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Introduction

The aim of this paper is to study certain semigroups of linear operators in
certain locally convex spaces and to apply them to solve ultraparabolic systems like

i /§ *'w frr^*' Q)u =f(t' x} '

Here O is an open subset of Rm, QO is the boundary of O, u0 is a function defined
on QOxR" with values in CN, A(x, 3) is an NxN elliptic system. The work
is arranged as follows: the first paragraph contains the study of the general NxN
system, parabolic in the sense of Petrovskii,

Qtu—A(x, d)u = f ( t , x) , t>0, x^R*
( 2 )

n(0, x) = u0(x) , x<=R"

in certain spaces of continuous functions which are rather natural for this kind of
problem, from the point of view of semigroup theory. An analogous study is
developed in the second paragraph in the spaces S(R")N and <S'(R")N, with results
of generation of semigroups, quasi-equicontinuity, holomorphy. The third and
final paragraph is an approach to an abstract version of problem (1) and together
with the results of the two first carries easily to applications to concrete equations
in spaces of functions or distributions.

1. Parabolic systems in Kr spaces

The aim of this paragraph is to study systems which are parabolic in the sense
of Petrovskii in the framework of certain spaces we shall call Kr. It will be
proved that a convenient realization of the system A(xy 9) in a suitable Kr space
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is the infinitesimal generator of a C0-semigrouρ of linear continuous operators.
We start by stating the assumptions we shall work with. Let n, ΛΓ, p^Ny

x^iR*, for \a\<2p Aa(x) an NxN matrix. Consider the differential operator
Σ AΛ(x)Q*x. For reΛΓU {0, +00} let Br(R") be the space of complex valued

\Λ\^2P

functions on Rn which are of class Cr with all the derivatives of order not
exceeding r bounded. We shall assume:
(hi) the coefficients of AΛ(x) are in B\*\Rn) and have uniformly Holder contin-
uous derivatives (of exponent μG]0, 1[) of order |α| .
(h2) The system L=dt— Σ AΛ(x)dχ is uniformly parabolic in the sense of

\06\<^2p

Petrovskii, that is, (see for example [GS] Ch. III.2), if we put A°(x, ξ)

= Σ ξ*A*(x), there exists X0>0, such that, \fx<=R", V£e/e" with |£|=1,
\Λ\=2P

any eigenvalue of the matrix A°(x, iξ) has a real part not exceeding — λ0.
Fundamental solutions for parabolic systems are described and studied for

example in [FR1], [LSU], [El], in the case of t e [0, T], with T< + oo . However,
for our purposes, we need some estimates valid for any value of t. Most of these
estimates can be obtained with methods analogous to the corresponding in the
books we have indicated and so their proofs will be only sketched. In the
following "C" and " const " will mean constants (which can be different in
each estimate), which are not asked to satisfy any special condition. Instead
C(ξly •••, ξm) will be a constant depending on the specified arguments. Assume
that A(x9 d)=A(d), that is, that it does not depend on x. Then

( 3 ) Z(x, t) = (2π)-»H(t)

is a fundamental solution (here H is the Heaviside function and is the usual
scalar product in Rn), with A(ίξ)= Σ (iξYAΛ. Let || || be a fixed norm in

1*1 £2*

the space of NxN matrixes. Then, we have:

Lemma 1.1. The coefficients of Z are of class C%βn+1\{0}) and there exists
, C0>0, depending on A= sup \\AΛ\\, X0 such that

(4) \\dζZ(x,

Proof. As any eigenvalue of A\iξ) has a real part not exceeding — λ0|||
2ί,

one has (see [FR2], Ch. 7, Th. 2)

||exp (tA\iξ))\\< Σ ϊ W f )||' exp (-

<; C(A, £,) exp (-(λβ-

For ξ, ηGR", put B(ξ, η)=A(iξ—η)-A\iξ). One has



GENERALIZED CAUCHY PROBLEM 91

) V£2>0,

so that

One has

exp (tA(ίξ- η)) = exp (tA°(iξ))+ \' exp ((t-s)A(iξ-Ώ))B(ξ, η) exp (sA\iξ))ds .
Jo

Using the previous estimates and GronwalΓs inequality, one draws:

( 5 ) Hexp^ίl-^H^C^, λ,,) exp {-^t\ξ l^

for certain constants positive Cλ(A, λ0), C2(A, λ0) and \1=\IQ2. By Cauchy's
theorem, V/3, V^e/2n, Vί>0, V^eΛΛ, one has

and so, using (5) and choosing η= (\x\/(2C2(A, λo)^))1^"1^^/!^!), one obtains

(4).

Lemma 1.2. Assume (hi)— (h2) are satisfied and let

Z(x, t; ξ) - (2π)- ( exp (ix' η+tA°(ξ iiftd η ,
JR"JR

with

Let us indicate with 3? and 3§ the derivatives with respect to x and ξ. Then there
exist ωxe R and V/3, <γ^N<S with |<y | <2p a constant C(β, γ)>0, such that

( 6 ) ||8?8JZ(*, ί; ?)||<C(/3, Ύ)r< W» exp (α^ί-

^ϊA Cl independent of β and γ.

Proof. We pose, for 07, <9<ΞΛ", F(ί, ?)=exp (ί̂ ί(f ίη-θ)). Then

9, Γ(ί, β = A(ξ; iη-θ)V(t, ?), F(0, ξ) = I .

