in uniform plasma obtained from

three two-dimensional simulations with different schemes. Here we used the Fourier transfor-

mation of Bz for the spatial data and then the maximum entropy method for the temporal data

to make this plot. The result of the exact spectral method is shown by the upper curve. The

other two curves are obtained from the implicit finite-difference method (lower curve) and the

implicit spectral method (middle curve), respectively.
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causes. One is related to the alias in the time (frequency) domain, and the other is caused by

the alias in the current density calculated from the particle quantities with a shape factor. The

latter is significant when relativistic bulk flows exist.

Thus, the concept of the Nyquist frequency/wavenumber is essential in the following argu-

ments. For the time step ∆t and the grid size ∆x, ∆y, and ∆z for each axis, the corresponding

Nyquist frequency and wavenumbers are given by ωmax = π/∆t, kx,max = π/∆x, ky,max = π/∆y,

and kz,max = π/∆z, respectively. The maximum Nyquist wavenumber in three dimensions is

given by kmax = (k2
x,max + k2

y,max + k2
z,max)

1/2.

2.3.1 The aliasing in the frequency domain

The former case occurs when the Nyquist frequency is smaller than the maximum Nyquist

wavenumber, ωmax < kmaxc. Let us consider the problem in the ω−k space for an arbitrary wave

vector k. In the present case, the dispersion relation of the electromagnetic waves is reflected

at ω = ωmax for k > ωmax/c due to the aliasing effect (see figure 2.3), because the exact

solution of the Maxwell’s equations includes the contributions even from the high-frequency

modes with ω = kc > ωmax. Therefore, the phase velocity of the electromagnetic waves in this

domain decreases linearly with k and it eventually becomes smaller than the typical velocity

of particles. This results in the numerical Cherenkov radiation. Then, the line of dispersion

relation in the ω − k space again reflected at ω = 0 and so the phase velocity turns to increase

with k. Such reflections in the ω − k space are repeated until k reaches kmax. Figure 2.4 shows

the power spectrum of Bz in the kx −ky space obtained from a two-dimensional simulation of a

relativistic uniform flow in the x direction using the exact spectral method. The bulk Lorentz

factor of the flow is Γ = 1000. The Nyquist frequency and wavenumbers are ωmax = 62.8ωpe

and kmax =
√

2kx,max = 4540ωpe/c, where ωpe is the electron plasma frequency. The simulation

was calculated until the numerical Cherenkov radiation emerged significantly. The numerical

Cherenkov radiation caused by the aliasing effect is evident.
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Figure 2.3: The dispersion relation of electromagnetic wave obtained from a simulation with

the exact spectral method as in figure 2.2 but for ωmax/kmax = 0.5, where ωmax = 62.8ωpe and

kmax = 125.7ωpe/c.

2.3.2 The aliasing of the current density

The latter case can occur even when ωmax ≥ kmaxc as well as when ωmax < kmaxc because

of the aliasing effect arising from the shape factor of the particles, S(x), which is used when

calculating the contribution of each particle to the current density on the grid, that is, since

we sample the particle’s current using the shape factor on the grid, which has a finite spacing,

the modes in the Fourier transform of the shape factor, S(k), with k larger than the Nyquist

wavenumber results in the aliasing effect. For example, one of the most popular shape factors

(one dimension, for simplicity), which has a triangle shape,

S1(x) =







1 − |x|
∆x

(|x| < ∆x)

0 (otherwise),
(2.25)

has the Fourier transform given by

S1(k) =

[

sin(k∆x/2)

k∆x/2

]2

. (2.26)
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Figure 2.4: The power spectral density of Bz obtained from a two-dimensional simulation of a

relativistic uniform flow in the x direction with a bulk Lorentz factor of Γ = 1000. The ratio

of the Nyquist frequency to the maximum Nyquist wavenumber is ωmax/kmaxc ∼ 0.014. The

darker the plot, the stronger the power.
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It is clear that the amplitude of this function decreases as k−2 and remains finite even for

k > kmax.

Here, let us consider the present case in a simple situation where a cold uniform plasma

flows in the x direction with a bulk velocity of V , which is not necessarily relativistic. If back-

reactions are negligible, the (spatial) Fourier transform of the current density has the following

time dependence:

J̃ = J̃0e
−ikxV t, (2.27)

where J̃0 is the Fourier transform of the current density at t = 0 and kx is the wavenumber

in the x direction. This is also accompanied by the fluctuation of electric and magnetic fields

and can provide the source for the numerical Cherenkov radiation. The point is that when

J̃ is calculated on the grid, it includes an aliasing effect due to the sampling of the shape

factor mentioned above (cf. Birdsall and Langdon, 2005, Chapter 8) and, as a result, large-

wavenumber modes with kx > kx,max are folded at kx = kx,max in the ω − k space. Note that

in the present situation the reflection condition depends only on kx because the “dispersion

relation” of the fluctuation of the current density is given by ω = kxV according to the phase

factor in equation (2.27). When the plasma flows in the y direction, the reflection is involved

with only ky. Thus, the line of J̃ reflected at k = kx,max crosses the dispersion relation of

the electromagnetic wave somewhere causing the numerical Cherenkov radiation, although the

phase velocity of the electromagnetic waves is correctly solved with the exact spectral method.

As already mentioned, since the Fourier transform of the shape factor, in general, remains

finite value even for large k, the line of J̃ is also reflected at ω = 0, ω = ωmax, k = 0, and

kx,max, and crosses (or resonates with) the dispersion relation of the electromagnetic waves,

ω = kc, repeatedly (see figure 2.5). The all crossing points (or resonance points) can cause

the numerical Cherenkov radiation as well. However, in general, only the first crossing point is

important because the shape factor S(k) usually decreases rapidly with k.

The location of the first crossing point in the wavenumber space can be found by solving

the following set of equations for 0 < kx < kx,max,

ω = kc, (2.28)
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Figure 2.5: Same as in figure 2.3 but for a relativistic flow with Γ = 1000 in the x direction

and ωmax/kmax = 1, where ωmax = 62.8ωpe and kmax = 62.8ωpe/c. The angles of propagation,

where kx = k cos θ, are (a) θ = 40◦, (b) θ = 45◦, and (c) θ = 50◦, respectively.

ω = kx,maxV + (kx,max − kx)V, (2.29)

with kx = k cos θ, where θ is the angle between the direction of the flow (i.e., the x axis here)

and that of the wave vector k considered. The first equation is the dispersion relation of the

electromagnetic waves in vacuum. The second one is the condition for the fluctuation of the

current density that is reflected once at kx = kx,max. The solution is given by

k =
2(V/c)

1 + (V/c) cos θ
kx,max (2.30)

for 0 ≤ |θ| ≤ π/2. This means an ellipsoid (or an ellipse in two dimension) with the latus

rectum l = 2(V/c)kx,max and the eccentricity ǫ = V/c for 0 < V/c < 1, or a paraboloid (or

a parabola in two dimension) for V/c = 1. Since we treat the Fourier transforms of the real

quantities (for example, Bz), the solution is symmetrical about the origin for π/2 < |θ| ≤ π.

Figure 2.6 shows the power spectrum of Bz obtained from a two-dimensional simulation for the

bulk Lorentz factor of Γ = 1000 (V ∼ c). The time step and grid size are ∆t = 0.05ω−1
pe and

∆x = ∆y = 0.195cω−1
pe , respectively, that is, ωmax = 62.8ωpe and kx,max = ky,max = 16.1ωpe/c.

The dashed curve represents the solution (2.30). We see that it fits the simulation results very

well.
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Figure 2.6: The power spectral density of Bz obtained from a two-dimensional simulation with

a bulk Lorentz factor of Γ = 1000 as in figure 2.4 but for ωmax/kmax ∼ 2.8. The dashed curve

shows the analytical solution (2.30).
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The locations of the second or higher crossing points can be found in the same way, although

they are generally dependent not only on kx,max but also on ωmax. As already mentioned, since

the first crossing point usually plays a dominant role in generating the numerical Cherenkov

radiation in the present situation, we consider only it and do not take care of those higher

crossing points in this paper.

2.4 A Practical Solution for the Numerical Cherenkov Radiation

From the solution (2.30), we see that the first crossing point is located in the region k ≥ kx,max

for V ∼ c, namely, for highly relativistic cases. Thus, one of practical solutions for such cases

is to remove the spectral power of the current density for k > kx,max by using an appropriate

filter. Figure 2.7 shows the Bz obtained from simulations at time t = 50ω−1
pe , (a) without filter

and (b) with a filter in the wavenumber space defined by

f(k) =







[

1 − (k/kc)
11
]4

for k/kc < 1

0 for k/kc ≥ 1,
(2.31)

where we take kc = 0.97kx,max. The numerical Cherenkov radiation is evident in (a), whereas

it is not visible in (b).

The solution (2.30) also indicates that the location of the first crossing point however ap-

proaches k = 0 when decreasing the bulk velocity V . When V is small, the method using filters

described above would not be an efficient solution because the cut-off at small wavenumber

results in a serious loss in the spatial resolution of simulation. For such cases, one of practical

solutions is using a higher-order shape factor to accelerate the decay of the large-wavenumber

modes with k > kx,max in the Fourier transform of the shape factor. However, since the magni-

tude of the current density also becomes small when V is small, the growth rate of the numerical

Cherenkov radiation would become small, too.

29



100

80

60

40

20

0

y

100806040200

x

10
8
6
4
2
0

x
1
0

-
3 

100

80

60

40

20

0

y

100806040200

x

10
8
6
4
2
0

x
1
0

-
3 

(a) (b)

Figure 2.7: The magnetic field Bz obtained from two-dimensional simulations for a bulk Lorentz

factor of Γ = 1000 and ωmax/kmax ∼ 2.8: (a) without filters, and (b) with a filter described in

equation (2.31).

2.5 Conclusions

One of the causes of the numerical Cherenkov radiation in the PIC simulation is the numerically

reduced speed of light. This problem can be solved by the exact spectral method which provides

the correct phase velocity of the electromagnetic waves in vacuum for all wavenumbers (see

figure 2.2).

There is another cause for the numerical Cherenkov radiation that involved with numerical

aliasing effects. This alias problem is significant in case of relativistic bulk flow and there are

two cases. When ωmax < kmaxc, the alias of the electromagnetic wave reflected at the ω = ωmax

resonates with the relativistic particles (see figure 2.3 and 2.4). This case corresponds to

c∆t/∆x > 1 and is impractical. The other case occurs even when ωmax ≥ kmaxc, because

the aliasing component of the shape factor, accompanied with the current fluctuation of the

plasma flow, resonates with the electromagnetic wave (see figure 2.5). The amplitude of the

aliasing component of the shape factor generally decreases with k, so the first crossing point

with the dispersion relation of the electromagnetic wave in ω − k space leads to the most
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Figure 2.8: Same as in figure 2.6 but for a bulk velocity of V = 0.5c.
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significant numerical Cherenkov radiation. The location of the first crossing point is described

by equation (2.30). In highly relativistic cases, the first crossing points are almost located

outside the radius of kx,max as shown in figure 2.6, so cutting off the current density outside

this radius in k-space with an appropriate filter removes the numerical Cherenkov radiation

efficiently. In non-relativistic cases, the fluctuation of the current is relatively small, and growth

of the numerical Cherenkov radiation may be negligible. However, in mildly relativistic cases,

the growth cannot be negligible, and the first crossing point is hard to be eliminated by the

method using filters without loosing the spatial resolution of simulation significantly, because

the location is middle in the wavenumber space as seen in figure 2.8. For such cases, one of

the ways to suppress the numerical Cherenkov radiation would be to use a higher order shape

factor.
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CHAPTER 3

Interaction between Current Sheets and a Shock in One

Dimension

We investigate the interaction between alternating magnetic field with cold current sheets and

a relativistic collisionless shock wave. Many kinds of high energy astrophysical objects may

involve such alternating magnetic fields and a relativistic shock. They can be potent sources

for the generation of high energy particles.

We found that a precursor wave, propagating from the shock front to upstream, accelerates a

dense current sheet plasma in the upstream. In case that the width of the respective magnetic

field reversal is larger than the downstream gyro-radius, the current sheet generates a large

amplitude magnetosonic wave in the downstream by the collision with a shock front. The

motional electric field accompanied with the magnetosonic wave can further accelerate the pre-

accelerated particles, forming a non-thermal energy spectrum. In addition, the current sheet

structure is stable against not only the collision but also compression by other current sheets.

In the thin current sheet case, which means the case that the width of the alternating

magnetic field reversal is smaller than the downstream gyro-radius, the magnetic field dissipates

and the magnetosonic wave excitation is absent. This result is applied to pulsar wind nebulae.

The result of the dissipation could solve the σ problem.

3.1 Introduction

Although the non-thermal spectrum is a common feature in many astrophysical objects, the

particle acceleration mechanism to form the non-thermal spectrum remains elusive. The elu-
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cidation of the mechanism could resolve not only the spectrum on such objects, but also the

cosmic ray power-law spectrum. Especially the acceleration process on highly relativistic astro-

physical objects is effective to generate the ultra high energy cosmic rays (UHECR). Well known

relativistic objects are AGNs (γ ∼ 10), GRBs (γ ∼ 100), and pulsar nebulae (γ ∼ 106), where

γ represents a bulk Lorentz factor of a jet (for AGN and GRB) or a stellar wind (for pulsar

nebula). Usually such highly relativistic flows generate a shock wave due to an interaction with

outer matter. So the acceleration at the shock is a reasonable scenario. Meanwhile magnetic

reconnection is also a plausible mechanism as a particle acceleration process. A central engine

of the relativistic astrophysical object with magnetic field may form alternating magnetic field

structures in the flow by its rotational motion. Although the details of AGNs and GRBs are

uncertain, the stellar wind from the pulsar manifests such a situation. The pulsar and its nebula

are well studied by means of observational and theoretical approaches.

