On the cohomology of finite groups and the applications to modular representations

Kawai, Hiroaki

Osaka Journal of Mathematics. 27(4) P.937-P.945

1990

publisher

https://doi.org/10.18910/12531

10.18910/12531

https://ir.library.osaka-u.ac.jp/repo/ouka/all/
ON THE COHOMOLOGY OF FINITE GROUPS AND THE APPLICATIONS TO MODULAR REPRESENTATIONS

HIROAKI KAWAI

(Received July 6, 1989)
(Revised December 19, 1989)

1. Introduction

Let G be a finite group and k be a field of prime characteristic p. All modules considered here are assumed to be finite dimensional over k. In [2], Carlslon introduced a certain condition on the cohomology ring of G to study the structure of periodic modules by homological techniques. Let us denote it by $C(n)$, where n is a positive integer. If G satisfies $C(n)$, then there are homogeneous elements of degree n having an interesting property related to his notion of rank variety (see Section 3 for details). For a p-group P, he showed that there exists an integer $n(P)$ such that P satisfies $C(2n(P))$. And using this, he showed that the period of a periodic kP-module divides $2n(P)$.

The purpose of this paper is to extend Carlson's results to an arbitrary finite group G. In doing so, we shall give a stronger version of the condition $C(n)$, with a couple of equivalent conditions to it. Concerning Carlson's number $n(G)$ which can as well be defined for an arbitrary G, we shall prove that there exist cohomology elements of degree $2n(G)$ satisfying our new condition, so that G satisfies $C(2n(G))$. As an application of this result, we shall show that the period of a periodic kG-module divides $2n(G)$. As another application, we also give a homological criterion for a kG-module to be projective. A similar criterion has been given by Donovan [6], in response to a problem of Schultz [9].

2. Preliminaries

In this section we mention some preliminary facts needed in later arguments. For a kG-module M, set $\text{Ext}^*_G(M, M) = \sum_{n\geq 0} \text{Ext}^*_G(M, M)$. If H is a subgroup of G, then M_H denotes the restriction of M to a kH-module. First of all, we prove the following general fact.

Proposition 2.1. Let $0 \rightarrow N_1 \rightarrow M \rightarrow L \rightarrow 0$ and $0 \rightarrow N_2 \rightarrow M \overset{f}{\rightarrow} L \rightarrow 0$ be exact
sequences of \(kG \)-modules. If \(f-g \) factors through a projective \(kG \)-module \(Q \), then \(N_1 \cong N_2 \).

Proof. Suppose that \(\alpha: M \rightarrow Q \) and \(\beta: Q \rightarrow L \) give a factorization of \(f-g \) through the projective module \(Q \). Then we have the following two pull-back diagrams:

\[
\begin{array}{c}
0 \rightarrow N_1 \rightarrow S \rightarrow Q \rightarrow 0 \\
\downarrow \quad \downarrow \beta \\
0 \rightarrow N_1 \rightarrow M \rightarrow L \rightarrow 0 ,
\end{array}
\]

where \(S = \{(x, y) \in M \oplus Q \mid f(x) = \beta(y)\} \),

\[
\begin{array}{c}
0 \rightarrow N_2 \rightarrow T \rightarrow Q \rightarrow 0 \\
\downarrow \quad \downarrow \beta \\
0 \rightarrow N_2 \rightarrow M \rightarrow L \rightarrow 0 ,
\end{array}
\]

where \(T = \{(x, y) \in M \oplus Q \mid g(x) = \beta(y)\} \). Since \(f-g = \beta \cdot \alpha \), we can define \(u: S \rightarrow T \) by \(u: (x, y) \mapsto (x, y - \alpha(x)) \). Then it is easy to see that \(u \) is a \(kG \)-isomorphism. Hence from \(S \cong N_1 \oplus Q \) and \(T \cong N_2 \oplus Q \), we have that \(N_1 \cong N_2 \).