By well known results concerning O.D.E.s, if 1< |γ| <2p,

dtd1 V(t, ξ) = A(ξ, iη-θ)ffl V(t, f )+Σ ( I }dl->A(ξ; iη-θ)Q\ V(t, ξ) ,
Y<δ \ O /

9|F(0, ξ) = 0,

so that

) = (' V(t-s, ξ)[Σ(l }dΓ*A(ξ; iη-θ)d\V(s, ξ)]ds .
Jo v<s \ δ /
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By induction, from (5) one has

M

One has

JR"
V06ΞΛ".

So (6) can be obtained with the same method developed in Lemma 1.1.

In [FR1] a fundamental solution T(x, ί, ξ) of L is built in the following

way: define

fa t, ξ) = (A(x, 9u-A\t , QJWx-ξ, ί; ξ)

and, by induction,

,
J O J R

Put

Then

Γ(«, ί, ξ) = Z(*-5, ί, f)+ Γ ( Z(*-7> ί-τ r,}Φ(η, r, ξ )d ηdr .
JQJR"

The following estimates can be established:

Lemma 1.3. Under the conditions (hi), (h2),

HΦ(*, ί, f)ll£C(/*, ,̂ Λ, λ0)^-»-2^ exp (ω.ί-C.dΛ-f I

= su sup
Moreover, Vp<μ

\\Φ(x, t, ξ)-Φ(y, t,

X [exp (-α(p)( I *-f I */ί)V»-i))+e3φ (-a(p)( \y-ξ\ M/

ϊA ω3 independent of p.

Proof. Using the method developed in [FR1], Ch. 9.4, one verifies that
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\\K;(X, t, flHs ̂ t"— »«* exp(α,.ί-C,(|*-? HO1"2'-1')

for certain constants Ajy #y, Cy. If m0>(n+2p)/μ, again by induction, one can
show that,

for certain constants A> B, C">0, ω'e/2. From this the first estimate follows.
Now we prove the second estimate of the statement. With the same method
developed in Ch. 9.4 and Ch. 1.4, Th. 7 in [FR1], one shows that, for 0<ί <1,

fr, t, ft-Kte, t, |)|| ̂  C(p) I x-y I 'f (*-'-.-»»/» [exp (_

If f>l, one has

ll^ί*, ί, f)-^(y, ί, f)||^||^(«, 8x)Z(*-f, t ξ)-A(y, QJZψ-ξ, t; ξ)\\

+\\A\ξ, dJWx-ξ, t ξ)-Z(y-ξ, t ξ)]\\

Using Lemma 1.1, each addend can be majorized with

const {exp (ω0 1- C0( | x-ξ \ ̂ ^"'O+exp (ω0 1- C0( | y-ξ \ M/ί)VW-D) j.

and with const exp (ω0 1) \ x— y \ μ. So, by interpolation, we have the estimate
for \\Kl(xί t, ξ)—K1(y> t, ξ)\\ for any ω3>ω0. The result follows from this, from
the first estimate of the lemma and from

Φ(X, t, ξ) = K,(xy t, g)+ (' ( KAx—η, t-T,
JQJR"JQJR"

Definition 1.4. Let r^R. We define

Kr = {u<=ΞC(R»\ CN): Vδ>0 exp(-δ|jc|>eL°°(Λn; CN)} .

Kr is a Frechet space with the family of seminorms

We remark that the space Kr coincides with the space K,t0, in [GS], Ch. Ill,
Th. 2. Now, define q=2ρl(2ρ—\). We have:

Lemma 1.5. Assume (hi), (h2) are satisfied. Let /eC(Λ+; Kq) be such
that;
(a) Vi>0 pb(f(t))<Xb(t)y with %6eL^c(Λ+) and %(f)=O(r*)(f-*0), for some

(b) 3z/e]0, l[such that

\f(t}(x)-f(t)(y)\^Xb(t^^

Put
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Then:
(I) t
(Π)

(III) Vί>0, F(ί)eC2'(Λ»; C") βw* V/3, \β\ £2p,
(IV) if \β\ <,2p, Kg-lim <9ξ F(ί)=0.

-

Proof. Assume 0<t<, T< + oo . Then, by Lemma 1.1, Vδ'>0,

, b')

< C( Γ, έ') Γχ/(τ) ( ( exp ( I ξ I •( - C0+2'ό' T*'™))dξ)dτ exp (6 1 * | «),
Jo JΛ"

if 2gb'<b, 2qb'T*'™<CQ) for a fixed ft>0. From this it follows V(t)&K9 and
AΓ9-lim F(ί)=0. The continuity of V in £0>0 can be proved in an analogous

/~M)

way. If I β\ <2p-\, one has, for ί>0,

9? V(t)(x) = d!Z(X-ξ, t-r; ξ)f(τ)(ξ)dξdr

and, for 0<ί< T< + oo,

For a iked b>0, if ό'<mίn {2-«ό, C02-" Γ -•/»>}, one has

, Γ, i'
o

From this, one draws Kq-limtQ%V(t)=Q, for \β\<2p— 1. It is also easily

seen that ί~»3?F(ί)eC(/2+; 9̂). If |/8|=2p, one has (with methods analo-
gous to [FR1], Th. 4)

85 ?(*)(*)= Γ( ( β8fZ(*-e, ί-τ;
v 0 » Λ

(*-5, ί-τ;

Γ ( ( [9?Z(*-f , ί-τ; f)-8?Z(*-f , ί-τ;
Jo JΛ"