The Crab Nebula is a well observed pulsar nebula in broad band and in high resolution.

Chandra X-ray observatory shows the double ring structure (Weisskopf et al., 2000). The inner

ring generated by the interaction between the pulsar outflow and the supernova remnant is

located about 0.1 pc from the center. This is believed as the location of a standing shock

wave. Kennel and Coroniti (1984a,b) proposed a one-dimensional spherical MHD model (KC

model) which suggesting that the ratio of magnetic field energy flux to kinetic energy flux (σ

parameter) and bulk Lorentz factor of the upstream flow at the immediate shock upstream are

3 × 10−3 and 106, respectively. This means that the kinetic energy is dominant around the

shock in contrast to the situation close to the light cylinder σ ∼ 104, the so called “σ problem”.

As mentioned above, the particle acceleration mechanism is also one of the open questions of

the pulsar wind nebula. Indeed, the spectrum of the Crab Nebula exhibits highly non-thermal

features (Aharonian and Atoyan, 1998; Mori et al., 2004). Because of the extremely high

Lorentz factor of 106 of the flow, the toroidal magnetic field perpendicular to the flow direction

is relativistically boosted. In such a perpendicular shock the diffusive shock acceleration, the

standard theory of particle acceleration, is not an efficient mechanism. Some people previously

engaged the particle acceleration mechanism by the highly relativistic perpendicular shock (e.g.
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Gallant et al. (1992), Hoshino et al. (1992), Hoshino (2001)).

Although the KC model also neglected the magnetic field structure, the magnetic field

polarity is alternating around the equatorial plane due to the magnetic pole precession of

the pulsar (Michel, 1971). The structure of the pulsar wind propagates toward termination

shock from the central pulsar (Coroniti, 1990; Lyubarsky and Kirk, 2001). The alternating

magnetic field structure (“striped wind model”) in the relativistic flow is favored as a means

for solving both the σ problem and the particle acceleration problem. Kirk and Skjæraasen

(2003) calculated a dissipation of the alternating magnetic field during the propagation with

three dissipation processes: slow, fast and tearing mode instability. According to the article

the magnetic field dissipation is insufficient to explain the σ value ∼ 3.0 × 10−3, required by

the KC model in case of a standard pair creation rate in the pulsar magnetosphere (Hibschman

and Arons, 2001a,b). In this case the σ parameter is larger than 0.003 as suggested by the KC

model. Lyubarsky (2003) showed analytically that current sheet dissipation at the shock front

yields a consistent result with the KC model and also discussed the possibility of the particle

acceleration. Therein the dissipation process is established by the alternating magnetic fields

annihilating due to the magnetic reconnection driven by the strong compression from highly

relativistic bulk pressure of the inflow. Lyubarsky (2003) has shown the generation of high

energy particles under the assumption of an initial power-law spectrum. Such a power-law

spectrum has been found previously by Zenitani and Hoshino (2001).

We investigate a general scenario of the interaction between alternating magnetic fields with

cold current sheets and a perpendicular shock. Lyubarsky (2005) and Pétri and Lyubarsky

(2007) studied a dissipation of the alternating magnetic field with relativistic hot current sheet

plasma in the pulsar wind nebula by means of full particle simulations (PIC), see appendix A.

Pétri and Lyubarsky (2007) found a criterion of the dissipation in the high-σ case. We focus on

the possibility of the particle acceleration and magnetic field dissipation by checking a relatively

low-σ case, σ = 0.1. Because it is impossible to describe these kinetic processes accurately by

the MHD simulation, we also study by using full particle simulations. At first we precisely study

the interaction between a single current sheet and a shock to analyze the particle acceleration
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process, the magnetic dissipation process and other interesting properties. Furthermore, on

the basis of these results, we investigate the interaction between multi current sheets and a

shock. The predictions by the previous works are compared with our results. We anticipate

the application to the astrophysical phenomena.

3.2 Simulation Condition

We use a relativistic one-dimensional Particle-in-Cell code (Birdsall and Langdon, 2005). Mag-

netized cold electron-positron plasma is injected from the left boundary. The magnetic field

consists of a component (Bz) perpendicular to the flow direction (x). The electric field has a mo-

tional (Ey) and a static component (Ex). Particle velocity components are in x and y directions.

The right boundary reflects particles and electro-magnetic field. The reflecting wall triggers the

creation a perpendicular shock which propagates leftward. Therefore the simulation is in the

shock downstream frame. The combination of particle bulk motion and electro-magnetic field

of the injection flow satisfies the force-free condition and its bulk kinetic energy has a Lorentz

factor of 100. Now we set the injection magnetization parameter σ0 = B2
0/(8πn0γ0mc2) = 0.1

, where B0 is the magnetic field, n0 is the number density of electron (positron), γ0 is injec-

tion bulk Lorentz factor. All of them are the parameters in the downstream frame. The σ0

is also described by a symbolic plasma frequency ωp0 =
√

8πn0e2/(mγ0) and a gyro-frequency

Ωg0 = eB0/(γ0mc2),

σ0 =
Ω2

g0

ω2
p0

. (3.1)

The time and space scale is normalized by ωp0 and c/ωp0 in the following simulations, respec-

tively. It is important to note that these do not exactly correspond to the plasma frequency

and the gyro-frequency in the downstream.

The electro-magnetic field is solved with an advection form (Birdsall and Langdon, 2005).

The grid size and the time step are ∆x ≤ 0.01c/ωp0 and ∆t = ∆x/c, respectively. Each cell

contains more than 50 particles to ensure statistical accuracy. The injection current sheets are

given by the relativistic Harris solution (Hoh, 1966; Kirk and Skjæraasen, 2003). Then the
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current sheet width λcs0 is defined by B(x) ∝ tanh(x/λcs0). The λcs0 is resolved by more than

20 grids. Plasma inside the current sheet is the same temperature as the cold outer plasma

T0 = 0.005mc2. The above magnetic field and current sheet temperature, described by σ0 and

T0, determine the number density of the current sheet plasma ncs = 10n0 via the pressure

balance,

σ′
0 = 2

n′
cs0

n′
0

T0

mc2
, (3.2)

where the parameters with a prime and the temperature T0 is in the upstream frame. The

hyperbolic tangent magnetic field is smoothly connected to the outer constant one to avoid

numerical noise. Then the Harris current sheet region is kept 5λcs0 for each side, δB0/B0 =

1 − tanh(5) ∼ 10−4, which is sufficiently accurate.

3.3 Single Current Sheet Injection

In this section the focus is on the interaction between a shock and a single current sheet

with the width of λcs0(c/ωp0)
−1 = 0.01, 0.1, 1, 10, called CASE1-4 respectively. We will show

the simulation results and the analysis of the observed phenomena, and will discuss as an

elementary process of the interaction between a fast mode shock and a tangential discontinuity.

3.3.1 Simulation Result

Figure 3.1 shows the simulation results concerning the Lorentz factor of the particles, perpendic-

ular electro-magnetic field, number density and average Lorentz factor in the whole simulation

box. Since the positive and negative particles are positrons and electrons, respectively, in our

simulations, each particles behave symmetric. So the following plots for particles show only the

positrons. Furthermore, because of the symmetry argument, the electrostatic field growth is

limited. We do not discuss this in detail and therefore do not plot it in figures.

One can identify the fast shock fronts at x = 115c/ωp0, 120c/ωp0, 120c/ωp0 and 510c/ωp0, for

CASE1, CASE2, CASE3 and CASE4, respectively. The shock front propagates leftward with
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∼ 0.5c which is consistent with the Rankine-Hugoniot relations in the shock downstream frame

applying the ratio of specific heats Γ = 3/2, i.e. for an ideal two-dimensional gas. The left region

of the shock front is the upstream. The X-mode wave, called precursor, propagates leftward

from the shock front with ∼ c, in detail discussed by Gallant et al. (1992). In the downstream,

which is the region to the right of the shock front, the alternating magnetic field injected from

the upstream remains a tangential discontinuity at x = 134c/ωp0. The downstream parameters

are almost consistent with the Rankine-Hugoniot relations except around the magnetic neutral

sheet. Although all four cases share these characteristics, a large amplitude magnetosonic wave

propagating rightward in the downstream is clearly emerging only in CASE3 and CASE4 at

x = 180c/ωp0 and 780c/ωp0, respectively.

3.3.2 Excitation of a Magnetosonic Wave

In Figure 3.1 the magnetosonic wave is seen clearly for CASE3 and CASE4, but not for CASE1

and CASE2. This result is also shown in non-relativistic simulations (Tsubouchi and Mat-

sumoto, 2005; Haruki et al., 2006) The reason is that the magnetosonic wave is excited by

compression of the shock front by a large bulk energy, or momentum, of the dense current sheet

plasma (see appendix C). Its counteraction remnants after the interaction with the shock front

is a low temperature current sheet plasma.

In all four cases shown in Figure 3.2, the average Lorentz factor in the magnetic neutral

sheet, where x = 136c/ωp0, 135.5c/ωp0, 133 − 135c/ωp0 and 615 − 650c/ωp0 for each cases,

is smaller than the outer region. Let’s compare the temperature from the simulation results

with that from the Rankine-Hugoniot relations. One can generally obtain the temperature

from the average Lorentz factor on the assumption that the particle energy distribution is a

two-dimensional isotropic Maxwellian. For the four-velocity u = (ux, uy),

〈γ〉 =

∫∞

−∞

∫∞

−∞
γ(u)f(u)duxduy

∫∞

−∞

∫∞

−∞
f(u)duxduy

=
2 (T/mc2)

2
+ 2T/mc2 + 1

T/mc2 + 1
(3.3)
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Figure 3.1: Simulation results corresponding to CASE1-4. Each of them consists of three plots

which show particle Lorentz factor γ (contour plot), electro-magnetic field Ey, Bz (red and

blue lines, respectively), number density n and average Lorentz factor 〈γ〉 (red and blue lines,

respectively). All of these physical quantities are normalized by their initial value, are plotted

as function of space in unit of c/ωp0.
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where f(u) is a two-dimensional relativistic Maxwellian, f(u) ∝ exp(−γ(u)mc2/T ). In our sim-

ulations, the temperature comparable to the injection energy is highly relativistic, T/(mc2) ∼
γ0 = 100 ≫ 1, so equation (3.3) is approximated by 〈γ〉 ≃ 2T/(mc2). Using this relation and

the average Lorentz factors from the simulation as shown in Figure 3.2 or Table 3.1, the tem-

perature inside the magnetic neutral sheet by the simulation results is estimated for CASE1-4

as Tcs/γ0mc2 = 0.39, 0.30, 0.19 and 0.33, respectively. On the other hand, one can also estimate

the downstream temperature via the Rankine-Hugoniot relations (Kennel and Coroniti, 1984a;

Gallant et al., 1992). According to the relations, the temperature is Tcs/(γ0mc2) = 0.5 by using

σ0 = 0. This value is inconsistent with the simulation results. The reason is that the bulk

energy of the upstream current sheet plasma does not convert into thermal energy as much

as described by the Rankine-Hugoniot relations. The residual energy works pushing the shock

front and excites a magnetosonic wave.

Identifier λcs0 λcs 〈γ〉

CASE 1 0.01 0.74 0.77

CASE 2 0.1 0.65 0.60

CASE 3 1 1.7 0.37

CASE 4 10 30 0.66

Table 3.1: The current sheets width before (λcs0) and after (λcs) the collision with a shock,

and the average Lorentz factors 〈γ〉 on the magnetic neutral sheet in the downstream (see

Figure 3.2).

3.3.3 High Energy Particles

Around the magnetosonic waves for CASE3 and CASE4 in Figure 3.1, we can observe strongly

accelerated particles. This is basically well explained by the first adiabatic invariant,

µ =
u2

Bz

. (3.4)
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Figure 3.2: Alternating magnetic field and average Lorentz factor for CASE1-4 in the down-

stream. They are averaged by 50 snapshots for 25ω−1
p0 in CASE1-3 and for 125ω−1

p0 in CASE4.

The longitudinal axis parameters are normalized by their initial value. The space scale (x) is

normalized by c/ωp0
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The four-velocity u is a component perpendicular to the magnetic field Bz. The particle energy

restores to its original value after passing the wave, so this high energy feature does not yield

continuous acceleration. However this explanation is invalid for very high energy particles,

whose gyro-radius is larger than the wavelength scale, at the outside of the wave, because

the conservation of the adiabatic invariant is invalid. We will discuss later that non-thermal

particles are generated during the multi-current sheet interaction.

Another important agent for particle acceleration is seen inside the magnetic neutral sheet

in CASE4. They are trapped by the outer magnetic field and meander in the neutral sheet.

They got energy from the precursor before the current sheet collides with the shock front.

Let us discuss about this acceleration mechanism. We think that the interaction between the

precursor wave and the current sheet plays an important role on the acceleration through the

action of the precursor wave pressure.

