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Recently A. Friedman [37] proved some result on the uniqueness
of solutions of ordinary differential inequalities

1du
22— A(t
i dt (£

lgnuAa)uu +K]lul| 0.1)

in a Hilbert space, and as its application he showed that a certain
uniqueness theorem holds for differential inequalities of parabolic type

% _p(x t D)

5 Zllt(E)| o+ K ||06() |2 (0.2)

(]

in the class of functions satisfying some type of time-independent
boundary conditions

Bj(x, D)u(x,t) =0, x€0Q, j=1,-,m, 0.3)

where 0Q is the boundary of a bounded domain Q and || ||, stands for
the usual norm of Hi(Q)=WiQ). In [3] A(¢) is assumed to have a
constant domain, and on this account it was required that the boundary
conditions (0.3) did not depend on #. In this paper it will not be
attempted to extend the above result concerning the inequalitites (0. 1)
in a Hilbert space to the case in which A(#) has a variable domain;
however, it will be shown that a similar result remains valid for more
general differential inequalities of parabolic type with time-dependent
boundary conditions

I I-1
I1ACx, 2, Dey Dullo=n 23 1D5 ™" ullwa + K 23 1D el laa » 0.4)
Bjx, t, D,,D)yu(x,t) = 0, x€0Q, j=1,-,m. (0.5)

Here A(x, ¢, D,, D,)= ;_I]O A;_i(x, t, D,)D* is a linear d(=2m/l)-parabolic

differential operator in the sense of I.G. Petrowskii, or, what amounts
to the same thing, for each ¢ and 6 with —z<60=<0 A(x, ¢, D,, D9
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is an elliptic operator of order 2m in (x, »)EQ X (— o0, o). Our main
result is briefly described as follows: if for each £ and § with —»<6=<0
the Complementing Condition ([2]) is satisfied by (A(x, ¢, D,, ¢¥Dy),
{Bj(x, t, D,, ¢°D9)}) in O X(—oo, oo) and if » is sufficiently small, then
any solution of (0.4)-(0.5) satisfying the initial conditions Du(0)=0,
k=0,1,.--,/—1, identically vanishes for #>0. The restriction on the
smoothess in # of the coefficients is about the same as that of [3] and
any Holder contiunity of the coefficients of A will not be assumed. In
the proof of the statement above essential use is made of an estimate
which holds for solutions of some reduced weighted elliptic inhomo-
geneous boundary value problem (Lemma 2.1 below) and which can be
proved in the same manner as Theorem 5.2 of [1]. As in [3] we
shall use Fourier transforms with respect to # in order to obtain the
necessary estimate, and in the present case we are obliged to treat such
transforms of a class of functions which do not satisfy the homogeneous
boundary conditions since the coefficients of the boundary operators are
allowed to be dependent on . Some results similar to Theorems 2 and
3 of [3] on the decreasing and uniqueness properties of solutions of
(0.4)-(0.5) in an infinite domain Q X (— o, T will also be obtained.

1. Assumptions. We denote by Q a domain in the xn-dimensional
Euclidean space and by 8Q its boundary. For any multi-index a=(«,,
-, a,) We write D::<_1i>‘”1(l 9 )m" and similarly D,z-lfi. ||

i 0x, i 0x, i 0t
stands for the length of «: |a|=a,+--+a,. For any integer k we
denote by H,(Q) the class of all complex valued functions whose dis-
tribution derivatives of order up to % are square integrable in Q, the
norm of H,(Q) being denoted by || |lsq:

lfa = 32 SQID;”u(x)Izdx.

X<k

Let / and m be natural numbers and let d=2m/l. A(x,t, D,, D,) is a
linear differential operator of the form

A(xy t; ny Dt) = IZ Al—k(x’ t’ Dx)Df
=0

where for 0Zk<!
Al-k(x’ t: Dx) = 2 al—k,w(x! t)D:

|®|=2m—kd

is a differential operator in x of order 2m—kd at the most with coef-
ficients defined in O X(—co, T] and A,=1.
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Let m;,j=1,.-,m, be non-negative integers <2m and let /;=
[m;/d]=the integral part of m;/d. For j=1,-.--,m, Bjx,t, D,, D,) is a
linear differential operator of the form

