

Title	On the π -nilpotent length of π -solvable groups
Author(s)	Numata, Minoru
Citation	Osaka Journal of Mathematics. 1971, 8(3), p. 447-451
Version Type	VoR
URL	https://doi.org/10.18910/12545
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Numata, M.
Osaka J. Math.
8 (1971), 447-451

ON THE π -NILPOTENT LENGTH OF π -SOLVABLE GROUPS

MINORU NUMATA

(Received March 11, 1971)

1. Introduction

In this paper, G is always a finite group. The *Fitting subgroup* $F(G)$ of G is the uniquely determined maximal normal subgroup. If G is solvable, we have the following normal series:

$$1 = F^0(G) \triangleleft F^1(G) \triangleleft \cdots \triangleleft F^s(G) = G, \\ F^{i+1}(G)/F^i(G) = F(G/F^i(G)).$$

The length s of this series is called the *nilpotent length* of G .

The purpose of this paper is to prove

Theorem 1. *The nilpotent length of a finite solvable group G is at most one plus the number of G -conjugate classes of the family of non-normal maximal subgroups of G .*

This result will be extended for π -solvable groups. Let π be a set of prime numbers and π' the complement of π in the set of all the prime numbers. We say that a number n belongs to π if n is divisible only by primes in π . A group G is called π -group if the order of G belongs to π . A group G is π -separable if every composition factor of G is either π -group or π' -group, and G is π -solvable if every composition factor is either π' -group or p -group for some prime p belonging to π . A group G is called π -nilpotent if G has a normal p -complement for all p in π . Let $F_\pi(G)$ be the uniquely determined maximal normal π -nilpotent subgroup of G . If G is π -solvable, then we have the following normal series of G :

$$1 = F_\pi^0(G) \triangleleft F_\pi^1(G) \triangleleft \cdots \triangleleft F_\pi^s(G), \\ F_\pi^{i+1}(G)/F_\pi^i(G) = F_\pi(G/F_\pi^i(G)).$$

The length s of this normal series is called the π -nilpotent length of G . Then we have

Theorem 2. *The π -nilpotent length of a π -solvable group G is at most*

one plus the number of G -conjugate classes of the family of non-normal maximal subgroups of G whose indices belong to π .

As a corollary we have

Corollary. *The π -length of a π -solvable group is at most one plus the number of G -conjugate classes of the family of non-normal maximal subgroups of G whose indices belong to π .*

At the last we shall show that these inequalities are best possible.

Notation. Let G be a finite group and X, Y the subsets of G . We use the following notation.

$Z(G)$: center of G
$N_G(X)$: normalizer of X in G
$\Phi(G)$: intersection of all the maximal subgroups of G
$\langle X, Y \rangle$: subgroup of G generated by X, Y
$C_G(X)$: centralizer of X in G
$[X, Y]$: commutator subgroup of X and Y
$GF(p)$: finite field of p elements
$ X $: number of the elements of X

2. Proofs of the theorems

Proof of Theorem 1. We shall prove the theorem by induction on the number of G -conjugate classes of the family of non-normal maximal subgroups of G . For the case that every maximal subgroup of G is normal in G , Theorem 1 is trivial ([1]; p. 260). Suppose there exists a non-normal maximal subgroup of G . This means that G is not nilpotent ([1]; p. 260). We shall show that $\Delta(G) \not\geq F(G)$, where $\Delta(G)$ is the intersection of all the non-normal maximal subgroups of G . Since $\Delta(G/\Phi(G)) = \Delta(G)/\Phi(G)$ and $F(G/\Phi(G)) = F(G)/\Phi(G)$ ([1]; p. 270), we may suppose $\Phi(G) = 1$. Therefore $\Delta(G) = Z(G)$ ([1]; p. 276). If $Z(G) = \Delta(G) \geq F(G)$, then $F(G) \geq C_G(F(G)) = G$ ([1]; p. 277). It contradicts the assumption of non-nilpotency of G . Since $\Delta(G) \not\geq F(G)$, the number of $G/F(G)$ -conjugate classes of the family of non-normal maximal subgroups of $G/F(G)$ is strictly less than that of G . Hence by induction, we can complete the proof.

