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Schematic diagram showing the corotation magnetosphere and the wind zone

(from Goldreich and Julian (1969)). The neutron star is at lower left. . . . . . .

The photon spectrum of the Crab nebula in multi-wavelength (from Horns and

Aharonian (2004)). . . . ...

Schematic relation between the Crab nebula and supernova remnant (from Ken-

nel and Coroniti (1984a)). . . . . . . . ... .. Lo

The images of the Crab nebula. Left top is the X-ray image by the Chandra
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Dispersion relations of electromagnetic wave in vacuum. These five plots (“ex-
act,” “explicit,” “implicit,” “explicit+spectral” and “implicit+spectral”) are
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Nyquist wavenumber is given by kg maxAz = . For all numerical schemes, the
Courant number (cAt/Az) is 0.5. Therefore, the slope of the exact solution in

this figure is also 0.5. . . . . . ..

The dispersion relations for electromagnetic wave in uniform plasma obtained
from three two-dimensional simulations with different schemes. Here we used
the Fourier transformation of B, for the spatial data and then the maximum
entropy method for the temporal data to make this plot. The result of the exact
spectral method is shown by the upper curve. The other two curves are obtained
from the implicit finite-difference method (lower curve) and the implicit spectral

method (middle curve), respectively. . . . . . . ... ...

The dispersion relation of electromagnetic wave obtained from a simulation with
the exact spectral method as in figure 2.2but for wyax/kmax = 0.5, where wyax =

62.8wpe aNd kmax = 125.Twpe/C. .« o o o Lo

The power spectral density of B, obtained from a two-dimensional simulation of a
relativistic uniform flow in the x direction with a bulk Lorentz factor of I' = 1000.
The ratio of the Nyquist frequency to the maximum Nyquist wavenumber is

Wmax/kmax¢ ~ 0.014. The darker the plot, the stronger the power. . . . . .. ..

Same as in figure 2.3but for a relativistic flow with I' = 1000 in the x direction
and Wmax/kmax = 1, where wiax = 62.8wpe and kpax = 62.8wpe/c. The angles of
propagation, where k, = kcosé, are (a) § = 40°, (b) 6 = 45°, and (c) 6 = 50°,
respectively. . . . . L L L
The power spectral density of B, obtained from a two-dimensional simulation
with a bulk Lorentz factor of I' = 1000 as in figure 2.4but for wpax/kmax ~ 2.8.

The dashed curve shows the analytical solution (2.30). . . . .. ... ... ...

vi



2.7

2.8

3.1

3.2

3.3

3.4

The magnetic field B, obtained from two-dimensional simulations for a bulk

Lorentz factor of I' = 1000 and wpax/kmax ~ 2.8: (a) without filters, and (b)

with a filter described in equation (2.31). . . . . ... ... ...

Same as in figure 2.6but for a bulk velocity of V. =05¢. . . .. .. ... .. ..

Simulation results corresponding to CASE1-4. Each of them consists of three
plots which show particle Lorentz factor v (contour plot), electro-magnetic field
E,, B, (red and blue lines, respectively), number density n and average Lorentz

factor (7) (red and blue lines, respectively). All of these physical quantities are

normalized by their initial value, are plotted as function of space in unit of ¢/wy. 39

Alternating magnetic field and average Lorentz factor for CASE1-4 in the down-
stream. They are averaged by 50 snapshots for 25%:01 in CASE1-3 and for 125%701

in CASE4. The longitudinal axis parameters are normalized by their initial value.

The space scale (z) is normalized by ¢/wy . . . . . . . oL

The simulation result for thin current sheets with narrow clearance. The space
scale = is normalized by c¢/w,o and the other parameters are by their respective
initial value. For the left plots, each current sheet is spaced equally, so the
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Electro-magnetic energy history for the thin current sheet case (top) and the
thick current sheet case (bottom). They are normalized by the total energy in
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green line). The time (t), space (z) are normalized by w,,

¢/wpo, respectively.
Lorentz factor () is normalized by its initial value. The final time plots are
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Time evolution of normalized energy (Lorentz factor) spectrums of the plasma

within the region of the alternating magnetic fields (solid line) and three-dimensional

Maxwellian (dashed line). The solid lines show the energy spectrum for each
t = 40/wy. The sharp peaks at v = 100 are contribution of the cold up-
stream plasma. The spectrums continuously become harder. The spectrum with
highest energy tail is the final time snapshot, which is same time to that of fig-
ure 4.3and 4.6. The temperature of the Maxwellian is T = 0.15mc?~y,, which
is smaller than the value expected by the Rankine-Hugoniot relations, to fit the

moderate peak at v ~30. . .. ..

Spacial distribution of electric fields, magnetic fields, current densities and charge
density. All quantities are normalized by the initial upstream value of the back-
ground magnetic field (By). As shown by the color bar, red and blue mean
positive and negative, respectively. The time of this snapshot is identical to that

of figure 4.3. . . . . L L

History of two positrons. The two positrons are represented by the solid lines and
the dashed lines, respectively. The ordinates are the temporal axes. Left plot
shows the particle location for z (red lines) with the stack plot of the magnetic
field (B,) averaged over y-direction. Middle shows the four-velocity and the
Lorentz factor. Right shows the electric fields works on each particle. The
four-velocity, the Lorentz factor and the electric fields are normalized by each
initial upstream value. The plot of the final time step is identical to the plot of

figure 4.3and 4.6. . . . . .. L

Phase space density plots and number density with magnetic field lines for
positron. All abscissa are spacial axes for x. From the above the phase space
density for u,, u,, u, and v is represented by the color contour with logarithmic
scale. Bottom shows the number density as the monochromatic contour and
the magnetic field lines with red lines. The green and cyan dots mean the high

Lorentz factor particles of > 800 and > 1000, respectively. . . . . . .. ... ..
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Shock profiles for z-direction, averaged over y. Top shows the magnetic field B,
and the absolute value of B,. Bottom is density n. They are normalized by each
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current sheets, explained by equation (4.5). . . . . . ... ... L.

Spacial distribution of electric fields, magnetic fields, current densities and charge
density. All quantities are normalized by the initial upstream value of the back-
ground magnetic field (By). As shown by the color bar, red and blue mean

positive and negative, respectively. The time of this snapshot is identical to that

of figure 4.8and 4.9. . . . . . ..

Time evolution of normalized energy (Lorentz factor) spectrums of the plasma

within the region of the alternating magnetic fields (solid line) and two-dimensional

Maxwellian (dashed line) defined by equation (4.15). The solid lines show the en-
ergy spectrum for each t = 30/wyg. The peaks at v = 100 are contribution of the
cold upstream plasma. The spectrums continuously become harder. The spec-
trum with highest energy tail is the last time snapshot, which is same time to that

of figure 4.8, 4.9and 4.10. The temperature of the Maxwellian is 7' = 0.5mc*yo,

which is consistent with the value expected by the Rankine-Hugoniot relations. .

History of the two positrons. The two positrons are represented by the solid
lines and the dashed lines, respectively. The ordinates are the temporal axes.
Left plot shows the particle location for x (red lines) with the stack plot of the
magnetic field (B,) averaged over y-direction. Middle shows the four-velocity
and the Lorentz factor. Right shows the electric fields works on the particle.
The four-velocity, the Lorentz factor and the electric fields are normalized by

each initial upstream value. The plot of the final time step is identical to the

plot of figure 4.8, 4.9and 4.10. . . . . . . . . ..o
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ABSTRACT OF THE DISSERTATION

Interaction between Alternating Magnetic Fields
and a Relativistic Collisionless Shock

by

Kentaro Nagata
Doctor of Philosophy in Department of Physics
Osaka University, 2008

The non-thermal spectrum is usual in our universe. This means that a part of particles
should be strongly accelerate in collisionless plasma, although the precise mechanism is not
clear yet. The relativistic astrophysical objects with non-thermal spectrum are, for instance,
pulsar nebulae, active galactic nuclei (AGN) jets and y-ray bursts (GRBs). Additionally cosmic-
ray also represents non-thermal spectrum including extremely high energy particles. On the
other hand, the energy conversion from magnetic field to particles is also an important problem
for these objects. In the pulsar nebulae the energy conversion of the stellar wind between the
neutron star and the surrounding shock wave should be solved to explain the theoretical and
observational model. In AGN jets and GRBs, the energy conversion is expected to explain the

highly relativistic bulk flow.

In this thesis, we focus on two ordinary phenomena to solve the above problems. One is
a shock wave, and the other is dissipation of alternating magnetic field. The former exists
everywhere a supersonic flow collides other matters. The latter is also common feature on
“active” magnetized objects. Then we study the interaction between alternating magnetic fields
and a shock wave using numerical simulations. In order to investigate the realistic mechanism
of the particle acceleration and the magnetic dissipation, we choose the Particle-in-Cell (PIC)

method which can treat kinetic plasma processes.

First, we show the solution to the problem for the numerical simulation. The PIC simu-

XVii



lations of relativistic plasma flows in two or three dimensions have a trouble of the numerical
Cherenkov radiation, it is excited because the speed of light is reduced numerically in such
simulations especially in large wavenumber region due to the effects of the finite size of spatial
grid and time steps. There is a method that can solve the dispersion relation of the electro-
magnetic waves correctly and the well-known cause of the numerical Cherenkov radiation is
removed with this method. However, there is another cause due to the numerical aliasing effect
of the current density, which involves the shape factor of particles used in the PIC simulations.
The aliasing component of the current density resonates with the electromagnetic waves and
causes the numerical Cherenkov radiation. When the flow of plasma is highly relativistic, the
numerical Cherenkov radiation can be avoided with an appropriate filter. On the other hand,
when the flow is mildly relativistic, one may have to use a higher-order shape factor to decrease

the aliasing effect.

Next, we investigate the interaction between alternating magnetic fields with cold current
sheets and a relativistic collisionless shock wave by one-dimensional PIC simulations. We found
that a precursor wave, propagating from the shock front to upstream, accelerates dense current
sheet plasma in the upstream. In case that the current sheet width and each clearance are
larger than the typical gyro-radius of the downstream plasma, the current sheet excites a large
amplitude magnetosonic wave in the downstream by the collision with a shock front. The
motional electric field accompanied with the magnetosonic wave can further accelerate the pre-
accelerated particles, forming a non-thermal energy spectrum. In addition, the current sheet
structure is stable against not only the collision but also compression by other current sheets.
On the other hand, in the small current sheet case, which means the case that the current
sheet width and each clearance is smaller than the downstream gyro-radius, the magnetic field
dissipates and the magnetosonic wave excitation is absent. This situation can be applied to

pulsar wind nebulae, and the result of the dissipation could solve the ¢ problem.

Finally, we study the two-dimensional interaction using the exact spectral method. The
particle with larger gyro-radius than the clearance of each current sheets flows back upstream

from the shock front. We found that such back-flow excites the Weibel instability. The insta-
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bility generate not only magnetic field, but also electric field in the shock downstream frame.
The electric field, different from alternating background component, accelerates particles. In
case that the current sheet width and each clearance are smaller than the typical gyro-radius of
the downstream plasma, the alternating magnetic fields completely dissipate within the shock
transition region. Particles are not affected the alternating magnetic fields but the magnetic
field excited by the Weibel instability. In case that the width and the clearance are compara-
ble or larger than the gyro-radius, partial magnetic reconnection make the shock downstream
nonuniformalize. So the large amplitude magnetosonic waves are dispersed during the prop-
agation. Unlike the small case, the alternating magnetic field accelerates back-flow particles.
Furthermore the residual magnetic fields often reflect the accelerated particles to the upstream.

This can yield the long term acceleration process.

This thesis consists of the following chapters and appendixes. In chapter 1, general informa-
tion of this study is introduced. In chapter 2, the solution to the numerical Cherenkov radiation
is resented. In chapter 3, one-dimensional study of the interaction between alternating mag-
netic fields and a shock is presented. In chapter 4, the two-dimensional study is presented. In

chapter 5, we summarize and conclude this thesis.

Xix



CHAPTER 1

General Introduction

1.1 General introduction

Plasma is one of the most common material in our universe. Plasma is a group of a mixture of
positively and negatively charged particles. Curiously, such simple components yield extremely
complicated phenomena. The plasma physics has been developed in the field of the nuclear
fusion, the earth’s ionosphere, the earth’ magnetosphere and so on. In laboratories people can
generate plasma and measure it by using various instruments. Around the earth, people cannot
control these natural plasma, but can measure via radio wave or instruments on satellites. In
these cases people can get the precise data of the plasma phenomena. However, astrophysical
objects are too far from the earth to be precisely observed in spite of the fact that they also

include the complicated plasma phenomena.

For a long time, the astrophysics are mainly developed as the macro physics, because the
observed parameters are the value integrated over the global scale. These studies explain the
phenomena well in many cases, but some cases are not explained or not so well, because the
plasma density is too small and the kinetic effect is important in such collisionless plasma. For
example, macro physical approach can not treat particle acceleration mechanism in a precise

sense.

The particle acceleration is common problem everywhere in our universe. Non-Thermal par-
ticles are observed on the earth magnetosphere, solar flares, super nova shocks, pulsar nebulae,
active galactic nuclei (AGN) jets and ~-ray burst (GRB), and as cosmic-rays. The diffusive
shock acceleration (DSA) is a plausible solution to this problem (Blandford and Ostriker, 1978;



Bell, 1978a,b), but not available for every cases (Chiueh, 1989; Begelman and Kirk, 1990). For
example, the DSA is not efficient for the shock with highly relativistic upstream flow. In such
case the magnetic field angle to the shock normal is almost perpendicular, called a perpen-
dicular shock, because the perpendicular component of the magnetic field in the proper frame
increases the “Lorentz factor” times in the shock frame. In the DSA process the particle must
move back and forth between the upstream and the downstream to gain their energy. In case
of perpendicular shock, the particles are bounded along the magnetic field line (Hudson, 1965),

and hardly across the shock front.

The major instances accompanying such a highly relativistic shock are pulsar nebulae, AGN
jets and GRBs. The central engine of these objects radiates huge energy, so the radiation exceed
the electron rest mass generates electron-positron pair. Then the plasma of the outflow would
mainly consist of electron and positron, which is called pair-plasma. Then the micro physical
process in pair-plasma is considered to overcome the difficulty of the particle acceleration. For
example, Hoshino (2001) showed the shock surfing acceleration in pair-plasma. Originally the
shock surfing acceleration in electron-ion plasma was advanced by Sagdeev (1966), which is a
direct acceleration at the shock front. Zenitani and Hoshino (2001) also showed the acceleration
by the magnetic reconnection, which is energy release process by an alternating magnetic fields

(e.g., Jaroschek et al., 2004; Zenitani and Hoshino, 2005, 2007).

For the pulsar nebula, recently the magnetic field reversal and the shock wave in the stellar
wind are focused as a plausible solution to the particle acceleration and the magnetic field
dissipation problem (o-problem). The alternating magnetic field and the shock wave are not
unique structure of the pulsar nebulae but would be common for AGN jets and GRBs. The
interaction between supersonic flow and interplanetary medium should generate a shock wave,

and rotating magnetized objects should form magnetic field reversal.

Such relativistic collisionless shock and alternating magnetic field in pair-plasma can not be
generated in a laboratory. On the astrophysical objects, the physical parameters are completely
different from the ones in the other fields. On the basis of the knowledge of the plasma physics

developed in the other fields, people need numerical simulations to study the complicated micro



plasma processes on the astrophysical objects.

One of the effective methods to simulate the micro scale plasma phenomena is Particle-
in-Cell (PIC) method. In this method the equation of motion solves the particle trajectory
and a full set of the Maxwell equations solve electro-magnetic field. Therefore, although the
calculation consumes a large amount of computational resources, the PIC method can simulate
all kind of plasma phenomena in principle. Fortunately tremendous increase in processing

power of computers makes large scale numerical simulations possible in late years.

In this Ph.D thesis we study the interaction between current sheets and a relativistic shock
via numerical simulations with PIC method. We are mainly interested in the particle accelera-
tion and the magnetic field dissipation process by the interaction. In this chapter we show the
general feature of the relativistic collisionless shock in pair plasma and the introduction of the

astrophysical objects to be applied our scenario.

1.2 Uniform Collisionless Shock in Relativistic Pair Plasma

The major difference between electron-ion plasma and electron-positron (pair) plasma is their
mass ratio. In the electron-ion plasma the asymmetrical motion due to the mass difference can
generate a strong electro-static field, and waves with the electro-static field play a key role in
many kind of phenomena. On the other hand the symmetrical mass of the pair plasma does
not yield such a large electro-static field. Of cause some waves consist of the electro-static field,
but do not have much effect on the phenomena. Furthermore pair-plasma is usually relativistic,
because only the extremely high energy source can generate such nearly pure pair plasma. If the
bulk velocity of the upstream flow is relativistic, the magnetic field component perpendicular
to the flow direction is boosted the “Lorentz factor” times. Therefore in case that the Lorentz
factor of the bulk velocity is much larger than unity, the magnetic field direction against the

shock normal is almost perpendicular in the shock frame.