It is well-known that there is a natural isomorphism between \(\text{Ext}_{kG}^1(k, k) \) and \(\text{Hom}_{kG}(Q^*(k), k) \). So, for an element \(\psi \) in \(\text{Ext}_{kG}^1(k, k) \), we denote by \(\tilde{\psi} \) the corresponding \(kG \)-homomorphism of \(Q^*(k) \) into \(k \).

Let \(\langle a \rangle \) be a cyclic \(p \)-group. Define the \(k \langle a \rangle \)-homomorphisms \(\xi: \Omega^2(k) = k \rightarrow k \) by \(\xi: 1 \mapsto 1 \), and \(\tilde{\xi}: \Omega(k) = \text{Rad } k \langle a \rangle \rightarrow k \) by \(\tilde{\xi}: (a-1) \mapsto 1 \). Then we have the following (see, e.g., [5]):

\[
(2.2) \quad \text{Ext}_G^{\langle a \rangle}(k, k) = k[\xi] \otimes \Lambda(\xi),
\]

where \(k[\xi] \) is the polynomial ring and \(\Lambda(\xi) = k + k\xi \). If \(|\langle a \rangle| > 2 \), then \(\xi^2 = 0 \). On the other hand, if \(|\langle a \rangle| = 2 \), then \(\xi^2 = \xi \) and so \(1 \otimes \xi^2 = \xi \otimes 1 \).

Let \(A \) be an abelian \(p \)-group and \(A = \langle a_1 \rangle \times \cdots \times \langle a_n \rangle \) be a direct product of cyclic subgroups. It is well-known that \(\Theta: \text{Ext}_{kG}^1(k, k) \otimes \cdots \otimes \text{Ext}_{kG}^1(k, k) \cong \text{Ext}_{kG}^n(k, k) \) as \(k \)-algebras (see [4]). Let \(\xi_i = \Theta(1 \otimes \cdots \otimes \xi_i \otimes \cdots \otimes I) \) and \(\epsilon_i = \Theta(1 \otimes \cdots \otimes \xi_i \otimes \cdots \otimes I) \), where \(\xi_i \) and \(\epsilon_i \) are generators of \(\text{Ext}_{kG}^i(k, k) \) as in (2.2). Then we have the following:

\[
\text{Ext}_{kG}^1(k, k) = k[\xi_1, \ldots, \xi_n] \otimes \Lambda(\xi_1, \ldots, \xi_n).
\]

Let \(E \) be the unique maximal elementary abelian subgroup of \(A \). According to the decomposition of \(A \), we decompose \(E \) into the form \(E = \langle x_1, \ldots, x_n \rangle \) with \(x_i \in \langle a_i \rangle \). From this decomposition, we obtain

\[
\text{Ext}_{kG}^1(k, k) = k[\rho_1, \ldots, \rho_n] \otimes \Lambda(\eta_1, \ldots, \eta_n),
\]
where \(\rho_i \) and \(\eta_i \) are defined similarly as \(\xi_i \) and \(\zeta_i \) in the above. Then since \(\Omega^2(k) = k \), we see that \(\operatorname{res}_{\langle \alpha_i \rangle \langle \xi_i \rangle}^{\langle \alpha_i \rangle \langle \xi_i \rangle} = \rho_i \). Regarding \(\operatorname{Ext}^{1}_{\langle \alpha_i \rangle \langle \xi_i \rangle}^{\langle \alpha_i \rangle \langle \xi_i \rangle} (k, k) \) as \(\operatorname{Hom}(\langle \alpha_i \rangle, k) \), we see that if \(|\langle \alpha_i \rangle| > p \), then \(\operatorname{res}_{\langle \alpha_i \rangle \langle \xi_i \rangle}^{\langle \alpha_i \rangle \langle \xi_i \rangle} (\xi_i) = 0 \). Hence, using the argument of the tensor product of complexes (see [4]), we have the following.