(as ( 9?Z(j, ί; *)rfy = 0) .
JΛ"
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From Lemmas 1.1 and 1.2 and assumptions (a) and (b), one draws the existence
of dβV(t)(x) for any ί>0, x<=R" and the continuity on R+ of t^dβV(t). If
0<ί<l, one has, again using Lemmas 1.1 and 1.2 and assumptions (a) and (b),
for any έ>0, for any b' sufficiently small,

1 9? V(t)(x) I < const ( ( ' [(ί_τ)V(2^)-ι+(ί_τ)v/(2ί)-ι] X|/(T)JT) exp (b \ x | «) ,
Jo

so that

and

Pb(tdβ V(t)) < const flM-*" -> 0 .
/->0

Finally, like in [FR1], Ch. 9.3, Lemma 5, for t>0,

, ̂ (x-ξ, ί-τ; ξ)f(r)(ξ)dξ)dr

and from the continuity of t->dβ

xV(t) V/3, \β\<2p, one has that t->QtV(t)<
C(R+ ^) so that the lemma is completely proved.

Definition 1.6. Let/eX",. Define Γ(0)=7, and for

u
* R

(here T is the fundamental solution of L described previously).

Lemma 1.7. Vί>0, T(t)&%(Kt). Moreover V/eAΓ,, ί-*Γ(f)/
C([0, +oo[; ΛΓ,).

Proof. One has, for ί>0, Γ(ί)= Z7(ί)+ V(t), with

V(t)f(x) =

For what concerns [/(*)/> it is easily seen that U(t)f&Kq Vί>0,
. Now, we show that Kq - lim U(t)f=f. One has

f->0

(x-ξ, t ξ)-Z(x-ξ, ί; *

Z(*-f, ί; *
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We prove that, for j=l, 2, 3, [//*)/-> 0. The fact that U^f ^O follows from
/•M) /-M)

Lemma 1.2. Even the convergence of U3(i)f to 0 as <-* 0 is easy. Consider

£/,(*)/. Fix έ, £>0. One has, for

(8) exp(-i|*|«)| ^Z(x-ξ,t',ξ)(f(ξ)-f(x))dξ\

<constexp(-δ|*|<)|(( exp(-Ci|£ |f)|/(*-
* R

One has lim exρ(— b\x\q)f(x)=0 and there exists JR1(6)>0 such that if |#|
ι*ι-*oo

RI(£), exp (-* I * I f ) I f(x) I ̂ £. Moreover,

-* 0.
> + β

if b'<2-qb, 2-ίό'<C0. It follows that, for some Λ(£)>0, one has that (8) can
be majorized by const £, if \x\>R(β), ίe]0, 1]. Assume \x\<R(8). Then,
forO<ί<l, M>0,

^conβt(J exp(-ς,|f| )|/(*-ίV»)f)-y(*;

+ J exp (-C0 I ξ Γ) I f(x-tl/^ξ)-f(χ-) I <f £.

One has

lim I pynf Γ1 l P l f 1 l f(v /V( *)e\ I/ίt: — 0
I CΛ.LJ I ^0 I ζ I / I / V ^ 6 / 1 6 ~~~ >

Jf-><» J lέ l>Jl f

uniformly for |Λ:| </?(£), fe]0, 1], For any M>0,

uniformly for \x\<R(£)> in force of the uniform continuity o f/ on compact

subsets of R*. So

0, and U(t)f-»f.
ί->0 /->0

Now we show that V(t)f-> 0. Put, for ί>0, #eΛΛ,
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From Lemma 1.3 one has that g satisfies assumption (a) of Lemma 1.5.
Moreover, by [FR1], Ch. IX, estimate 4.17, one has that£ satisfies also assump-
tion (b) of the same Lemma. Therefore, F(f)/->0, and Lemma 1.7 is completely

j / >0

proved.

Now we indicate with A'(x, 9) the formal adjoint of A(x, 9):

A'(x, 9) = Σ (-lΓ[d"(AΛ(x)τ) (Bτ = transpose of B) .

Owing to (hi), (h2), A'(x, 9) has properties analogous to A(x, 9). We remark
that V/eίΓ<, φ(=jβ)(Rn)N, the mapping

φ-» f(x) A'(x, 9)φdx
JR"

defines an element Jlf in 3)(Rn)N. We give the following

DEFINITION 1.8. We define D(A) = {u<ΞKq\Jlu<Ξ Kq}. For
Au=Jlu.

It is immediate to verify that A is a closed densely defined operator in Kq.

Lemma 1.9. Let w<ΞC([0, +oo[; J^ΓlC'QO, +oo[; Kq). Assume that:
(a) u(t)tΞD(A)Vt>0.

(b) (t)

(c) u(0)=0.
Then tt(f)=0, Vί>0.