This shock structure can be characterize a Lorentz invariant parameter o (Kennel and



Coroniti, 1984a),

Bt

o=,
8mmc*nim

(1.1)

where the parameters noted “1” are upstream quantities in the shock frame, and B, n and ~ are
the magnetic field, number density of electron/positron and the Lorentz factor of the upstream
bulk flow, respectively. The notation is common in this chapter, but not used the following

chapters. Basically the Rankine-Hugoniot relations describe the shock profiles.

niuy = MNoUg, (12)
B B
U151 _ Uz 27 (1.3)
M 2
B? B3
= 14
Yip + I, Ve ftz + P (1.4)
) ; p B3
puing + Py + = Housns + Ps + F (1.5)

where notation “2” means the downstream quantities in the shock frame. w is the four-velocity
of the bulk flow and + is its Lorentz factor (v = y/1 4+ u?/c?). p is the specific enthalpy written
by

p=mc* + L (E) , (1.6)
'-1\n

where P is the gas pressure and I' is a adiabatic index. In case of relativistic gas, the I" is

4/3 for three-dimensional distribution of the particle velocity and 3/2 for the two-dimensional

one. For example, in case that the magnetic field is perpendicular to the simulation space,

the adiabatic index I' is 3/2. Equation (1.2)-(1.5) mean conservation of mass flux, magnetic

flux, energy and momentum, respectively. On the assumption of cold and highly relativistic

upstream flow, Py < nymc? and u; >> ¢, equation (1.2)-(1.5) can be solved for each parameters.

The downstream velocity is

V2 U2

c Y2

_ ﬁ (gg+r_1)+\/(ga+r—1)2+4a(a+1)(1—g) . (17)




and the compression ratio of the number density and magnetic field between the upstream and

the downstream are

Z—j:%:ur%/c. (1.8)
Figure 1.1 shows the behavior of equation (1.7) and (1.8) for o. Although the above parame-
ters are defined in the shock frame, the shock simulations are usually performed in the shock
downstream frame. In the shock down stream, the shock front propagates with the shock

downstream velocity vs defined in the shock frame, and the compression ratio is not changed.

Figure 1.2 shows the result of the one-dimensional perpendicular shock simulation for
o = 0.14. Cold magnetized pair plasma is injected from the left boundary z = 0, and the
right boundary (z = 30R.) reflects the particles and electro-magnetic fields, where the spa-
cial unit is gyro-radius defined by the upstream magnetic field and the bulk Lorentz factor
R. = yymc?/(eB.g). Here the notation “0” means the initial upstream value. The shock front
is located at © ~ 15.5R... The right-side of the shock front is the shock downstream. In the shock
downstream the average of the perpendicular electric field E, is zero, because of the plasma
has no bulk motion. The perpendicular magnetic field B, is compressed as the suggestion by

equation (1.8). The downstream plasma is strongly thermalized.

In the upstream the large amplitude extraordinary mode (X-mode) wave, so called precursor
wave, propagates leftward from the shock front with nearly light velocity. The collective motion
of the upstream plasma on the shock front generates the X-mode wave via the synchrotron
maser instability (Hoshino and Arons, 1991). The excitation of the precursor wave means that
the wave absorbs the energy in the downstream and on the shock front. Actually the energy
absorption by the precursor wave requires the Rankine-Hugoniot relations, equation (1.2)-(1.5),
to be modified (Gallant et al., 1992). They showed that the precursor has peak-energy with 10%
of the injection total energy for ¢ ~ 0.1. The Poynting flux of the precursor wave is far from
negligible. However the upstream plasma does not resonant with the precursor because the

X-mode wave does not satisfy the cyclotron resonance condition. In particular, the dispersion



relation of the X-mode for cold plasma is

Ak WP 1w /P
w? w2/Q? —1

<1, (1.9)

where w, is plasma frequency in pair plasma, w, = /8mne?/m, and Q is gyro frequency,
) = eB/(mc). These parameters are defined for cold plasma in the plasma proper frame.

Equation (1.9) can be rewritten by

w? wy
w 1. 11
e T (1.10)

This result shows no cyclotron resonance. In the phase space plot for u, in figure 1.2, one can

see modulation of the upstream flow by the precursor but no heating.

1.3 Application to Astrophysical Objects

Both of the alternating magnetic field and the relativistic shock can be ordinary structures
on the relativistic astrophysical objects. For example pulsar nebulae, GRBs and AGNs can
include these structures. The radiation from these objects show the power-law spectrum, which
suggests the existence of the non-thermal electrons/positrons. We introduce the model of the

pulsar nebulae and the one of GRBs and AGNs briefly.

1.3.1 Pulsar Wind Nebula

The pulsar nebula is driven by the rotational energy of the central neutron star (Michel, 1982).
Despite observational and theoretical researches for a long time, the detailed mechanism in-
cludes open questions (Gaensler and Slane, 2006; Arons, 2004). Radio pulsars which is driven
by its rotation energy are rapidly spinning and strongly magnetized neutron stars. With a
typical radius of ryg ~ 10 km, magnetic field strengths of 10'? G are reached on the surface.
Rotation periods 7, are about one second and co-rotation of the pervasively dipolar magnetic
field extends towards the light cylinder r, = ¢T,./27, see figure 1.3. In case of the Crab nebula

the rotation period is 7. ~ 33 ms and the light cylinder is r;, ~ 158ryg. Electrostatic gap



v,/c

compression ratio

Figure 1.1: o value dependencies of the shock parameters. Top plots show the downstream flow
velocity (equation (1.7)) and bottom ones show the compression ratio of the number density

and the magnetic field (equation (1.8)).
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in the magnetosphere accelerates electrons (positrons) to relativistic energy, then they radiate
v-ray which generate pair plasmas. The pairs fill the magnetosphere (Goldreich and Julian,

1969) escape along the open magnetic field line outward, which is called pulsar wind.

The Crab Nebula is well observed in broad band and in high resolution due to the compar-
atively small distance of 2 kpc. Chandra X-ray observatory shows the double ring structure
(Weisskopf et al., 2000), see figure 1.6. The inner ring generated by the interaction between the
pulsar outflow and the supernova remnant is located about 0.1 pc from the center. Schmidt
et al. (1979) showed the “winding up” of the magnetic field lines by the pulsar rotation via the
optical polarization by observation (e.g., Bietenholz and Kronberg, 1990; Hickson and van den

Bergh, 1990)).

Rees and Gunn (1974) outlined the hydrodynamic model. The morphology is basically
consistent with recent observations. Furthermore Kennel and Coroniti (1984a,b) proposed a
one-dimensional spherical MHD model (KC model, see figure 1.5) (e.g., Emmering and Cheva-
lier, 1987). The model suggested that the ratio of magnetic field energy flux to kinetic energy
flux (o parameter, defined by equation (1.1)) and bulk Lorentz factor of the upstream flow at
the immediate shock upstream are 3 x 1073 and 10°, respectively. The o value means that
the kinetic energy is dominant around the shock in contrast to the situation close to the light
cylinder o ~ 10* (Rees and Gunn, 1974; Arons, 1979; Coroniti, 1990), so called “o problem”.
The spectrum of the Crab Nebula shown in figure 1.4 exhibits highly non-thermal features
(Aharonian and Atoyan, 1998; Mori et al., 2004) which is indicative for the presence of some
particle acceleration process. Because of extremely high Lorentz factor 10° of the flow, the
toroidal magnetic field perpendicular to the flow direction is relativistically boosted. In such
a perpendicular shock case the diffusive shock acceleration, the standard theory of particle ac-
celeration, is not an efficient mechanism of particle acceleration. The particle acceleration and

the magnetic dissipation (o-problem) are two of the unsolved issues.

Although the KC model neglected the magnetic field structure in the pulsar wind, the mag-
netic field polarity is alternating around the equatorial plane due to oblique rotation of the

pulsar (Michel, 1973; Kirk et al., 2002) The structure of the pulsar wind propagates toward ter-



mination shock from the central pulsar (Michel, 1971; Coroniti, 1990; Michel, 1994; Lyubarsky
and Kirk, 2001). Kirk and Skjaeraasen (2003) calculated a dissipation of the alternating mag-
netic field during the propagation with three dissipation processes; slow, fast and tearing mode
instability. According to the article the magnetic field does not dissipate enough to explain the
o value ~ 3.0 x 1073, required by the KC model in case of standard pair creation rate in the
pulsar magnetosphere (Hibschman and Arons, 2001a,b). In this case the o parameter is larger
than 0.003 suggested by KC model. This means that the alternating magnetic fields remains
until the shock front. On the one hand, Kirk (2004) proposed the acceleration by the magnetic
reconnection in the shock upstream (e.g., Kirk, 2006). On the other, Lyubarsky (2003) showed
current sheets dissipation on the shock front yield a consistent result with KC model and also
discussed the possibility of particle acceleration. The dissipation process in this article is that
the alternating magnetic fields annihilate due to magnetic reconnection which is driven by
strong compression from highly relativistic bulk pressure of inflow. They have shown that high
energy particles are generated on the assumption that magnetic reconnection form a power law
spectrum via induction electric field (Zenitani and Hoshino, 2001). Lyubarsky (2005) and Pétri
and Lyubarsky (2007) studied a dissipation of the alternating magnetic field with relativistic
hot current sheet plasma in the pulsar wind nebula by means of full particle simulations (PIC).

Pétri and Lyubarsky (2007) found a criterion of the dissipation in the high-o case.

We apply some of our results to the particle acceleration problem and the o problem.
The scale of alternating magnetic field pitch should be comparable to the radius of the light
cylinder. The radius of light cylinder for the Crab nebula is r;, ~ 1600km as noted above.
On the other hand the typical gyro-radius of the particles in the shock downstream is roughly
R, ~ 1.7 x 10%km by using a particle Lorentz factor ~ 3 x 10° (Kennel and Coroniti, 1984a,b;
de Jager and Harding, 1992) and the magnetic field ~ 3 x 107*G determined by Marsden et al.
(1984) due to a turnoff point of the spectrum at infrared (Green et al., 2004). So the alternating
magnetic field scale is much smaller than the gyro-radius of the downstream particles. Of course
one can not cover both scales in one time by numerical simulations. We extrapolate the pulsar

case by the simulation in the case of r;, < R,.
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Figure 1.3: Schematic diagram showing the corotation magnetosphere and the wind zone (from

Goldreich and Julian (1969)). The neutron star is at lower left.
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Figure 1.4: The photon spectrum of the Crab nebula in multi-wavelength (from Horns and

Aharonian (2004)).
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Figure 1.5: Schematic relation between the Crab nebula and supernova remnant (from Kennel

and Coroniti (1984a)).

1.3.2 Relativistic low by GRB and AGN

GRBs and AGN jets are also plausible sources of relativistic flow. Because GRBs are located at
cosmological distance, it is impossible to resolve spacially by observations. However the models
are advanced using indirect evidences. The standard is “fire ball model” (Piran, 1999; Mészaros,
2001). This model requires high Lorentz factor jet v ~ 100 with multiple shock to explain
several observations. For example, non-thermal spectrum, pulse time scale, temporal difference
of pulses and energy flux are well explained via Lorentz contraction, time delay and beaming
by the special relativity. Although AGNs are also located at large distance, the jet is directly
observable due to its huge scale 100kpc - 1Mpc. In addition to the GRB case, the superluminal
motion of the jet also requires the high Lorentz factor of v ~ 10 — 20 (Vermeulen and Cohen,
1994). The central engines in both objects radiate huge energy, so the radiation exceed the
electron rest mass generates electron-positron plasma. Therefore the jets include the pair at a
high rate, compared to proton. Furthermore both objects show the non-thermal spectrum. At

present the acceleration mechanism is explained by the diffusive shock acceleration. However

12



Figure 1.6: The images of the Crab nebula. Left top is the X-ray image by the Chandra X-ray
Observatory. Right top is the optical image by the NASA Hubble Space Telescope. Bottom is
the infrared image by the Spitzer Space Telescope. The view angles of the images are 2.24, 8.2

and 8 arcmin across, respectively.
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Figure 1.7: Schematic view of the striped wind. Left shows a plausible magnetic topology for a
relativistic MHD wind from an oblique rotator (from Coroniti (1990)). The toroidal magnetic
field has an alternating polarity near the rotational equator. Right top shows the toroidal
magnetic field with Parker spiral pattern as seen from the rotational axis, and right bottom

shows the magnetic neural sheet structure (solid line) as seen from the rotational equatorial

plane (from Kirk and Skjeeraasen (2003)).
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the specific acceleration process is not clear yet. The existence of the magnetic field is believed
both on AGN jets (Larrabee et al., 2003) and on GRB (Drenkhahn and Spruit, 2002). If
the object include magnetic fields with active motion of the central engine, the anti-parallel
structure of the magnetic fields would naturally arise. We envision the interaction between the

shock and anti-parallel magnetic fields to accelerate particles.
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CHAPTER 2

A Practical Solution for Numerical Cherenkov Radiation

Problem

The Particle-in-Cell (PIC) simulations of relativistic plasma flows in two or three dimensions
have a trouble of the numerical Cherenkov radiation; it is excited because the speed of light
is reduced numerically in such simulations especially in large wavenumber region due to the
effects of the finite size of spatial grid and time steps. There is a method that can solve the
dispersion relation of the electromagnetic waves correctly and the well-known cause of the
numerical Cherenkov radiation is removed with this method. However, there is another cause
due to the numerical aliasing effect of the current density, which involves the shape factor of
particles used in the PIC simulations. The aliasing component of the current density resonates
with the electromagnetic waves and causes the numerical Cherenkov radiation. When the flow
of plasma is highly relativistic, the numerical Cherenkov radiation can be avoided with an
appropriate filter. On the other hand, when the flow is mildly relativistic, one may have to use

a higher-order shape factor to decrease the aliasing effect.

2.1 Introduction

Astrophysical objects are studied from the standpoint of the microscopic plasma physics in late
years. Accordingly, the Particle-in-Cell (PIC) simulation is often used to study phenomena
involved with the relativistic plasma dynamics. In such simulations, the phase velocity of
electromagnetic wave that is reduced by a numerical effect and so relativistic particles can

move faster than it. These particles excite the Cherenkov radiation as real, which is called the
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numerical Cherenkov radiation (Godfrey, 1974). In the following, we review how the numerical

effects modify the dispersion relation of electromagnetic waves.

In the PIC simulation, two of the Maxwell’s equations are used to advance the electromag-

netic fields,

10FE 4
2= = B - — 2.1
10B
-— = - E. 2.2
c Ot VX (22)
The other equations
V-B = 0, (2.3)
V-E = 4nmp (2.4)

are used as constraints. The correct dispersion relation of the electromagnetic wave in vacuum

is derived from equation (2.1) and (2.2) ignoring the current term J,
w = ke, (2.5)

where ¢ is the speed of light, w is a frequency and k is a wavenumber.

In the PIC simulation, one of the most popular methods to advance the electromagnetic fields
in time with the Maxwell’s equations is the finite-difference-time-domain (FDTD) method (Yee,
1966). The reasons many people use the FDTD method would be its flexibility and simplicity.
In case of the FDTD methods, the phase velocity of the electromagnetic wave becomes smaller

than the true value, equation (2.5), especially in the large wavenumber region.

Using the leap-frog algorithm with the explicit time integration, the dispersion relation of

the electromagnetic wave becomes

1 wAt\? 1. kAGN?
(ESIHT) = Z <A_j81n 9 ) s (26)

j:x7y7z

where Aj and k; (j = z,y, z) are the size of the spatial grid and the wavenumbers in the j

direction, respectively. At is the time step. In the following, let us consider the dispersion
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relation of the electromagnetic wave in the x direction for simplicity.

1 . wAt 1 . kAx
in—— = —sin )

ES 2 Azx

(2.7)

We see that the above relation gives the correct dispersion relation (w = kc) when the Courant
number (cAt/Ax) is unity, although it holds only along one of the axes. However, the explicit
method becomes unstable when the Courant number is larger than unity, the case of cAt/Ax =
1 is marginally stable in numerical simulations, and so it is impractical. When the Courant
number is smaller than unity, the method is stable, although the dispersion relation is deviated

from the correct relation as is shown in figure 2.1.
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O ! | | 1 |
k Ax
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Figure 2.1: Dispersion relations of electromagnetic wave in vacuum. These five plots (“ex-
act,” “explicit,” “implicit,” “explicit+spectral” and “implicit+spectral”) are described by equa-
tion (2.5), (2.7), (2.8), (2.13) and (2.14), respectively. The Nyquist wavenumber is given by
ks maxAx = 7. For all numerical schemes, the Courant number (cAt/Ax) is 0.5. Therefore, the

slope of the exact solution in this figure is also 0.5.

The implicit time integration schemes can avoid the restriction of the Courant condition,

because of their stability for any Courant number. For example, the dispersion relation of the
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electromagnetic wave for Crank-Nicolson scheme is given by

1 tom wAty 1 o krAx (2.8)
a2 M\ 2 ) T a2\ T2 ) '

This relation also does not give the correct solution (see figure 2.1).

One of the ways to improve the dispersion relation in PIC simulation is to use the spectral
method. This method solves the Maxwell’s equations in the Fourier space, then the Maxwell’s

equations become as follows,

10E . ~ 47 -

10B . ~

EW = —k X E, (210)
E-B = 0, (2.11)
k-E = 4drp, (2.12)

where k = (k,, ky, k.) is a wave vector, and the tilde means the Fourier transform. Although the
effect of the finite grid size (Ax) still emerges through the Nyquist wavenumber, the numerical
dispersion of the electromagnetic wave caused by the spatial finite differences is eliminated in
this method. The dispersion relation of electromagnetic wave by the spectral method with

explicit and implicit schemes are respectively given by as follows:

wAt kyc/At

- = 2.1

Sin 9 9 y ( 3)
A A

fan WAL KacAl (2.14)
2 2

The dispersion relations of the electromagnetic wave in vacuum obtained from the above meth-
ods (equation (2.13) and (2.14)) are shown in figure 2.1. It should be noted that the dispersion
relations obtained from the spectral methods (both explicit and implicit) approach the true
relation when we take At — 0, whereas the phase velocity of equation (2.13) is always larger
than the true value in the explicit spectral method and always smaller than the true value in

the implicit spectral method.