Lemma 2.3. With the above notations, we have that \(\operatorname{res}_{A, E}^{\langle \alpha_i \rangle \langle \xi_i \rangle} (\xi_i) = \rho_i \) for \(i = 1, \ldots, n \), \(\operatorname{res}_{A, E}^{\langle \alpha_i \rangle \langle \xi_i \rangle} (\xi_i) = 0 \) for \(|\langle \alpha_i \rangle| > p \) and that \(\operatorname{res}_{A, E}^{\langle \alpha_i \rangle \langle \xi_i \rangle} (\xi_i) = \eta_i \) for \(|\langle \alpha_i \rangle| = p \).

Here we recall the notion of a Bockstein element (see [8]). Suppose that \(H \) is a normal subgroup of a finite group \(G \) of index \(p^m \). A Bockstein element corresponding to \(H \) is an element \(\beta \) in \(\operatorname{Ext}^{1}_{G/H} (\mathbb{Z}, k) \) with \(\inf_{G/H} (\operatorname{Ext}^{1}_{G/H} (\mathbb{Z}, k)) = \mathbb{Z} \cdot \beta \). Note that \(\beta \) is unique up to scalar multiples.

Remark 2.4. Let \(0 \to k \to k \to k \to 0 \) be the part of the minimal projective \(k(G/H) \)-resolution of the trivial \(k(G/H) \)-module to the second syzygy. Then the above 2-extension represents a canonical generator in \(\operatorname{Ext}^{1}_{kG} (k, k) \). Thus the Bockstein element \(\beta \) can be represented by \(0 \to k \to k \to k \to 0 \) as a sequence of \(kG \)-modules. Furthermore, it is known that \(\beta \) can be defined as the image under the Bockstein homomorphism of an element in \(\operatorname{Ext}^{1}_{kG} (k, k) \) which vanishes under the restriction map \(\operatorname{res}_{G/H} \). If \(G \) is an elementary abelian \(p \)-subgroup and \(G = \langle x \rangle \times H \), then \(\beta \) can also be seen as a generator of the polynomial subring of \(\operatorname{Ext}^{1}_{kG} (k, k) \) which corresponds to \(\langle x \rangle \) in the decomposition \(G = \langle x \rangle \times H \).

Lemma 2.5. Let \(A \) be an abelian \(p \)-group and \(E \) be the unique maximal elementary abelian \(p \)-subgroup of \(A \). Let \(H \) be a maximal subgroup of \(E \) and \(\tau \) be a Bockstein element corresponding to \(H \). Then there exists an element \(\sigma \) in \(\operatorname{Ext}^{1}_{kG} (k, k) \) such that \(\operatorname{res}_{A, E}^{\langle \alpha_i \rangle \langle \xi_i \rangle} (\sigma) = \tau \).

Proof. From Lemma 3.8 in [4], we have that, with the notation of Lemma 2.3, \(\tau \) belongs to \(k[p_1, \ldots, p_n] \). So the result is clear by Lemma 2.3.

3. Carlson's condition

Let \(G \) be a finite group and \(k \) be a field of characteristic \(p > 0 \). Let \(\psi \) be an element in \(\operatorname{Ext}^{1}_{kG} (k, k) = \operatorname{Hom}_{kG} (\Omega^1(k), k) \). Following Carlson, we let \(L_\psi \) be the kernel of \(\psi : \Omega^1(k) \to k \) for \(\psi \neq 0 \). If \(\psi = 0 \), let \(L_\psi = \Omega^1(k) \oplus \Omega^1(k) \). Carlson's condition is the following (which was originally defined in the case of \(p \)-groups):

Carlson's condition: Let \(n \) be a positive integer. We say that \(G \) satisfies condition \(C(n) \), provided that for any maximal elementary abelian \(p \)-subgroup \(E = \langle x_1, \ldots, x_n \rangle \) of \(G \) and for any element \(u_\alpha = 1 + \sum_{j=1}^{n} \alpha_j (x_{j} - 1) (\alpha = (\alpha_j) \in k^n) \), there exists an element \(\psi_\alpha \) in \(\operatorname{Ext}_G^1 (k, k) \) whose kernel \(L_\psi_\alpha \) is free as a \(k \langle u_\alpha \rangle \)-module.
REMARK 3.1. (1) The kernel \(L_\psi \) of \(\psi \) is free as a \(k\langle u_a \rangle \)-module if and only if \(\text{res}_{G, K^{(a)}}(\psi) \neq 0 \) (Lemma 3.9 in [4]).