Proof. Vf>0 take ωfe^(Λ"), such that supp (ωt)c {#eΛΛ | | Λ J |

f ω,(Λ?)έ£»=l and define Mβ(f)=ωt*κ(f) It is clear that ut(t)^C°°(Rn; CN),
JRn

ue(t)-+u(t) uniformly on bounded subsets of [0, +<*>[. Moreover, Vί>0

A(x, Q)u9(t)^Au(t) in (3rp(R*)N)'. Let ?>0, Λ^Λn. We shall prove that
ε->o

tf(jF)(Λ)==0. For Λ>0, define Bx={xGlf\\x-x\<R}9 Bί=BM\BΛ. For
97i, η2 positive, ^<t— %, take z;eC2/>([0, 7— Q72]xSΛ+1; C^) such that v is zero
in a neighbourhood of 9J5Λ+1X [0, ?— %]. Pose Ω=]ι;1, ?—%[xSΛ+1. One has

(9) ( (^-A(xyd)ue} vdxdt-*( (— v-Au v}dxdt =
jQ\dt I ^o Ja\ dt I

Posing L'=— dt— A(x, 9)', by Green's formula,

ί (u^Lfv—Lu^v)dxdt= —\ Qt(u9 v)dxdt
Q JQ

= \ «•(%> *) «Ό?1» Λ?)^— \ U9(t-1]2t Λ?) ϋ(f-%,
J^D^, J-Bo^,
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so that

J u L'vdxdt = lim\ (u^L'v—Lu^v)dxdt
o ε-*o Jo

= \ *(i7ι)(*) *>θ7i> x)dx— \ U(t-η2)(x) V(t—η2ί x)dx .
J*Λ + 1 J** + l

Letting ^-^ 0 and using (c),

(10) ('"^ ( u L'vdx)dt = -

For ί>0, Λ:eΛn, £->Γ(*, ί, |)eC2^(Λn; C^) and

(11) Θ,Γ(*, ί, ?)τ - ^'(f, 9,)Γ(Λ, ί, ?)Γ (see [FR1], Ch. 9.5.)

Moreover, by [FR1], Ch. 9, (5.6) V/3, \β\ <2p.

(12) VΓ>0, ||8fΓ(Λ, ί, ?)r||<const r< + ̂ ^« exp (-*(|*-f| ̂ /ί)17^"1^ ,

for some Jfe>0, 0<^<Γ. Assume «(?)(*) ΦO, VΛ>0 take AΛeC§*(SΛ+1; C^),

such that Aje(jip)=M(?)(Λ)/|ιι(?)(Λ)| if ^^5^ and such that sup \\dβhR\\oe>< + oo1

V/3, \β\<2p. Define

Owing to (11), L'vR(t, x)=Q, if ί<?, Λ eβ^. By (10),

ί fί~172 f -
\ u L'vRdxdt = I Γ(Λ, ?72, x)u(t—η2)(x) hR(x)dx .

B*« JB

By estimate (12), lί L'^eL^fO, ?]xJ?i). So, for ^2->0, as Γ is a fundamental

solution of L,

(13)

Again using (12), one verifies that the left side of (13) tends to 0 as R-+ + OO.
So, #(?)(#) =0 and the result is proved.

Therefore we can state the main reuslt of this paragraph:

Theorem 1.10. Under the assumptions (hi), (h2), {T(t)\t>0} is a Co-
semigroup in Kq with infinitesimal generator A (see Definition 1.8). Moreover,

and, VftΞKq, limtAT(t)f=0.

Proof. By Lemma 1.7, t->T(t) is strongly continuous on [0, +°°[. As

usual take T(t)= U(t)+V(t).
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*)=( nZ(X-ξ,t ξ)f(ξ)dξ,
v R

'85 U(t)f(x) = ^βZ(x-ξ, t ξ)f(ξ)dξ V/3SJVS, Vί> 0 ,

and ί -* 9? ϋ(ί)/€=C(]0, +βo[; #f) .

Moreover, for 0<ί^l, Vi'>0,

135 U(t)f(X)\^C(β)p6,(f)t-M<™ \ exp(-C,|f I'+y^-^Wfl V5
JΛ"

^ 008, b}pb,(f)t- »"' w> exp (i I * I f ) ,

if b' is sufficiently small (ό' depends only on b). This estimate implies that
V/3, |0|£2p-l, Iimί9ξt/(ί)/=0 and V/8, |/8|=2f, the operators {ί85t7(ί)l

t-*0

ίe]0, ![} are equicontinuous. Owing to the remark at the end of the proof of
Lemma 1.7,

with g satisfying the assumptions of Lemma 1.5. So, Vί>0, x
C2p(R»\ CN). From [FR1], Ch. 9, Th. 3, one has, for f>0,

So, V*>0, T(t)f<ΞD(A) and, as
ί-^Γ^/e^QO, +oo[; ̂ ) and QtT(t)f=AT(t)f, Vί>0. Now we prove the
semigroup property Γ(ί)Γ(ί)-:T(ί+ί). Let f£ΞKq. Define, for *>0, u(ί) =
T(t)T(s)f-T(t+s)f, ΐ>0. Then neC([0, +00 [ Kq) Π C^O, +00 [ )̂,

w(0)^0, dtu(t)=Au(t). From Lemma 1.9, one has κ(f) = 0 Vί>0, so that
T(ί)Γ(ί)=Γ(ί+ί). We prove that the infinitesimal generator A of the semi-
group is coincident with A. Let f^D(A). For ί>0, dtT(t)f=AT(t)f, so that
AT(t)f=AT(t)f. But T(t)f-+f, AT(t)f-»Af; as ̂  is closed, it follows /eZ>(-4)

/->0 ί->0

and Af=Af. On the other hand, assume f^D(A). Put

tt(ί) ^ Γ(/)/— /-(' T(s)Afds (integral in the Riemann sense).
Jo

Then κeC([0, +oo[; Kq\ u(0)=0. Moreover, Vί>0, dtu(t)=AT(t)f-T(t)Af.