The above methods cannot solve the dispersion relation of the electromagnetic wave cor-

rectly, especially in large wavenumber region. This yields the numerical Cherenkov radiation.
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In the following section, we show a method that leads the correct dispersion relation even in

the large wavenumber region.

2.2 The Exact Spectral Method

Godfrey (1974) studied the methods to avoid the numerical Cherenkov radiation. One of the
remarkable methods mentioned in the article, which solves the Maxwell’s equations in the
Fourier space, can solve the electromagnetic waves in vacuum correctly. Here, we explain that

method.

By combining equation (2.9) and (2.10), a second order differential equation is obtained.

This differential equation can be solved exactly on the assumption that the current density (J)

is constant during a time interval [0, ¢], with equation (2.11) as follows,

B(t) = cos(het)B(0)+ 2D g Bo) - M‘%j
+ {(1 _ cos (ket)) k- B(0) — P4 S]i“ (het) . (4%]) } , (2.15)
B(t) = cos(ket)B(0) — iSi“SfC% < E(0) +z’1_%§(kd)k « (‘%J) O (2.16)

where k = |k| = (k2 + k2 + k2)"/%.
Generally, a vector (A) can be separated into the longitudinal (A ) and the transverse (A )

component to a wave vector k considered,

k
A” Eﬁ(kA), AJ_EA_A”. (217)

Then, the time integration equation for the electric field (2.15) is separated into those for the

longitudinal part and the transverse part, as follows,

E\(t) = Ej(0)—drJyt, (2.18)

Bi(t) = costhet) B, (0) + SR (m x B, (0) — 4%.11) . (2.19)

equation (2.18) describes the time development of the longitudinal electric field. However, in

PIC simulations, the constraint condition (the Poisson equation) equation (2.12) is generally
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not satisfied with this equation. To ensure the condition, instead of equation (2.18), one can

use the following equation for the longitudinal electric field,

E|t) = —47Ti£p(t). (2.20)

Eventually, combining the longitudinal part and the transverse part again, we obtain a set of

equations to advance the electric and magnetic fields,

B(#t) = cos(ket)B,(0) + w (zk: « B(0) - 4%.11) - 4m§ (0, (2.21)
B) = costhet) By (0) — iS2ED ko Fo) +z’1_+j<’“t>k « (%J) (2.22)

where the longitudinal magnetic field BH is excluded from the first term in the right side of
equation (2.22) to ensure the constraint (2.11). For the discrete time step At, for which the
time is given by t = nAt where n is the step of simulation, the time advance equations from

the step n to the step n + 1 are written as

- - in(kcAt ~ dm - k

E" = cos(kcAt)E' + % (zk x B" — %TJTFIM) - 47ripp"+1, (2.23)

3 oo sin(keAD) o 1—cos(keA 4r -

Bt = cos(hean Bt - SR g iSRS (M) o)
Cc

The representative value of the current density, which is assumed constant for the time interval
At in the time integration, is taken at the half time step n + 1/2, as usual in the leap-frog
algorithm. The dispersion relation of the electromagnetic wave in this method gives the cor-
rect solution for large wavenumber. In the following, we call this method “the exact spectral
method.” The dispersion relation obtained from a simulation with this method is shown in

figure 2.2 together with those obtained by other two methods.

2.3 Numerical Cherenkov Radiation Caused by Aliases

The method described in the previous section provides the exact dispersion relation for the
electromagnetic waves. However, the numerical Cherenkov radiation still can be caused by the

aliasing effect due to the finite time step and the finite spatial grid. There are two different
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Figure 2.2: The dispersion relations for electromagnetic wave in uniform plasma obtained from
three two-dimensional simulations with different schemes. Here we used the Fourier transfor-
mation of B, for the spatial data and then the maximum entropy method for the temporal data
to make this plot. The result of the exact spectral method is shown by the upper curve. The
other two curves are obtained from the implicit finite-difference method (lower curve) and the

implicit spectral method (middle curve), respectively.
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causes. One is related to the alias in the time (frequency) domain, and the other is caused by
the alias in the current density calculated from the particle quantities with a shape factor. The

latter is significant when relativistic bulk flows exist.

Thus, the concept of the Nyquist frequency/wavenumber is essential in the following argu-
ments. For the time step At and the grid size Az, Ay, and Az for each axis, the corresponding
Nyquist frequency and wavenumbers are given by wiax = 7/At, ky max = /AT, ky max = 7/ Ay,
and k, max = m/Az, respectively. The maximum Nyquist wavenumber in three dimensions is

+ k2

Z,max

given by kpax = (K2 . + K2 )2,

T,max y,max

2.3.1 The aliasing in the frequency domain

The former case occurs when the Nyquist frequency is smaller than the maximum Nyquist
wavenumber, Wiy < kmaxC. Let us consider the problem in the w—k space for an arbitrary wave
vector k. In the present case, the dispersion relation of the electromagnetic waves is reflected
at w = Wpax for k > wpax/c due to the aliasing effect (see figure 2.3), because the exact
solution of the Maxwell’s equations includes the contributions even from the high-frequency
modes with w = kc > wpax. Therefore, the phase velocity of the electromagnetic waves in this
domain decreases linearly with £ and it eventually becomes smaller than the typical velocity
of particles. This results in the numerical Cherenkov radiation. Then, the line of dispersion
relation in the w — k space again reflected at w = 0 and so the phase velocity turns to increase
with k. Such reflections in the w — k space are repeated until £ reaches k... Figure 2.4 shows
the power spectrum of B, in the k, — k, space obtained from a two-dimensional simulation of a
relativistic uniform flow in the z direction using the exact spectral method. The bulk Lorentz
factor of the flow is I' = 1000. The Nyquist frequency and wavenumbers are wpax = 62.8wpe
and kpax = \/ﬁkxmax = 4540wy /¢, where wp, is the electron plasma frequency. The simulation
was calculated until the numerical Cherenkov radiation emerged significantly. The numerical

Cherenkov radiation caused by the aliasing effect is evident.
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Figure 2.3: The dispersion relation of electromagnetic wave obtained from a simulation with
the exact spectral method as in figure 2.2 but for wpax/kmax = 0.5, where wyax = 62.8wpe and

Fanax = 125.7wpe /.

2.3.2 The aliasing of the current density

The latter case can occur even when wpax = kmaxC as well as when wp.x < kmaxC because
of the aliasing effect arising from the shape factor of the particles, S(z), which is used when
calculating the contribution of each particle to the current density on the grid, that is, since
we sample the particle’s current using the shape factor on the grid, which has a finite spacing,
the modes in the Fourier transform of the shape factor, S(k), with k larger than the Nyquist
wavenumber results in the aliasing effect. For example, one of the most popular shape factors
(one dimension, for simplicity), which has a triangle shape,

|z|
Si(x) = =gy (el <Aa0) (2.25)

0 (otherwise),

has the Fourier transform given by

sin(k:Ax/Q)] 2 |

Sy (k) = { ey (2.26)
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Figure 2.4: The power spectral density of B, obtained from a two-dimensional simulation of a
relativistic uniform flow in the x direction with a bulk Lorentz factor of I' = 1000. The ratio
of the Nyquist frequency to the maximum Nyquist wavenumber is wiyayx/kmax¢ ~ 0.014. The

darker the plot, the stronger the power.
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It is clear that the amplitude of this function decreases as k=2 and remains finite even for

k> kpax.

Here, let us consider the present case in a simple situation where a cold uniform plasma
flows in the x direction with a bulk velocity of V', which is not necessarily relativistic. If back-
reactions are negligible, the (spatial) Fourier transform of the current density has the following
time dependence:

J = Joe =Vt (2.27)
where Jy is the Fourier transform of the current density at ¢ = 0 and k, is the wavenumber
in the x direction. This is also accompanied by the fluctuation of electric and magnetic fields
and can provide the source for the numerical Cherenkov radiation. The point is that when
J is calculated on the grid, it includes an aliasing effect due to the sampling of the shape
factor mentioned above (cf. Birdsall and Langdon, 2005, Chapter 8) and, as a result, large-
wavenumber modes with k; > k; max are folded at k; = kg max in the w — k space. Note that
in the present situation the reflection condition depends only on k, because the “dispersion
relation” of the fluctuation of the current density is given by w = k,V according to the phase
factor in equation (2.27). When the plasma flows in the y direction, the reflection is involved
with only k,. Thus, the line of J reflected at k = ky max crosses the dispersion relation of
the electromagnetic wave somewhere causing the numerical Cherenkov radiation, although the
phase velocity of the electromagnetic waves is correctly solved with the exact spectral method.
As already mentioned, since the Fourier transform of the shape factor, in general, remains
finite value even for large k, the line of J is also reflected at w = 0, w = wpax, k = 0, and
Kz max, and crosses (or resonates with) the dispersion relation of the electromagnetic waves,
w = ke, repeatedly (see figure 2.5). The all crossing points (or resonance points) can cause
the numerical Cherenkov radiation as well. However, in general, only the first crossing point is

important because the shape factor S(k) usually decreases rapidly with k.

The location of the first crossing point in the wavenumber space can be found by solving

the following set of equations for 0 < k, < kg max,

w = ke, (2.28)
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Figure 2.5: Same as in figure 2.3 but for a relativistic flow with I' = 1000 in the = direction
and Wmax/kmax = 1, where wpay = 62.8wpe and kpax = 62.8wpe/c. The angles of propagation,

where k, = kcos6, are (a) 6 = 40°, (b) 0 = 45°, and (c) 6 = 50°, respectively.

W = kx,maxv + (k:v,max - kz)vv (229>

with k, = kcosf, where 6 is the angle between the direction of the flow (i.e., the z axis here)
and that of the wave vector k considered. The first equation is the dispersion relation of the
electromagnetic waves in vacuum. The second one is the condition for the fluctuation of the
current density that is reflected once at k; = k; max. The solution is given by

v
1+ (V/e)cos =M™

(2.30)

for 0 < || < w/2. This means an ellipsoid (or an ellipse in two dimension) with the latus
rectum | = 2(V/c)kymax and the eccentricity e = V/c for 0 < V/e < 1, or a paraboloid (or
a parabola in two dimension) for V/c = 1. Since we treat the Fourier transforms of the real
quantities (for example, B,), the solution is symmetrical about the origin for /2 < |0| < 7.
Figure 2.6 shows the power spectrum of B, obtained from a two-dimensional simulation for the
bulk Lorentz factor of I' = 1000 (V' ~ ¢). The time step and grid size are At = 0.05w,,;" and
Axr = Ay = ().195qu1;€1 , respectively, that is, wmax = 62.8wpe and ky max = Ky max = 16.1wpe/c.

The dashed curve represents the solution (2.30). We see that it fits the simulation results very

well.
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Figure 2.6: The power spectral density of B, obtained from a two-dimensional simulation with
a bulk Lorentz factor of T = 1000 as in figure 2.4 but for wyax/kmax ~ 2.8. The dashed curve

shows the analytical solution (2.30).
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The locations of the second or higher crossing points can be found in the same way, although
they are generally dependent not only on k; max but also on wyax. As already mentioned, since
the first crossing point usually plays a dominant role in generating the numerical Cherenkov
radiation in the present situation, we consider only it and do not take care of those higher

crossing points in this paper.

2.4 A Practical Solution for the Numerical Cherenkov Radiation

From the solution (2.30), we see that the first crossing point is located in the region k > k; max
for V' ~ ¢, namely, for highly relativistic cases. Thus, one of practical solutions for such cases
is to remove the spectral power of the current density for £ > k, max by using an appropriate
filter. Figure 2.7 shows the B, obtained from simulations at time ¢ = SOwEel, (a) without filter

and (b) with a filter in the wavenumber space defined by

Fik) = [1— (k/k)™] for k/k. < 1 (2.31)
0 for k/k. > 1,

where we take k. = 0.97k; max. The numerical Cherenkov radiation is evident in (a), whereas
it is not visible in (b).

The solution (2.30) also indicates that the location of the first crossing point however ap-
proaches k = 0 when decreasing the bulk velocity V. When V' is small, the method using filters
described above would not be an efficient solution because the cut-off at small wavenumber
results in a serious loss in the spatial resolution of simulation. For such cases, one of practical
solutions is using a higher-order shape factor to accelerate the decay of the large-wavenumber
modes with k& > k; max in the Fourier transform of the shape factor. However, since the magni-
tude of the current density also becomes small when V' is small, the growth rate of the numerical

Cherenkov radiation would become small, too.
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Figure 2.7: The magnetic field B, obtained from two-dimensional simulations for a bulk Lorentz
factor of I' = 1000 and wmax/kmax ~ 2.8: (a) without filters, and (b) with a filter described in

equation (2.31).

2.5 Conclusions

One of the causes of the numerical Cherenkov radiation in the PIC simulation is the numerically
reduced speed of light. This problem can be solved by the exact spectral method which provides
the correct phase velocity of the electromagnetic waves in vacuum for all wavenumbers (see

figure 2.2).

There is another cause for the numerical Cherenkov radiation that involved with numerical
aliasing effects. This alias problem is significant in case of relativistic bulk flow and there are
two cases. When wpax < kmax¢, the alias of the electromagnetic wave reflected at the w = wyax
resonates with the relativistic particles (see figure 2.3 and 2.4). This case corresponds to
cAt/Ax > 1 and is impractical. The other case occurs even when wyax > kmaxC, because
the aliasing component of the shape factor, accompanied with the current fluctuation of the
plasma flow, resonates with the electromagnetic wave (see figure 2.5). The amplitude of the
aliasing component of the shape factor generally decreases with k, so the first crossing point

with the dispersion relation of the electromagnetic wave in w — k space leads to the most
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significant numerical Cherenkov radiation. The location of the first crossing point is described
by equation (2.30). In highly relativistic cases, the first crossing points are almost located
outside the radius of k; max as shown in figure 2.6, so cutting off the current density outside
this radius in k-space with an appropriate filter removes the numerical Cherenkov radiation
efficiently. In non-relativistic cases, the fluctuation of the current is relatively small, and growth
of the numerical Cherenkov radiation may be negligible. However, in mildly relativistic cases,
the growth cannot be negligible, and the first crossing point is hard to be eliminated by the
method using filters without loosing the spatial resolution of simulation significantly, because
the location is middle in the wavenumber space as seen in figure 2.8. For such cases, one of
the ways to suppress the numerical Cherenkov radiation would be to use a higher order shape

factor.
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CHAPTER 3

Interaction between Current Sheets and a Shock in One

Dimension

We investigate the interaction between alternating magnetic field with cold current sheets and
a relativistic collisionless shock wave. Many kinds of high energy astrophysical objects may
involve such alternating magnetic fields and a relativistic shock. They can be potent sources

for the generation of high energy particles.

We found that a precursor wave, propagating from the shock front to upstream, accelerates a
dense current sheet plasma in the upstream. In case that the width of the respective magnetic
field reversal is larger than the downstream gyro-radius, the current sheet generates a large
amplitude magnetosonic wave in the downstream by the collision with a shock front. The
motional electric field accompanied with the magnetosonic wave can further accelerate the pre-
accelerated particles, forming a non-thermal energy spectrum. In addition, the current sheet

structure is stable against not only the collision but also compression by other current sheets.

In the thin current sheet case, which means the case that the width of the alternating
magnetic field reversal is smaller than the downstream gyro-radius, the magnetic field dissipates
and the magnetosonic wave excitation is absent. This result is applied to pulsar wind nebulae.

The result of the dissipation could solve the ¢ problem.

3.1 Introduction

Although the non-thermal spectrum is a common feature in many astrophysical objects, the

particle acceleration mechanism to form the non-thermal spectrum remains elusive. The elu-
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cidation of the mechanism could resolve not only the spectrum on such objects, but also the
cosmic ray power-law spectrum. Especially the acceleration process on highly relativistic astro-
physical objects is effective to generate the ultra high energy cosmic rays (UHECR). Well known
relativistic objects are AGNs (v ~ 10), GRBs (y ~ 100), and pulsar nebulae (y ~ 10°), where
7 represents a bulk Lorentz factor of a jet (for AGN and GRB) or a stellar wind (for pulsar
nebula). Usually such highly relativistic flows generate a shock wave due to an interaction with
outer matter. So the acceleration at the shock is a reasonable scenario. Meanwhile magnetic
reconnection is also a plausible mechanism as a particle acceleration process. A central engine
of the relativistic astrophysical object with magnetic field may form alternating magnetic field
structures in the flow by its rotational motion. Although the details of AGNs and GRBs are
uncertain, the stellar wind from the pulsar manifests such a situation. The pulsar and its nebula

are well studied by means of observational and theoretical approaches.

The Crab Nebula is a well observed pulsar nebula in broad band and in high resolution.
Chandra X-ray observatory shows the double ring structure (Weisskopf et al., 2000). The inner
ring generated by the interaction between the pulsar outflow and the supernova remnant is
located about 0.1 pc from the center. This is believed as the location of a standing shock
wave. Kennel and Coroniti (1984a,b) proposed a one-dimensional spherical MHD model (KC
model) which suggesting that the ratio of magnetic field energy flux to kinetic energy flux (o
parameter) and bulk Lorentz factor of the upstream flow at the immediate shock upstream are
3 x 1073 and 106, respectively. This means that the kinetic energy is dominant around the

shock in contrast to the situation close to the light cylinder o ~ 10%, the so called “o problem”.

As mentioned above, the particle acceleration mechanism is also one of the open questions of
the pulsar wind nebula. Indeed, the spectrum of the Crab Nebula exhibits highly non-thermal
features (Aharonian and Atoyan, 1998; Mori et al., 2004). Because of the extremely high
Lorentz factor of 10° of the flow, the toroidal magnetic field perpendicular to the flow direction
is relativistically boosted. In such a perpendicular shock the diffusive shock acceleration, the
standard theory of particle acceleration, is not an efficient mechanism. Some people previously

engaged the particle acceleration mechanism by the highly relativistic perpendicular shock (e.g.
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Gallant et al. (1992), Hoshino et al. (1992), Hoshino (2001)).