(2) We may assume that \(k \) is an algebraically closed field. For, let \(K \) be an algebraic closure of \(k \). If \(G \) satisfies condition \(C(n) \) over \(K \), then for any element \(u_a \) as above, there exists \(\psi \in \text{Ext}_G(K, K) \) with \(\text{res}_{G, K^{(a)}}(\psi) \neq 0 \). Since \(\text{Ext}_G^*(k, k) \otimes K \cong \text{Ext}_G^*(K, K) \), we may write \(\psi = \sum_t \psi_t \otimes x_t \) with \(\psi_t \in \text{Ext}_G^*(k, k) \) and \(x_t \in K \). Then since \(\text{res}_{G, K^{(a)}}(\psi) = \sum_t \text{res}_{G, K^{(a)}}(\psi_t) \otimes x_t \), there exists \(\psi_t \) such that \(\text{res}_{G, K^{(a)}}(\psi_t) \neq 0 \). That is, \(G \) satisfies condition \(C(n) \) over \(k \).

(3) The condition \(C(n) \) does not depend on the choices of generators of \(E \) (cf. Section 6 in [3]).

Now, we consider the following stronger condition than Carlson's one.

Let \(\psi_1, \ldots, \psi_t \) be elements in \(\text{Ext}_G^*(k, k) \). We say that \(G \) satisfies condition \(C(n) \) with \(\psi_1, \ldots, \psi_t \), provided that for any element \(u_a \) as above, there exists \(\psi_i \) in \(\{ \psi_1, \ldots, \psi_t \} \) whose kernel \(L_{\psi_i} \) is free as a \(k\langle u_a \rangle \)-module.

Before proceeding further, we put down here necessary results for the "cohomology variety". For a comprehensive treatment, we refer to [1] and [4].

Let \(K \) be an algebraically closed field of characteristic \(p > 0 \). Let \(H^*(G, K) = \bigoplus_{m \geq 0} \text{Ext}_{KG}^*(K, K) \) if \(p = 2 \) and \(H^*(G, K) = \bigoplus_{m \geq 0} \text{Ext}_{KG}^*(K, K) \) if \(p > 2 \). Then \(H^*(G, K) \) has an associated affine variety \(V_G(K) = \text{Max}(H^*(G, K)) \), which is the set of all maximal ideals of \(H^*(G, K) \). Let \(M \) be a \(KG \)-module and \(J_G(M) \) be the annihilator in \(H^*(G, K) \) of \(\text{Ext}_{KG}^*(M, M) \). The variety \(V_G(M) \) of \(M \) is defined as the subvariety of \(V_G(K) \) associated to \(J_G(M) \).

Lemma 3.3. Let \(M \) and \(N \) be \(KG \)-modules.

(a) \(V_G(M) = \{0\} \) if and only if \(M \) is protective.

(b) \(V_G(M \otimes N) = V_G(M) \cap V_G(N) \).

(c) For \(\psi \in H^*(G, K) \), \(V_G(L_\psi) = V(\psi) \), where \(V(\psi) \) is the variety of the ideal \(H^*(G, K) \cdot \psi \). That is, \(\sqrt{J_G(L_\psi)} = \sqrt{H^*(G, K) \cdot \psi} \).

Proposition 3.4. Let \(n \) be a positive integer and \(\psi_1, \ldots, \psi_t \) be elements in \(\text{Ext}_{KG}^*(K, K) \). Then the following are equivalent.

(1) \(G \) satisfies condition \(C(2n) \) with \(\psi_1, \ldots, \psi_t \).