But (see [KOMU], Prop. 1.2, Cor.) Γ T(s}Afdst=D(A) and, as A is an extension
r 7ί Joof ^4,

' T(s)Afds = T(t)Af-Af.
Jo

It follows, V*>0,
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Au(t) = AT(t)f-T(t)Af = Qtu(t) .

By Lemma 1.7, u(t)=Q Vί>0 and so the result follows from [KOMU], Prop. 1.2.
It remains to show that lim tAT(t)f=0 V/GE^. One has tAT(t)f=tAU(ΐ)f+

t-^Q

tAV(t)f. By Lemma 1.5, tAv(t)f-*Q. From the first part of the proof one
/ >0

has that {tAU(t)\t(=]Q, I]} is equicontinuous. But, if f^D(A)> tAT(t)f=
ΐT(t)Af-+Q. So the result follows, because D(A) is dense in Kq.

t +Q

2. Parabolic systems in the spaces <S(R")N and <S'(R")N

Now we want to study parabolic systems via semigroup theory in the spaces
<S(R»)N and <S'(R»)N (which we shall abbreviate respectively with S and <Sf).
An analogous study in the spaces H°°(Rn) was developed in [MI] and [BA] (for
the case of S'(R") and A(xy d)=Δ see also [SZ], Ch. V). We assume the fol-
lowing:

(h3) Vαr, | a \ <2ρ , the coefficients of AΛ belong to B°°(Rn) .

Let

<S = <S(R")N = {φeEC%RΛ; CN)\ Ma, β^Nl, x-> x"dβφ<=L~(R»)N} .

We pose, for τw>0, β<=Nζ, μ^]Q, 1],

+ Σ
|β|=r

The norms || \\mtr or, alternatively, || \\mtr>μt form a calibration in <S. We con-
tinue to call T(t) the restriction of the operator defined in Kq to <S. One has:

Theorem 2.1. Assume (h2), (h3). Then,
(I) Vί>0, Γ(ί)eS(cS).
(II) *->Γ(θφeC([0, +oo[;cS) Vφec5.
(III) {r(i)|i>0} ά ^ Co-semigroup of linear operators in <5, a?ίίA infinitesimal
generator Ag defined as follows: D(Ag)=Sy Agφ=A(x, d)φ=Aφ.

Proof. By theorem (8) of [FR1], Ch. 9, Γ(θφeC°°(ΛΛ; C")V ί>0 and

9? T(t) φ(X) - f 9? Γ(x, t,
JΛ"

For m>0, 0<ί< Γ, (Γ>0), by [FR1], Ch. 9, 6 Th. 7,
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One has

I x I " I φ(*-

It follows, for 0«^ Γ,

paιβ(T(f)φ)^C(T, β,

So, (I) is proved.
Because of the semigroup property, to have (II) it is sufficient to show that

Vφe£ lim T(t)φ=φ. As usual, T(t)= U(t)+V(t). We start by showing that
f-M)

U(i)φ-*φ. One has

U(t)φ(x) =

Owing to [FR1], Ch. 9, Lemma 4,

3? tf(ί)φ(«) = Σ ( ̂ ) ( dl"'Z(ξ, ί; *
γ^β\ 7 / JΛ Λ

- ( Z(ξ, t; x-ξ)Q?φ(x-ξ)dξ+ Σ (β)\ 8f-»Z(f , ί; *-f )8»φ(*_
JΛ" γ < / 3 \ γ / J Λ n

For

+ 1*1 "I ( ||Z(f, ί; x)\\\deφ(X-ξ)-d'φ(X)\dξ+
J R

+ 1 * Πl exp (tA\χ 0))-/|| | ̂ φ(«) | = 71

For 0<£<1, using Lemma 1.2 one draws

Again for 0<*<1, m>0,

J R

Let Λ>0, I Λ ? | <Λ. Then the expression is majorized by
On the other hand, for any value of x,

2(*)<;c(θ)|*r{
J

\ nexp
w R

\X\
m
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The first addend is dominated by

C(m)[\ exp(-Cβ|£| )|*-^>£Π8V(*
v I ς I <*R

exp (-col£l')l*-ίV(2^Π9^^

If \x\*£R, |f|<#', *<1, \x-tltWξ\>R-R and as lim | x \mdβφ(x) = 0, one
I *|->~

has that the first integral tends to 0 as |#|-> + oo VjR'>0, uniformly with
respect to ίe]0, 1]. The second integral is majorized by

So, /2(#)->0, uniformly for x&R". Finally,
t-^Q

|*Π|exp (tA\x; 0))-/|| |8»φ(*)| <L const tpUtβ(φ) -> 0 .

, ί; *-

, ί; χ_|)-

, ί; *)[8»ψ(*-f)-8»φ(*

/! and /2 can be treated using methods analogous to the previous and [FR1]
Ch. 9, Lemma 4 to show that they converge to 0 as £->0 uniformly in x.
I3(x)=\x\m\\d^exp(t(A(x; 0))|||8*φ(*)|-*0 uniformly for x<=R". With this
we have proved that U(i)φ-+φ.

f-H)

It remains to show that V(t)φ-+Q. We start by remarking that, for 0<

μ| |85 uKfa t,
J R

This can be easily proved by induction, using the estimates of [FR1] Ch. 9.6,
Th. 7 and observing that

n fc, t, ξ) φ(ξ)dξ = Σ C(A, A, A) uR βl + β2 + β$-β JR

and
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9? ( „ KHl(x, t, ξ)φ(ξ)dξ = ΣJ COS,, ft, A) Π . [A<*> (*, 90
JΛ" P1+β2+ρ3=β Join"

-A^(x-ξ, 80]8fiZ(7, ί-τ; *-,)8g ( ί *X*-*, r, ξ)φ(ξ)dξ)dηdr .
JR"

(AW(x, 9) = Σ 9?^(Λ;)9β) .
\<*\ £2p

So,

= I*Γ I JR"

0 .