Although the KC model also neglected the magnetic field structure, the magnetic field
polarity is alternating around the equatorial plane due to the magnetic pole precession of
the pulsar (Michel, 1971). The structure of the pulsar wind propagates toward termination
shock from the central pulsar (Coroniti, 1990; Lyubarsky and Kirk, 2001). The alternating
magnetic field structure (“striped wind model”) in the relativistic flow is favored as a means
for solving both the ¢ problem and the particle acceleration problem. Kirk and Skjeeraasen
(2003) calculated a dissipation of the alternating magnetic field during the propagation with
three dissipation processes: slow, fast and tearing mode instability. According to the article
the magnetic field dissipation is insufficient to explain the o value ~ 3.0 x 1073, required by
the KC model in case of a standard pair creation rate in the pulsar magnetosphere (Hibschman
and Arons, 2001a,b). In this case the o parameter is larger than 0.003 as suggested by the KC
model. Lyubarsky (2003) showed analytically that current sheet dissipation at the shock front
yields a consistent result with the KC model and also discussed the possibility of the particle
acceleration. Therein the dissipation process is established by the alternating magnetic fields
annihilating due to the magnetic reconnection driven by the strong compression from highly
relativistic bulk pressure of the inflow. Lyubarsky (2003) has shown the generation of high
energy particles under the assumption of an initial power-law spectrum. Such a power-law

spectrum has been found previously by Zenitani and Hoshino (2001).

We investigate a general scenario of the interaction between alternating magnetic fields with
cold current sheets and a perpendicular shock. Lyubarsky (2005) and Pétri and Lyubarsky
(2007) studied a dissipation of the alternating magnetic field with relativistic hot current sheet
plasma in the pulsar wind nebula by means of full particle simulations (PIC), see appendix A.
Pétri and Lyubarsky (2007) found a criterion of the dissipation in the high-o case. We focus on
the possibility of the particle acceleration and magnetic field dissipation by checking a relatively
low-o case, 0 = 0.1. Because it is impossible to describe these kinetic processes accurately by
the MHD simulation, we also study by using full particle simulations. At first we precisely study

the interaction between a single current sheet and a shock to analyze the particle acceleration
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process, the magnetic dissipation process and other interesting properties. Furthermore, on
the basis of these results, we investigate the interaction between multi current sheets and a
shock. The predictions by the previous works are compared with our results. We anticipate

the application to the astrophysical phenomena.

3.2 Simulation Condition

We use a relativistic one-dimensional Particle-in-Cell code (Birdsall and Langdon, 2005). Mag-
netized cold electron-positron plasma is injected from the left boundary. The magnetic field
consists of a component (B, ) perpendicular to the flow direction (x). The electric field has a mo-
tional (E,) and a static component (E,). Particle velocity components are in « and y directions.
The right boundary reflects particles and electro-magnetic field. The reflecting wall triggers the
creation a perpendicular shock which propagates leftward. Therefore the simulation is in the
shock downstream frame. The combination of particle bulk motion and electro-magnetic field
of the injection flow satisfies the force-free condition and its bulk kinetic energy has a Lorentz
factor of 100. Now we set the injection magnetization parameter oo = B2 /(8mngyomc?) = 0.1
, where By is the magnetic field, ng is the number density of electron (positron), 7 is injec-
tion bulk Lorentz factor. All of them are the parameters in the downstream frame. The oy
is also described by a symbolic plasma frequency wyy = \/W/(m%) and a gyro-frequency
Qg0 = eBy/(yomc?),
2

o0 = fj— (3.1)

The time and space scale is normalized by wyy and ¢/wyg in the following simulations, respec-

tively. It is important to note that these do not exactly correspond to the plasma frequency

and the gyro-frequency in the downstream.

The electro-magnetic field is solved with an advection form (Birdsall and Langdon, 2005).
The grid size and the time step are Az < 0.01c/w, and At = Az /c, respectively. Each cell
contains more than 50 particles to ensure statistical accuracy. The injection current sheets are

given by the relativistic Harris solution (Hoh, 1966; Kirk and Skjeeraasen, 2003). Then the
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current sheet width A.q is defined by B(z) o< tanh(x/A.50). The A5 is resolved by more than
20 grids. Plasma inside the current sheet is the same temperature as the cold outer plasma
Ty = 0.005mc?. The above magnetic field and current sheet temperature, described by oy and
Ty, determine the number density of the current sheet plasma n., = 10ny via the pressure

balance,

n Tg

cs0

(3.2)

b =2
0-0— 7 2,
Nng mc

where the parameters with a prime and the temperature Ty is in the upstream frame. The
hyperbolic tangent magnetic field is smoothly connected to the outer constant one to avoid
numerical noise. Then the Harris current sheet region is kept 5A.s for each side, By/By =

1 — tanh(5) ~ 107%, which is sufficiently accurate.

3.3 Single Current Sheet Injection

In this section the focus is on the interaction between a shock and a single current sheet
with the width of A.go(c/wyo)™! = 0.01,0.1,1, 10, called CASE1-4 respectively. We will show
the simulation results and the analysis of the observed phenomena, and will discuss as an

elementary process of the interaction between a fast mode shock and a tangential discontinuity.

3.3.1 Simulation Result

Figure 3.1 shows the simulation results concerning the Lorentz factor of the particles, perpendic-
ular electro-magnetic field, number density and average Lorentz factor in the whole simulation
box. Since the positive and negative particles are positrons and electrons, respectively, in our
simulations, each particles behave symmetric. So the following plots for particles show only the
positrons. Furthermore, because of the symmetry argument, the electrostatic field growth is

limited. We do not discuss this in detail and therefore do not plot it in figures.

One can identify the fast shock fronts at = 115¢/w,0, 120¢/wpg, 120¢/wyo and 510¢/wyyg, for
CASE1, CASE2, CASE3 and CASEA4, respectively. The shock front propagates leftward with
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~ 0.5¢ which is consistent with the Rankine-Hugoniot relations in the shock downstream frame
applying the ratio of specific heats I' = 3/2, i.e. for an ideal two-dimensional gas. The left region
of the shock front is the upstream. The X-mode wave, called precursor, propagates leftward
from the shock front with ~ ¢, in detail discussed by Gallant et al. (1992). In the downstream,
which is the region to the right of the shock front, the alternating magnetic field injected from
the upstream remains a tangential discontinuity at z = 134¢/w,o. The downstream parameters
are almost consistent with the Rankine-Hugoniot relations except around the magnetic neutral
sheet. Although all four cases share these characteristics, a large amplitude magnetosonic wave
propagating rightward in the downstream is clearly emerging only in CASE3 and CASE4 at

x = 180c/wyo and 780¢/wyy, respectively.

3.3.2 Excitation of a Magnetosonic Wave

In Figure 3.1 the magnetosonic wave is seen clearly for CASE3 and CASE4, but not for CASE1
and CASE2. This result is also shown in non-relativistic simulations (Tsubouchi and Mat-
sumoto, 2005; Haruki et al., 2006) The reason is that the magnetosonic wave is excited by
compression of the shock front by a large bulk energy, or momentum, of the dense current sheet
plasma (see appendix C). Its counteraction remnants after the interaction with the shock front

is a low temperature current sheet plasma.

In all four cases shown in Figure 3.2, the average Lorentz factor in the magnetic neutral
sheet, where x = 136¢/wpo, 135.5¢/wpy, 133 — 135¢/wyy and 615 — 650c/wyy for each cases,
is smaller than the outer region. Let’s compare the temperature from the simulation results
with that from the Rankine-Hugoniot relations. One can generally obtain the temperature
from the average Lorentz factor on the assumption that the particle energy distribution is a
two-dimensional isotropic Maxwellian. For the four-velocity w = (uy, u,),

S [ () f(w)dusdu,,
J oo J oo f(u)dugdu,

2(T/mc?)” + 2T /mc® + 1
T/mc?+1

(v) =

(3.3)
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Figure 3.1: Simulation results corresponding to CASE1-4. Each of them consists of three plots
which show particle Lorentz factor v (contour plot), electro-magnetic field E,, B, (red and
blue lines, respectively), number density n and average Lorentz factor (7) (red and blue lines,
respectively). All of these physical quantities are normalized by their initial value, are plotted

as function of space in unit of ¢/wy.

39



where f(u) is a two-dimensional relativistic Maxwellian, f(u) oc exp(—y(u)mc?/T). In our sim-
ulations, the temperature comparable to the injection energy is highly relativistic, T'//(mc?) ~
70 = 100 > 1, so equation (3.3) is approximated by (7) ~ 2T/(mc?). Using this relation and
the average Lorentz factors from the simulation as shown in Figure 3.2 or Table 3.1, the tem-
perature inside the magnetic neutral sheet by the simulation results is estimated for CASE1-4
as Trs /yomc?® = 0.39,0.30,0.19 and 0.33, respectively. On the other hand, one can also estimate
the downstream temperature via the Rankine-Hugoniot relations (Kennel and Coroniti, 1984a;
Gallant et al., 1992). According to the relations, the temperature is T.,/(yomc?) = 0.5 by using
oo = 0. This value is inconsistent with the simulation results. The reason is that the bulk
energy of the upstream current sheet plasma does not convert into thermal energy as much
as described by the Rankine-Hugoniot relations. The residual energy works pushing the shock

front and excites a magnetosonic wave.

Identifier Ao Aes ()
CASE 1 0.01 0.74 0.77

CASE2 0.1 0.65 0.60

CASE 3 1 1.7 037
CASE4 10 30 0.66

Table 3.1: The current sheets width before (A.y) and after (A.) the collision with a shock,
and the average Lorentz factors () on the magnetic neutral sheet in the downstream (see

Figure 3.2).

3.3.3 High Energy Particles

Around the magnetosonic waves for CASE3 and CASE4 in Figure 3.1, we can observe strongly
accelerated particles. This is basically well explained by the first adiabatic invariant,

U2

H= B (3.4)
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Figure 3.2: Alternating magnetic field and average Lorentz factor for CASE1-4 in the down-
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The four-velocity u is a component perpendicular to the magnetic field B,. The particle energy
restores to its original value after passing the wave, so this high energy feature does not yield
continuous acceleration. However this explanation is invalid for very high energy particles,
whose gyro-radius is larger than the wavelength scale, at the outside of the wave, because
the conservation of the adiabatic invariant is invalid. We will discuss later that non-thermal

particles are generated during the multi-current sheet interaction.

Another important agent for particle acceleration is seen inside the magnetic neutral sheet
in CASE4. They are trapped by the outer magnetic field and meander in the neutral sheet.
They got energy from the precursor before the current sheet collides with the shock front.
Let us discuss about this acceleration mechanism. We think that the interaction between the
precursor wave and the current sheet plays an important role on the acceleration through the

action of the precursor wave pressure.

Gallant et al. (1992) showed that the precursor frequency has a lower limit defined by the

shock energy,

W 2 W, = YshockWpo- (3.5)

In our simulations the Lorentz factor of the shock is Vspoer = 1.21 for g = 0.1, so the lower limit
of the frequency is wy, = 1.21wyy. On the other hand the dispersion relation of the precursor in
a highly relativistic flow (Gallant et al., 1992) is

<%)221_w_§: —Ew—%o, (3.6)

w w ng w

where n is the number density inside the current sheet, ng < n < ng + neyp. If the number
density is larger than this criterion, the precursor cannot propagate in the plasma, (ck/ w)2 < 0,
which means a cut-off. Using equation (3.5) and equation (3.6), one can get the density range

which yields the cut-off of the precursor,

2 2
n w w
— > — > —= = 1.46. (3.7)
Since the maximum density of the current sheet plasma in our simulation is n.qo = 10nq,

frequencies of the precursor wave consistent with equation (3.7) are partially reflected by the
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current sheet plasma and gives its momentum to the dense plasma. Then the precursor pushes
the dense plasma and disturbs the Harris equilibrium. As a result a part of the upstream plasma
begins a gyro motion. These particles show high energy in the downstream frame, because a
gyro-motion along the x-direction in the upstream frame is boosted by 7y in the downstream
frame. The other plasma is thermalized by a non-equilibrium motion under the perturbed
pressure balance. The gyrating plasma is seen as a high energy one of CASE4 in Figure 3.1.
These effects can form the non-thermal energy spectrum. We will discuss it in section 3.4.2 in
more detail. Although the simulation time scale of CASE1-3 is too short to see the acceleration,

we confirmed the acceleration in such thin current sheet cases by longer simulations (not shown

here).

The current sheet plasma density depends on its temperature and the outside magnetic
pressure, or o parameter, see equation (3.2). Therefore, in case that a relativistic hot current
sheet and a low o make the current sheet plasma to be low in density, the above effect is not

expected.

3.3.4 Expansion of the magnetic neutral sheet by the thermalization

How does the magnetic neutral sheet width change before and after the collision? Since the
alternating magnetic field profile in the downstream is not always fitted by a simple analytical
function such as a hyperbolic tangent in the downstream (see Figure 3.2), we define the width of
the magnetic neutral sheet A s as a half width of the region {x‘ |B(x)| /By < tanh(1) ~ 0.76},
where B is the downstream magnetic field predicted by the Rankine-Hugoniot relations. In
CASE1 and CASE2 those magnetic neutral sheets of \.s strongly expand, compared with A.4
(see Table 3.1). On the other hand the magnetic neutral sheets in CASE3 and CASE4 do not
expand so much. In principle the change of the width is the result of the thermalization of the
plasma around the magnetic neutral sheet, based on the pressure balance (see equation (3.2)).
The sources of the thermal energy are mainly the upstream bulk energy or the magnetic field
energy around the magnetic neutral sheet. Now we estimate the expansion on the assumption

that the source is only the upstream bulk energy with no absorption by the magnetosonic
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wave and with no injection by the precursor. First, the pressure outside the neutral sheet is

calculated by the Rankine-Hugoniot relations,

2
Pout _ anl BIO' o
290 —
BO

2.1. (3.8)
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On the other hand the pressure of the plasma around the magnetic neutral sheet can be ex-

pressed as

Pi o nCS TCS

noyome?  noyome?

(3.9)

The temperature is T,,/(yomc®) = 0.5 at most. Then, the pressure balance, P,,; = P, from
equation (3.8) and equation (3.9), requires the density around the magnetic neutral sheet of
Nes/no = 4.1. If the net exchange of the particles between inside and outside the magnetic

neutral sheet is not significant, the relation of the density and the width is

Neso Tes

Acso ~ —Z s (3.10)

no no
Therefore the expected expansion ratio is Aes/Aeso ~ 2.4. For CASE 1 and CASE2, however,
the expansion ratio is 74 and 6.5 in spite of no energy injection by the precursor. This means
that the magnetic field dissipation accounts for the major share of the thermalization, even if

energy absorption by the magnetosonic wave excitation is not effective.

For CASE3, there is no energy injection by the precursor but has the energy absorption
effect by the magnetosonic wave excitation, the expansion ratio (= 1.7) is less than 2.4. For
CASE4, which has the precursor effect and the magnetosonic wave effect, the expansion ratio
(= 3.0) is more than 2.4, and the reason for larger expansion than in CASE3 is the additional
thermalization by the precursor. Anyhow the magnetic dissipation for CASE3 and CASE4 does

not contribute large proportions to thermalize the plasma in the magnetic neutral sheet, unlike

CASE1 and CASE2.

Then the final width in CASE1 and CASE2 is comparable to each other, even though the
difference of the initial value is ten times. What determines the width? The typical gyro-

radius in the downstream can be approximated by combining the upstream bulk flow and the
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downstream gyro-frequency,

Ry — N/ .0
¢/wpo  ooB1/By H Y (3.1

where we used a parameter By/By = 2.8 for g = 0.1. If one substitutes the quantity () of
the neutral sheet in Table 3.1 into equation(3.11), the typical gyro-radius of the current sheet
plasma for CASE1 and CASE2 is 0.88¢/wpy and 0.68¢/wy, respectively. These results agree
with each alternating magnetic field width A.s in Table. 3.1. Therefore the thin current sheet
may expand to the downstream gyro-scale, although this discussion lacks the proof to explain

the dissipation process on the basis of the plasma kinetic theory.

3.4 Multi Current Sheet Injection

This section is divided into two parts. One is a thin current sheet case, like CASE1 and CASE2
in the section 3.3. As we have shown in the section 3.3.4, a thin current sheet expands to
the scale of gyro-radius R, predominantly by thermalization via the magnetic field dissipation
predominantly. In the multi current sheet case, we expect the annihilation by the expansion

and overlapping with subsequent one.