Gallant et al. (1992) showed that the precursor frequency has a lower limit defined by the

shock energy,

ω ≥ ωL = γshockωp0. (3.5)

In our simulations the Lorentz factor of the shock is γshock = 1.21 for σ0 = 0.1, so the lower limit

of the frequency is ωL = 1.21ωp0. On the other hand the dispersion relation of the precursor in

a highly relativistic flow (Gallant et al., 1992) is

(

ck

ω

)2

≃ 1 −
ω2

p

ω2
= 1 − n

n0

ω2
p0

ω2
, (3.6)

where n is the number density inside the current sheet, n0 ≤ n ≤ n0 + ncs0. If the number

density is larger than this criterion, the precursor cannot propagate in the plasma, (ck/ω)2 < 0,

which means a cut-off. Using equation (3.5) and equation (3.6), one can get the density range

which yields the cut-off of the precursor,

n

n0

>
ω2

ω2
p0

≥ ω2
L

ω2
p0

= 1.46. (3.7)

Since the maximum density of the current sheet plasma in our simulation is ncs0 = 10n0,

frequencies of the precursor wave consistent with equation (3.7) are partially reflected by the
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current sheet plasma and gives its momentum to the dense plasma. Then the precursor pushes

the dense plasma and disturbs the Harris equilibrium. As a result a part of the upstream plasma

begins a gyro motion. These particles show high energy in the downstream frame, because a

gyro-motion along the x-direction in the upstream frame is boosted by γ0 in the downstream

frame. The other plasma is thermalized by a non-equilibrium motion under the perturbed

pressure balance. The gyrating plasma is seen as a high energy one of CASE4 in Figure 3.1.

These effects can form the non-thermal energy spectrum. We will discuss it in section 3.4.2 in

more detail. Although the simulation time scale of CASE1-3 is too short to see the acceleration,

we confirmed the acceleration in such thin current sheet cases by longer simulations (not shown

here).

The current sheet plasma density depends on its temperature and the outside magnetic

pressure, or σ parameter, see equation (3.2). Therefore, in case that a relativistic hot current

sheet and a low σ make the current sheet plasma to be low in density, the above effect is not

expected.

3.3.4 Expansion of the magnetic neutral sheet by the thermalization

How does the magnetic neutral sheet width change before and after the collision? Since the

alternating magnetic field profile in the downstream is not always fitted by a simple analytical

function such as a hyperbolic tangent in the downstream (see Figure 3.2), we define the width of

the magnetic neutral sheet λcs as a half width of the region
{

x
∣

∣

∣
|B(x)| /B1 ≤ tanh(1) ≃ 0.76

}

,

where B1 is the downstream magnetic field predicted by the Rankine-Hugoniot relations. In

CASE1 and CASE2 those magnetic neutral sheets of λcs strongly expand, compared with λcs0

(see Table 3.1). On the other hand the magnetic neutral sheets in CASE3 and CASE4 do not

expand so much. In principle the change of the width is the result of the thermalization of the

plasma around the magnetic neutral sheet, based on the pressure balance (see equation (3.2)).

The sources of the thermal energy are mainly the upstream bulk energy or the magnetic field

energy around the magnetic neutral sheet. Now we estimate the expansion on the assumption

that the source is only the upstream bulk energy with no absorption by the magnetosonic
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wave and with no injection by the precursor. First, the pressure outside the neutral sheet is

calculated by the Rankine-Hugoniot relations,

Pout

n0γ0mc2
=

n1T1

n0γ0mc2
+

B2
1

B2
0

σ0 = 2.1. (3.8)

On the other hand the pressure of the plasma around the magnetic neutral sheet can be ex-

pressed as

Pin

n0γ0mc2
=

ncsTcs

n0γ0mc2
. (3.9)

The temperature is Tcs/(γ0mc2) = 0.5 at most. Then, the pressure balance, Pout = Pin from

equation (3.8) and equation (3.9), requires the density around the magnetic neutral sheet of

ncs/n0 = 4.1. If the net exchange of the particles between inside and outside the magnetic

neutral sheet is not significant, the relation of the density and the width is

ncs0

n0

λcs0 ∼
ncs

n0

λcs. (3.10)

Therefore the expected expansion ratio is λcs/λcs0 ∼ 2.4. For CASE 1 and CASE2, however,

the expansion ratio is 74 and 6.5 in spite of no energy injection by the precursor. This means

that the magnetic field dissipation accounts for the major share of the thermalization, even if

energy absorption by the magnetosonic wave excitation is not effective.

For CASE3, there is no energy injection by the precursor but has the energy absorption

effect by the magnetosonic wave excitation, the expansion ratio (= 1.7) is less than 2.4. For

CASE4, which has the precursor effect and the magnetosonic wave effect, the expansion ratio

(= 3.0) is more than 2.4, and the reason for larger expansion than in CASE3 is the additional

thermalization by the precursor. Anyhow the magnetic dissipation for CASE3 and CASE4 does

not contribute large proportions to thermalize the plasma in the magnetic neutral sheet, unlike

CASE1 and CASE2.

Then the final width in CASE1 and CASE2 is comparable to each other, even though the

difference of the initial value is ten times. What determines the width? The typical gyro-

radius in the downstream can be approximated by combining the upstream bulk flow and the
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downstream gyro-frequency,

Rg

c/ωp0

=
〈γ〉/γ0√
σ0B1/B0

= 1.1
〈γ〉
γ0

, (3.11)

where we used a parameter B1/B0 = 2.8 for σ0 = 0.1. If one substitutes the quantity 〈γ〉 of

the neutral sheet in Table 3.1 into equation(3.11), the typical gyro-radius of the current sheet

plasma for CASE1 and CASE2 is 0.88c/ωp0 and 0.68c/ωp0, respectively. These results agree

with each alternating magnetic field width λcs in Table. 3.1. Therefore the thin current sheet

may expand to the downstream gyro-scale, although this discussion lacks the proof to explain

the dissipation process on the basis of the plasma kinetic theory.

3.4 Multi Current Sheet Injection

This section is divided into two parts. One is a thin current sheet case, like CASE1 and CASE2

in the section 3.3. As we have shown in the section 3.3.4, a thin current sheet expands to

the scale of gyro-radius Rg predominantly by thermalization via the magnetic field dissipation

predominantly. In the multi current sheet case, we expect the annihilation by the expansion

and overlapping with subsequent one.

For the case of the thick current sheet, because the magnetic dissipation effect is weak, the

alternating magnetic field structure would be stable and sheets will not annihilate, unlike the

thin current sheets case. However, we will discuss another important effect by a number of

large amplitude magnetosonic waves and the possibility of the additional particle acceleration

by the waves. Although in the single current sheet case the alternating magnetic field does

not dissipate so much by collision with a shock front, in this case there will be additional

compressions via magnetosonic waves by continuous collisions of the other current sheets. We

will also check the stability of the downstream current sheet against the compressions.
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3.4.1 Thin Current Sheet

As we showed in the section 3.3.4, a thin current sheet expands to the scale of a gyro-radius

Rg. Such current sheets would be annihilated by overlapping. We simulated thin current sheets

injection into a shock to check this prediction. The current sheet width is λcs0 = 0.01c/ωp0,

same with CASE1, and each clearance is 0.2c/ωp0, which is smaller than the downstream current

sheet width of CASE1, 0.77c/ωp0. Left plots in Figure 3.3 show the simulation result. Clearly

there is no shock structure, but just a counter-streaming in the ux plot. This result is similar

to the case of no magnetic field. Because the alternating magnetic field interval is much smaller

than the gyro-radius Rg0, the Lorentz force changes its direction before particles complete gyro-

motion defined by the magnetic field amplitude and the Lorentz factor of their bulk motion.

As a result the particles do not feel magnetic field on the average, and are not affected by the

Lorentz force. Then the injected particles reflected at the right boundary are not thermalized

but just flow leftward. Although in the one dimensional case a shock is not formed within the

PIC simulation scale, Kato (2007) showed that multi-dimensional PIC simulation can generate

a shock by the Weibel instability (Weibel, 1959; Kato, 2005). So the shock would also be

generated in this case in a multi-dimensional simulation.

The pulsar wind close to the equatorial plane includes current sheets spaced equally, but

the polarity is biased at high latitude (Bogovalov, 1999). We also simulate such a case (right

plots in Figure 3.3). The magnetic field structure is shown in the top of the figure. In this case,

since the average magnetic field is not zero, particles complete the gyro-motion and generate

a shock, see Figure 3.3. The electro-magnetic field plot (Ey, Bz) shows that the alternating

magnetic fields completely disappear at the shock front. This is consistent with the prediction

from the single current sheet case. Upper plot in Figure 3.4 shows a comparison of the total

Poynting energy between the alternating magnetic field inflow and the uniform one. In contrast

to the uniform case, the Poynting energy does not increase so much for the alternating magnetic

field case. This means that the alternating magnetic field dissipates and gives its energy to the

particles. The shock downstream parameters meet the Rankine-Hugoniot relations evaluated

by using an average of the upstream magnetic field, 〈Bz〉 = 0.5B0. The energy spectrum has
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a small amount of high energy particles. In this case the current sheet scale is less than the

gyro-radius. Then the motional electric field, which accelerates particles, can not be generated

continuously on such a thin scale.

Lyubarsky (2003) assumed a power-law spectrum to evaluate particle acceleration by mag-

netic reconnection (Zenitani and Hoshino, 2001). The acceleration is accomplished by particles

flowing into the current sheet and running along the reconnection electric field. In the Crab

pulsar case, however, the current sheet clearance is about the light cylinder ∼ 1600km, and the

gyro-radius in the downstream is ∼ 1.7 × 108km by using a particle Lorentz factor ∼ 3 × 106

(Kennel and Coroniti, 1984a,b) and the magnetic field ∼ 3 × 10−4G (Marsden et al., 1984).

Because the current sheet width must be smaller than their clearance, the width is much smaller

than the gyro-radius. In such a kinetic scale, similar to the above simulation, particles are not

trapped in the magnetic neutral sheet, and also do not generate an accelerating electric field.

Therefore the particle acceleration by magnetic reconnection would not work in the termination

shock of the Crab pulsar nebula.

3.4.2 Thick Current Sheet

We also performed a simulation of current sheets with a width of λcs0 = 3.2c/ωp0 and each

clearance of 50c/ωp0 colliding with a shock. In this case the sheet width (1.1c/ωp0) are larger

than the typical gyro-radius of the downstream plasma. To avoid right boundary effects where a

magnetosonic wave reaches the right boundary and is reflected, we set the spacing of an uniform

shock downstream by injecting an uniform inflow in the early phase. After that current sheets

are injected. Figure 3.5 shows a part of the simulation result. In this figure a shock front is

located at x = 520c/ωp0. The precursor propagates leftward from the shock front. Ten current

sheets have already interacted with the shock front and stay in the region from the shock front

to x = 720c/ωp0. Five magnetosonic waves generated by the interactions are propagating in

this region, and the other five are already in the uniform downstream region from x = 720c/ωp0

rightward (see also Figure 3.6). The current sheets in the downstream survive despite the

compression by bumping from behind by the other current sheets. Because the compressions
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Figure 3.3: The simulation result for thin current sheets with narrow clearance. The space

scale x is normalized by c/ωp0 and the other parameters are by their respective initial value.

For the left plots, each current sheet is spaced equally, so the average magnetic field is zero.

For the right, the clearance is alternately shifted, and the average is 0.5, see the right top plot.

The contour plots show particle four-velocity and normalized Lorentz factor. Plots just below

these show the electro-magnetic field. The bottom ones are the particle energy spectrum in the

whole simulation box, and the red line shows a relativistic Maxwellian.
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Figure 3.4: Electro-magnetic energy history for the thin current sheet case (top) and the thick

current sheet case (bottom). They are normalized by the total energy in the simulation box.

The injection energy of particles and electro-magnetic field is subtracted. For comparison no

alternating magnetic field case, called “Uniform”, is also plotted as solid line.
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are carried as magnetosonic waves, it also affects a current sheet separate from the shock front.

The bottom panel of Figure 3.4 shows the electro-magnetic energy history. After the first current

sheet collision with a shock front at x = 710/ωp0, the electro-magnetic energy enhancement by

magnetic field compression dominates the decrease by the magnetic field dissipation. These

results mean that the current sheet structure is quite stable at least in one dimension. In

the multi-dimensional case one can suggest that a current sheet would dissipate easily by the

tearing or drift kink instability (Zenitani and Hoshino, 2005), driven by the compression. If the

tearing mode dominates the drift kink mode, the particles could be accelerated by magnetic

reconnection, which may contribute to the production of non-thermal particles.

The particle energy spectrum in Figure 3.5 shows a peak at γ/γ0 ∼ 0.1 and a break at

γ/γ0 ∼ 1, normalized by the initial value γ0 = 100. The peak is attributed to the relatively

cold plasma within the magnetic neutral sheet in the downstream, discussed in the section 3.3.

The energy region above the break point shows a power-law spectrum with an index 4.