To prove Theorem 2, we need the following lemmas

Lemma 1. *G is π -nilpotent if and only if every maximal subgroup of G , whose index belongs to π , is normal in G and G is π -separable.*

Proof of Lemma 1. Let G be π -nilpotent. Then from the definition there exists a π' -Hall subgroup R of G which is normal in G and G/R is nilpotent. The order of G/R belongs to π . Thus G is π -separable. Any maximal

subgroup M of G , whose index belongs to π , contains R . The image of M under the natural homomorphism $G \rightarrow G/R$ is maximal in G/R . Since G/R is nilpotent, it must be normal in G/R , and M is also normal in G . Let us prove the “if” part. Since G is π -separable, G possesses a π' -Hall subgroup R ([2]; p. 229). If the normalizer $N_G(R)$ of R in G is smaller than G , then there exists a maximal subgroup M such that $N_G(R) \leq M < G$ and $N_G(M) = M$ ([2]; p. 230). It contradicts the assumption M is normal in G . Thus $N_G(R) = G$, namely R is normal in G . Let L/R be a maximal subgroup of G/R . Then L is maximal in G whose index in G belongs to π . From the assumption, L is normal in G , and L/R is also normal in G/R . Thus G/R is nilpotent and is π -nilpotent.

Lemma 2. *Let G be π -separable, then the index of any maximal subgroup of G belongs to π or π' .*

Proof. Let M be a maximal subgroup of G . Regard $G / \bigcap_{g \in G} M^g$ as the permutation group on the left cosets of G by M . Then this permutation group is primitive and its degree is equal to the index of M in G . Since the minimal normal subgroup of $G / \bigcap_{g \in G} M^g$ is transitive, the index of M divides the order of the minimal normal subgroup of $G / \bigcap_{g \in G} M^g$, which belongs to π or π' . Thus Lemma 2 is proved.

Proof of Theorem 2. We shall prove by induction on the number of G -conjugate classes of the family of non-normal maximal subgroups of G whose indices in G belong to π . For the case that every maximal subgroup of G , whose index belongs to π , is normal in G , it is trivial from Lemma 1. Suppose there exists a non-normal maximal subgroup of G whose index belongs to π . We shall show that $\Delta_\pi(G) \not\geq F_\pi(G)$, where $\Delta_\pi(G)$ is the intersection of all non-normal maximal subgroups whose indices belong to π . First of all, let R be a π' -Hall subgroup of $F_\pi(G)$, then R is a characteristic subgroup of $F_\pi(G)$, therefore R is normal in G . Since G is π -separable, Sylow-theorem holds for the π' -Hall subgroups of G . Therefore $\Delta_\pi(G) \geq R$. Since $F_\pi(G/R) = F_\pi(G)/R$ and $\Delta_\pi(G/R) = \Delta_\pi(G)/R$, we may suppose that $R = 1$. In addition, $\Delta_\pi(G/\Phi(G)) = \Delta_\pi(G)/\Phi(G)$ and $F_\pi(G/\Phi(G)) = F_\pi(G)/\Phi(G)$ ([1]; p. 689). Thus we may suppose that $\Phi(G) = 1$. Then $F_\pi(G)$ is a π -group, therefore $F_\pi(G) \leq \Delta_{\pi'}(G)$. On the other hand $\Delta(G) = \Delta_\pi(G) \cap \Delta_{\pi'}(G)$ from Lemma 2. Therefore $\Delta_\pi(G) \geq F_\pi(G)$ if and only if $\Delta(G) \geq F_\pi(G)$. If $\Delta(G) \geq F_\pi(G)$, then $Z(G) = \Delta(G) \geq F_\pi(G)$. Set $M/F_\pi(G)$ a minimal normal subgroup of $G/F_\pi(G)$. We shall show that M is a normal π -nilpotent subgroup of G . At first, let $M/F_\pi(G)$ be a π -group. Since $G/F_\pi(G)$ is π -solvable, $M/F_\pi(G)$ is abelian. Therefore, $[M, M] \leq F_\pi(G)$ and $1 = [F_\pi(G), M] \geq [[M, M], M]$. Thus M is nilpotent, especially, M is π -nilpotent. On the other hand, let $M/F_\pi(G)$ be a π' -group. Then there exists a π' -Hall subgroup S of M such that $M = F_\pi(G)S$ and $F_\pi(G) \cap S = 1$. From $F_\pi(G) \leq Z(G)$, we have

$M = F_\pi(G) \times S$. Therefore M is π -nilpotent by the nilpotency of $F_\pi(G)$. This is a contradiction. Thus we can show that $\Delta_\pi(G) \geq F_\pi(G)$. From $\Delta_\pi(G) \not\geq F_\pi(G)$, the number of $G/F_\pi(G)$ -conjugate classes of the family of non-normal maximal subgroups of $G/F_\pi(G)$, whose indices in $G/F_\pi(G)$ belong to π , is strictly less than that of G . Thus by induction Theorem 2 is proved.