For the case of the thick current sheet, because the magnetic dissipation effect is weak, the
alternating magnetic field structure would be stable and sheets will not annihilate, unlike the
thin current sheets case. However, we will discuss another important effect by a number of
large amplitude magnetosonic waves and the possibility of the additional particle acceleration
by the waves. Although in the single current sheet case the alternating magnetic field does
not dissipate so much by collision with a shock front, in this case there will be additional
compressions via magnetosonic waves by continuous collisions of the other current sheets. We

will also check the stability of the downstream current sheet against the compressions.
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3.4.1 Thin Current Sheet

As we showed in the section 3.3.4, a thin current sheet expands to the scale of a gyro-radius
R,. Such current sheets would be annihilated by overlapping. We simulated thin current sheets
injection into a shock to check this prediction. The current sheet width is Ao = 0.01¢/wyo,
same with CASEL, and each clearance is 0.2¢/wy, which is smaller than the downstream current
sheet width of CASEL, 0.77¢/wyg. Left plots in Figure 3.3 show the simulation result. Clearly
there is no shock structure, but just a counter-streaming in the w, plot. This result is similar
to the case of no magnetic field. Because the alternating magnetic field interval is much smaller
than the gyro-radius R, the Lorentz force changes its direction before particles complete gyro-
motion defined by the magnetic field amplitude and the Lorentz factor of their bulk motion.
As a result the particles do not feel magnetic field on the average, and are not affected by the
Lorentz force. Then the injected particles reflected at the right boundary are not thermalized
but just flow leftward. Although in the one dimensional case a shock is not formed within the
PIC simulation scale, Kato (2007) showed that multi-dimensional PIC simulation can generate
a shock by the Weibel instability (Weibel, 1959; Kato, 2005). So the shock would also be

generated in this case in a multi-dimensional simulation.

The pulsar wind close to the equatorial plane includes current sheets spaced equally, but
the polarity is biased at high latitude (Bogovalov, 1999). We also simulate such a case (right
plots in Figure 3.3). The magnetic field structure is shown in the top of the figure. In this case,
since the average magnetic field is not zero, particles complete the gyro-motion and generate
a shock, see Figure 3.3. The electro-magnetic field plot (E,, B,) shows that the alternating
magnetic fields completely disappear at the shock front. This is consistent with the prediction
from the single current sheet case. Upper plot in Figure 3.4 shows a comparison of the total
Poynting energy between the alternating magnetic field inflow and the uniform one. In contrast
to the uniform case, the Poynting energy does not increase so much for the alternating magnetic
field case. This means that the alternating magnetic field dissipates and gives its energy to the
particles. The shock downstream parameters meet the Rankine-Hugoniot relations evaluated

by using an average of the upstream magnetic field, (B,) = 0.5By. The energy spectrum has
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a small amount of high energy particles. In this case the current sheet scale is less than the
gyro-radius. Then the motional electric field, which accelerates particles, can not be generated

continuously on such a thin scale.

Lyubarsky (2003) assumed a power-law spectrum to evaluate particle acceleration by mag-
netic reconnection (Zenitani and Hoshino, 2001). The acceleration is accomplished by particles
flowing into the current sheet and running along the reconnection electric field. In the Crab
pulsar case, however, the current sheet clearance is about the light cylinder ~ 1600km, and the
gyro-radius in the downstream is ~ 1.7 x 10%km by using a particle Lorentz factor ~ 3 x 10°
(Kennel and Coroniti, 1984a,b) and the magnetic field ~ 3 x 107G (Marsden et al., 1984).
Because the current sheet width must be smaller than their clearance, the width is much smaller
than the gyro-radius. In such a kinetic scale, similar to the above simulation, particles are not
trapped in the magnetic neutral sheet, and also do not generate an accelerating electric field.
Therefore the particle acceleration by magnetic reconnection would not work in the termination

shock of the Crab pulsar nebula.

3.4.2 Thick Current Sheet

We also performed a simulation of current sheets with a width of A.s0 = 3.2¢/wy and each
clearance of 50c/wy colliding with a shock. In this case the sheet width (1.1c/wy) are larger
than the typical gyro-radius of the downstream plasma. To avoid right boundary effects where a
magnetosonic wave reaches the right boundary and is reflected, we set the spacing of an uniform
shock downstream by injecting an uniform inflow in the early phase. After that current sheets
are injected. Figure 3.5 shows a part of the simulation result. In this figure a shock front is
located at x = 520c¢/w,o. The precursor propagates leftward from the shock front. Ten current
sheets have already interacted with the shock front and stay in the region from the shock front
to © = 720c/wyo. Five magnetosonic waves generated by the interactions are propagating in
this region, and the other five are already in the uniform downstream region from x = 720¢/wyg
rightward (see also Figure 3.6). The current sheets in the downstream survive despite the

compression by bumping from behind by the other current sheets. Because the compressions

47



Figure 3.3:
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The simulation result for thin current sheets with narrow clearance. The space

scale x is normalized by ¢/wyy and the other parameters are by their respective initial value.

For the left plots, each current sheet is spaced equally, so the average magnetic field is zero.

For the right, the clearance is alternately shifted, and the average is 0.5, see the right top plot.

The contour plots show particle four-velocity and normalized Lorentz factor. Plots just below

these show the electro-magnetic field. The bottom ones are the particle energy spectrum in the

whole simulation box, and the red line shows a relativistic Maxwellian.
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Figure 3.4: Electro-magnetic energy history for the thin current sheet case (top) and the thick
current sheet case (bottom). They are normalized by the total energy in the simulation box.
The injection energy of particles and electro-magnetic field is subtracted. For comparison no

alternating magnetic field case, called “Uniform”, is also plotted as solid line.
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are carried as magnetosonic waves, it also affects a current sheet separate from the shock front.
The bottom panel of Figure 3.4 shows the electro-magnetic energy history. After the first current
sheet collision with a shock front at = 710/w,yg, the electro-magnetic energy enhancement by
magnetic field compression dominates the decrease by the magnetic field dissipation. These
results mean that the current sheet structure is quite stable at least in one dimension. In
the multi-dimensional case one can suggest that a current sheet would dissipate easily by the
tearing or drift kink instability (Zenitani and Hoshino, 2005), driven by the compression. If the
tearing mode dominates the drift kink mode, the particles could be accelerated by magnetic

reconnection, which may contribute to the production of non-thermal particles.

The particle energy spectrum in Figure 3.5 shows a peak at 7/7 ~ 0.1 and a break at
v/% ~ 1, normalized by the initial value 75 = 100. The peak is attributed to the relatively
cold plasma within the magnetic neutral sheet in the downstream, discussed in the section 3.3.

The energy region above the break point shows a power-law spectrum with an index 4.

In the left plots of Figure 3.5, one can see the high energy particles in the downstream, from
the shock front (z = 520c¢/wy) to the boundary of the uniform region (r = 720¢/wy). The
most strongly accelerated particles of them are accelerated by the precursor in the upstream and
by the magnetosonic waves in the downstream. Figure 3.6 shows a stack plot of the magnetic
field, three particle trajectories and their energy histories. In the left plot a shock front with
an uniform downstream propagates from (z:(c/wyo) ™!, twy) = (770,500) to (670,710) where
the first current sheet collides with the shock front. After that the shock front moves from
(z(c/wpo) ™1, twyo) = (670, 710) to (520,1000), and the tangential discontinuity between current
sheet plasma and the uniform one moves from (x(c/wp) ™!, twyo) = (670,710) to (720, 1000)
due to compressions by the magnetosonic waves. The fluctuation in the left of the shock front

is the precursor.

The two particles, shown by red and blue lines, gain energy for the first time in the upstream
precursor region, twyy = 770 — 830 for the red line and twy,y = 650 — 700 for the blue line. These
particles loose energy at the beginning of the acceleration, because the precursor pushes them

from the anti-flow direction. This detail was discussed in the section 3.3.3. Furthermore these
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particles substantially gain or loose their energy by interactions with the magnetosonic waves.
A part of the particles which gain energy at the moment form the high energy end of the
spectrum. The energy gain (or loss) by a brief interaction by the magnetosonic wave can be

evaluated as follows,

v, B
Av =~ 2L (Q A 12
g %CBz(gz t), (3.12)

where ~; is the Lorentz factor before the interaction and Qg = ¢B./(y;mc?) is roughly its gyro-
frequency. v,/c means the injection phase of the particle gyro-motion and determines that the
particle energy gain or loss. In other words, the particle gain energy by running along the
motional electric field. The important thing is that the energy variation is proportional to the
initial energy ;. So the pre-acceleration by the precursor has an important role to generate
higher energy by the interaction with the magnetosonic wave. Furthermore in order to achieve
the acceleration, the magnetosonic wave amplitude should be large so that the group velocity is
nearly light velocity, which means that the motional electric field is roughly equal to the wave

component of the magnetic field in the downstream frame.

In contrast a particle shown by green lines does not change its energy significantly by over-
passing the magnetosonic waves, because the particle has not gained energy from the precursor
before the interaction with the magnetosonic waves and so its energy variation is small as sug-
gested by equation (3.12). Such low energy particles have relatively small gyro-radius and tend

to conserve the first adiabatic invariant, see section 3.3.3.

3.5 Summary and Discussion

We have studied interactions between alternating magnetic fields with a cold current sheet
and a shock front by using a relativistic one-dimensional Particle-in-Cell code. We found
that the interaction excites a large amplitude magnetosonic wave, and the precursor and the

magnetosonic wave accelerate particles.

First, we simulated a single current sheet collision with a shock front for four cases of the

current sheet width. As one of the common points, the precursor gives a part of momentum to
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Figure 3.5: Local feature of interactions between a shock and thick current sheets. Left three
contour plots shows four-velocity u,,u, and Lorentz factor . The right upper two show elec-
tro-magnetic field E,, B,, number density n and average Lorentz factor (). Their abscissa axis
are space coordinate normalized by ¢/w,o and their ordinate axis are normalized by their initial
value. The right bottom plot shows particle energy spectrum. The abscissa axis is Lorentz
factor normalized by an injection value, 79 = 100. The red dashed line shows a power-law

spectrum with index 4.
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the dense current sheet plasma inside the magnetic neutral sheet, because the lower frequency
band of the precursor is below the cut-off frequency in the dense plasma. As a result some
particles begin the gyro-motion, and its kinetic energy in x-direction is identified as high in the
downstream frame. Another important point is that the plasma inside the magnetic neutral
sheet after the collision is still colder than the outside plasma. The cold plasma inside the
neutral sheet is not as thermalized as calculated by the Rankine-Hugoniot relations, because

the magnetosonic wave excited by the collision takes away the injection momentum.

The behavior of the alternating magnetic field structure depends on its initial width. For
the case that the width is smaller than the gyro radius defined by the magnetic field and the
particle energy inside the neutral sheet in the downstream, called thin current sheet case, the
width expands to the gyro-scale by thermalization predominantly via magnetic dissipation. On
the other hand in the thick current sheet case the width is almost unchanged. This means that
the alternating magnetic field structure is stable against strong compression by the collision

with a shock. The compression excites a large amplitude magnetosonic wave (see appendix C).

Second, we studied the interaction of the multi current sheet and the relativistic shock. In
case that the initial current sheet width and each separation are smaller than the width in the
thin current sheet case, we studied two situations. One is the equally spaced current sheet case,
and the other is the unequally spaced case. These situations would be similar to the pulsar
wind and the termination shock. Although the pulsar wind on the equatorial plane include

equally spaced current sheets, the space is biased at latitudes.

In the equally spaced current sheet case a shock is not generated in the one-dimensional
simulation . Because the alternating magnetic field structure is much smaller than a gyro-radius
defined by the initial magnetic field and the bulk flow Lorentz factor, particles feel the average
magnetic field, which is zero in case of equally spaced current sheets. As a result this is similar
to the no magnetic field case. However the Weibel instability would trigger a shock structure in
the multi-dimensional case with no background magnetic field as shown by Spitkovsky (2005)
and Kato (2007).

On the other hand,if the current sheets are spaced unequally (see the right-top in Figure 3.3),
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the average magnetic field is not zero. In this case particles complete the gyro-motion, and a
shock is generated. At the shock front the alternating magnetic field is completely dissipated,
which is documented by the electro-magnetic energy history in the top of Figure 3.4. The
downstream parameters are well described by Rankine-Hugoniot relations using the average
magnetic field of the upstream. This result is consistent with the suggestion by Lyubarsky
(2003), which is to be a plausible mechanism to solve the o problem. The dissipation process
does not produce a non-thermal spectrum. Because the current sheet is less than the gyro-
scale, motional electric field structure in such a scale is not excited. During the dissipation
process, the alternating magnetic field structure overlaps with the next one, and the magnetic
field disappears. Although magnetic reconnection is not considered realistically in this one-
dimensional simulation, particle acceleration is not expected within such a sub-gyro-scale in
the multi-dimensional case. Therefore the particle acceleration by the magnetic reconnection

triggered by a collision with a shock would not work in the pulsar nebula.

In the thick current sheet case, the precursor accelerates the current sheet plasma and the
collision with a shock front excites a magnetosonic wave, as we showed in the single current
sheet case. A remarkable phenomenon is that the pre-accelerated particles by the precursor get
additional energy from the magnetosonic waves. The cause of the acceleration is a motional
electric field accompanied by the magnetosonic wave. Because the energy gain is proportional
to the initial energy (see equation (3.12)), the pre-acceleration is important to achieve a high
energy. Such particles form a high energy tail on the energy spectrum. On the other hand,
the stability of the current sheet is an also important result. The magnetosonic wave carries
momentum and compresses other current sheets. Our simulation showed that the current sheets
in the downstream are also stable against such compressions. The electro-magnetic energy
history in the bottom of Figure 3.4 means that excitation of the magnetosonic wave dominates
over the dissipation. Although the alternating magnetic field is stable in one dimension, a
multi-dimensional instability could trigger the magnetic field dissipation. Then we show the

results of the two-dimensional simulations in the next chapter.
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CHAPTER 4

Interaction between Current Sheets and a Shock in Two

Dimension

We study the two-dimensional interaction between alternating magnetic fields and a relativistic
collisionless shock using the exact-spectral method. The particles with larger gyro-radius than
the clearance of each current sheets flow back upstream from the shock front. We found that
such back flow excites the Weibel instability. The instability generate not only magnetic field,
but also electric field in shock downstream frame. The electric field, different from alternating
background component, accelerates particles. In case that the current sheet width and each
clearance are smaller than the typical gyro-radius of the downstream plasma, the alternat-
ing magnetic fields completely dissipate within the shock transition region. Particles are not
affected by the alternating magnetic fields but by the magnetic field excited by the Weibel in-
stability. On the other hand, in case that the width and the clearance are comparable or larger
than the gyro-radius, partial magnetic reconnections make the shock downstream nonuniform.
So the large amplitude magnetosonic waves, shown in the one-dimensional case, disperse during
the propagation. Unlike the small case, the alternating electromagnetic field additionally accel-
erates back-flow particles. Furthermore the residual magnetic fields often reflect the accelerated

particles. This would yield the long term acceleration process.

4.1 Introduction

The one-dimensional shock wave has been studied for a long time. Many researchers revealed the

precise of the complicated plasma phenomena of the shock wave. The Particle-in-Cell simulation
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is frequently used to understand the plasma kinetic processes. Recently it is possible to run
multi-dimensional simulations by PIC method due to the rapid advancement of computational
power. Actually some people use the multi-dimensional PIC simulations, but most of those are
three-dimensional simulation (Spitkovsky, 2005; Nishikawa et al., 2005). Although the three-
dimensional PIC simulations can treat all kind of plasma processes in principle, the phenomena
are extremely complicated. On the other hand, two-dimensional phenomena are relatively
easy to understand because a lack of degree-of-freedom eliminates some plasma modes. So to
understand the two-dimensional phenomena would help the analysis of the three-dimensional

phenomena.

It is also worth noting that the smaller computational cost is the advantage of the two-
dimensional simulations. The thee-dimensional simulations require a huge amount of computa-
tional power. It is not only for the simulation but also for the data analysis. However, to save
the computational costs by decreasing the spacial and temporal resolution could lead wrong
results or escape the attention of important physical processes. Especially the shock simulation

needs enough time to wait until the boundary effects are to be negligible small.

As shown in chapter 2, we found the cause of the numerical Cherenkov radiation (Godfrey,
1974) and can eliminate it in case of the highly relativistic flow. Although the numerical
Cherenkov radiation is electromagnetic mode in the early stage, it yields density fluctuation in
the nonlinear stage. Such a effect can bring the serious problem to the simulation results. The
conventional method to solve the Maxwell equations needs the low-pass filter to suppress the
numerical Cherenkov radiation (e.g., Greenwood et al., 2004), but one have to be careful not
to lose the physical phenomena by the filter. Even using the filter, the numerical Cherenkov

radiation appears for a long time simulation.

In case of the perpendicular shock, which means the direction of the background magnetic
field is perpendicular to the upstream flow direction (z), the two-dimensional simulation has
two options against the direction of the background magnetic field. Here we set the axes of
the simulation plane to z-y. The options are B = (0,0, B,) and B = (0, B,,0). One can also

choose B = (0, B,, B,), but it can not take advantage of the simplicity of the two-dimensional
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phenomena. One of the most significant differences is the degree of freedom for the velocity.
In case of B = (0,0, B,), it is two because of no deformation of the magnetic field B,, which
is similar to the one-dimensional case. In case of B = (0, B,,0), that is three, because the
simulation can treat the deflection of the magnetic field in the z-y plane. In this chapter we

study the case of B = (0, By, 0).

4.2 Simulation Condition

Similar to the one-dimensional case (see section 3.2), the cold magnetized pair plasma is injected
from the left boundary (z = 0) and the particles and the electromagnetic fields are reflected
at the right boundary. As mentioned above, the background magnetic field is By = (0, By, 0).
The electric field is given by Ey = —wvg x By so as to be force free for the initial upstream
plasma, where vg = (v,0,0) is upstream flow velocity. The notation “0” means the initial
upstream value. The magnetization parameter o defined by equation (1.1) is 0.1 and the
upstream bulk Lorentz factor vy = 1/ \/Tg/c2 is 100. The alternating magnetic field is
given by Harris equilibrium (Hoh, 1966; Kirk and Skjeeraasen, 2003), and the density in the
current sheet n., is 10ng. The thermal four-velocity of the plasma both in the background

and in the current sheet is uy, = 0.1. The unit of the time is a inverse of the symbolic plasma

frequency wyy = 1/8mnee?/(myp), and the spacial unit is ¢/wyo.
The spacial resolution is Az < 0.05¢/wyy and the temporal one is At < 0.01/wy. The

Courant number is ¢cAt/Ax = 0.2 for all simulations. The particle number per a cell is more

than 9 for each of electron and positron.