1j
Bj(x, t, Dx’ Dt) = ZBJ 1A_k(x, t, Dx)Df
=0 7
where for k=0, -+, /;

Bj,lj—k(x, t, D)= 2>} bj,lj—k,ﬂ(xf t)Dg
1BIS™; ~kd
is a differential operator in x of order m;—kd at the most with coef-
ficients defined on 0Q X(—co, T]. In what follows we suppose without
restriction that the coefficients of B(x, ¢, D,, D,) are defined in the whole
of O X(— oo, T]

Let y be an auxiliary real variable and by T" we denote the infinite
cylinder: T'=QX{y: —co<y<o}. Then for each ¢ and 6 A(x, ¢, D,,
e*D3) is a linear differential operator in (x, )T of order 2m. Similarly
Bj(x, t, D,, ¢®D3) is a linear differential operator in (x, y)T' of order
m; at the most.

We introduce the following assumptions.

() A(x, t,D,, D,) is a d-parabolic operator in O X(—o, T, ie.

for each fixed te(—oo, T] and 0 with —z<0=<0 A(x, ¢, D,, e?®D}) is

an elliptic operator in (x, y)TI.

(II) For j=1,-,m, Bj(x, t, D,, ¢°D%) is a differential operator in

(x, y)EI' of order m; for each te(— oo, T] and 6 with —»=60=0.

(III) The Complementing Condition ([2]) is satisfied by (A(x, ¢, D,,

e*D%), {B;(x, t, D,, ¢*D$%}, T') uniformly in ¢ €(— o, T] and § with

—7<60=0.

(IV) The coefficients of A(x, ¢, D,, D,) are uniformly continuous in

O X(—oo, T]. As regards the coefficients of {B,(x, ¢, D,, D,)}

D;b,-_,j_,,,ﬂ(x, B, |« §2m—m,-} |BI<m;—kd, k=0,-,1;,

Dibj,,j_,,,p(x, t), i = O, eeey, l+1 ]:1, e, M

are uniformly continuous in Q X(— oo, T].

(V) Q is a bounded domain of class C*”.

From (I) it follows that d is an even integer. In what follows we
shall denote by C,, C,, :-- constants depending only on the assumptions
above and by M those dependent only on / and m. (IV) implies the
existence of a continuous function &(r) satisfying &(»)>0 for >0, &(0)
=0 such that
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lahk,w(xa t)_al—k,w(x’ S)’ §8(|t—s|)
la| =2m—Fkd, k=0,---,[—1,
|Dzb; 1,062, ©)—D3b; 1.k o(%, $)| SE(1E—5])
|18|§m]_kd’ kzoy "'alj’ |’C[§2m‘mj9 j:]-y tee,m,
x€Q, —co<t,s<T.
By a solution # of the boundary value problem of the form
A(x, t, D,, DYu(x, t) = f(x, 1), x€Q,
Bj(x, t, D, D)u(x, t) = g;(x,), x€0Q, j=1,-,m,

we shall always mean one such that Dfu(¢) belongs to H,,_ .,(Q) and
is strongly continuous in ¢ there for k=0, ---, /.

2. Preliminary lemma. We begin this section with the following
lemma.

Lemma 2.1. Suppose that the differential operators A(x, D,, D,),
{Bj(x, D,, D))} with time-independent coefficients satisfy all the assump-
tions of section 1. If the function u(x, \) of N with values telonging to
H,,(Q) satisfies

A(x, D,, Mu(x\) = flx, \), x€Q, Imr=0,
Bj(x, D, Mu(x\) = gz, \), x€08Q, Imr=<0, j=1,--,m.
where f and g;, j=1, --,m, are functions of N with values in L*Q) and

Himm () respectively, then there exists a constant N>0 independent of u
such that for N with In A0, |AM|=N

23 M) b= Col LSy

m ,,, 2.1)
+ ZJI I @Rl g () o+ jgllg,-(k)llzm-mj} .

Proof. (2.1) is a consequence of Agmon-Douglis-Nirenberg inquality
applied to (A(x, D,, ¢?®D3), {B;(x, D,, ¢i*D3)}, T"), —z<6=0, and the func-
tion @(y)e'**u(x, u?e®) where @ is a smooth function such that =1 for
|y =1/2 and =0 for |y|=1 and p is an arbitrary real number (cf.
Theorem 5.2 of [17]).