On the other hand, if Z<1, by the estimates of the derivatives of the Kj^ in
[FR1] Ch. 9.6, one has

H8,(Σ Kfa t, ?))||<const

so that

l * l " l 82 J^Σ Λ:/*, ^ fWfW <const

If v> \β\, one has

(X-η, t-r

θί-'Zί,, ί-τ; *-

As

= Σ

> τ>

we have shown that, Vτw>0, VyδeJVS, Vφ e^S, pm β(V(t)φ)-> Q. So we
ί->0

have proved that ί-> Γ(ί) φeC([0, +oo[; ^)Vφ e ̂ . To verify that the
infinitesimal generator of the semigroup Άg is Ag, remark that, certainly,

\fφGD(Ag), Άsφ=Aφ (see Def. 1.8) and so, as φeC°°(Λw; C"), Asφ=Asφ.

As Ag is continuous, it follows that Ag is continuous and, as it is closed and

densely defined, it is necessarily ^4^= .̂ So the theorem is completely proved.
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We recall the following definition (see [HC], page 294):

DEFINITION 2.2. Let T={T(t)\t>Q} be a C0-semigrouρ in a locally

convex space X. T is said quasi-equicontinuous if there exists ω>0, such that
{exp (— ωf)3Γ(ί)|f2>0} is equicontinuous.

We want to emphasize the following important difference between the semi-
groups we have considered in Kq and in S : in the first case they are not quasi-
equicontinuous, in the second they are.

Now we shall give an example to show that quasi-equicontinuity is not
satisfied in Kq. Consider the simplest case, namely n — N=l, A(x, 9) — 8*,
2p=q=2. For δeΛ, put f8(x)=exp (δ#); fs^K2VS&R. If the semigroup
{T(t)\t^0} were quasi-equicontinuous, there would exist ω2>0, such that
exp(-ωt)T(t)fs(x)->Q, Vx<=R", VδeΛ. But T(t)fs(x)^exp(S2t+δx) and so

f-*o»

such an ω cannot exist.
Now we want to prove the following

Theorem 2.3. The semigroup {T(t) \ M>0} is quasi-equicontinuous in <S.

To prove this result, we need the following lemma:

Lemma 2.4. There exists pΞ>0, such that Vm, w'^0, with m<rri , Mμ,
z;e]0, 1[, with μ<v, there exist C>0, αe]— 1, 0], a'>a, dependent on m, m' ,
μ, v, such that

Vί>0,

Proof. Put p=max{ωy|-/=0, 1, 2, 3}. Let m, m">0, with m<m', μy

]0, 1[ with μ<κ. We have to prove that

t ) exp

for certain C, α, a' with the declared properties. As usual, T(t)=U(t)-{-V(i).
If |/3 1 <2/>— 1, using Lemma 1.1, one proves that

(1+ 1*|") 185 U(t)φ(x) I ^C(/3, m) exp

If 1/31 =2/>,

,[8?Z(*-f, ί; f)_8fZ(*-5, ί; x)]φ(ξ)dξ\
R
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.l|85Z(*-f, ί; X)\\\φ(ξ)-φ(X)\dξ
R

Using Lemma 1.2, one has,

I^C(m, β) exp

Moreover,

|*Γ) exp

• [Φϊ l*-f I V Ί Φ(ί)

C(β)[φ]l exp

One has

Rn

<C(β,

so that

/2^ £*(/?, 6) exp

V£]eO, 1[. lfε=l—mlm', one has

I2<C(βy m, m') exp (ω

Further, again with \β\ =2p, we have

9? U(t)φ(x) = JΛ Λ [8?Z(*-f, ί f )-8f Z(^-f, ί «)]φ(f)rff

so that

*-f, t; *)-8fZ(y-£, ί;
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+J 8f Z(y-f, t y)dξ[φ(y)-φ(x)] = /1JR

One has

R*

! = [8f Z(£, ί; *-f)-8f Z(£, ί; *)]φ(*-

-( [8?Z(£, ί; y-
v jR

, t; *-£)-8?Z(f, t; x)-d<ίZ(ξ, t;y-ξ)+d<ΪZ(ξ, t;y)]φ(x-ξ)dξ

+ \ [8fZ(f, t; y-ξ)-ttZ(ξ, t; y)][φ(x-ξ)-φ(y-ξ)]dξ =/u+/12 .JR

One has, by Lemma 1.2,

K(ξ, t, x, y) = mZ(ξ, t; x-ξ)-QζZ(ξ, t; x)-dϊZ(ξ, t; y-ξ)+Q^Z(ξ, t; y)\\

exp (ωlf)iei«φ(-Ci(|£|<»/ί)I'»-«)

'< 2^ exp (ωιί) exp (-^(lei^/ί^w-i) \ _

On the other hand,

*(f , ί, *, y)^\\QίZ(ξ, t x-ξ)-Q*Z(ξ, t; y-ξ)\\+\\dfZ(ξ, t; *)-8§Z(£, ί;

^(by Lemma 1.2) C(β)r <***»<»> \x-y\ exp

so that

(14) X(f, t, x, y)

<C(β, μ)\x-yΓt«-*-»-™<™ exp foί) exp (-(Q/

It follows

Jn^C(β, μ) exp («, ί) | *-

Further,

/n^ 008, ^)<v»>-» exp (ωι ί) [φ],, I *-y Γ .