4.3 Shock by the Uniform Plasma Injection

Before trying the current sheets injection we check the case of the shock by the uniform plasma
injection. The parameters are same to the above setting. Figure 4.1 shows the result about the

density and magnetic field profiles. The right boundary is z = 204.8¢/w,o and the scale of the
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y-direction is 0 — 25.6¢/wy as seen in the figure.

The shock front is located at x ~ 115¢/w,y, and the shock transition region is 115—120¢/wyo.
The shock downstream (z > 120c/wyy) is nearly uniform. The compression ratio of the number
density and the magnetic field (B,) is ~ 3.3 as seen in the bottom of the figure. This result
is consistent with the MHD solution by the Rankine-Hugoniot relations for I' = 4/3 (see
equation (1.7), (1.8) and figure 1.1). One can see the filament structures in the positron
number density shown by the monochromatic contour in the top of the figure. Although we
have not analyzed the formation mechanism yet, the cause is the precursor wave. The precursor
wave pushes the upstream plasma leftward via ponderomotive force. The filaments are charge
neutral, not current filaments. The density of the filaments is more than 10n, for the dense
part and the thin part is nearly zero. The strongly nonuniform upstream disturbs the shock

front.

The energy spectrum of the particles is approximately three-dimensional Maxwellian (fig-

ure 4.2)

N(7y) o< y/~? = Lexp(—v/T), (4.1)

where T' is a temperature normalized by the rest mass energy. So no acceleration is observed

for this parameter at least. The peak at v = 100 means the cold upstream plasma.

4.4 Thick Current Sheet

We show the result of relatively thick current sheets injection case. The current sheet width
is Aeso = le/wyo and each clearance is L = 10c¢/wy. The typical gyro-radius defined by the
injection bulk Lorentz factor (7o = 100) and the magnetic field in the downstream by the
Rankin-Hugoniot relations (By = 3.3By) is 1.0¢/wyo. So the current sheet width is comparable

to the typical gyro radius, but their clearance is larger than the typical gyro-radius.
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Figure 4.1: The shock structure with uniform upstream. Top is the positron number density

(monochromatic contour) and the magnetic field lines (red lines).

Bottom is the positron

number density and the magnetic field (B,) averaging over y-direction. All quantities are

normalized by each initial upstream value.
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Figure 4.2: The energy spectrum of the shock simulation with uniform upstream. The particles

are sampled within the region shown in figure 4.1.

4.4.1 General Representation

Figure 4.3 shows the particle distribution in phase space (z - uy,uy,u;,y), and the positron
number density with the magnetic field lines in two-dimensional space (z-y). The phase space
plots are represented by summation for y-direction. The magnetized electron-positron plasma

are injected from the left boundary (x = 0), and are reflected by the right boundary (x = 409.6).

The shock front is located at x ~ 280c¢/wy. So the left region is the shock upstream
and the right region is the shock downstream. In order to avoid the reflection of the large
amplitude magnetosonic wave (see section 3.3.2) at the boundary, we prepare the uniform shock
downstream to get through the magnetosonic waves by the injection of the uniform plasma in
the beginning of the simulation. The uniform region is x > 360c¢/wy,o, not seen in figure 4.3. In
the positron number density plot with the magnetic field lines, note that the direction of the
magnetic field lines is anti-parallel on the both side of the current sheet, represented as dense

parts with monochromatic contour.

The alternating magnetic fields injected in the early stage do not change their overall shape
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in the downstream for z = 320 — 360c/wy, although the magnetic reconnections partially
arise. The ones injected in later stage is twisted up via complete magnetic reconnections for
r = 280 — 320c/wy. In the early stage the alternating magnetic field dose not change the
shape so much at the moment of the collision with the shock front. As continuous collision of
the alternating magnetic fields, the tearing mode gradually grows for each collision. Finally
the magnetic field is completely reconnected with the neighboring anti-parallel one, as seen at

x = 280 — 320c/wy in figure 4.3, and the downstream becomes nonuniform.

For these reasons, in the early stage, the magnetosonic wave excited by the collision can prop-
agate with the initial spiky shape in the uniform plasma. This is similar to the one-dimensional
case (see CASE3 and CASE4 in figure 3.1). After the downstream becomes nonuniform, the
magnetosonic waves diffuse during the propagation because of the spacial difference of the re-
fractive index. One can check it in u, (top) and v (the fourth from top) plots in figure 4.3 as
diffusing of the spiky structure with high energy particles from the shock front to the right,
because the large amplitude magnetic field accompanying the strong magnetosonic wave instan-

taneously gives the energy to the particles. This is explained in the first paragraph section 3.3.3.

A part of particles are reflected at the shock front and flow upstream, seen in the plots for u,
and u, of figure 4.3. The particles with larger gyro-radius than the current sheet clearance L do
not complete their gyro-motion within the uniform magnetic field region between the adjacent
current sheets. In the opposite signed magnetic fields, the Lorentz force works on the particles
is opposite direction. Then the particles continuously across the magnetic field (see figure 4.4).
Because such particles should have larger gyro-radius than the current sheets clearance, one

can estimate the lower limit of the energy (Lorentz factor) of the back-flow particles.

me2y
> L 4.2
i (42)
L
T o, (4.3)
Yo c/wyo

where we applied the upstream magnetic field value to B. In this simulation case of ¢ = 0.1 and
L = 10c¢/wyo, the lower limit of the back flow particles is /79 > 3.2. The criterion is slightly

larger than the actual one, because the magnetic field profile for x direction is not rectangular
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but the smooth function and the effective magnetic field is smaller than the value we used.
Furthermore the back flow particles gain and lose energy by the existence of the electric field
arise from the bulk motion of the upstream flow, so the various energy/momentum particles
are seen in figure 4.3. Anyway the criterion means that only the relatively high energy particles

of the thermalized downstream plasma can flow upstream.

4.4.2 Particle Acceleration Mechanism

The solid line in figure 4.5 shows the evolution of the energy spectrums of the particles within
the whole region except the uniform plasma downstream. The high energy tail continuously
grows during this simulation. The dashed line in the figure shows the relativistic Maxwellian
for three-dimensional velocity space defined by equation (4.1). Clearly one can find the non-
thermal tail on the spectrums (solid lines). The location of the high energy particles is seen in
the bottom plot of figure 4.3. The green, cyan and yellow dots means the particles with Lorentz
factor of > 800, > 1000 and > 1200, respectively. Most of them are located at just upstream
of the shock front. The others are generated by the magnetosonic wave or coming from the

upstream after accelerated. How are the particles accelerated in the upstream?

To conclude, the particles are accelerated by the electric fields E, and F,. FE, is accompanied
with the background magnetic field B, due to the bulk motion, but £, should be generated
by another process. The process is the Weibel instability, which is driven by anisotropy of the
velocity distribution of the plasma (Weibel, 1959). The instability generates the magnetic field
in the center-of-mass frame. So the electric field is observed from other frames. In our simulation
case, the velocity anisotropy is brought by the upstream flow and the back-flow plasma, and
the current filament is formed along z-direction. Therefore the magnetic field generated by the
Weibel instability is B,, and the observed electric field is E,. These electromagnetic fields are
different components from the background one (E., B,). Kato (2005) showed the saturation
level and the maximum amplitude of the magnetic field due to the Weibel instability. In our case

velocity dispersion for - and y-direction are o ~ 7o = 100 and o, ~ uy,/c = 0.1, respectively.
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For such strongly anisotropic pair plasma case, the maximum magnetic field is evaluated by

Bmax _XOj

vVAaArnmc? B NG

where x (= 1/3 — 1) is an isotropization parameter, 7 is defined by 4 = /1 + Jﬁ + 20%. Now

we roughly estimate the maximum magnetic field from equation (4.4)

(4.4)

Biax o 1 n
By Yo V 20 ng ¥

Assuming 4 ~ o ~ 7, n ~ ng and x ~ 1, and using ¢ = 0.1, the maximum magnetic field
is Bpaz/Bo ~ 2. Then the Weibel instability can generate the magnetic field with comparable
amplitude to the background By. Here we define v, as the relative velocity between the center-
of-mass frame and the shock downstream frame, and the maximum electric field is |Epq.| =
|VeBmaz|/c. The relative velocity could be roughly ¢, so the amplitude of the maximum electric
field is also comparable to the background magnetic field. The possibility can be assured using

the equation of motion for the Lorentz factor,

dy
2L — g E. 4.6
me’— = qu (4.6)

For the estimate, this equation can be rewritten using the energy gain A~ for the time interval
At,
A~y E
— = o—=wyAt. 4.7
Yo BO p ( )

Then substituting Epae ™~ Bmee into E in equation (4.7) and using equation (4.5), one can

A~y o [1n 1
— > X— ) = — WAt ~ —wpoAt. 4.8
Yo X% 2ng 7 7 N (4.8)

This equation means the acceleration ratio does not explicitly depend on ¢. The reason is that

obtain the relation

originally both equation (4.4) and (4.6) do not depend on the background magnetic field By,
but the phenomena depends on the velocity anisotropy and the density. Then if the velocity
anisotropy and the density are respectively proportional to the upstream bulk Lorentz factor

7o and the upstream density ng, the result of equation (4.8) is universal against ¢. In practice
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the result partially depends on o via the condition of the back-flow particles described by
equation (4.3). The acceleration ratio of ~ wyyAt/v/2 is quite large. However this acceleration

does not take place continuously. The comparison with the simulation results is discussed later.

The amplitude of the electromagnetic fields and spacial structures are confirmed by fig-
ure 4.6. Figure 4.6 shows the electric fields E = (E,, E,, E.), the magnetic fields B =
(B:, By, B.), the current densities J = (J,,Jy,J,) and the charge density p. Figure 4.6 is
same time to figure 4.3. One can see the alternating magnetic field of B, and the accompany-
ing electric field E. in the upstream. The current J, to keep the gradient of the magnetic field
in the upstream is disturbed because it is much smaller than the fluctuation by modulation of

the precursor wave.

In the upstream (x < 280), J, and p show the current filaments and B, changes its sign
roughly where the J, and p are maximum. This is typical feature of the Weibel instability. The
pattern of B, corresponds to E,, and this is explained by the relation |E,q;| = |veBmas|/c. Ey
decreases within the shock transition region (x = 280 — 300¢/w,y), where the relative velocity
v. gradually approaches zero. So the behavior of electric field £, in the transition region is also
explained well by the relation |FEyu:| = |veBmaz|/c. On the other hand the magnetic field B,
increases at the same time, because the plasma is compressed as the flow velocity decreases.
In the upstream, the amplitude of B, is partly larger than B,, and this is consistent with

equation (4.5).

Figure 4.7 shows the history of the two typical accelerated positrons. In the left plot the
shock front moves from (x(c/wp) ™, twyo) = (293,307) to (280,408). Both particles travel
with crossing the shock front during the time. Here we call the particles represented by the
solid lines and the dashed lines “A” and “B” for convenience, respectively. In the middle
plot “B” constantly gains energy () as increasing the absolute value of u,. “A” also dose
for twyy = 375 — 385, and additionally does as increasing of u, for tw,, = 400 — 408. Both
particles are not accelerated z-direction. So two kind of acceleration, for u, and w,, works on
the particles. Note that the acceleration for u, is opposite signed direction in spite that the two

particles have same positive charge. This means each particle are accelerated by opposite signed
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E,, see equation (4.6). Although the electric fields work on these particles sharply fluctuate
in the right plots, E, and E, is dominant rather than E,. Considering equation (4.6), one
can guess that the averagely negative F, accelerates “B” with negative u, constantly, and the
positive E, does “A” with positive u, for tw,) = 375 — 385. As above, one can confirm that
E, generated by the Weibel instability accelerates particles. The acceleration ratio estimated
by equation (4.8) does not continuously take place but instantaneously at tw,y = 375 — 385
for “A” and tw,y = 350 — 360 for “B”. On the other hand, E, is not so large for “A” during
twpo = 400 — 408, even though the particle is accelerated for z-direction (u,). This is explained

as the quick drift motion by the large (£, B,) at = 290c/w,y, see figure 4.6.

When the particles escape into the downstream, some of them are reflected by the residual
magnetic field and go back to upstream, like “A” at (x(c/wpo) !, twpo) = (295, 344) and “B”
at (295,330) in figure 4.7. Therefore the acceleration might be said as a kind of the diffusive

shock acceleration.

4.5 Thin Current Sheet

We also show the case of thin current sheets. The current sheet width is .50 = 0.1c/wyo and
each clearance is L = 1.2¢/wp. As shown in appendix C, the amplitude of the magnetosonic
wave is not so large. So we do not prepare the absorption region unlike the thick current sheets

case. The other parameters are same to the above case.

4.5.1 General Representation

Using equation (4.3), the energy criterion of traversing magnetic fields is 0.38vy. Therefore
most particles hardly feel the alternating magnetic fields. Actually the injection flow is just

reflected at the right boundary in the beginning of the simulation.

Figure 4.8 shows the particle distribution in phase space (x - uy, 4y, u,,7), and the positron
number density with the magnetic field lines in two-dimensional space (z-y). The phase space

plots are represented by summation for y-direction. The magnetized electron-positron plasma

66



o

OFNWAUIOINOOR

Figure 4.3: Phase space density plots and number density with magnetic field lines for positron.
All abscissa are spacial axes for . From the above the phase space density for u,, u,, u. and v
is represented by the color contour with logarithmic scale. Bottom shows the positron number
density as the monochromatic contour and the magnetic field lines with red lines. The density
contour is normalized by the initial upstream value. The green, cyan and yellow dots mean the

high Lorentz factor particles of > 800, > 1000 and > 1200, respectively.
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Figure 4.4: Schematic picture of back-flow plasma.
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Figure 4.5: Time evolution of normalized energy (Lorentz factor) spectrums of the plasma
within the region of the alternating magnetic fields (solid line) and three-dimensional
Maxwellian (dashed line). The solid lines show the energy spectrum for each t = 40/wyo.
The sharp peaks at v = 100 are contribution of the cold upstream plasma. The spectrums
continuously become harder. The spectrum with highest energy tail is the final time snap-
shot, which is same time to that of figure 4.3 and 4.6. The temperature of the Maxwellian is
T = 0.15mc?yy, which is smaller than the value expected by the Rankine-Hugoniot relations,

to fit the moderate peak at v ~ 30.
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Figure 4.6: Spacial distribution of electric fields, magnetic fields, current densities and charge
density. All quantities are normalized by the initial upstream value of the background magnetic
field (By). As shown by the color bar, red and blue mean positive and negative, respectively.

The time of this snapshot is identical to that of figure 4.3.
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The two positrons are represented by the solid lines

Figure 4.7: History of two positrons.

and the dashed lines, respectively. The ordinates are the temporal axes. Left plot shows the

particle location for x (red lines) with the stack plot of the magnetic field (B,) averaged over

velocity and the Lorentz factor. Right shows the electric

y-direction. Middle shows the four

The four-velocity, the Lorentz factor and the electric fields are

fields works on each particle.

normalized by each initial upstream value. The plot of the final time step is identical to the

plot of figure 4.3 and 4.6.
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are injected from the left boundary (z = 0), and are reflected by the right boundary (z =
163.8). The shock front is located at = ~ 90c/w,. In one-dimensional case both without
background magnetic field and with alternating magnetic field accompanying thin current sheets
(section 3.4.1), a shock is not formed. Kato (2007) showed the shock formation due to the Weibel
instability in the two-dimensional simulation. In the top of figure 4.9, the dashed line shows the
absolute value of B, averaged over y-direction. B, suggests the Weibel instability and increases
around the shock transition region = 80 — 110¢/w,o. Then in this case the Weibel instability

also plays a role in formation of the shock as explained by Kato (2007).

The wu, plot in figure 4.8 shows that the downstream plasma is barely thermalized along
z-direction. So the behavior of the plasma is almost two-dimensional in z-y plane. This
should affect the compression ratio, see the bottom plot of figure 1.1. The compression ratio
is calculated via density profile in figure 4.9. The density averaged over a half period of the
Harris magnetic field (Hoh, 1966; Kirk and Skjseraasen, 2003) in the upstream is

() ' nesncosh™ @/ Awo)da + Lng »
2)\CS CS!
= Onn—;’ +1~27, (4.10)

where these parameters are Ao = 0.1c/wyo, L = 1.2¢/wpg, neso = 10ng. The downstream
density is ~ 8.5ng by the bottom plot of figure 4.9, so the compression ratio is ~ 3.1. On the
other hand the ratio calculated by the Rankine-Hugoniot relations with the two-dimensional
adiabatic index I' = 3/2 is 3 for o = 0 by equation (1.8), see also figure 1.1. This result means
the shock is similar to the case of unmagnetized plasma with two-dimensional velocity space.
The reason is that the magnetic field B, excited by the Weibel instability works on the particles,
rather than the alternating magnetic field B,. Figure 4.10 also supports the result. From the
upstream to the shock transition region (z < 115¢/wy), the Weibel instability excites E,, B,
J, and p. Meanwhile, the amplitudes of (E,, B,) is much smaller than that of (E,, B,) in the
same region. In the downstream the magnetic field B, is vanishingly dissipated, which is also
shown by the magnetic field lines (red lines) in the bottom plot of figure 4.8 and the top plot
with solid line in figure 4.9.
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The above result indicates another important result. That is, the downstream condition is
same the one derived by the upstream of ¢ = 0 in spite of the finite value of ¢ in practice. In
particular, considering the alternating magnetic fields and the current sheets, the averaged-o

of the upstream plasma, called (o), is defined by

(BF)
= —— Y 4.11
() 8 (ng)mc3vy (411)
(B3)/Bj
WO’, (412)
0 0
where (B?) is given by
(B2) f%% tanh?(2/Aeso )da
= - (4.13)
0
2)\05
~ 1= % ~0.83. (4.14)

(ng) is given by equation (4.10). Therefore (o) = 0.03, but the result is inconsistent with the
result suggesting o = 0 in the upstream. As shown in appendix D, the downstream condition
follows ¢’ which is o evaluated by (By)? (= 0 in this case), not () by (B2), when the alternating

magnetic fields disappear in the downstream.