Let # be a solution of
A(x, t, D,, D)u(x, t) = f(x, ), x€Q, —oco<i<T, 2.2)
Byx,t, D,, Dyu(x, t) = 0, x€0Q, —oo<t<T, (2.3)
j=1,,m.
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Given 8§>0 let ¢(¢f) te a smooth function satisfying &(#)=0 if ¢<0 or
t=58, t(t)=1 if §<t<45, and |D¥(t)| <K * for k=0,--,/+1 and all
t. Taking c, 8§ such that c+58< T, we write ¢, (#)=¢(—c) and v(x, £)=
¢.(Hu(x, t). Then v is a solution of

A(x, t, D,, D)v(x,t) = F(x,t), 2x€Q, —oco<it<oo, 2.4)
By(x, t, D, D)v(x, t) = Gj(x, t), x€0Q, —oo<t< oo, (2.5)
j: 1) e, m,
where
F=¢.f+ ZA, W%, £, D )j( )g(k »Dvu, 2.6)
G, = 2 By oz t, D)3 (;) £FPD . @2.7)

For a function % of (x,¢) we denote by A(x, \) its Fourier transform
with respect to #:

2 _ 1 (7 i
h(x, \) = \/2_71:S~°°e h(x, t)dt .
Lemma 2.2. If 8 is sufficiently small and then if —o is sufficiently

lar ge depending on the choice of 8, we have

2m

S (Inria 200 +io)ax

sc | emip@at 5|7 (nrisl Gy i)y @8

+ 3|7 Gl mat |

Proof. Clearly v satisfies

A(x, ¢, D,, D)v(x, t) = H(x, 1), x€Q, —oco<t<oo, 2.9)
By(x, ¢, D, D)v(x, ) = ®;(x, t), x€0Q, —oo<t<oo, (2.10)
j: 1) e,m,

where
H=F+ S (A% ¢, D)~ A, (% t, D)D*,
k=0

‘j
@j = Gj+ /,:.20 (Bj,lj_,,(x, c, D,)—Bj,,j_k(x, t, D,))va .

Taking the Fourier transforms of both sides of (2.9), (2.10) it follows
that for any complex number A

A(x, ¢, D, \)B(x, 2) = H(x, 1), x€Q,
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Bj(x’ ¢ Dx) 7\‘)ﬁ(x’ 7\') = éj(x; X)! xeaﬂ, ]:1, e, m.
If A, ¢ are real and ¢<—N, then by Lemma 2.1

2m

2 A ia | R BO i) k= Col | HOV+i0),
o . . 2. 11)
+ ,2=1 IN+ia |71 ||@ (N +io)|l,+ ;‘ D0 +10) |amg— i } -

Squaring and integrating both sides of (2.11) and using Plancherel
theorem, we get

S 7 (nrio e mm b+ o)y

k=0

éCZ{SleZ"’IIH(t)Hﬁdt + ,2: S:( [N+ dor| @m0 (D (0 + i) Ydh (2. 12)

+ 30" e 10,0t -
1w

From the following easily derived inequalities

HH @l =IF@)llo+C£(58) 23 |Dto(#)llom-a »

i

12, o, <GBl + CEE8) 3 D20 o

it follows that
(" eimwipars2]” eip@rar

- (2.13)
+Ce@r S e IDk @) - st

k=0

[~ e 10,08 mat 2] GO 8mat
(3.14)

2

+CeGr 3 | e IDt @ nidt

Let £(f) be a smooth real valued function such that #(¢)=0 if < —3 or
t>68, £()=1 if 0<£<58, and
IDE@) | =KS7%, k=1,:,l4+1, —oco<t<oco. (2. 15)
If we write £.(f)=£(—c), then £,=1 on the support of v, hence
lj
D;=G;+ 2 3 Vji,-wplx, ¢, )DED (2.16)
F=0IBIST ~ka T
where
’Yj,l,-—k,ﬁ(x, ¢ t) = fc(t)(b;‘,z,--k,s(x» C)_bj,li—k,ﬁ(x: 1)).
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As is easily seen