It follows

One has

J2 = ( 8fZ(f, ί; *)[φ(*-f)-ψ(*)]rf5-( e8fZ(f, t x)[φ(y-ξ)-φ(x)]dξ .
J R J R

Note that the second addend is equal to I 8?Z(f, ί; ^)[φ(y— f)— φ(j)]J|, so
JR"
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that

17,1 <C(β, μ) exp M^-W .

On the other hand,

/, = \RnQtZ(ξ, f X)[φ(x-ξ)-φ(y-ξ)]dξ ,

and so

I /, I <Ξ C(β, μ) exp (ωoί)r' I *-j | [φ]v .

Putting together the two estimates,

\L\<C(β, μ, «0

Then we remark that

J3 =

so that, by Lemma 1.2,

1 7β I ̂  C(/,, β, v) \x-y Γ exp (pί)f /»>-' [φ]v .

Finally, /4=0.
So, for \β\=2p,

, A „) exp (pίκ^

Putting together the two estimates we have obtained, we have that

. «', μ, ^

with — l<αj<αί and αlf αί dependent on m, m', μ, v. Now we consider
V(t)φ. I

Lemmas 1.1 and 1.3) C(wz, β) exp

Now let \β\=2p.

-«, r,

θf Z(*-,, ί-τ; *)]( nΦ(x, T,
» Jt
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From Lemmas 1.1 and 1.3, one has

/^const exp foίX^+

Further,

/2^(by Lemmas 1.2 and 1.3) const exp (pt)(P*»-1+ί<*-'>'*»-1)\\φ\\Mιίl

So, if \β\=2p,

llβ: V(t)φ\\m,^C(m, β) exp (pO(

It remains to estimate [9? V(t)φ]ft, for | β \ =2p. Posing

g(t)(X)=\ aΦ(x,τ,ξ)φ(ξ)dξ,
v Λ

by Lemma 1.3,

and

I g(t)(X) I ̂ const exp (ω20<1/(2w-1|IΨllo,o

So,

I Γ(
Jo JΛ W , ί-τ; *-e)-8TZ(e, ί-τ; y-

One has, by (14),

, μ)

xexp (-(CJdf l ί - T ) ) - ) exp

(pi) | *- |̂ <lί

By Lemma 1.2,
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exp

so that

712<const exp (pί)ί1/^-1||φ||0.0 \*-y Γ

Then,

4<; const (' \ \x-y\ exp (̂ (f _τ))(ί_τ)-«/»>-ι eχp (-C.( | ξ 1 2>/(f - r))1"2'-")
Jo JΛ*

Xexp (α>3τ)τ(1-w/

On the other hand,

f t „ [8?Z(f, ί-τ; y-ξ)-ttZ(ξ, t-r; y)][g(r)(X-ξ)-g(r)(y-ξ)]dξdτ\
JQJR

-* 22

/21<const exp (pi)**-"™-1!*-? ΠlΦlkβ .

Further,

) exp (pίy-w/w-i I *-y I" I f I ̂ "H

so that

/^^const exp (pί)^"115^"1^-^ l Ί I Φ l k β

It follows

[9? V(t)φ]^C(μ, βKP-W-i+tV-W-yiφ^ exp (pi) .

So the lemma is completely established.

Lemma 2.5. Let β^Nl Then Vί>0

sense). Y

,̂ 8)9ΪΓ(ί)φ (̂  integral is intended in the Rίemann

Proof. V/9, r, φ-*A(β-"(x9 Q)φ is continuous in <S, so that ^e
C([0, +oo[; S). By [FR1], Th. 10, (ί, ^)^Γ(θφWeC°°(Λ+xΛΛ; C^), so
that, Vί>0,
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9,9? T(t)φ(x) =

and this function is continuous on [0, +°°[ From [GU] Th. 3.4 the result
follows.

Proof of Theorem 2.3. We show that, Vw, w'>0, with m<m', VreΛΓ0,
r>2p, Vμ, z/e]0, 1[ with μ<v there exist α, α', C— l<#<α', (dependent
on m, m', q, μ, v) such that

(15) !|Γ(ί)φlL.r.^C(ίβ+ίβ/) exp

where p is the number appearing in the statement of Lemma 2.4. The proof is
by induction on r>2p. If r— 2p, it is true by Lemma 2.4. Assume (15) for
a certain r>2p. It is clear it suffices to show that,

V/3, |/3| =Γ+1-2^||Θ5ΪXOΦIU^^

for certain C>0, — l<α<αr'< + oo. By Lemma 2.4,

So,

9? T(t)φ = T(t)dβ

xφ+ T(t-s)g,(*)ds .
Jo

exp

exp

exp p ί- ί ί-

with m<m"<m', μ<μ'<v, by virtue of Lemma 2.3. But

\\gβ(s)\\m".ΰ,μ'^&>nst \\T(s)φ\\m»tftμ'<(by the inductive assumption)

const exp (ρs)(s*3+^)||φlL>.Γ-2,,v

So,

1185 ϊWΦlU^Ci exp

+const exp (pt) Γ [(ί-
Jo
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From this, (15) follows.