In the left plots of Figure 3.5, one can see the high energy particles in the downstream, from

the shock front (x = 520c/ωp0) to the boundary of the uniform region (x = 720c/ωp0). The

most strongly accelerated particles of them are accelerated by the precursor in the upstream and

by the magnetosonic waves in the downstream. Figure 3.6 shows a stack plot of the magnetic

field, three particle trajectories and their energy histories. In the left plot a shock front with

an uniform downstream propagates from (x(c/ωp0)
−1, tωp0) = (770, 500) to (670, 710) where

the first current sheet collides with the shock front. After that the shock front moves from

(x(c/ωp0)
−1, tωp0) = (670, 710) to (520, 1000), and the tangential discontinuity between current

sheet plasma and the uniform one moves from (x(c/ωp0)
−1, tωp0) = (670, 710) to (720, 1000)

due to compressions by the magnetosonic waves. The fluctuation in the left of the shock front

is the precursor.

The two particles, shown by red and blue lines, gain energy for the first time in the upstream

precursor region, tωp0 = 770−830 for the red line and tωp0 = 650−700 for the blue line. These

particles loose energy at the beginning of the acceleration, because the precursor pushes them

from the anti-flow direction. This detail was discussed in the section 3.3.3. Furthermore these
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particles substantially gain or loose their energy by interactions with the magnetosonic waves.

A part of the particles which gain energy at the moment form the high energy end of the

spectrum. The energy gain (or loss) by a brief interaction by the magnetosonic wave can be

evaluated as follows,

∆γ ≈ γi
vy

c

Ey

Bz

(Ωgi∆t) , (3.12)

where γi is the Lorentz factor before the interaction and Ωgi = qBz/(γimc2) is roughly its gyro-

frequency. vy/c means the injection phase of the particle gyro-motion and determines that the

particle energy gain or loss. In other words, the particle gain energy by running along the

motional electric field. The important thing is that the energy variation is proportional to the

initial energy γi. So the pre-acceleration by the precursor has an important role to generate

higher energy by the interaction with the magnetosonic wave. Furthermore in order to achieve

the acceleration, the magnetosonic wave amplitude should be large so that the group velocity is

nearly light velocity, which means that the motional electric field is roughly equal to the wave

component of the magnetic field in the downstream frame.

In contrast a particle shown by green lines does not change its energy significantly by over-

passing the magnetosonic waves, because the particle has not gained energy from the precursor

before the interaction with the magnetosonic waves and so its energy variation is small as sug-

gested by equation (3.12). Such low energy particles have relatively small gyro-radius and tend

to conserve the first adiabatic invariant, see section 3.3.3.

3.5 Summary and Discussion

We have studied interactions between alternating magnetic fields with a cold current sheet

and a shock front by using a relativistic one-dimensional Particle-in-Cell code. We found

that the interaction excites a large amplitude magnetosonic wave, and the precursor and the

magnetosonic wave accelerate particles.

First, we simulated a single current sheet collision with a shock front for four cases of the

current sheet width. As one of the common points, the precursor gives a part of momentum to
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the dense current sheet plasma inside the magnetic neutral sheet, because the lower frequency

band of the precursor is below the cut-off frequency in the dense plasma. As a result some

particles begin the gyro-motion, and its kinetic energy in x-direction is identified as high in the

downstream frame. Another important point is that the plasma inside the magnetic neutral

sheet after the collision is still colder than the outside plasma. The cold plasma inside the

neutral sheet is not as thermalized as calculated by the Rankine-Hugoniot relations, because

the magnetosonic wave excited by the collision takes away the injection momentum.

The behavior of the alternating magnetic field structure depends on its initial width. For

the case that the width is smaller than the gyro radius defined by the magnetic field and the

particle energy inside the neutral sheet in the downstream, called thin current sheet case, the

width expands to the gyro-scale by thermalization predominantly via magnetic dissipation. On

the other hand in the thick current sheet case the width is almost unchanged. This means that

the alternating magnetic field structure is stable against strong compression by the collision

with a shock. The compression excites a large amplitude magnetosonic wave (see appendix C).

Second, we studied the interaction of the multi current sheet and the relativistic shock. In

case that the initial current sheet width and each separation are smaller than the width in the

thin current sheet case, we studied two situations. One is the equally spaced current sheet case,

and the other is the unequally spaced case. These situations would be similar to the pulsar

wind and the termination shock. Although the pulsar wind on the equatorial plane include

equally spaced current sheets, the space is biased at latitudes.

In the equally spaced current sheet case a shock is not generated in the one-dimensional

simulation . Because the alternating magnetic field structure is much smaller than a gyro-radius

defined by the initial magnetic field and the bulk flow Lorentz factor, particles feel the average

magnetic field, which is zero in case of equally spaced current sheets. As a result this is similar

to the no magnetic field case. However the Weibel instability would trigger a shock structure in

the multi-dimensional case with no background magnetic field as shown by Spitkovsky (2005)

and Kato (2007).

On the other hand,if the current sheets are spaced unequally (see the right-top in Figure 3.3),
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the average magnetic field is not zero. In this case particles complete the gyro-motion, and a

shock is generated. At the shock front the alternating magnetic field is completely dissipated,

which is documented by the electro-magnetic energy history in the top of Figure 3.4. The

downstream parameters are well described by Rankine-Hugoniot relations using the average

magnetic field of the upstream. This result is consistent with the suggestion by Lyubarsky

(2003), which is to be a plausible mechanism to solve the σ problem. The dissipation process

does not produce a non-thermal spectrum. Because the current sheet is less than the gyro-

scale, motional electric field structure in such a scale is not excited. During the dissipation

process, the alternating magnetic field structure overlaps with the next one, and the magnetic

field disappears. Although magnetic reconnection is not considered realistically in this one-

dimensional simulation, particle acceleration is not expected within such a sub-gyro-scale in

the multi-dimensional case. Therefore the particle acceleration by the magnetic reconnection

triggered by a collision with a shock would not work in the pulsar nebula.

In the thick current sheet case, the precursor accelerates the current sheet plasma and the

collision with a shock front excites a magnetosonic wave, as we showed in the single current

sheet case. A remarkable phenomenon is that the pre-accelerated particles by the precursor get

additional energy from the magnetosonic waves. The cause of the acceleration is a motional

electric field accompanied by the magnetosonic wave. Because the energy gain is proportional

to the initial energy (see equation (3.12)), the pre-acceleration is important to achieve a high

energy. Such particles form a high energy tail on the energy spectrum. On the other hand,

the stability of the current sheet is an also important result. The magnetosonic wave carries

momentum and compresses other current sheets. Our simulation showed that the current sheets

in the downstream are also stable against such compressions. The electro-magnetic energy

history in the bottom of Figure 3.4 means that excitation of the magnetosonic wave dominates

over the dissipation. Although the alternating magnetic field is stable in one dimension, a

multi-dimensional instability could trigger the magnetic field dissipation. Then we show the

results of the two-dimensional simulations in the next chapter.
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CHAPTER 4

Interaction between Current Sheets and a Shock in Two

Dimension

We study the two-dimensional interaction between alternating magnetic fields and a relativistic

collisionless shock using the exact-spectral method. The particles with larger gyro-radius than

the clearance of each current sheets flow back upstream from the shock front. We found that

such back flow excites the Weibel instability. The instability generate not only magnetic field,

but also electric field in shock downstream frame. The electric field, different from alternating

background component, accelerates particles. In case that the current sheet width and each

clearance are smaller than the typical gyro-radius of the downstream plasma, the alternat-

ing magnetic fields completely dissipate within the shock transition region. Particles are not

affected by the alternating magnetic fields but by the magnetic field excited by the Weibel in-

stability. On the other hand, in case that the width and the clearance are comparable or larger

than the gyro-radius, partial magnetic reconnections make the shock downstream nonuniform.

So the large amplitude magnetosonic waves, shown in the one-dimensional case, disperse during

the propagation. Unlike the small case, the alternating electromagnetic field additionally accel-

erates back-flow particles. Furthermore the residual magnetic fields often reflect the accelerated

particles. This would yield the long term acceleration process.

4.1 Introduction

The one-dimensional shock wave has been studied for a long time. Many researchers revealed the

precise of the complicated plasma phenomena of the shock wave. The Particle-in-Cell simulation
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is frequently used to understand the plasma kinetic processes. Recently it is possible to run

multi-dimensional simulations by PIC method due to the rapid advancement of computational

power. Actually some people use the multi-dimensional PIC simulations, but most of those are

three-dimensional simulation (Spitkovsky, 2005; Nishikawa et al., 2005). Although the three-

dimensional PIC simulations can treat all kind of plasma processes in principle, the phenomena

are extremely complicated. On the other hand, two-dimensional phenomena are relatively

easy to understand because a lack of degree-of-freedom eliminates some plasma modes. So to

understand the two-dimensional phenomena would help the analysis of the three-dimensional

phenomena.

It is also worth noting that the smaller computational cost is the advantage of the two-

dimensional simulations. The thee-dimensional simulations require a huge amount of computa-

tional power. It is not only for the simulation but also for the data analysis. However, to save

the computational costs by decreasing the spacial and temporal resolution could lead wrong

results or escape the attention of important physical processes. Especially the shock simulation

needs enough time to wait until the boundary effects are to be negligible small.

As shown in chapter 2, we found the cause of the numerical Cherenkov radiation (Godfrey,

1974) and can eliminate it in case of the highly relativistic flow. Although the numerical

Cherenkov radiation is electromagnetic mode in the early stage, it yields density fluctuation in

the nonlinear stage. Such a effect can bring the serious problem to the simulation results. The

conventional method to solve the Maxwell equations needs the low-pass filter to suppress the

numerical Cherenkov radiation (e.g., Greenwood et al., 2004), but one have to be careful not

to lose the physical phenomena by the filter. Even using the filter, the numerical Cherenkov

radiation appears for a long time simulation.

In case of the perpendicular shock, which means the direction of the background magnetic

field is perpendicular to the upstream flow direction (x), the two-dimensional simulation has

two options against the direction of the background magnetic field. Here we set the axes of

the simulation plane to x-y. The options are B = (0, 0, Bz) and B = (0, By, 0). One can also

choose B = (0, By, Bz), but it can not take advantage of the simplicity of the two-dimensional
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phenomena. One of the most significant differences is the degree of freedom for the velocity.

In case of B = (0, 0, Bz), it is two because of no deformation of the magnetic field Bz, which

is similar to the one-dimensional case. In case of B = (0, By, 0), that is three, because the

simulation can treat the deflection of the magnetic field in the x-y plane. In this chapter we

study the case of B = (0, By, 0).

4.2 Simulation Condition

Similar to the one-dimensional case (see section 3.2), the cold magnetized pair plasma is injected

from the left boundary (x = 0) and the particles and the electromagnetic fields are reflected

at the right boundary. As mentioned above, the background magnetic field is B0 = (0, B0, 0).

The electric field is given by E0 = −v0 × B0 so as to be force free for the initial upstream

plasma, where v0 = (v0, 0, 0) is upstream flow velocity. The notation “0” means the initial

upstream value. The magnetization parameter σ defined by equation (1.1) is 0.1 and the

upstream bulk Lorentz factor γ0 = 1/
√

1 − v2
0/c

2 is 100. The alternating magnetic field is

given by Harris equilibrium (Hoh, 1966; Kirk and Skjæraasen, 2003), and the density in the

current sheet ncs0 is 10n0. The thermal four-velocity of the plasma both in the background

and in the current sheet is uth = 0.1. The unit of the time is a inverse of the symbolic plasma

frequency ωp0 =
√

8πn0e2/(mγ0), and the spacial unit is c/ωp0.

The spacial resolution is ∆x ≤ 0.05c/ωp0 and the temporal one is ∆t ≤ 0.01/ωp0. The

Courant number is c∆t/∆x = 0.2 for all simulations. The particle number per a cell is more

than 9 for each of electron and positron.

4.3 Shock by the Uniform Plasma Injection

Before trying the current sheets injection we check the case of the shock by the uniform plasma

injection. The parameters are same to the above setting. Figure 4.1 shows the result about the

density and magnetic field profiles. The right boundary is x = 204.8c/ωp0 and the scale of the
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y-direction is 0 − 25.6c/ωp0 as seen in the figure.

The shock front is located at x ∼ 115c/ωp0, and the shock transition region is 115−120c/ωp0.

The shock downstream (x > 120c/ωp0) is nearly uniform. The compression ratio of the number

density and the magnetic field (By) is ∼ 3.3 as seen in the bottom of the figure. This result

is consistent with the MHD solution by the Rankine-Hugoniot relations for Γ = 4/3 (see

equation (1.7), (1.8) and figure 1.1). One can see the filament structures in the positron

number density shown by the monochromatic contour in the top of the figure. Although we

have not analyzed the formation mechanism yet, the cause is the precursor wave. The precursor

wave pushes the upstream plasma leftward via ponderomotive force. The filaments are charge

neutral, not current filaments. The density of the filaments is more than 10n0 for the dense

part and the thin part is nearly zero. The strongly nonuniform upstream disturbs the shock

front.

The energy spectrum of the particles is approximately three-dimensional Maxwellian (fig-

ure 4.2)

N(γ) ∝ γ
√

γ2 − 1 exp(−γ/T ), (4.1)

where T is a temperature normalized by the rest mass energy. So no acceleration is observed

for this parameter at least. The peak at γ = 100 means the cold upstream plasma.