[ 195000 e V1N =CH, (2.17)

[" pvpemmonig,, pw e MlanSCaemme . (2.18)
In view of (2.17), (2.18) as well as the following lemma :

Lemma 2.3. If f and g are entire functions of exponential type,
decreasing sufficiently rapidly on the real line, then for any real number
o and v>0

(I (ir+isl 1) +io) DaN)

=2 1rlan([” (In+isl? g0 tio) yar )"

— oo

oo = 1/2
w207 s ian((” g0+ iy an) s
we get first integrating in A and then in x

S“’ (In+io [ @m0 (O +ia)[|dn

gzjf (In+ia | 2|6 (n + ia) [ 2. 19)
t

+CE B[ (I Hia| A H DO+ i0) -

=0
/i o0
+C, 3y 80 m " (i | HIOO+io) |, - pe

=I+IT+1I1.

It is clear that I is domiated by C,5% X the left side of (2.12). Substitut-
ing '

IXA+-io [ #0480 ;- pa

< 8PN i | RO DA ) - pa 8 HIO A ) 1

S8 PN i | I B 80

+ B PO + 80 o+ 8OO + i)l
in III we get

ij

=833 |7 (Inrio| kb0 + i), g dn

k=0

+Cf8 3 |7 180 tio)lgadn +84 0" [0 +ia) 3N} . (2.20)
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Thus we obtain
[ anrioiemmomo o+ iayiyan

gzﬂ 1<|7~+i6I“"‘"”f’""lléf(x+i<f)Ho>2d7~ @.21)

2m

+CF B [ (nio |6+ i)y

k=0

+C.87 [[6n+io)lizan .
It follows from (2.12), (2.13), (2.14) and (2.21) that if 6<—N

S Onrig|emmreoon+io)ilyrar

2=0 J -
oo

=Cu{[”_emiF@irar+ Z {7 (nrio| o mo6 0+ o)y

+ 3 [ GOl ] (2.22)

=

+Cu(E+EE8) 3 | (Inio| P00+ i) [ dA
+C@|” Ioov+iozan .

Thus if & is so small that C,(8*+&(B8)*)=<1/2 and if —o=max (N,
(4C(8))*), then we get (2.8) from (2.2) choosing C,=4C;.

3. Main Theorem. Let # again be a solution of (2.2)-(2.3) and
let us continue to use the notations of section 2. Suppose that for some
constants », K>0

] -1
||f(t)l|o§?7k§|lDi""u(t)de+K§||D$"‘“1u(f)l|kd» —oo<t=T. 3.1)
With the aid of Leibniz formula we get
£ D ID ullaa < X IDE Mollag+ M Sy 3T K+ 2Dty (3.2)

as well as the one with /—1 in place of /, where ¢, and v are functions
defined in section 2. From the definition (2.6) of F' it immediately
follows that

k-1
I~ 2Dl

RIS L]l C 3

=1 =

hence with the aid of (3.1) and (3.2) we get
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I-11 1

k-
LS * P Dru)| gy

k=0 p=

+K S ID 40|y + MK
k=0

!
1Flo=7 23 [1DF*0llag + M

=}

-

SVike Dl 39)

=
o

I k-y
+C kgl p2=o NE* 2D o g -

Let v be a real number and write w=¢"*». We shall use the notations

N.@) = 80D, +imyrbiiat

k=0 Jec
1-

1 (¢+58
Now) = 33D, iy o) edt

k=

With the aid of (3.3) and e"D2u=(D,+iy)’w we get

0 1 o0
[~ emapizarscafr 3 | e bt
— =0 J —oo0

+ K S Sw ez("“')‘llDi"“‘v]If,,dt} (3. 4)

k=0

+ K3(n+Cot K28~ {¢"° N,(w) + ¢ N, (w)} .