4.5.2 Particle Acceleration

Figure 4.11 shows the time evolution of the energy spectrum. The spectrum with the highest
energy tail is at the final time step, corresponding to figure 4.8, 4.9 and 4.10. The dashed line

shows the two-dimensional Maxwellian,

N(v) ocyexp(—=v/T). (4.15)

The high energy tail gradually grows with time. So the spectrum may become harder for a
longer term, although the acceleration is still weak within the short time simulation. Figure 4.12
shows the trajectory of two accelerated positrons. In the left plot, the shock front travels from
(z(c/wpo) ™1, twpo) ~ (125,80) to (85,160), then the shock speed is ~ 0.5¢. The two particles

gain energy with comparable level, but their location of z is different each other at all times.
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The particle represented by the solid ! !lines, called “A,” is mainly located in the upstream. The
particle represented by the dashed lines, called “B,” traces the trajectory “A” until t = 115w,
and then drifts into the shock downstream region. Both particles are strongly affected by E,
all the time, shown in the right plot of figure 4.12. In response to the £, u, changes widely.
Additionally, as seen in the drift motion of “B” at ¢t = 115w, the change of u, is yielded by
the Lorentz force of (E,, B,). Therefore the electric field £, excited by the Weibel instability
exists from the upstream to the shock transition region (see figure 4.10), and can accelerate

these particles.

One of the differences from the thick current sheets case is the effect of (E,, B,). This
background components often accelerate particles, which is seen as a particle represented by
solid lines is accelerated during twpy = 400 — 408 in figure 4.7. In this small current sheets
case the acceleration by (E,, By) is not expected. The other is the reflection of particles in
the downstream. In the thick current sheets case the residual magnetic fields of background
component (B,) in the downstream often reflects the accelerated particles to the upstream.
However, in this case, the background alternating magnetic fields completely dissipates and
can not reflect particles. Therefore the continuous acceleration with crossing the shock front in

the thick current sheets case does not work in this thin current sheets case.

4.6 Summary and Discussion

We investigated the interaction between alternating magnetic fields and a relativistic collision-
less shock in two-dimension. At the beginning, we showed the result of the uniform inflow case.
The y-averaged shock feature (shown in the bottom of figure 4.1) confirms consistency with
the MHD result by the Rankine-Hugoniot relations. It should be noted that the filamenta-
tion of the upstream plasma in the top of figure 4.1. Although we do not analyze precisely, it
seems that the precursor wave induces it via radiation pressure. Accordingly the nonuniform
upstream plasma disturbs the shock front. The energy spectrum in figure 4.2 is nearly relativis-

tic Maxwellian for three-dimensional velocity space defined by equation (4.1). So the particle
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Figure 4.8: Phase space density plots and number density with magnetic field lines for positron.
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All abscissa are spacial axes for . From the above the phase space density for u,, u,, u, and
is represented by the color contour with logarithmic scale. Bottom shows the number density
as the monochromatic contour and the magnetic field lines with red lines. The green and cyan

dots mean the high Lorentz factor particles of > 800 and > 1000, respectively.
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Figure 4.9: Shock profiles for z-direction, averaged over y. Top shows the magnetic field B, and
the absolute value of B,. Bottom is density n. They are normalized by each initial upstream
value. The peaks of B, in the upstream is affected by the dense current sheets, explained by

equation (4.5).
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Figure 4.10: Spacial distribution of electric fields, magnetic fields, current densities and charge

density. All quantities are normalized by the initial upstream value of the background magnetic

field (By). As shown by the color bar, red and blue mean positive and negative, respectively.

The time of this snapshot is identical to that of figure 4.8 and 4.9.
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Figure 4.11: Time evolution of normalized energy (Lorentz factor) spectrums of the plasma
within the region of the alternating magnetic fields (solid line) and two-dimensional Maxwellian
(dashed line) defined by equation (4.15). The solid lines show the energy spectrum for each
t = 30/wp. The peaks at v = 100 are contribution of the cold upstream plasma. The spectrums
continuously become harder. The spectrum with highest energy tail is the last time snapshot,
which is same time to that of figure 4.8, 4.9 and 4.10. The temperature of the Maxwellian is

T = 0.5mc?~y,, which is consistent with the value expected by the Rankine-Hugoniot relations.
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Figure 4.12: History of the two positrons. The two positrons are represented by the solid lines
and the dashed lines, respectively. The ordinates are the temporal axes. Left plot shows the
particle location for x (red lines) with the stack plot of the magnetic field (B,) averaged over
y-direction. Middle shows the four-velocity and the Lorentz factor. Right shows the electric
fields works on the particle. The four-velocity, the Lorentz factor and the electric fields are

normalized by each initial upstream value. The plot of the final time step is identical to the
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plot of figure 4.8, 4.9 and 4.10.
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acceleration is not observed in this simulation setting.

Next the alternating magnetic fields with thick current sheets are injected into the uniform
shock. Only the particle with larger gyro-radius than the clearance of the current sheets can
across the alternating magnetic fields, because such particles do not complete their gyro-motion
within the uniform magnetic field region between the adjacent current sheets. The gyro-radius is
proportional to the Lorentz factor so we found the energy criterion of such particles, represented
by equation (4.3). Some of the particles satisfy the criterion flow back upstream, seen in

figure 4.3.

Such back-flow particles induces the Weibel instability from the upstream to the shock
transition region. The instability generates magnetic field B,, different from the background
one B,. Because the center-of-mass frame is different from the shock downstream frame, £, is
also observed in figure 4.6. The electric field F, by the Weibel instability and the background
one F, accelerate the particles, which presents as a high energy tail of the spectrum in figure 4.5.
As seen in figure 4.7 the accelerated particles travel between the shock upstream and the shock
downstream. The reflection in the upstream is yielded by the drift motion and that in the
downstream is by the residual magnetic fields. This result indicates the long term acceleration.

Additionally the high energy tail grows with time in figure 4.5.

Finally, we showed the case of thin current sheets injection. The current sheet width and
each clearance are smaller than the typical gyro radius defined by the upstream magnetic field
and bulk Lorentz factor. Actually the particles barely feel the magnetic field. Unlike the
one-dimensional case, the shock is formed due to the Weibel instability (Kato, 2007). This
means the magnetic field excited by the instability (B,) works on particles, rather than the
alternating magnetic fields (B,). The shock structure is similar to the unmagnetized plasma
case. Because the magnetic field excited by the Weibel instability is perpendicular to the
x-y plane, the distribution of the particle velocity is nearly two-dimensional (u,u,). The
alternating magnetic fields B, dissipates completely in the downstream, and the other B, also
disappear after the shock transition region. So the particle reflection in the downstream does

not take place, but still figure 4.11 indicates the growth of high energy tail.
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The condition of the thin current sheets case is similar to the pulsar wind. As shown in
section 4.5.1 and appendix D, the shock downstream condition is determined by (By). Therefore
the effective-o, or ¢/, changes from 0 to (o) in response to the change of latitude of the pulsar
wind from the equatorial plane to the edge which the alternating magnetic fields exist (see
figure 1.7). The difference of value between ¢’ and () means the efficient magnetic dissipation.
This result would solve the o problem. Additionally the acceleration via the Weibel instability

is valid close to the equatorial plane.
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CHAPTER 5

Concluding Remarks

We studied the interaction between alternating magnetic fields and a relativistic shock in

electron-positron plasma.

First, in order to solve the two-dimensional relativistic shock simulation by Particle-in-Cell
method correctly, we studied the solution to the numerical Cherenkov radiation. The solution

is given by a set of follows.

e Using “the exact spectral method” to correctly solve the dispersion relation of electro-

magnetic mode

e Filtering the largest resonance point by aliases of the current density

Second, we studied the interaction between alternating magnetic fields and a relativistic
shock using one-dimensional PIC simulations. The phenomena are classified into two cases.
One is “small current sheet”: the current sheet width and each clearance are smaller than the
downstream typical gyro-radius. The other is “large current sheet”: the current sheet width

and each clearance are comparable or larger than the downstream typical gyro-radius.

1. Common feature
e Particle acceleration by the precursor wave
2. Small current sheet

e Strong dissipation of the alternating magnetic fields
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3. Large current sheet

e Excitation of large amplitude magnetosonic waves

e Additional particle acceleration by the magnetosonic waves

Although the acceleration by the precursor wave is not seen for “small current sheet” in our

simulation time scale, it should arise in principle.

Finally, we studied the interaction by the two-dimensional simulations on the basis of the

one-dimensional study. The classification is similar to the one-dimensional case.

1. Common feature

e Flowing back particles with crossing the alternating magnetic fields
e Weibel instability by the back flow

e Particle acceleration by the electric field excited by the Weibel instability
2. Small current sheet

e Strong dissipation of the alternating magnetic fields by the magnetic reconnection
3. Large current sheet

e Dispersion of large amplitude magnetosonic wave in nonuniformalized downstream

by magnetic reconnections

e Additional particle acceleration by the alternating electromagnetic field in the up-

stream

e Particle reflection by the residual magnetic field in the downstream

Although we did not observe the acceleration by the precursor wave within the simulation time
because of computational limitation, it would arise in longer time simulation. The back-flow
particles can be also observed in one-dimensional simulations with the same parameter setting,

the Weibel instability is the two-dimensional proper.
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APPENDIX A

Particle-in-Cell Method

The particle acceleration mechanism and the magnetic field dissipation mechanism closely relate
to the plasma kinetic effects. When one numerically simulates the kinetic effect, the simulation
method should resolve the particle motion. The magneto-hydro-dynamics (MHD) simulation
can solve the global structure of plasma, but not the particle motion. The kinetic effect is
replaced by some parameters in the MHD equations. The most popular methods to describe

the plasma kinetic effect are the Vlasov method and the Particle-in-Cell (PIC) method.

In the Vlasov method, a distribution function is solved by the Vlasov equation in the phase
space. This method make a numerical noise low level. The problem is the memory size for
the calculation. For instance, if one tries a small two-dimensional simulation with 100 x 100
spatial grids and 100 x 100 x 100 momentum spatial grids, the total grid number is 10!
The Vlasov method in case of the multi-dimensional simulation requires huge memory size for

present computational resources.

In the PIC method, individual particle is directly solved by the equation of motion. The
electromagnetic fields are defined on the spatial grids and are solved by the Maxwell’s equa-
tions. The procedure for one time step in PIC method is shown below (see also figure A.1).
The electromagnetic fields on each particle are obtained from neighboring grids by spatial in-
terpolations. The Lorentz force by the electromagnetic fields progress the time step of these
particles via the equation of motion. The position and velocity of these particles define the
charge density and the current density on the neighboring grids. Then the Maxwell’s equations
progress the time step of the electromagnetic fields on the grids. These information interchange

between particles and grids via the spacial interpolations yields larger numerical noise than
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that of the Vlasov method. In the PIC method, usually the particle number in a grid should be
much larger than unity to keep statistical precision and to decrease the noise. The memory size
required by this PIC method is basically the grid number plus the particle number. Although
the large number of particles consumes a large amount of memory, the size is usually much
smaller than that of the Vlasov method with same scale. For these reasons, we used the PIC

method for study of kinetic plasma processes.

As shown above, the PIC method mainly consists of three parts, particle motion solver, elec-
tromagnetic field solver and momentum calculation (interpolation between particles and grids).
In this appendix we introduce the basic schemes of the particle solver, the electromagnetic field

solver and the momentum calculation in the PIC method.

In the following sections, the position and velocity of particles are defined on integer and
half-integer time steps, respectively. Charge density, electric fields and magnetic fields are
defined on integer spacial grids and integer time steps. Current densities are defined on half-
integer grids and half-integer time steps. For some parameters, interpolations between spacial

grids are needed to satisfy these definition.

A.1 Particle Motion Solver

The velocity of the particles are solved by the equation of motion. In case that the particle

velocity is nearly light velocity, one should use the relativistic equation of motion,

du u

where m is the rest mass, ¢ is the charge, w is the four-velocity, v is the Lorentz factor defined by
v = \/1—1—72/02, and E and B are electric fields and magnetic fields, respectively. The most
popular method to solve the particle motion in the PIC method is Buneman-Boris method
(Boris, 1970), which ensures no work volume by the magnetic field. According to the method,

the relativistic equation of motion (equation (A.1)) is rewritten in a difference equation form

n+l _ ,,n+1 n+1/2 n—1/2
vo—w (gt Y g, (A.2)
At m 2cy
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Integration of equation of motion
by Lorentz force, and moving particles

Bk -> u, -> X,

Weighting from particles to grids as
charge density and current density

Weighting fEroné gri>dE tg particles At
i k" "k XV, -> pi,Ji

&

Integration of Maxwell equations
with charge density and current density

pi’Ji 4 Ei'Bi

Figure A.1: Chart of the PIC method for one time step. Top and bottom squares show the
solver of equation of motion and the Maxwell equations, respectively. Left and right show the

interpolations between particles and grids (momentum calculations).
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Now equation (A.2) is divided by three steps, an acceleration by E for a half time step (At/2),
a rotation by B for one time step (At) and an acceleration by E for half time step (At/2)

again. The first step and the final step are respectively expressed as

At
u = ’Ll,n_l/Q + %EnT, (A?))
At
w2 = oyt L (A4)

m 2

Substituting equation (A.3) and (A.4) into equation (A.1), the equation for the second step is

derived,

2
u+:u_+m(u_—|—u_><T) x T, (A.5)

where T' = ¢B"At/(2mcey~) and v~ = /1 + (u™)?/c?. Eventually the order of equation to
be solved in the code is equation (A.3), (A.5) and (A.4). After converting the four-velocity

w"/% into the three-velocity v™'/? using v"*/? = w12 /\/1 + (un+1/2/c)?, the position of

the particles is updated by

"t =" + " V2AL (A.6)

A.2 Electromagnetic Field Solver

For the two-dimensional simulation we used an advanced method shown in chapter 2. In
this section we introduce one of the basic methods (Birdsall and Langdon, 2005), used in
one-dimensional simulation (chapter 3). Now we solve the parameters along the z-axis. The
magnetic field has only the z-component. From equation (2.1) and (2.2), in such case the
electric field has z- and y-component, and the x-component is separated from the y-component
as an electrostatic field given by the Poisson equation (equation (2.4)). Then the equation (2.1)

and (2.2) can be rewritten by

10E, 0B, 4r

ot ot e (A7)
108, 0E,

z - =¥ A.
c Ot ot (A-8)
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Defining F* = E, &+ B,, equation (A.7) and (A.8) become

10 0 4
4 V=2 A.
(c@t (9.7:) c I (8.9)

In the difference equation form, these change to

(FO = (FDy  (FDF—(FY, A

cAt + Ax B c (Sy)iciya (A.10)
(F)it = (F)p (F)f — (FO)7 AT a2

cAt Az N c (Jy)”l/g‘ (A-11)

These equations solves the advection of F'*, so there is no restriction by the Courant condition.
Then one can set the relation between the spacial grid width Ax and the temporal step width

At to Az = cAt. Then equation (A.10) and (A.11) are simplified as follows,

(FE)+L = (FH), — 4r(J)M 2 AL (A.12)

iFl iF1/2

These equations progress the time step of F'* in the code. Finally they are converted into the

electromagnetic fields,

1
B, = ~(F*+ F), (A.13)
B, =

DO | = DN

S(Ft - F). (A.14)

Meanwhile the electrostatic field E, is solved by

0F,
oz

= 47p, (A.15)
from equation (2.4). This equation is easily rewritten in the difference form,
(Ex)zn—i—lﬂ = (Ex)?—l/Q + 4mp;. (A.16)

One can use this equation to solve the electrostatic field E,. In equation (A.16), E, is defined
on half-integer grids. However it should be re-defined on integer grids by linear interpolations,

unless the self-force arise, which moves the particle by the electrostatic potential of itself.

Because the electrostatic field mixes with the other components in Maxwell’s equations for

multi-dimensional case, this method can not be directly extended to the multi-dimensional one.
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A.3 Momentum Calculation

In the PIC method physical parameters are defined not only on the grids but also on par-
ticles. So charge density and current densities on grids, and electromagnetic fields work on
particles must be correctly evaluated to solve electromagnetic fields and particles consistently.

We introduce the most popular method of the interpolation between grids and particles.

To calculate the charge density and the current densities, the contribution of a particle
is divided into neighboring grids. For the two-dimensional case the weights for each grid is
proportional to the area of the opposite side over the particle (see figure A.2). For example the

contributions of a charge by a particle to the grids are

pij = q(1—0dx)(1—dy),
pir1y = qox(l—dy),
pijr1 = q(1—dx)dy,
Pirij+1 = qozdy.
The total charge density on the grid is obtained by the summation of all particles. The current
density is similarly given using the particle velocity and position at the half-integer time step.

On the other hand, the contribution of electromagnetic fields works on a particle in the cell

is inversion of the above.
A= Ai,j(]- — (51’)(1 — 5y) + Ai+17j(5$(1 — (Sy) + Ai,j—‘rl(l — (5:L‘)(5y + Ai+17j+1(5x5y, (A21)

where A is an arbitrary electromagnetic field vector.