(2) \(L_{\psi_1} \otimes \cdots \otimes L_{\psi_t} \) is projective.

(3) \(\sqrt{(\psi_1, \ldots, \psi_t)} = \sum_{i=1}^t \text{Ext}_{KG}^*(K, K) \psi_i \) for some \(c > 0 \).
Proof. By Chouinard's theorem ([4]), (2) holds if and only if \((L\psi_1 \otimes \cdots \otimes L\psi_t)_E\) is projective for every maximal elementary abelian \(p\)-subgroup \(E\) of \(G\). Noting Lemma 3.3 and (3.2), we see that \((L\psi_1 \otimes \cdots \otimes L\psi_t)_E\) is projective for every \(E\) if and only if (1) holds.

By Lemma 3.3, (2) holds if and only if \(V(\psi_1) \cap \cdots \cap V(\psi_t) = \{0\}\). We recall the fact that the point 0 in \(V_G(K)\) is the maximal ideal \(\sum_{i>0} \text{Ext}^{i}_G(G, K)(\sum_{i>0} \text{Ext}^{2i}_G(K, K))\) for \(p>2\) and that if \(p>2\), the elements of odd degree in \(\text{Ext}^{i}_G(K, K)\) are nilpotent. Then we see that \(V(\psi_1) \cap \cdots \cap V(\psi_t) = \{0\}\) if and only if (3) holds.

Remark 3.5. If \(p=2\), then for any positive integer \(n\), the above proposition is also true for elements \(\psi_1, \ldots, \psi_t\) of degree \(n\).

4. The main theorem

As before, \(G\) is a finite group and \(k\) is a field of characteristic \(p>0\). The following definition is due to Carlson [2]:

Definition 4.1. Let \(E\) be a maximal elementary abelian \(p\)-subgroup of \(G\). Let \(A_E\) be an abelian \(p\)-subgroup of \(G\) which contains \(E\) and which has maximal order among such subgroups. Define \(n(E)=|G:A_E|\) and \(n(G)=\text{L.C.M.}_{\Gamma} \{n(E)\}\), where \(\Gamma\) is the set of all maximal elementary abelian \(p\)-subgroups of \(G\).

The next theorem is the main result of this paper.

Theorem 4.2. Let \(G\) be a finite group and \(k\) be a field of characteristic \(p>0\). Then there exist \(\psi_1, \ldots, \psi_t\) in \(\text{Ext}^{i}_{\text{G}}(k, k)\) such that \(L\psi_1 \otimes \cdots \otimes L\psi_t\) is a projective \(kG\)-module.

We shall prove the theorem with a series of lemmas. The first one is an analogue of a result of Quillen (see, e.g., Lemma 2.26.5 in [1]).

For \(g \in G\) and a subgroup \(H\) of \(G\), we write \(\varepsilon H = gHg^{-1}\) and let \(\varepsilon \gamma\) be the conjugation \(\text{con}_{H, \gamma} \in \text{Ext}^{1}_{\varepsilon H}(k, k)\) for \(\gamma \in \text{Ext}^{1}_{\varepsilon H}(k, k)\). Let \(A\) be an abelian \(p\)-subgroup of \(G\), \(E\) be the unique maximal elementary abelian subgroup of \(A\) and \(F\) be a elementary abelian subgroup of \(A\).

Let \(g\) be an element in \(G - N_G(F)\). We consider the following diagram:

\[\begin{array}{ccc}
\varepsilon E & \rightarrow & W \\
\downarrow \varepsilon F(\varepsilon A \cap F) & & \\
\varepsilon F \cap X & \rightarrow & \varepsilon A \cap F,
\end{array}\]
where X is a maximal subgroup of $\mathfrak{s}F(\mathfrak{s}A \cap F)$ which contains $\mathfrak{s}A \cap F$, and W/X is a complement to $\mathfrak{s}F(\mathfrak{s}A \cap F)/X$ in $\mathfrak{s}E/X$. Let $M=\mathfrak{s}^{-1}W$ and $L=\mathfrak{s}^{-1}(\mathfrak{s}F \cap X)$. Then M and L are maximal subgroups of E and F. Now let $\tau \in \text{Ext}^2_{E}(k, k)$ be a Bockstein element corresponding to M. Then we know that $\nu=\text{res}_{E,F}(\tau) \in \text{Ext}^2_{F}(k, k)$ is a Bockstein element corresponding to L.