4.4 Thick Current Sheet

We show the result of relatively thick current sheets injection case. The current sheet width

is λcs0 = 1c/ωp0 and each clearance is L = 10c/ωp0. The typical gyro-radius defined by the

injection bulk Lorentz factor (γ0 = 100) and the magnetic field in the downstream by the

Rankin-Hugoniot relations (B1 = 3.3B0) is 1.0c/ωp0. So the current sheet width is comparable

to the typical gyro radius, but their clearance is larger than the typical gyro-radius.
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4.4.1 General Representation

Figure 4.3 shows the particle distribution in phase space (x - ux, uy, uz, γ), and the positron

number density with the magnetic field lines in two-dimensional space (x-y). The phase space

plots are represented by summation for y-direction. The magnetized electron-positron plasma

are injected from the left boundary (x = 0), and are reflected by the right boundary (x = 409.6).

The shock front is located at x ∼ 280c/ωp0. So the left region is the shock upstream

and the right region is the shock downstream. In order to avoid the reflection of the large

amplitude magnetosonic wave (see section 3.3.2) at the boundary, we prepare the uniform shock

downstream to get through the magnetosonic waves by the injection of the uniform plasma in

the beginning of the simulation. The uniform region is x > 360c/ωp0, not seen in figure 4.3. In

the positron number density plot with the magnetic field lines, note that the direction of the

magnetic field lines is anti-parallel on the both side of the current sheet, represented as dense

parts with monochromatic contour.

The alternating magnetic fields injected in the early stage do not change their overall shape
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in the downstream for x = 320 − 360c/ωp0, although the magnetic reconnections partially

arise. The ones injected in later stage is twisted up via complete magnetic reconnections for

x = 280 − 320c/ωp0. In the early stage the alternating magnetic field dose not change the

shape so much at the moment of the collision with the shock front. As continuous collision of

the alternating magnetic fields, the tearing mode gradually grows for each collision. Finally

the magnetic field is completely reconnected with the neighboring anti-parallel one, as seen at

x = 280 − 320c/ωp0 in figure 4.3, and the downstream becomes nonuniform.

For these reasons, in the early stage, the magnetosonic wave excited by the collision can prop-

agate with the initial spiky shape in the uniform plasma. This is similar to the one-dimensional

case (see CASE3 and CASE4 in figure 3.1). After the downstream becomes nonuniform, the

magnetosonic waves diffuse during the propagation because of the spacial difference of the re-

fractive index. One can check it in ux (top) and γ (the fourth from top) plots in figure 4.3 as

diffusing of the spiky structure with high energy particles from the shock front to the right,

because the large amplitude magnetic field accompanying the strong magnetosonic wave instan-

taneously gives the energy to the particles. This is explained in the first paragraph section 3.3.3.

A part of particles are reflected at the shock front and flow upstream, seen in the plots for ux

and uz of figure 4.3. The particles with larger gyro-radius than the current sheet clearance L do

not complete their gyro-motion within the uniform magnetic field region between the adjacent

current sheets. In the opposite signed magnetic fields, the Lorentz force works on the particles

is opposite direction. Then the particles continuously across the magnetic field (see figure 4.4).

Because such particles should have larger gyro-radius than the current sheets clearance, one

can estimate the lower limit of the energy (Lorentz factor) of the back-flow particles.

mc2γ

eB
> L, (4.2)

γ

γ0

>
√

σ
L

c/ωp0

, (4.3)

where we applied the upstream magnetic field value to B. In this simulation case of σ = 0.1 and

L = 10c/ωp0, the lower limit of the back flow particles is γ/γ0 > 3.2. The criterion is slightly

larger than the actual one, because the magnetic field profile for x direction is not rectangular
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but the smooth function and the effective magnetic field is smaller than the value we used.

Furthermore the back flow particles gain and lose energy by the existence of the electric field

arise from the bulk motion of the upstream flow, so the various energy/momentum particles

are seen in figure 4.3. Anyway the criterion means that only the relatively high energy particles

of the thermalized downstream plasma can flow upstream.

4.4.2 Particle Acceleration Mechanism

The solid line in figure 4.5 shows the evolution of the energy spectrums of the particles within

the whole region except the uniform plasma downstream. The high energy tail continuously

grows during this simulation. The dashed line in the figure shows the relativistic Maxwellian

for three-dimensional velocity space defined by equation (4.1). Clearly one can find the non-

thermal tail on the spectrums (solid lines). The location of the high energy particles is seen in

the bottom plot of figure 4.3. The green, cyan and yellow dots means the particles with Lorentz

factor of > 800, > 1000 and > 1200, respectively. Most of them are located at just upstream

of the shock front. The others are generated by the magnetosonic wave or coming from the

upstream after accelerated. How are the particles accelerated in the upstream?

To conclude, the particles are accelerated by the electric fields Ey and Ez. Ez is accompanied

with the background magnetic field By due to the bulk motion, but Ey should be generated

by another process. The process is the Weibel instability, which is driven by anisotropy of the

velocity distribution of the plasma (Weibel, 1959). The instability generates the magnetic field

in the center-of-mass frame. So the electric field is observed from other frames. In our simulation

case, the velocity anisotropy is brought by the upstream flow and the back-flow plasma, and

the current filament is formed along x-direction. Therefore the magnetic field generated by the

Weibel instability is Bz, and the observed electric field is Ey. These electromagnetic fields are

different components from the background one (Ez, By). Kato (2005) showed the saturation

level and the maximum amplitude of the magnetic field due to the Weibel instability. In our case

velocity dispersion for x- and y-direction are σ‖ ∼ γ0 = 100 and σ⊥ ∼ uth/c = 0.1, respectively.
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For such strongly anisotropic pair plasma case, the maximum magnetic field is evaluated by

Bmax√
4πnmc2

=
χσ‖√

γ̃
, (4.4)

where χ (= 1/3 − 1) is an isotropization parameter, γ̃ is defined by γ̃ =
√

1 + σ2
‖ + 2σ2

⊥. Now

we roughly estimate the maximum magnetic field from equation (4.4)

Bmax

B0

= χ
σ‖

γ0

√

1

2σ

n

n0

γ0

γ̃
. (4.5)

Assuming γ̃ ∼ σ‖ ∼ γ0, n ∼ n0 and χ ∼ 1, and using σ = 0.1, the maximum magnetic field

is Bmax/B0 ∼ 2. Then the Weibel instability can generate the magnetic field with comparable

amplitude to the background B0. Here we define vc as the relative velocity between the center-

of-mass frame and the shock downstream frame, and the maximum electric field is |Emax| =

|vcBmax|/c. The relative velocity could be roughly c, so the amplitude of the maximum electric

field is also comparable to the background magnetic field. The possibility can be assured using

the equation of motion for the Lorentz factor,

mc2dγ

dt
= qv · E. (4.6)

For the estimate, this equation can be rewritten using the energy gain ∆γ for the time interval

∆t,

∆γ

γ0

=
√

σ
E

B0

ωp0∆t. (4.7)

Then substituting Emax ≃ Bmax into E in equation (4.7) and using equation (4.5), one can

obtain the relation

∆γ

γ0

≃ χ
σ‖

γ0

√

1

2

n

n0

γ0

γ̃
ωp0∆t ∼ 1√

2
ωp0∆t. (4.8)

This equation means the acceleration ratio does not explicitly depend on σ. The reason is that

originally both equation (4.4) and (4.6) do not depend on the background magnetic field B0,

but the phenomena depends on the velocity anisotropy and the density. Then if the velocity

anisotropy and the density are respectively proportional to the upstream bulk Lorentz factor

γ0 and the upstream density n0, the result of equation (4.8) is universal against σ. In practice
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the result partially depends on σ via the condition of the back-flow particles described by

equation (4.3). The acceleration ratio of ∼ ωp0∆t/
√

2 is quite large. However this acceleration

does not take place continuously. The comparison with the simulation results is discussed later.

The amplitude of the electromagnetic fields and spacial structures are confirmed by fig-

ure 4.6. Figure 4.6 shows the electric fields E = (Ex, Ey, Ez), the magnetic fields B =

(Bx, By, Bz), the current densities J = (Jx, Jy, Jz) and the charge density ρ. Figure 4.6 is

same time to figure 4.3. One can see the alternating magnetic field of By and the accompany-

ing electric field Ez in the upstream. The current Jz to keep the gradient of the magnetic field

in the upstream is disturbed because it is much smaller than the fluctuation by modulation of

the precursor wave.

In the upstream (x < 280), Jx and ρ show the current filaments and Bz changes its sign

roughly where the Jx and ρ are maximum. This is typical feature of the Weibel instability. The

pattern of Bz corresponds to Ey, and this is explained by the relation |Emax| = |vcBmax|/c. Ey

decreases within the shock transition region (x = 280 − 300c/ωp0), where the relative velocity

vc gradually approaches zero. So the behavior of electric field Ey in the transition region is also

explained well by the relation |Emax| = |vcBmax|/c. On the other hand the magnetic field Bz

increases at the same time, because the plasma is compressed as the flow velocity decreases.

In the upstream, the amplitude of Bz is partly larger than By, and this is consistent with

equation (4.5).

Figure 4.7 shows the history of the two typical accelerated positrons. In the left plot the

shock front moves from (x(c/ωp0)
−1, tωp0) = (293, 307) to (280, 408). Both particles travel

with crossing the shock front during the time. Here we call the particles represented by the

solid lines and the dashed lines “A” and “B” for convenience, respectively. In the middle

plot “B” constantly gains energy (γ) as increasing the absolute value of uy. “A” also dose

for tωp0 = 375 − 385, and additionally does as increasing of ux for tωp0 = 400 − 408. Both

particles are not accelerated z-direction. So two kind of acceleration, for ux and uy, works on

the particles. Note that the acceleration for uy is opposite signed direction in spite that the two

particles have same positive charge. This means each particle are accelerated by opposite signed
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Ey, see equation (4.6). Although the electric fields work on these particles sharply fluctuate

in the right plots, Ey and Ez is dominant rather than Ex. Considering equation (4.6), one

can guess that the averagely negative Ey accelerates “B” with negative uy constantly, and the

positive Ey does “A” with positive uy for tωp0 = 375 − 385. As above, one can confirm that

Ey generated by the Weibel instability accelerates particles. The acceleration ratio estimated

by equation (4.8) does not continuously take place but instantaneously at tωp0 = 375 − 385

for “A” and tωp0 = 350 − 360 for “B”. On the other hand, Ex is not so large for “A” during

tωp0 = 400− 408, even though the particle is accelerated for x-direction (ux). This is explained

as the quick drift motion by the large (Ez, By) at x = 290c/ωp0, see figure 4.6.

When the particles escape into the downstream, some of them are reflected by the residual

magnetic field and go back to upstream, like “A” at (x(c/ωp0)
−1, tωp0) = (295, 344) and “B”

at (295, 330) in figure 4.7. Therefore the acceleration might be said as a kind of the diffusive

shock acceleration.

4.5 Thin Current Sheet

We also show the case of thin current sheets. The current sheet width is λcs0 = 0.1c/ωp0 and

each clearance is L = 1.2c/ωp0. As shown in appendix C, the amplitude of the magnetosonic

wave is not so large. So we do not prepare the absorption region unlike the thick current sheets

case. The other parameters are same to the above case.

4.5.1 General Representation

Using equation (4.3), the energy criterion of traversing magnetic fields is 0.38γ0. Therefore

most particles hardly feel the alternating magnetic fields. Actually the injection flow is just

reflected at the right boundary in the beginning of the simulation.

Figure 4.8 shows the particle distribution in phase space (x - ux, uy, uz, γ), and the positron

number density with the magnetic field lines in two-dimensional space (x-y). The phase space

plots are represented by summation for y-direction. The magnetized electron-positron plasma
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All abscissa are spacial axes for x. From the above the phase space density for ux, uy, uz and γ

is represented by the color contour with logarithmic scale. Bottom shows the positron number

density as the monochromatic contour and the magnetic field lines with red lines. The density

contour is normalized by the initial upstream value. The green, cyan and yellow dots mean the

high Lorentz factor particles of > 800, > 1000 and > 1200, respectively.
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Figure 4.4: Schematic picture of back-flow plasma.
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Figure 4.5: Time evolution of normalized energy (Lorentz factor) spectrums of the plasma

within the region of the alternating magnetic fields (solid line) and three-dimensional

Maxwellian (dashed line). The solid lines show the energy spectrum for each t = 40/ωp0.

The sharp peaks at γ = 100 are contribution of the cold upstream plasma. The spectrums

continuously become harder. The spectrum with highest energy tail is the final time snap-

shot, which is same time to that of figure 4.3 and 4.6. The temperature of the Maxwellian is

T = 0.15mc2γ0, which is smaller than the value expected by the Rankine-Hugoniot relations,

to fit the moderate peak at γ ∼ 30.
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Figure 4.6: Spacial distribution of electric fields, magnetic fields, current densities and charge

density. All quantities are normalized by the initial upstream value of the background magnetic

field (B0). As shown by the color bar, red and blue mean positive and negative, respectively.