Although we introduced a simple linear interpolation here, one has other options (e.g. Jacobs
and Hesthaven (2006)). Although the higher order interpolation (shape factor) decrease the
noise, the computational costs increase drastically. This is a reason that the higher order

interpolation is not used frequently.
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(i, j+1) (i41, j41)

1-8y

dy .

X 1-6x

Figure A.2: Schematic diagram for interpolation between a particle and grids. The black
circle means a particle in a cell. The abscissa and the ordinate show the x-grids and y-grids,

respectively.
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APPENDIX B

Code Check

In order to check the code, we show the dispersion relation. The simulation condition is uniform
plasma with back ground magnetic field of y component B = (0, B,,0). The plasma has no
bulk velocity. The thermal four-velocity is u;, = 0.1. The ratio of the gyro frequency and the

plasma frequency, which characterizes the physical property, is Q/w, = 0.5, where

g - 8 (B.1)

Y
MCYin

b 8mne? (B.2)
P m'Yth. .

Figure B.1 shows the dispersion relation for parallel propagating waves by the simulation result.

The contour is obtained by Fourier transformation for B,. These modes can be expressed in

equations by the linear analysis

1
W — . {02k2+w(2]Hi \/(02]{32 + w2, )2kt — 4c2k202 ] ’ (B.3)

where wyy is the upper-hybrid frequency wyy = \/m. The positive signed equation
means the electromagnetic mode, which is a degeneracy of L-mode and R-mode in ion-electron
plasma. The electromagnetic mode is described by a red dashed line in figure B.1. The frequency
of the electromagnetic mode is wyy at k = 0, and asymptotically approaches to the frequency
of w = ¢k in high wavenumber. The negative one is the Alfvén mode, which is a degeneracy
of whistler and ion cyclotron waves in ion-electron plasma. The Alfvén mode is described by a
green dashed line in figure B.1. The frequency of this wave is w = 0 at k = 0 and w — € for

k — oo.

Figure B.2 shows the dispersion relation for perpendicular propagating waves by the simu-

lation result. The contour is also obtained by Fourier transformation for B,. These modes can
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be expressed in equations by the linear analysis,

w2:

1
5 (+ )k + Q@ +w + \/(02 — 22kt +2(c? = 2) (w2 - P)k2 + (2 +w?2)? | . (BA4)

,where ¢, is the sonic wave,

cy = \/(r _pydm=l, (B.5)

Yth
I' is a ratio of specific heat. In this case the particle velocity has three dimensional distribution,
and this value is I' = 4/3. The positive signed equation means the extra-ordinary mode (X-
mode). This mode is described by a red dashed line in figure B.2. The frequency of the X-mode
is also wyy at k = 0, and asymptotically approaches to the frequency of w = ck in the high
wavenumber. The negative one is the fast mode, described by a green dashed line in figure B.2.
The frequency of this wave is w = 0 at kK = 0 and asymptotically approaches to the frequency

of the sonic wave.

Although the amplitude of these high wavenumber components decreases by the low-pass

filter, All of these waves are well fitted by the linear dispersion relations.
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Parallel Propagating Waves (Bx)

16

Figure B.1: Dispersion relations of parallel propagating waves of B,. The contour shows the
simulation result. The red dashed line is the electromagnetic mode and the green dashed line is
the Alfvén mode. These modes are described by equation (B.3). The top is the full simulation

scale. The bottom is that of a low frequency part.
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Parpendicular Propagating Waves (Bx)
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ke/w,

Parpendicular Propagating Waves (Bx)

Figure B.2: Dispersion relations of perpendicular propagating waves of B,. The contour shows
the simulation result. The red dashed line is the extra-ordinary mode and the green dashed line
is the fast mode. These modes are described by equation (B.4). The top is the full simulation

scale. The bottom is that of a low frequency part.
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APPENDIX C

Magnetosonic Wave

The magnetosonic wave generated at the shock front transfers the bulk energy of the current
sheet plasma into the shock heated downstream plasma. The magnetosonic wave is believed
to play a significant role in the additional plasma acceleration and the shock dynamics in
the downstream. In this appendix we estimate the magnetosonic wave amplitude on a simple
assumption of conservation laws and compare the result with the simulation result. First, we
evaluate the upstream current sheet plasma momentum and the downstream magnetosonic
wave momentum. Provided the upstream uniform plasma is converted into the downstream
one, we could approximately consider the current sheet plasma n.y, added on the uniform
one ny, as exciting the magnetosonic wave. Therefore the uniform component of the upstream
and the downstream is ignored in the following equations. Then the total momentum of the

injection current sheet plasma exciting a magnetosonic wave is described

M. :/ 2mneso(x)upd (C.1)
= 4/\650mn050u0, (02)

where Nego(2) = Neso cosh™?(2/Aeso). The magnetosonic wave momentum propagating with ¢,

in the downstream is

My, = /dt/dx{—é% (BZ(“;)Q;TE@’(”C)Q +Pth(x))} (C.3)

1 [> (2B,B 14+ ¢2/c?) B2 P,
= —/ 1Ba(w) + (14 /) 2<x)+(23132(x)+33(x)) g (C.4)
s o 87 B
2/\m5 1 -Pthl 1 + 02/02 Pthl 2
— — M) BB s B .
Cs {W(8w+ B%) ! 2+< st B2 )2 (C5)
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where

B.(x) = Bi+ By(z) = By + Bycosh ™ (x/\s), (C.6)
E,(x) = (cs/c) Ba(x) = (cs/c) Bacosh™ (2 Ans), (C.7)
Pin(z) = Pui+ Puo(x) = Py + Pipg cosh™2(2/Ams). (C.8)

The index “1” and “2” mean the downstream background part and the wave part quantity,
respectively. In the equation (C.4) we used a relation B(z)?/Py,(x) = const. on the assumption
of the magnetic moment conservation in highly relativistic case mu®/yB, ~ T(x)/B.(z) =
const., mass flux conservation and magnetic flux conservation B,(x)/n(z) = const., where the
thermal pressure is described by Py, (x) = n(x)T(z). If a part of the injection current sheet

momentum converts into the magnetosonic wave momentum aM, ., = M,,, for 0 < a < 1,

B
EQ = a(—l—l—\/l—i—b), (C.9)
0
. - z i 00B2/B2 + Pi,1/(nomcy) (C.10)
2 By oo (1+c2/c?) BY/B§ + P/ (nome*y)’ '
- 8acs/c neso/no oo (1+ ¢2/c?) B/ B3 + Pip1/(ngmc®yp) (C.11)

T2 Ams/ Aeso {o0B?/B3 + Pthl/(n(ﬂnc?%)}2
The upstream parameters with index 0 describe downstream parameters with index 1 by using
the Rankine-Hugoniot relations (Gallant et al., 1992), ny/ng = By1/By = 2.8, T} = 0.48 for

oo = 0.1. In this case equation (C.9) is

Bs 3.3 ac/c
=2 —1 14 (3.841.4¢2/c?) ——|. C.12
By 0.58 +0.38¢2/c2 < * \/ T8+ 1de/e) Ams/ACSo> (C.12)

On the other hand the magnetosonic wave amplitudes for CASE2-4 are (B + By)/By =~

4.1,6.7,7.4 respectively. For CASE1 we presume that the amplitude is same to the average
of the uniform downstream value ~ 3.1, because it is under the fluctuation level. The wave
length of a magnetosonic wave should be larger than the inertia length ¢/w, = 0.42¢/w,, which
could yield a criterion classifying the current sheet width into the thick and the thin current
sheet. In the thick current sheet case (CASE3 and CASE4), we assume that the width and

group velocity are \,,s ~ A0 and cg ~ ¢, respectively, on the basis of the simulation results.
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If one substitutes these parameters into equation (C.12), the amplitude By/ By is constant for
fixed . The magnetosonic wave amplitude is approximately ~ 6.7 and ~ 7.4 for CASE3 and
CASEA4, respectively. Using these average, one can determine as a = 0.65. Although this
value, of course, includes not only the actual momentum conversion ratio, but also other error
effects, we use this a to evaluate the thin current sheet cases (CASE1 and CASE2) for ease. In
the thin current sheet case, the width and the group velocity are A5 = ¢/w, = 0.42¢/w, and
cs ~ 0.82¢, respectively. Here we used a dispersion relation with a low frequency approximation

for relativistic hot magnetosonic wave in two-dimensional velocity space,

~ ¢ = 0.82c, (C.13)

where o = 0.57 is a ratio of the magnetic energy density to the thermal energy density. Then

one can derive the magnetosonic wave amplitude as a function of the current sheet width,

c/ Wpo

—2—-40 (—1 + o J14 6.0 ) . (C.14)

Figure C.1 shows the simulation results and the above model results. Equation (C.14) roughly
explains the simulation results of CASE1 and CASE2. The essence of this result is that the

wave length should be larger than the inertia length.

The momentum density determines the amplitude. In case of the thick current sheet A oo >
¢/w,, since the magnetosonic wave length A, is comparable to the current sheet width, the
amplitude is constant for different current sheet width .. However in the thin case .4 <
¢/w,, the magnetosonic wave length is the inertia length ¢/w,. Therefore as the initial current
sheet width decreases, the magnetosonic wave momentum also decreases. As a result the
amplitude becomes smaller than the thick current sheet case with the same current sheet
plasma density n.s/no. This is the reason that the amplitude of the magnetosonic wave is

quite small in CASE1 and CASE2.
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Figure C.1: Magnetosonic wave amplitude. The solid line shows background magnetic field as
defined by the shock jump conditions. The dashed and the dotted line are described by the
equation C.12 for A,,s = c/w, and A5 = A0, respectively. The circles are the simulation

results.
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APPENDIX D

Unequally Spaced Current Sheets in Two Dimension

In chapter 4, we showed the case of equally spaced current sheets. For comparison we also
investigate the unequally case. Similar to chapter 4, the results are also divided into two cases,
“thick current sheet” and “thin current sheet”. All parameters conform to the case of the equally
spaced current sheets except the clearance. In this case we set the clearances L; = 5L/4 and
Ly, = 3L/4, where L, is positive B, region, L; is positive B, region and L is the clearance for
equally spaced current sheets case defined in chapter 4. Then the average of B, for the region
including two current sheets is (By) = 0.25By, on the other hand in the equally spaced current
sheets case in chapter 3 that is (By) = 0.25By. These clearance is same setting to the unequally

case in section 3.4.1.

D.1 Thick Current Sheet

Figure D.1 shows the particle distribution in phase space (x - ug, uy, u,,7), and the positron
number density with the magnetic field lines in two-dimensional space (z-y). The phase space
plots are represented by summation for y-direction. The magnetized electron-positron plasma

are injected from the left boundary (x = 0), and are reflected by the right boundary (z = 409.6).

The shock front is located at x ~ 265¢/wy. So the left region is the shock upstream and
the right region is the shock downstream. In order to avoid the reflection of the magnetosonic
wave at the boundary (see section 3.3.2), we prepare the uniform shock downstream to get
through the magnetosonic waves by the injection of the uniform plasma in the beginning of the

simulation. The uniform region is > 355¢/w,o In the positron number density plot with the
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magnetic field lines, note that the direction of the magnetic field lines is anti-parallel on the

both side of the current sheet, represented as dense parts with monochromatic contour.

Now the averaged alternating magnetic field is (By) = 0.25B8y. Then there is no back-flow
particles for long distance, even though some particles have energy larger than the criterion
defined by equation (4.3). The back-flow distance is the gyro radius given by the averaged
magnetic field (By) = 0.25B, at most. Such particles are seen at just upstream of the shock
front (x = 255 —265) in figure D.1, and thin current filaments are also seen at the same region.

However it is not enough to generate electric field for the particle acceleration.

Compared with the current sheets clearance (L) in section 4.4, this case has larger (L, > L)
and smaller one (L < L). Although the fluctuation of the shock front grows continuously
in figure 4.3 of section 4.4, the larger clearance prevents the fluctuation from growing. As a
result, drastic magnetic reconnections in the downstream are suppressed, and the large am-
plitude magnetosonic waves excited at the shock front propagate without dispersion, like the
one-dimensional case. The large amplitude magnetosonic wave momently gives the energy to
particles as shown in the first paragraph of section 3.3.3. These high energy particles seen in
the bottom plot in figure D.1 as dots. The time evolution of the energy spectrum is shown in

figure D.3. The high energy part is power-law, but no growth of time.

D.2 Thin Current Sheet

Next we show the case of thin current sheets. As shown in appendix C, the amplitude of the
magnetosonic wave is not so large. So we do not prepare the absorption region unlike the thick

current sheets case.

Figure D.4 shows the particle distribution in phase space (z - uy, uy, u,y), and the positron
number density with the magnetic field lines in two-dimensional space (z-y). The phase space
plots are represented by summation for y-direction. The magnetized electron-positron plasma
are injected from the left boundary (x = 0), and are reflected by the right boundary (z = 163.8).

The shock front is located at x ~ 108¢/wy,o. Similar to the above “thick current sheet” case,
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Figure D.1: Phase space density plots and number density with magnetic field lines for positron.
All abscissa are spacial axes for . From the above the phase space density for u,, u,, u, and
is represented by the color contour with logarithmic scale. Bottom shows the positron number
density as the monochromatic contour and the magnetic field lines with red lines. The density
contour is normalized by the initial upstream value. The green, cyan and yellow dots mean the

high Lorentz factor particles of > 800, > 1000 and > 1200, respectively.
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Figure D.2: Spacial distribution of electric fields (E,, E,, E,), magnetic fields (B,, By, B.),
current densities (J,, J,, J,) and charge density (p). All quantities are normalized by the initial
upstream value of the background magnetic field (By). As shown by the color bar, red and
blue mean positive and negative, respectively. The time of this snapshot is identical to that of

figure D.1.
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Figure D.3: The time evolution of normalized energy (Lorentz factor) spectrum of the
plasma within the region of the alternating magnetic fields (solid line) and three-dimensional
Maxwellian (dashed line). The solid lines show the energy spectrum for each ¢ = 40/w,o. The
sharp peaks at v = 100 are contribution of the cold upstream plasma. The spectrum with
highest value at v ~ 30 is the final time snapshot, which is same time to that of figure D.1
and D.2. The temperature of the Maxwellian is 7" = 0.17mc?yo, which is smaller than the value

expected by the Rankine-Hugoniot relations, to fit the moderate peak at v ~ 30.
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there is just a little back flow at x = 104 — 108 in figure D.4. Accordingly indications of the

Weibel instability is barely observed in figure D.5.

Figure D.6 shows the y-averaged profiles for B, (top), absolute value of B, (middle) and
positron number density n (bottom). B, shows disappearance of the alternating magnetic fields
at the shock front and uniform magnetic field in the downstream. The absolute value of B,

confirms almost no Weibel instability in this case, compared with figure 4.9 in section 4.5.

The plot of the number density clearly shows the downstream value ~ 11ng. The averaged
number density of the upstream (n) ~ 2.7nq is given by equation (4.10), so the compression
ratio is ~ 4.1. On the other hand, the compression ratio, derived from the averaged-o (o) = 0.03
defined by equation (4.12), is ~ 3.7. This is not well accorded with the simulation result ~ 4.1.
Then let us think of the evaluation of o using (Bp), not (B2). Here we call it ¢’. This is easily

evaluated as follows,

2 2
o' = Ma ~ 2.3 x 1077, (D.1)

(n)/no
where we used the values, (n) ~ 2.7ng, (By) = 0.25By and ¢ = 0.1. Then using o’ the
compression ratio is ~ 4.0, and this value is roughly consistent with the simulation result
~ 4.1. Additionally the relation of the magnetic field amplitude between the averaged upstream
value (By) = 0.25B, and the downstream one B; ~ 1.0Bj satisfies the compression ratio ~ 4,
shown in the top plot of figure D.6. Therefore the shock profile is characterized by the averaged
magnetic field (By), not by the square mean value (B2)/2, in case that the alternating magnetic

fields completely disappear.

Finally, figure D.7 shows the energy spectrum. This means no particle acceleration. These

results support the acceleration via Weibel instability in chapter 4.
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Figure D.4: Phase space density plots and number density with magnetic field lines for positron.
All abscissa are spacial axes for . From the above the phase space density for u,, u,, u. and
is represented by the color contour with logarithmic scale. Bottom shows the number density
as the monochromatic contour and the magnetic field lines with red lines. There is no high

Lorentz factor particles of > 800
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Figure D.5: Spacial distribution of electric fields (E,, E,, E,), magnetic fields (B,, By, B.),
current densities (J, J,, J,) and charge density p. All quantities are normalized by the initial
upstream value of the background magnetic field (By). As shown by the color bar, red and

blue mean positive and negative, respectively. The time of this snapshot is identical to that of

figure D.4 and D.6.
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Figure D.6: Shock profiles for z-direction, averaged over y. Top shows the magnetic field B,),
middle is the absolute value of B, and bottom is number density of positron n. They are

normalized by each initial upstream value.
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Normalized Counts

Figure D.7: Time evolution of normalized energy (Lorentz factor) spectrum of the plasma
within the region of the alternating magnetic fields (solid line) and two-dimensional Maxwellian
(dashed line) defined by equation (4.15). The solid lines show the energy spectrum for each
t = 30/wy0, but all plots overlap each other and no time evolution is observed. The peaks at
~v = 100 are contribution of the cold upstream plasma. The time of the final spectrum is at the
same to figure D.4, D.5 and D.6. The temperature of the Maxwellian is 7' = 0.35mc?~y,, which

is almost consistent with the value expected by the Rankine-Hugoniot relations.
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