Lemma 4.3. Let A be an abelian p-subgroup of G and F be an elementary abelian subgroup of A. Then there exists an element ψ in $\text{Ext}^2_{A}(k, k)$ such that $\text{res}_{A,F}(\psi)$ is a product of Bockstein elements.

Proof. We write $N=N_G(F)$ and let $\{g_1, g_2, \ldots, g_n\}$ be a set of representatives for the right cosets of N in G, with $g_1=1$.

As before, let E be the unique maximal elementary abelian subgroup of A. Let L_1 be a maximal subgroup of F and M/L_1 be the complement to F/L_1 in E/L_1. For the maximal subgroup M_1 of E, let $\tau_i \in \text{Ext}^2_{E}(k, k)$ be a Bockstein element corresponding to M_1. Then we see that $\nu_i=\text{res}_{E,F}(\tau_i) \in \text{Ext}^2_{F}(k, k)$ is a Bockstein element corresponding to L_i. For each $g_i(i>1)$, we denote by $\tau_i \in \text{Ext}^2_{E}(k, k)$ and $\nu_i \in \text{Ext}^2_{F}(k, k)$ the Bockstein elements corresponding to M_i and L_i respectively. Then by Lemma 2.5, there exists an element σ_i in $\text{Ext}^2_{A}(k, k)$ such that $\text{res}_{A,E}(\sigma_i)=\tau_i$ for $i=1, 2, \ldots, n$. Now, define $\sigma \in \text{Ext}^2_{A}(k, k)$ by $\sigma=\sigma_1 \sigma_2 \ldots \sigma_n$. Then, for $g_i(i>1)$, we have that

$$\text{res}_{A,F}(\varepsilon_i \sigma_i) = \text{res}_{E,F}(\varepsilon_i \sigma_i) \cdot \text{res}_{E,F}(\varepsilon_i \sigma_i) \cdot \text{res}_{E,F}(\varepsilon_i \sigma_i) = \text{res}_{E,F}(\varepsilon_i \sigma_i) \cdot \text{res}_{E,F}(\varepsilon_i \sigma_i) \cdot \text{res}_{E,F}(\varepsilon_i \sigma_i) = 0.$$

Let x be an element in $G-N$. So $x=ug_i$ ($u \in N$, $i>1$) and we have

$$\text{res}_{A,F}(\varepsilon_i \sigma) = \text{res}_{E,F}(\varepsilon_i \sigma) \cdot \text{res}_{E,F}(\varepsilon_i \sigma) = \text{res}_{E,F}(\varepsilon_i \sigma) \cdot \text{res}_{E,F}(\varepsilon_i \sigma) = 0.$$

Therefore by the Mackey decomposition theorem for the norm map (Proposition 2 in [7]), we have

$$\text{res}_{G,F} \text{norm}_{A,O}(1+\sigma) = \prod_{x \in \text{norm}_{A,F,F} \text{res}_{A,F}(1+\varepsilon \sigma)} \text{res}_{A,F}(1+\varepsilon \sigma).$$

So, if ψ denotes the homogeneous part of highest degree of norm$_{A,O}(1+\sigma)$, we have
\[\text{res}_{G,F}(\psi) = \prod_{x \in H/A} \text{res}_{x,A,F}(\tau) = \prod_{x \in H/A} \prod_{i=1}^{t} \text{res}_{x,F}(\tau_i) = \prod_{x \in H/A} \prod_{i=1}^{t} \nu_i. \]

Here \(\nu_i \) is a Bockstein element corresponding to \(\nu^L \), and \(\psi \) belongs to \(\text{Ext}_{kG}^{2}[\Lambda^1](k,k) \). This completes the proof of the lemma.