The time of this snapshot is identical to that of figure 4.3.
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Figure 4.7: History of two positrons. The two positrons are represented by the solid lines

and the dashed lines, respectively. The ordinates are the temporal axes. Left plot shows the

particle location for x (red lines) with the stack plot of the magnetic field (By) averaged over

y-direction. Middle shows the four-velocity and the Lorentz factor. Right shows the electric

fields works on each particle. The four-velocity, the Lorentz factor and the electric fields are

normalized by each initial upstream value. The plot of the final time step is identical to the

plot of figure 4.3 and 4.6.
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are injected from the left boundary (x = 0), and are reflected by the right boundary (x =

163.8). The shock front is located at x ∼ 90c/ωp0. In one-dimensional case both without

background magnetic field and with alternating magnetic field accompanying thin current sheets

(section 3.4.1), a shock is not formed. Kato (2007) showed the shock formation due to the Weibel

instability in the two-dimensional simulation. In the top of figure 4.9, the dashed line shows the

absolute value of Bz averaged over y-direction. Bz suggests the Weibel instability and increases

around the shock transition region x = 80− 110c/ωp0. Then in this case the Weibel instability

also plays a role in formation of the shock as explained by Kato (2007).

The uz plot in figure 4.8 shows that the downstream plasma is barely thermalized along

z-direction. So the behavior of the plasma is almost two-dimensional in x-y plane. This

should affect the compression ratio, see the bottom plot of figure 1.1. The compression ratio

is calculated via density profile in figure 4.9. The density averaged over a half period of the

Harris magnetic field (Hoh, 1966; Kirk and Skjæraasen, 2003) in the upstream is

〈n〉
n0

=

∫ L/2

−L/2
ncs0 cosh−2(x/λcs0)dx + Ln0

Ln0

(4.9)

≃ 2λcs0

L

ncs0

n0

+ 1 ≃ 2.7, (4.10)

where these parameters are λcs0 = 0.1c/ωp0, L = 1.2c/ωp0, ncs0 = 10n0. The downstream

density is ∼ 8.5n0 by the bottom plot of figure 4.9, so the compression ratio is ∼ 3.1. On the

other hand the ratio calculated by the Rankine-Hugoniot relations with the two-dimensional

adiabatic index Γ = 3/2 is 3 for σ = 0 by equation (1.8), see also figure 1.1. This result means

the shock is similar to the case of unmagnetized plasma with two-dimensional velocity space.

The reason is that the magnetic field Bz excited by the Weibel instability works on the particles,

rather than the alternating magnetic field By. Figure 4.10 also supports the result. From the

upstream to the shock transition region (x < 115c/ωp0), the Weibel instability excites Ey, Bz,

Jx and ρ. Meanwhile, the amplitudes of (Ez, By) is much smaller than that of (Ey, Bz) in the

same region. In the downstream the magnetic field By is vanishingly dissipated, which is also

shown by the magnetic field lines (red lines) in the bottom plot of figure 4.8 and the top plot

with solid line in figure 4.9.
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The above result indicates another important result. That is, the downstream condition is

same the one derived by the upstream of σ = 0 in spite of the finite value of σ in practice. In

particular, considering the alternating magnetic fields and the current sheets, the averaged-σ

of the upstream plasma, called 〈σ〉, is defined by

〈σ〉 =
〈B2

0〉
8π〈n0〉mc2γ0

(4.11)

=
〈B2

0〉/B2
0

〈n0〉/n2
0

σ, (4.12)

where 〈B2
0〉 is given by

〈B2
0〉

B2
0

=

∫ L/2

−L/2
tanh2(x/λcs0)dx

L
(4.13)

≃ 1 − 2λcs0

L
≃ 0.83. (4.14)

〈n0〉 is given by equation (4.10). Therefore 〈σ〉 = 0.03, but the result is inconsistent with the

result suggesting σ = 0 in the upstream. As shown in appendix D, the downstream condition

follows σ′ which is σ evaluated by 〈B0〉2 (= 0 in this case), not 〈σ〉 by 〈B2
0〉, when the alternating

magnetic fields disappear in the downstream.

4.5.2 Particle Acceleration

Figure 4.11 shows the time evolution of the energy spectrum. The spectrum with the highest

energy tail is at the final time step, corresponding to figure 4.8, 4.9 and 4.10. The dashed line

shows the two-dimensional Maxwellian,

N(γ) ∝ γ exp(−γ/T ). (4.15)

The high energy tail gradually grows with time. So the spectrum may become harder for a

longer term, although the acceleration is still weak within the short time simulation. Figure 4.12

shows the trajectory of two accelerated positrons. In the left plot, the shock front travels from

(x(c/ωp0)
−1, tωp0) ∼ (125, 80) to (85, 160), then the shock speed is ∼ 0.5c. The two particles

gain energy with comparable level, but their location of x is different each other at all times.
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The particle represented by the solid!!lines, called “A,” is mainly located in the upstream. The

particle represented by the dashed lines, called “B,” traces the trajectory “A” until t = 115ωp0,

and then drifts into the shock downstream region. Both particles are strongly affected by Ey

all the time, shown in the right plot of figure 4.12. In response to the Ey, uy changes widely.

Additionally, as seen in the drift motion of “B” at t = 115ωp0, the change of ux is yielded by

the Lorentz force of (Ey, Bz). Therefore the electric field Ey excited by the Weibel instability

exists from the upstream to the shock transition region (see figure 4.10), and can accelerate

these particles.

One of the differences from the thick current sheets case is the effect of (Ez, By). This

background components often accelerate particles, which is seen as a particle represented by

solid lines is accelerated during tωp0 = 400 − 408 in figure 4.7. In this small current sheets

case the acceleration by (Ez, By) is not expected. The other is the reflection of particles in

the downstream. In the thick current sheets case the residual magnetic fields of background

component (By) in the downstream often reflects the accelerated particles to the upstream.

However, in this case, the background alternating magnetic fields completely dissipates and

can not reflect particles. Therefore the continuous acceleration with crossing the shock front in

the thick current sheets case does not work in this thin current sheets case.

4.6 Summary and Discussion

We investigated the interaction between alternating magnetic fields and a relativistic collision-

less shock in two-dimension. At the beginning, we showed the result of the uniform inflow case.

The y-averaged shock feature (shown in the bottom of figure 4.1) confirms consistency with

the MHD result by the Rankine-Hugoniot relations. It should be noted that the filamenta-

tion of the upstream plasma in the top of figure 4.1. Although we do not analyze precisely, it

seems that the precursor wave induces it via radiation pressure. Accordingly the nonuniform

upstream plasma disturbs the shock front. The energy spectrum in figure 4.2 is nearly relativis-

tic Maxwellian for three-dimensional velocity space defined by equation (4.1). So the particle
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Figure 4.8: Phase space density plots and number density with magnetic field lines for positron.

All abscissa are spacial axes for x. From the above the phase space density for ux, uy, uz and γ

is represented by the color contour with logarithmic scale. Bottom shows the number density

as the monochromatic contour and the magnetic field lines with red lines. The green and cyan

dots mean the high Lorentz factor particles of > 800 and > 1000, respectively.
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the absolute value of Bz. Bottom is density n. They are normalized by each initial upstream

value. The peaks of Bz in the upstream is affected by the dense current sheets, explained by

equation (4.5).

75



0

2

4

6

8

10

0
p
)

ω/c(/y

xE yE

0

2

4

6

8

10

0
p
)

ω/c(/y

zE xB

0

2

4

6

8

10

0
p
)

ω/c(/y

yB zB

0

2

4

6

8

10

0
p
)

ω/c(/y

xJ yJ

20 40 60 80 100 120 140 160

0p )ω/c(/x

0

2

4

6

8

10

0
p
)

ω/c(/y

zJ

20 40 60 80 100 120 140 160

0p )ω/c(/x

ρ

-4.0 -3.2 -2.4 -1.6 -0.8 0.0 0.8 1.6 2.4 3.2 4.0

Figure 4.10: Spacial distribution of electric fields, magnetic fields, current densities and charge

density. All quantities are normalized by the initial upstream value of the background magnetic

field (B0). As shown by the color bar, red and blue mean positive and negative, respectively.

The time of this snapshot is identical to that of figure 4.8 and 4.9.
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Figure 4.11: Time evolution of normalized energy (Lorentz factor) spectrums of the plasma

within the region of the alternating magnetic fields (solid line) and two-dimensional Maxwellian

(dashed line) defined by equation (4.15). The solid lines show the energy spectrum for each

t = 30/ωp0. The peaks at γ = 100 are contribution of the cold upstream plasma. The spectrums

continuously become harder. The spectrum with highest energy tail is the last time snapshot,

which is same time to that of figure 4.8, 4.9 and 4.10. The temperature of the Maxwellian is

T = 0.5mc2γ0, which is consistent with the value expected by the Rankine-Hugoniot relations.
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Figure 4.12: History of the two positrons. The two positrons are represented by the solid lines

and the dashed lines, respectively. The ordinates are the temporal axes. Left plot shows the

particle location for x (red lines) with the stack plot of the magnetic field (By) averaged over

y-direction. Middle shows the four-velocity and the Lorentz factor. Right shows the electric

fields works on the particle. The four-velocity, the Lorentz factor and the electric fields are

normalized by each initial upstream value. The plot of the final time step is identical to the

plot of figure 4.8, 4.9 and 4.10.
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acceleration is not observed in this simulation setting.

Next the alternating magnetic fields with thick current sheets are injected into the uniform

shock. Only the particle with larger gyro-radius than the clearance of the current sheets can

across the alternating magnetic fields, because such particles do not complete their gyro-motion

within the uniform magnetic field region between the adjacent current sheets. The gyro-radius is

proportional to the Lorentz factor so we found the energy criterion of such particles, represented

by equation (4.3). Some of the particles satisfy the criterion flow back upstream, seen in

figure 4.3.

Such back-flow particles induces the Weibel instability from the upstream to the shock

transition region. The instability generates magnetic field Bz, different from the background

one By. Because the center-of-mass frame is different from the shock downstream frame, Ey is

also observed in figure 4.6. The electric field Ey by the Weibel instability and the background

one Ez accelerate the particles, which presents as a high energy tail of the spectrum in figure 4.5.

As seen in figure 4.7 the accelerated particles travel between the shock upstream and the shock

downstream. The reflection in the upstream is yielded by the drift motion and that in the

downstream is by the residual magnetic fields. This result indicates the long term acceleration.

Additionally the high energy tail grows with time in figure 4.5.

Finally, we showed the case of thin current sheets injection. The current sheet width and

each clearance are smaller than the typical gyro radius defined by the upstream magnetic field

and bulk Lorentz factor. Actually the particles barely feel the magnetic field. Unlike the

one-dimensional case, the shock is formed due to the Weibel instability (Kato, 2007). This

means the magnetic field excited by the instability (Bz) works on particles, rather than the

alternating magnetic fields (By). The shock structure is similar to the unmagnetized plasma

case. Because the magnetic field excited by the Weibel instability is perpendicular to the

x-y plane, the distribution of the particle velocity is nearly two-dimensional (ux, uy). The

alternating magnetic fields By dissipates completely in the downstream, and the other Bz also

disappear after the shock transition region. So the particle reflection in the downstream does

not take place, but still figure 4.11 indicates the growth of high energy tail.
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The condition of the thin current sheets case is similar to the pulsar wind. As shown in

section 4.5.1 and appendix D, the shock downstream condition is determined by 〈B0〉. Therefore

the effective-σ, or σ′, changes from 0 to 〈σ〉 in response to the change of latitude of the pulsar

wind from the equatorial plane to the edge which the alternating magnetic fields exist (see

figure 1.7). The difference of value between σ′ and 〈σ〉 means the efficient magnetic dissipation.

This result would solve the σ problem. Additionally the acceleration via the Weibel instability

is valid close to the equatorial plane.
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CHAPTER 5

Concluding Remarks

We studied the interaction between alternating magnetic fields and a relativistic shock in

electron-positron plasma.

First, in order to solve the two-dimensional relativistic shock simulation by Particle-in-Cell

method correctly, we studied the solution to the numerical Cherenkov radiation. The solution

is given by a set of follows.

• Using “the exact spectral method” to correctly solve the dispersion relation of electro-

magnetic mode

• Filtering the largest resonance point by aliases of the current density

Second, we studied the interaction between alternating magnetic fields and a relativistic

shock using one-dimensional PIC simulations. The phenomena are classified into two cases.

One is “small current sheet”: the current sheet width and each clearance are smaller than the

downstream typical gyro-radius. The other is “large current sheet”: the current sheet width

and each clearance are comparable or larger than the downstream typical gyro-radius.

1. Common feature

• Particle acceleration by the precursor wave

2. Small current sheet

• Strong dissipation of the alternating magnetic fields
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3. Large current sheet

• Excitation of large amplitude magnetosonic waves

• Additional particle acceleration by the magnetosonic waves

Although the acceleration by the precursor wave is not seen for “small current sheet” in our

simulation time scale, it should arise in principle.

Finally, we studied the interaction by the two-dimensional simulations on the basis of the

one-dimensional study. The classification is similar to the one-dimensional case.

1. Common feature

• Flowing back particles with crossing the alternating magnetic fields

• Weibel instability by the back flow

• Particle acceleration by the electric field excited by the Weibel instability

2. Small current sheet

• Strong dissipation of the alternating magnetic fields by the magnetic reconnection

3. Large current sheet

• Dispersion of large amplitude magnetosonic wave in nonuniformalized downstream

by magnetic reconnections

• Additional particle acceleration by the alternating electromagnetic field in the up-

stream

• Particle reflection by the residual magnetic field in the downstream

Although we did not observe the acceleration by the precursor wave within the simulation time

because of computational limitation, it would arise in longer time simulation. The back-flow

particles can be also observed in one-dimensional simulations with the same parameter setting,

the Weibel instability is the two-dimensional proper.
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APPENDIX A

Particle-in-Cell Method

The particle acceleration mechanism and the magnetic field dissipation mechanism closely relate

to the plasma kinetic effects. When one numerically simulates the kinetic effect, the simulation

method should resolve the particle motion. The magneto-hydro-dynamics (MHD) simulation

can solve the global structure of plasma, but not the particle motion. The kinetic effect is

replaced by some parameters in the MHD equations. The most popular methods to describe

the plasma kinetic effect are the Vlasov method and the Particle-in-Cell (PIC) method.