Arguing as in the proof of Lemma 2.2 we get

ey

(IN+ia+iy | @721 |G (0 + i +iv)||)7dN

Ui gy oo
< Co 3y SH [ e P Dm) Ot i+ i)l 3.5)
[T iz iy I EE DI i i) e )

If m;/d is not an integer, we replace the last integrals in the above by
other ones which have only integral powers of |\| so that we may
make an immediate application of Plancherel theorem. Noting

2m—m; 1 m;— kd +l(lj+1)d—mj
d (;+1—k)d (;j+1—Fk)d
(R —— §C°|lw“EZlJ~i-_llid%¢(11+ l—k)de||0((Ij+1)d—mj)/(1j+1—k)d

for k=0, -,/; and any we H,,_44(€)), We can easily show that for any
complex number x and %, w as above

| @2 01 a S € 147257 W -+ |1 0]]o)

Applying the above formula to (3.5) and then using Plancherel theorem
we get
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S_w( IN+ido iy | 224G (N A+ do + i) | dn

Ij —1
=M, S 5[ e g r ) Drutt) -t

|7 @D P ODIE
4 S” ez<w+v>t|[l)g—k(gék‘”(t)D’,’u(l‘))llgdt}

With the aid of Leibniz formula and by the argument in the deriva-
tion of (3.4) we find

S (I +io+iy | @™ m)|G (0 +ia + i) o)A

3. 4)
=C, K367 {e"*N,(w) + & “***N,(w)} .

In the same manner we can show that S TG ()| 2m-m,dt is also

dominated by the right side of (3.4’) with C, possibly replaced by
another constant. Hence if & is sufficiently small and « is so large that
—y=max (V, (4C(8))/#) (cf. the end of the proof of Lemma 2.2), then
by Lemma 2.2 with o replaced by o+v we get for any =<0

ST (nio iy |om b i+ i)

k=0

— o0

2 d “ 2(0+Y L—kqy||2
§C22{77 ;}S_we( || Di*||3, dt (3. 6)

+ k0 3|7 e rpeae)

k=0

+ K3(Cp+n+ K)?3 72 {e°Ny(w) + e “ O N,(w)} .
If 5 is so small that 2C,»*<1, (3.6) implies

2m

S S“’ (| h o+ iy | @RI +io +iv)l],)dN

k=0
I-1

<2C,K*S Sm <7 DR |2, dt 3.7)

k=0

+2KYCp+n+ K8 #{e° N,(w) + e “ " N,(w)} .
The left side of (3.7) is not smaller than
S (Unrio i | 4B io -+ i)l wadr

=0 J —oo
I=1 (o
=9 33| (o iy R0+ 7)Y
=0 J -0

Therefore if —y=max (N, (4C(8))/*, 4C,,K? 1) we get from (3.7)
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1-1

S (ntio iy 72100+ i+ i)l ag Y
L (3.8)
<C(&"N,(w) + e N,w)),

where C'=4K%C,,+n+K)*/8>. If we apply Plancherel theorem to the
left side of (3. 8), we find that for any ¢=0

-1 (c+38
S D, iy +wlhdt

B0 Je (3.9)
=C'(e™*°N,(w) + e’ N,(w)) .
Theorem 3.1. Suppose that w satisfy
14, 8, D, DYu®llo=n 3 11D} 0t
-1 (3.10)
+ K23 1D u(t)|ka s 0<t=T,
=0
B(x, t, D,, D)u(x,t) = 0, x€0Q, O0<t<T, (3.11)

j:]_’...’m_

If n is sufficiently small and if Diu(0)=0 for k=0, ---,I—1, then u(t)=0
for 0<t<T.

Proof. If we set u(x, £)=0 for x=Q, <0, » satisfies (3. 10)-(3. 13)
for —oo<t<T. Therefore w=e¢"u satisfies (3.9) if & is sufficiently
small and —« is sufficiently large depending on §. Choosing c¢= —3§,
we obtain

—1 28
A (D, + iy -+ dt

£
ol

8§
-1 (48
<Cet S S D, +in) wlfdt =0 i oo
k=0 J3

Thus #(¢)=0 if §<£<28. Varying 8 in a sufficiently small interval
0<58<3,, we find that «(#)=0 for 0<#<2§,. We can now proceed step
by step to show that «(¢)=0 for 25,<¢<43,, etc.,, and the proof is
completed.