The next result is Lemma 4.2 in Okuyama-Sasaki [8]. For the convenience of the reader, we give here a proof to it.

Lemma 4.4. Let \(H \) be a normal subgroup of \(G \) of index \(p \) and \(\beta \) be a non-zero Bockstein element corresponding to \(H \). If a \(kG \)-module \(M \) is projective as a \(kH \)-module, then \(L_\beta \otimes M \) is a projective \(kG \)-module.

Proof. By Remark 3.6, we see that \(\beta \) can be represented by \(0 \to k \to k^H \to k^H \to 0 \). Then we have a commutative diagram:

\[
\begin{array}{cccc}
0 & 0 & 0 \\
\downarrow & \downarrow & \downarrow \\
0 \to L_\beta & \to \text{Ker } \lambda_1 & \to \text{Ker } \lambda_0 & \to 0 \\
\downarrow & \downarrow & \downarrow \\
0 \to \Omega^2(k) & \to P_1 & \to P_0 & \to k & \to 0 \\
\downarrow \beta & \downarrow \lambda_1 & \downarrow \lambda_0 & | \\
0 \to k & \to k^H & \to k^H & \to k & \to 0 \\
\downarrow & \downarrow & \downarrow \\
0 & 0 & 0 & 0,
\end{array}
\]

where \(P_0 \) and \(P_1 \) are the projective covers of \(k \) and \(\Omega(k) \). By tensoring this diagram with \(M \), we find readily that \(L_\beta \otimes M \) is projective, since \(k^H \otimes M \cong M^H \) is projective.

Lemma 4.5. Let \(M \) be a \(kG \)-module. For \(\gamma_1 \in \text{Ext}_{kG}^1(k,k) \) and \(\gamma_2 \in \text{Ext}_{kG}^1(k,k) \), suppose that \(L_{\gamma_1} \otimes M \) and \(L_{\gamma_2} \otimes M \) are projective \(kG \)-modules. Then \(L_{\gamma_1} \gamma_2 \otimes M \) is a projective \(kG \)-module.

Proof. If \(\gamma_1 \) and \(\gamma_2 \) are non-zero, then, as is given in the proof of Theorem 8.5 in [4], there exists an exact sequence:

\[0 \to \Omega^*(L_{\gamma_2}) \to L_{\gamma_1} \gamma_2 \otimes (\text{projective } kG\text{-module}) \to L_{\gamma_1} \to 0. \]

Tensoring this sequence with \(M \), we see that \(L_{\gamma_1} \gamma_2 \otimes M \) is projective. If \(\gamma_1 = 0 \) or \(\gamma_2 = 0 \), then the assertion is immediate from the definition of \(L_{\gamma_1} \).

Lemma 4.6. Let \(\psi \in \text{Ext}_{kG}^1(k,k) \) and \(H \) be a subgroup of \(G \). Then \((L_{\psi})_H \cong L_{\text{res}_{G,H}(\psi)} \otimes (\text{projective } kH\text{-module}) \).
Proof. We have $$\Omega^n(k_H) = \Omega^n(k_H) \oplus \Omega^n(k_H)$$ with a projective kH-module Q. If $r = \text{res}_{G,H}(\psi) \neq 0$, then let $h: \Omega^n(k_H) = \Omega^n(k_H) \oplus \Omega^n(k_H) \rightarrow k_H$ be the kH-homomorphism defined by $(w, w') \mapsto \gamma(w)$ for $w \in \Omega^n(k_H)$, $w' \in Q$. By the definition of the restriction map, $\gamma'_{\text{res}_{G,H}}(\psi) = \gamma$. Thus $\gamma - h$ is a projective kH-map and so by Proposition 2.1, $(L\psi)_{\text{res}_{G,H}} = \text{res}_{G,H}(\psi) \oplus \Omega^n(k_H)$ (projective kH-module). This completes the proof.