In the Vlasov method, a distribution function is solved by the Vlasov equation in the phase

space. This method make a numerical noise low level. The problem is the memory size for

the calculation. For instance, if one tries a small two-dimensional simulation with 100 × 100

spatial grids and 100 × 100 × 100 momentum spatial grids, the total grid number is 1010!

The Vlasov method in case of the multi-dimensional simulation requires huge memory size for

present computational resources.

In the PIC method, individual particle is directly solved by the equation of motion. The

electromagnetic fields are defined on the spatial grids and are solved by the Maxwell’s equa-

tions. The procedure for one time step in PIC method is shown below (see also figure A.1).

The electromagnetic fields on each particle are obtained from neighboring grids by spatial in-

terpolations. The Lorentz force by the electromagnetic fields progress the time step of these

particles via the equation of motion. The position and velocity of these particles define the

charge density and the current density on the neighboring grids. Then the Maxwell’s equations

progress the time step of the electromagnetic fields on the grids. These information interchange

between particles and grids via the spacial interpolations yields larger numerical noise than
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that of the Vlasov method. In the PIC method, usually the particle number in a grid should be

much larger than unity to keep statistical precision and to decrease the noise. The memory size

required by this PIC method is basically the grid number plus the particle number. Although

the large number of particles consumes a large amount of memory, the size is usually much

smaller than that of the Vlasov method with same scale. For these reasons, we used the PIC

method for study of kinetic plasma processes.

As shown above, the PIC method mainly consists of three parts, particle motion solver, elec-

tromagnetic field solver and momentum calculation (interpolation between particles and grids).

In this appendix we introduce the basic schemes of the particle solver, the electromagnetic field

solver and the momentum calculation in the PIC method.

In the following sections, the position and velocity of particles are defined on integer and

half-integer time steps, respectively. Charge density, electric fields and magnetic fields are

defined on integer spacial grids and integer time steps. Current densities are defined on half-

integer grids and half-integer time steps. For some parameters, interpolations between spacial

grids are needed to satisfy these definition.

A.1 Particle Motion Solver

The velocity of the particles are solved by the equation of motion. In case that the particle

velocity is nearly light velocity, one should use the relativistic equation of motion,

m
du

dt
= q

{

E +
u

cγ
× B

}

, (A.1)

where m is the rest mass, q is the charge, u is the four-velocity, γ is the Lorentz factor defined by

γ =
√

1 + u2/c2, and E and B are electric fields and magnetic fields, respectively. The most

popular method to solve the particle motion in the PIC method is Buneman-Boris method

(Boris, 1970), which ensures no work volume by the magnetic field. According to the method,

the relativistic equation of motion (equation (A.1)) is rewritten in a difference equation form

un+1 − un+1

∆t
=

q

m

(

E
n +

un+1/2 + un−1/2

2cγ
× B

n

)

. (A.2)
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Figure A.1: Chart of the PIC method for one time step. Top and bottom squares show the

solver of equation of motion and the Maxwell equations, respectively. Left and right show the

interpolations between particles and grids (momentum calculations).
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Now equation (A.2) is divided by three steps, an acceleration by E for a half time step (∆t/2),

a rotation by B for one time step (∆t) and an acceleration by E for half time step (∆t/2)

again. The first step and the final step are respectively expressed as

u
− = u

n−1/2 +
q

m
E

n ∆t

2
, (A.3)

u
n+1/2 = u

+ +
q

m
E

n ∆t

2
. (A.4)

Substituting equation (A.3) and (A.4) into equation (A.1), the equation for the second step is

derived,

u
+ = u

− +
2

1 + T 2

(

u
− + u

− × T
)

× T , (A.5)

where T = qBn∆t/(2mcγ−) and γ− =
√

1 + (u−)2/c2. Eventually the order of equation to

be solved in the code is equation (A.3), (A.5) and (A.4). After converting the four-velocity

un+1/2 into the three-velocity vn+1/2 using vn+1/2 = un+1/2/
√

1 + (un+1/2/c)2, the position of

the particles is updated by

x
n+1 = x

n + v
n+1/2∆t. (A.6)

A.2 Electromagnetic Field Solver

For the two-dimensional simulation we used an advanced method shown in chapter 2. In

this section we introduce one of the basic methods (Birdsall and Langdon, 2005), used in

one-dimensional simulation (chapter 3). Now we solve the parameters along the x-axis. The

magnetic field has only the z-component. From equation (2.1) and (2.2), in such case the

electric field has x- and y-component, and the x-component is separated from the y-component

as an electrostatic field given by the Poisson equation (equation (2.4)). Then the equation (2.1)

and (2.2) can be rewritten by

1

c

∂Ey

∂t
= −∂Bz

∂t
− 4π

c
Jy, (A.7)

1

c

∂Bz

∂t
=

∂Ey

∂t
. (A.8)
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Defining F± ≡ Ey ± Bz, equation (A.7) and (A.8) become

(

1

c

∂

∂t
± ∂

∂x

)

F± = −4π

c
Jy. (A.9)

In the difference equation form, these change to

(F+)n+1
i − (F+)n

i

c∆t
+

(F+)n
i − (F+)n

i−1

∆x
= −4π

c
(Jy)

n+1/2

i−1/2
, (A.10)

(F−)n+1
i − (F−)n

i

c∆t
− (F−)n

i+1 − (F−)n
i

∆x
= −4π

c
(Jy)

n+1/2

i+1/2
. (A.11)

These equations solves the advection of F±, so there is no restriction by the Courant condition.

Then one can set the relation between the spacial grid width ∆x and the temporal step width

∆t to ∆x = c∆t. Then equation (A.10) and (A.11) are simplified as follows,

(F±)n+1
i = (F±)n

i∓1 − 4π(Jy)
n+1/2

i∓1/2
∆t. (A.12)

These equations progress the time step of F± in the code. Finally they are converted into the

electromagnetic fields,

Ey =
1

2
(F+ + F−), (A.13)

Bz =
1

2
(F+ − F−). (A.14)

Meanwhile the electrostatic field Ex is solved by

∂Ex

∂x
= 4πρ, (A.15)

from equation (2.4). This equation is easily rewritten in the difference form,

(Ex)
n
i+1/2 = (Ex)

n
i−1/2 + 4πρn

i . (A.16)

One can use this equation to solve the electrostatic field Ex. In equation (A.16), Ex is defined

on half-integer grids. However it should be re-defined on integer grids by linear interpolations,

unless the self-force arise, which moves the particle by the electrostatic potential of itself.

Because the electrostatic field mixes with the other components in Maxwell’s equations for

multi-dimensional case, this method can not be directly extended to the multi-dimensional one.

87



A.3 Momentum Calculation

In the PIC method physical parameters are defined not only on the grids but also on par-

ticles. So charge density and current densities on grids, and electromagnetic fields work on

particles must be correctly evaluated to solve electromagnetic fields and particles consistently.

We introduce the most popular method of the interpolation between grids and particles.

To calculate the charge density and the current densities, the contribution of a particle

is divided into neighboring grids. For the two-dimensional case the weights for each grid is

proportional to the area of the opposite side over the particle (see figure A.2). For example the

contributions of a charge by a particle to the grids are

ρi,j = q(1 − δx)(1 − δy), (A.17)

ρi+1,j = qδx(1 − δy), (A.18)

ρi,j+1 = q(1 − δx)δy, (A.19)

ρi+1,j+1 = qδxδy. (A.20)

The total charge density on the grid is obtained by the summation of all particles. The current

density is similarly given using the particle velocity and position at the half-integer time step.

On the other hand, the contribution of electromagnetic fields works on a particle in the cell

is inversion of the above.

A = Ai,j(1 − δx)(1 − δy) + Ai+1,jδx(1 − δy) + Ai,j+1(1 − δx)δy + Ai+1,j+1δxδy, (A.21)

where A is an arbitrary electromagnetic field vector.

Although we introduced a simple linear interpolation here, one has other options (e.g. Jacobs

and Hesthaven (2006)). Although the higher order interpolation (shape factor) decrease the

noise, the computational costs increase drastically. This is a reason that the higher order

interpolation is not used frequently.
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Figure A.2: Schematic diagram for interpolation between a particle and grids. The black

circle means a particle in a cell. The abscissa and the ordinate show the x-grids and y-grids,

respectively.
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APPENDIX B

Code Check

In order to check the code, we show the dispersion relation. The simulation condition is uniform

plasma with back ground magnetic field of y component B = (0, By, 0). The plasma has no

bulk velocity. The thermal four-velocity is uth = 0.1. The ratio of the gyro frequency and the

plasma frequency, which characterizes the physical property, is Ω/ωp = 0.5, where

Ω =
eB

mcγth

, (B.1)

ωp =

√

8πne2

mγth

. (B.2)

Figure B.1 shows the dispersion relation for parallel propagating waves by the simulation result.

The contour is obtained by Fourier transformation for Bx. These modes can be expressed in

equations by the linear analysis

ω2 =
1

2

[

c2k2 + ω2
UH ±

√

(c2k2 + ω2
UH)2k4 − 4c2k2Ω2

]

, (B.3)

where ωUH is the upper-hybrid frequency ωUH =
√

ω2
p + Ω2. The positive signed equation

means the electromagnetic mode, which is a degeneracy of L-mode and R-mode in ion-electron

plasma. The electromagnetic mode is described by a red dashed line in figure B.1. The frequency

of the electromagnetic mode is ωUH at k = 0, and asymptotically approaches to the frequency

of ω = ck in high wavenumber. The negative one is the Alfvén mode, which is a degeneracy

of whistler and ion cyclotron waves in ion-electron plasma. The Alfvén mode is described by a

green dashed line in figure B.1. The frequency of this wave is ω = 0 at k = 0 and ω → Ω for

k → ∞.

Figure B.2 shows the dispersion relation for perpendicular propagating waves by the simu-

lation result. The contour is also obtained by Fourier transformation for Bx. These modes can
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be expressed in equations by the linear analysis,

ω2 =
1

2

[

(c2 + c2
s)k

2 + Ω2 + ω2
p ±

√

(c2 − c2
s)

2k4 + 2(c2 − c2
s)(ω

2
p − Ω2)k2 + (Ω2 + ω2

p)
2

]

. (B.4)

,where cs is the sonic wave,

cs =

√

(Γ − 1)
γth − 1

γth

c. (B.5)

Γ is a ratio of specific heat. In this case the particle velocity has three dimensional distribution,

and this value is Γ = 4/3. The positive signed equation means the extra-ordinary mode (X-

mode). This mode is described by a red dashed line in figure B.2. The frequency of the X-mode

is also ωUH at k = 0, and asymptotically approaches to the frequency of ω = ck in the high

wavenumber. The negative one is the fast mode, described by a green dashed line in figure B.2.

The frequency of this wave is ω = 0 at k = 0 and asymptotically approaches to the frequency

of the sonic wave.