3. Example

Theorem 3. *For any n there exists a finite solvable group G such that the nilpotent length of G is equal to n and the number of G -conjugate classes of the family of non-normal maximal subgroups of G is equal to $n-1$.*

Proof. The existence of the finite solvable groups satisfying the conditions of Theorem 3 is easily proved from the construction of π -solvable groups satisfying the conditions of Theorem 4.

Theorem 4. *For any n and any π , there exists a π -solvable group G such that the π -nilpotent length of G is equal to n and the number of G -conjugate classes of the family of non-normal maximal subgroups of G , whose indices belong to π , is equal to $n-1$.*

Construction

- G_1 : $|G_1| = p_1$, $p_1 \in \pi$
- T_1 : G_1 possesses a faithful irreducible representation on $GF(q_1)$, $q_1 \in \pi'$. Therefore we can construct $T_1 = G_1 Q_1$, the semidirect product of G_1 and Q_1 which is the elementary abelian group of the order $q_1^{l_1}$, for some l_1 , and then Q_1 is a unique minimal normal subgroup of T_1 .
For $n \geq 2$, we construct G_n and T_n as below.
- G_n : T_{n-1} possesses a faithful irreducible representation on $GF(p_n)$, $p_n \in \pi$, for the sake of the uniqueness of the minimal normal subgroup of T_{n-1} . Therefore, we can construct $G_n = T_{n-1} P_n$, the semidirect product of T_{n-1} and P_n which is the elementary abelian group of the order $p_n^{m_n}$, for some m_n , and then P_n is a unique minimal normal subgroup of G_n .
- T_n : G_n possesses a faithful irreducible representation on $GF(q_n)$, $q_n \in \pi'$, for the sake of the uniqueness of the minimal normal subgroup of G_n . Therefore, we can construct $T_n = G_n Q_n$, the semidirect product of G_n and Q_n which is the elementary abelian group of the order $q_n^{l_n}$, for some l_n , and then Q_n is a unique minimal normal subgroup of T_n .

Proof. We shall show by induction on n that G_n satisfies the conditions of Theorem 4. It is trivial that the π -nilpotent length of G_n is equal to n .

Since a maximal subgroup of G_n containing P_n , whose index belongs to π , contains $Q_{n-1} P_n$ and $G_n / Q_{n-1} P_n$ is isomorphic to G_{n-1} , the number of G_n -conjugate classes of the family of non-normal maximal subgroups, which have

indices belonging to π and contain P_n , is equal to $n-1$ by induction hypothesis. Now T_{n-1} is maximal in G_n and not normal in G_n . We shall show that any maximal subgroup M of G_n which does not contain P_n is conjugate to T_{n-1} . Now $G_n = MP_n$ and $M \cap P_n = 1$. M is isomorphic to G_n/P_n . Let N be a minimal normal subgroup of M . Then $NP_n = Q_{n-1}P_n$. By Zassenhaus theorem $N^g = Q_{n-1}$, for some $g \in Q_{n-1}P_n$. Therefore $M^g \triangleright N^g = Q_{n-1}$, then $M^g = T_{n-1}$. For if $M^g \neq T_{n-1}$, then $Q_{n-1} \triangleright \langle M^g, T_{n-1} \rangle = G$. This is the contradiction. Thus, the number of G_n -conjugate classes of the family of non-normal maximal subgroups of G_n , whose indices belong to π , is equal to $n-1$.

OSAKA UNIVERSITY

References

- [1] B. Huppert: Endliche Gruppen, Springer-Verlag, Berlin, 1967.
- [2] D. Gorenstein: Finite Groups, Harper's Series, Harper and Row, New York, 1968.