Let us again consider a function # satisfying (3.10)-(3.11) for
—oo<t<T. Then w=e"u satisfies (3.9). Choosing o in such a way
that the two terms on the right hand side of (3.9) become equal, we
see that if N,(w)=<N,(w) then

-1 (€438
IZ;)S + SH(Dt+iy)l_k_lw[llzlddt§2C’N1(H))1/4N2(w)3/4 .
k= +2

c

Using a result of [1; pp. 241-233] one derives
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Theorem 3.2. If w(%0) is a solution of (3.10)-(3.11) in Q X (— oo,
T with n sufficiently small, then for any >0 there exist positive con-
stants L,, L, o and u such that

1-1 +g
S IDE ) fadsZLL ™ exp (—op™), —oo<t<T—é.

k=0 J ¢t
4. Uniquness at ¢=—oo. In this section we again investigate
solutions in QX (—oco, T]. Writing B,-,,j_,, in such a form

B w® £, DJu = >3  DEOY,, ks, t)u)
18175 - ka

we assume in addition to (I)~(IV)
(1) sup (@1 a(X, ) — a1k o(x, $)| =0 as £, s—>—oco
for |a|=2m—Fkd, k=0, -+, 1;
(ii) sup ID;b}",,j_,,’B(x, H— D;b}",,j_kk,p(x, s)| =0
|| =max ((/;+1)d, 2m—kd) I
sup | DiD;b5.;-4 6(%: £)| =0
i=1,-,4, |x|=(;+1)d,
as t, s—>—oo for |B|=m;—kd, k=0, ---,1;, j=1, -+, m.

Theorem 4.1. Under the assumptions above if u satisfies (3.10),
3.11) for —oo<t<T with 7 sufficiently small and if

lim e # 3V D! *u(t)|leg = 0 for any w>0,
t> -0 £=0

then u(t)=0 for —oo<t<T.

Proof. In view of Theorem 3.1 it suffices to prove that u(¢)=0 if
t is smaller than some negative number s. Let {(f) be a smooth func-
tion satisfying ¢(#)=1 if ¢<s, £(#)=0 if ¢>s+1. We can proceed
similarly to the proof of Theorem 2.1. v=¢{u is a solution of

A(x) t: Dx) Dt)v(x’ t) = F(x) t)’ xEQ) _°°<t<007
B;(x,t, D,, D)v(x, t) = Gi(x, 1), x€0Q, —oco<i<co,
j = 1’ e, m,

where F' and G; are functions defined similarly to (2.6) and (2.7)
respectively. Furthermore we have

A(x, s, D, Dyv(x, t) = H(x, ), x€Q,

Bi(x, s, D,, D)v(x, t) = @x, t), x€0Q, j=1, -, m,
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with some function H and

/i
P;=G;+ 27 >V Diw;px, s, 1) (4.1)

§=0 1BI<m;—kd

where
wi,k,B(x» S, t) = (b;knlj—k,ﬂ(x’ S)_bj*.lj—k,ﬂ(x’ t))Dl;i)(x, t) .

Taking the Fourier transforms of both sides of (4.1) and noting the
last formula of p. 199

A (zm—mj)/dnéj(x)”oé lx'(zmdﬂj)/d“éj(?\ﬂ lo

+c 2y 2 y LN 575 4 608, MLz +1- w0a

=0 IBIs™;-

+ N TE2d 5 0 p(Ss ML}

for any complex number A. Hence using Plancherel theorem we get
for any real number o

(S” (In-ia | @™m0 [+ ia)l[o)zdx)m

—o0

=(["_(nrislemmm G o riolyan)” “2)

/i

I 1/2
rax) 3 A epitw s, 11, omadt)

k=0 IBIS;—kd

+<Slez°‘l|0§"‘w:‘.kﬁ(s’ t)||gdt>l/2} :

If we recall the assumptions here it is not difficult to verify that given
&€>0 we can choose —s so large that the right side of (4.2) does not
exceed

(" anrisiemmomac o +ioylyan)”

I 1/2
+ Me*y (S e”'uDz-kvn%ddt)

l
k=0

Estimating S (|7\+io—|“"’"”ﬂ’"||(§,-(7\+z'a)||0)2d7x etc. in a similar manner

we can show that if » is sufficiently small and if —o is sufficiently
large we have

>3 S || D 2 dt <C7 S f“ewum-k-*un@dt . (4.3)

-1
£=0 k=0

From (4. 3) it immediately follows that #(#)=0 for — oo <t<s.
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