Although the amplitude of these high wavenumber components decreases by the low-pass

filter, All of these waves are well fitted by the linear dispersion relations.
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Figure B.1: Dispersion relations of parallel propagating waves of Bx. The contour shows the

simulation result. The red dashed line is the electromagnetic mode and the green dashed line is

the Alfvén mode. These modes are described by equation (B.3). The top is the full simulation

scale. The bottom is that of a low frequency part.
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Figure B.2: Dispersion relations of perpendicular propagating waves of Bx. The contour shows

the simulation result. The red dashed line is the extra-ordinary mode and the green dashed line

is the fast mode. These modes are described by equation (B.4). The top is the full simulation

scale. The bottom is that of a low frequency part.
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APPENDIX C

Magnetosonic Wave

The magnetosonic wave generated at the shock front transfers the bulk energy of the current

sheet plasma into the shock heated downstream plasma. The magnetosonic wave is believed

to play a significant role in the additional plasma acceleration and the shock dynamics in

the downstream. In this appendix we estimate the magnetosonic wave amplitude on a simple

assumption of conservation laws and compare the result with the simulation result. First, we

evaluate the upstream current sheet plasma momentum and the downstream magnetosonic

wave momentum. Provided the upstream uniform plasma is converted into the downstream

one, we could approximately consider the current sheet plasma ncs0, added on the uniform

one n0, as exciting the magnetosonic wave. Therefore the uniform component of the upstream

and the downstream is ignored in the following equations. Then the total momentum of the

injection current sheet plasma exciting a magnetosonic wave is described

Mcs0 =

∫ ∞

−∞

2mncs0(x)u0dx (C.1)

= 4λcs0mncs0u0, (C.2)

where ncs0(x) = ncs0 cosh−2(x/λcs0). The magnetosonic wave momentum propagating with cs

in the downstream is

Mms =

∫

dt

∫

dx

{

− ∂

∂x

(

Bz(x)2 + Ey(x)2

8π
+ Pth(x)

)}

(C.3)

=
1

cs

∫ ∞

−∞

{

2B1B2(x) + (1 + c2
s/c

2) B2
2(x)

8π
+
(

2B1B2(x) + B2
2(x)

) Pth1

B2
1

}

dx (C.4)

=
2λms

cs

{

π

(

1

8π
+

Pth1

B2
1

)

B1B2 +

(

1 + c2
s/c

2

8π
+

Pth1

B2
1

)

B2
2

}

, (C.5)
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where

Bz(x) = B1 + B2(x) = B1 + B2 cosh−1(x/λms), (C.6)

Ey(x) = (cs/c) B2(x) = (cs/c) B2 cosh−1(x/λms), (C.7)

Pth(x) = Pth1 + Pth2(x) = Pth1 + Pth2 cosh−2(x/λms). (C.8)

The index “1” and “2” mean the downstream background part and the wave part quantity,

respectively. In the equation (C.4) we used a relation B(x)2
z/Pth(x) = const. on the assumption

of the magnetic moment conservation in highly relativistic case mu2/γBz ∼ T (x)/Bz(x) =

const., mass flux conservation and magnetic flux conservation Bz(x)/n(x) = const., where the

thermal pressure is described by Pth(x) = n(x)T (x). If a part of the injection current sheet

momentum converts into the magnetosonic wave momentum αMcs0 = Mms for 0 < α < 1,

B2

B0

= a
(

−1 +
√

1 + b
)

, (C.9)

a =
π

2

B1

B0

σ0B
2
1/B

2
0 + Pth1/(n0mc2γ0)

σ0 (1 + c2
s/c

2) B2
1/B

2
0 + Pth1/(n0mc2γ0)

, (C.10)

b =
8αcs/c ncs0/n0

π2λms/λcs0

σ0 (1 + c2
s/c

2) B2
1/B

2
0 + Pth1/(n0mc2γ0)

{σ0B2
1/B

2
0 + Pth1/(n0mc2γ0)}2

. (C.11)

The upstream parameters with index 0 describe downstream parameters with index 1 by using

the Rankine-Hugoniot relations (Gallant et al., 1992), n1/n0 = B1/B0 = 2.8, T1 = 0.48 for

σ0 = 0.1. In this case equation (C.9) is

B2

B0

=
3.3

0.58 + 0.38c2
s/c

2

(

−1 +

√

1 + (3.8 + 1.4c2
s/c

2)
αcs/c

λms/λcs0

)

. (C.12)

On the other hand the magnetosonic wave amplitudes for CASE2-4 are (B1 + B2)/B0 ≈
4.1, 6.7, 7.4 respectively. For CASE1 we presume that the amplitude is same to the average

of the uniform downstream value ∼ 3.1, because it is under the fluctuation level. The wave

length of a magnetosonic wave should be larger than the inertia length c/ωp = 0.42c/ωp0, which

could yield a criterion classifying the current sheet width into the thick and the thin current

sheet. In the thick current sheet case (CASE3 and CASE4), we assume that the width and

group velocity are λms ∼ λcs0 and cs ∼ c, respectively, on the basis of the simulation results.

95



If one substitutes these parameters into equation (C.12), the amplitude B2/B0 is constant for

fixed α. The magnetosonic wave amplitude is approximately ∼ 6.7 and ∼ 7.4 for CASE3 and

CASE4, respectively. Using these average, one can determine as α = 0.65. Although this

value, of course, includes not only the actual momentum conversion ratio, but also other error

effects, we use this α to evaluate the thin current sheet cases (CASE1 and CASE2) for ease. In

the thin current sheet case, the width and the group velocity are λms = c/ωp = 0.42c/ωp0 and

cs ∼ 0.82c, respectively. Here we used a dispersion relation with a low frequency approximation

for relativistic hot magnetosonic wave in two-dimensional velocity space,

ω

k
≃
√

1 + 2σ

2 + 2σ
c = 0.82c, (C.13)

where σ = 0.57 is a ratio of the magnetic energy density to the thermal energy density. Then

one can derive the magnetosonic wave amplitude as a function of the current sheet width,

B2

B0

= 4.0

(

−1 +

√

1 + 6.0
λcs0

c/ωp0

)

. (C.14)

Figure C.1 shows the simulation results and the above model results. Equation (C.14) roughly

explains the simulation results of CASE1 and CASE2. The essence of this result is that the

wave length should be larger than the inertia length.

The momentum density determines the amplitude. In case of the thick current sheet λcs0 >

c/ωp, since the magnetosonic wave length λms is comparable to the current sheet width, the

amplitude is constant for different current sheet width λcs0. However in the thin case λcs0 <

c/ωp, the magnetosonic wave length is the inertia length c/ωp. Therefore as the initial current

sheet width decreases, the magnetosonic wave momentum also decreases. As a result the

amplitude becomes smaller than the thick current sheet case with the same current sheet

plasma density ncs0/n0. This is the reason that the amplitude of the magnetosonic wave is

quite small in CASE1 and CASE2.
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Figure C.1: Magnetosonic wave amplitude. The solid line shows background magnetic field as

defined by the shock jump conditions. The dashed and the dotted line are described by the

equation C.12 for λms = c/ωp and λms = λcs0, respectively. The circles are the simulation

results.
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APPENDIX D

Unequally Spaced Current Sheets in Two Dimension

In chapter 4, we showed the case of equally spaced current sheets. For comparison we also

investigate the unequally case. Similar to chapter 4, the results are also divided into two cases,

“thick current sheet” and “thin current sheet”. All parameters conform to the case of the equally

spaced current sheets except the clearance. In this case we set the clearances L1 = 5L/4 and

L2 = 3L/4, where L1 is positive By region, L1 is positive By region and L is the clearance for

equally spaced current sheets case defined in chapter 4. Then the average of By for the region

including two current sheets is 〈B0〉 = 0.25B0, on the other hand in the equally spaced current

sheets case in chapter 3 that is 〈B0〉 = 0.25B0. These clearance is same setting to the unequally

case in section 3.4.1.

D.1 Thick Current Sheet

Figure D.1 shows the particle distribution in phase space (x - ux, uy, uz, γ), and the positron

number density with the magnetic field lines in two-dimensional space (x-y). The phase space

plots are represented by summation for y-direction. The magnetized electron-positron plasma

are injected from the left boundary (x = 0), and are reflected by the right boundary (x = 409.6).

The shock front is located at x ∼ 265c/ωp0. So the left region is the shock upstream and

the right region is the shock downstream. In order to avoid the reflection of the magnetosonic

wave at the boundary (see section 3.3.2), we prepare the uniform shock downstream to get

through the magnetosonic waves by the injection of the uniform plasma in the beginning of the

simulation. The uniform region is x > 355c/ωp0 In the positron number density plot with the
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magnetic field lines, note that the direction of the magnetic field lines is anti-parallel on the

both side of the current sheet, represented as dense parts with monochromatic contour.

Now the averaged alternating magnetic field is 〈B0〉 = 0.25B0. Then there is no back-flow

particles for long distance, even though some particles have energy larger than the criterion

defined by equation (4.3). The back-flow distance is the gyro radius given by the averaged

magnetic field 〈B0〉 = 0.25B0 at most. Such particles are seen at just upstream of the shock

front (x = 255− 265) in figure D.1, and thin current filaments are also seen at the same region.

However it is not enough to generate electric field for the particle acceleration.

Compared with the current sheets clearance (L) in section 4.4, this case has larger (L1 > L)

and smaller one (L2 < L). Although the fluctuation of the shock front grows continuously

in figure 4.3 of section 4.4, the larger clearance prevents the fluctuation from growing. As a

result, drastic magnetic reconnections in the downstream are suppressed, and the large am-

plitude magnetosonic waves excited at the shock front propagate without dispersion, like the

one-dimensional case. The large amplitude magnetosonic wave momently gives the energy to

particles as shown in the first paragraph of section 3.3.3. These high energy particles seen in

the bottom plot in figure D.1 as dots. The time evolution of the energy spectrum is shown in

figure D.3. The high energy part is power-law, but no growth of time.

D.2 Thin Current Sheet

Next we show the case of thin current sheets. As shown in appendix C, the amplitude of the

magnetosonic wave is not so large. So we do not prepare the absorption region unlike the thick

current sheets case.

Figure D.4 shows the particle distribution in phase space (x - ux, uy, uz, γ), and the positron

number density with the magnetic field lines in two-dimensional space (x-y). The phase space

plots are represented by summation for y-direction. The magnetized electron-positron plasma

are injected from the left boundary (x = 0), and are reflected by the right boundary (x = 163.8).

The shock front is located at x ∼ 108c/ωp0. Similar to the above “thick current sheet” case,
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Figure D.1: Phase space density plots and number density with magnetic field lines for positron.

All abscissa are spacial axes for x. From the above the phase space density for ux, uy, uz and γ

is represented by the color contour with logarithmic scale. Bottom shows the positron number

density as the monochromatic contour and the magnetic field lines with red lines. The density

contour is normalized by the initial upstream value. The green, cyan and yellow dots mean the

high Lorentz factor particles of > 800, > 1000 and > 1200, respectively.
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Figure D.2: Spacial distribution of electric fields (Ex, Ey, Ez), magnetic fields (Bx, By, Bz),

current densities (Jx, Jy, Jz) and charge density (ρ). All quantities are normalized by the initial

upstream value of the background magnetic field (B0). As shown by the color bar, red and

blue mean positive and negative, respectively. The time of this snapshot is identical to that of

figure D.1.
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Figure D.3: The time evolution of normalized energy (Lorentz factor) spectrum of the

plasma within the region of the alternating magnetic fields (solid line) and three-dimensional

Maxwellian (dashed line). The solid lines show the energy spectrum for each t = 40/ωp0. The

sharp peaks at γ = 100 are contribution of the cold upstream plasma. The spectrum with

highest value at γ ∼ 30 is the final time snapshot, which is same time to that of figure D.1

and D.2. The temperature of the Maxwellian is T = 0.17mc2γ0, which is smaller than the value

expected by the Rankine-Hugoniot relations, to fit the moderate peak at γ ∼ 30.
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there is just a little back flow at x = 104 − 108 in figure D.4. Accordingly indications of the

Weibel instability is barely observed in figure D.5.

Figure D.6 shows the y-averaged profiles for By (top), absolute value of Bz (middle) and

positron number density n (bottom). By shows disappearance of the alternating magnetic fields

at the shock front and uniform magnetic field in the downstream. The absolute value of Bz

confirms almost no Weibel instability in this case, compared with figure 4.9 in section 4.5.

The plot of the number density clearly shows the downstream value ∼ 11n0. The averaged

number density of the upstream 〈n〉 ≃ 2.7n0 is given by equation (4.10), so the compression

ratio is ∼ 4.1. On the other hand, the compression ratio, derived from the averaged-σ 〈σ〉 = 0.03

defined by equation (4.12), is ∼ 3.7. This is not well accorded with the simulation result ∼ 4.1.

Then let us think of the evaluation of σ using 〈B0〉, not 〈B2
0〉. Here we call it σ′. This is easily

evaluated as follows,

σ′ =
〈B0〉2/B2

0

〈n〉/n0

σ ∼ 2.3 × 10−3, (D.1)

where we used the values, 〈n〉 ≃ 2.7n0, 〈B0〉 = 0.25B0 and σ = 0.1. Then using σ′ the

compression ratio is ∼ 4.0, and this value is roughly consistent with the simulation result

∼ 4.1. Additionally the relation of the magnetic field amplitude between the averaged upstream

value 〈B0〉 = 0.25B0 and the downstream one B1 ∼ 1.0B0 satisfies the compression ratio ∼ 4,

shown in the top plot of figure D.6. Therefore the shock profile is characterized by the averaged

magnetic field 〈B0〉, not by the square mean value 〈B2
0〉1/2, in case that the alternating magnetic

fields completely disappear.

Finally, figure D.7 shows the energy spectrum. This means no particle acceleration. These

results support the acceleration via Weibel instability in chapter 4.
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Figure D.4: Phase space density plots and number density with magnetic field lines for positron.

All abscissa are spacial axes for x. From the above the phase space density for ux, uy, uz and γ

is represented by the color contour with logarithmic scale. Bottom shows the number density

as the monochromatic contour and the magnetic field lines with red lines. There is no high

Lorentz factor particles of > 800
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Figure D.5: Spacial distribution of electric fields (Ex, Ey, Ez), magnetic fields (Bx, By, Bz),

current densities (Jx, Jy, Jz) and charge density ρ. All quantities are normalized by the initial

upstream value of the background magnetic field (B0). As shown by the color bar, red and

blue mean positive and negative, respectively. The time of this snapshot is identical to that of

figure D.4 and D.6.
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Figure D.7: Time evolution of normalized energy (Lorentz factor) spectrum of the plasma

within the region of the alternating magnetic fields (solid line) and two-dimensional Maxwellian

(dashed line) defined by equation (4.15). The solid lines show the energy spectrum for each

t = 30/ωp0, but all plots overlap each other and no time evolution is observed. The peaks at

γ = 100 are contribution of the cold upstream plasma. The time of the final spectrum is at the

same to figure D.4, D.5 and D.6. The temperature of the Maxwellian is T = 0.35mc2γ0, which

is almost consistent with the value expected by the Rankine-Hugoniot relations.
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