Proof of Theorem 4.2. It suffices to show that given an elementary abelian p-subgroup F of G, there exist $\psi_1, \ldots, \psi_r \in \text{Ext}_{kG}^i(k, k)$ such that $(L\psi_1 \otimes \cdots \otimes L\psi_r)_F$ is a projective kF-module. For, if this is shown, then consider all those $\psi_1, \ldots, \psi_1 \in \text{Ext}_{kG}^i(k, k)$ taken over the elementary abelian p-subgroups of G. Then by Chouinard’s theorem, we have that $L\psi_1 \otimes \cdots \otimes L\psi_r$ is a projective kG-module.

We now prove the above assertion by induction on $|F|$. If F is cyclic, then our assertion has been proved in Lemmas 4.3 and 4.6. So we may assume that F is non-cyclic and that there exist elements $\psi_1, \ldots, \psi_r \in \text{Ext}_{kG}^i(k, k)$ such that $(L\psi_1 \otimes \cdots \otimes L\psi_r)_L$ is projective for every maximal subgroup L of F. Now, Lemma 4.3 implies that there exists an element $\psi_1 \in \text{Ext}_{kG}^i(k, k)$ such that $\text{res}_{G,F}(\psi_1)$ is a product of Bockstein elements. Then by our assumptions and Lemmas 4.4 and 4.5, we see that $(L\psi_1 \otimes \cdots \otimes L\psi_r)_F$ is a projective kF-module. So from Lemma 4.6, we see that $(L\psi_1 \otimes \cdots \otimes L\psi_r)_F$ is projective.

5. Applications

Let G be a finite group, k be a field of characteristic $p > 0$ and K be an algebraic closure of k. Let $n(G)$ be the integer given in Definition 4.1. Then Proposition 3.4 and Theorem 4.2 yield:

Corollary 5.1 (Periodicity of periodic modules). The period of a periodic kG-module divides $2n(G)$.

Proof. By Theorem 4.2, there exist $\psi_1, \ldots, \psi_r \in \text{Ext}_{kG}^{2n(G)}(k, k)$ such that $L\psi_1 \otimes \cdots \otimes L\psi_r$ is projective, so that $V^G_{\text{res}}(L\psi_1 \otimes \cdots \otimes L\psi_r) = V^G_{\text{res}}(L\psi_1 \otimes \cdots \otimes L\psi_r) = \{0\}$. Then the assertion is followed by the same argument as in the proof of Theorem 8.7 in [4].

Corollary 4.7 (Criterion for a module to be projective). A kG-module M is projective if and only if $\text{Ext}_{kG}^{2n(G)}(M, M) = \{0\}$.

Proof. If $\text{Ext}_{kG}^{2n(G)}(M, M) = \{0\}$, then $\text{Ext}_{kG}^{2n(G)}(M^k, M^k) = \{0\}$. Taking $\psi_1, \ldots, \psi_r \in \text{Ext}_{kG}^{2n(G)}(k, k)$ as in Theorem 4.2, we have from the assumption that $V^G_{\text{res}}(I \otimes I, \ldots, I \otimes I) \in \text{Ext}_{kG}^{2n(G)}(K, K)$ annihilate $\text{Ext}_{kG}^{2n(G)}(M^k, M^k)$, so that $\sqrt{f_G(M^k)} = \sqrt{(\psi_1 \otimes I, \ldots, \psi_r \otimes I)}$. Then from Proposition 3.4, we see that $\sqrt{f_G(M^k)} = \ldots$
\[\sum_{i>0} H^i(G,K), \text{ that is, } V_o(M^k) = \{0\}. \] Therefore by Lemma 2.3, \(M^k \) is projective and so \(M \) is projective.

Acknowledgement. The author thanks Dr. T. Okuyama for suggesting the main theorem in this form, and the referee for a number of valuable comments and refinements.

References

Kumamoto National College of Technology, Nishigoshi-machi, Kumamoto, 861-11 Japan