Now, let ω>ρ. One has, taking into account that the norms || \\mtr>s are a
calibration for <S and inequality (15), that {exp (— ωt)T(t)\t>l} is equiconti-
nuous. On the other hand, in a barrelled space every Co-semigroup is locally
equicontinuous (see [KOMU], Prop. 1.1) and this gives the result.

We recall the following definition (see [YO], Ch. IX, 10):

DEFINITION 2.6. Let X be a locally convex space and T—{T(t)\t>0} a
linear equicontinuous semigroup in X. T is said holomorphic if it admits a
weakly holomorphic extension to some sector {| Argλ | <00}> f°r some ΘQ posi-
tive, and the extension is equicontinuous.

We have the following result:

Theorem 2.7. Assume (h2), (h3) are satisfied] then there exists ω>0 such
that the semigroup {exp ( — ωt)T(t) \ £>0} is holomorphic in <S.

Proof. Owint to [YO], ch. IX, 10, it is sufficient to show that there exist
ω>0, θ^π/2, such that |ArgX|<0! implies ω+\&p(As) and {λ*(λ+ω—

Ag)~k\k^N0, |Argλ | <θ^ is equicontinuous. As the coefficients of AΛ(x) are
uniformly bounded, there exists M>0 such that Vx^R", V|e/Γ, with |f | =1,
any eigenvalue of AQ(x\ iξ) satisfies |λ| <M. So, by (h2), there exists θ0>π/2
such that, \fx^R", with |f | =1, any eigenvalue of A*(x\ iξ) is of the form peiθ,
with |0|>00 Therefore, for every 0, \θ\ <Θ0— τr/2, the operators eiθA(x, 8)
satisfy (h2), (h3).

Now, fix Θ19 πβ<θl<θQ. If 0=0!— π β, by Theorem 2.3 there exists ω0>0,
such that the semigroups generated by — ω+Ag and e±iθ(— ω+Ag) are equi-
continuous. As (\e-iθ+ω—As)-1=eiθ(\+eiθω—eiθAs)-\ we shall have the
result if we prove that, if B is the infinitesimal generator of an equicontinuous
semigroup, {λeC|Re λ>0}ep(B) and the operators {λ*(λ— B)"*| | Argλ| <φ,
k^N} are equicontinuous, for any φ<τr/2. In fact, by the Hille-Yosida
theorem (see [YO], Ch. IX, 7) the result is true if φ=0. Let λ'>0, p a con-
tinuous seminorm. For λeC, &G.ZV,

^((λ-λO^λ'-BJ-^^J^λ^-*-13 1 λ-λ7 1 *}(*)

with q continuous seminorm dependent only on p. Therefore, if |λ— X7 | <λ7,
as <S is complete, (λ— B)"1 exists and

If I Arg λ| <φ<τr/2, there exists λx>0, such that |λ— λ' | <λr sin φ and |λ|
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λ'. So, for every continuous seminorm py there exists a continuous seminorm
q, such that, Vn&N,

p(\m(\-B)-mx) = p(\m Σ - Σ (-l)*ι+" +*»(λ'-£)-*ι- -*»-^
*! = 0 km = 0

|λ-xΊ*l+" +*-λ/(-*ι-"-*«- )g(Λ;)

With this the result is proved.

For what concerns <S'— ̂ '(/Z*)^, we have:

Theorem 2.8. .4«ι/ιif* J(#, 8) sαώjfes (h2), (h3). Define D(AS,} = <S',

Ag,φ=A(x, 9)φ. Then, Ag, is the infinitesimal generator of a quasί-equίcontinuous

semigroup in <S. Further , there exists ω>0, swdi ίAαί — ω-\-Ag, is the infini-

tesimal generator of a holomorphίc semigroup in <S.

Proof. The formal adjoint A'(x, 8) satisfies (h2), (h3). Therefore the
result follows from Theorems 2.3 and 2.7 and from the results of [YO] Ch. 9,

13, concerning dual semigroups in reflexive spaces.

REMARK 2.9. A consequence of Theorem 2.8 is that the equation

(λ— A(xy 8))tt=/has a unique solution in cS'V/e^7, for any λ sufficiently large.

REMARK 2.10. It is easily seen that, if φ£ΞS', V*>0 T(t)φ(x)=<Γ(x, t, £),
, so that, owing to the estimates of [FRI1] Ch. 9, (t, x)-*T(t)φ(x)G

3. Generalized Cauchy problem for certain ultraparabolic systems

In this section we shall consider generalized Cauchy problems for certain

systems we shall call ultraparabolic, extending some results of [VD]. In the case
of equations, papers on this subject (in spaces of Sobolev type) are (under even
more general conditions) [GE], [SA], [GI], [VG]. Besides, abstract equations
leading to ultraparabolic problems in Banach and Hubert spaces were considered

also by A. Favini [FA] and J.L. Lions [LI].
Now we introduce the general assumptions we shall work with. Let O be

an open connected subset of Rm(m>\), Γ the boundary of O. Assume that Γ
is a C1 manifold in Rm of dimension m— 1, O is on one side of Γ, b is a C1 real
vector field on O such that:
(ml) £(*)ΦθVί€Ξθ.

(m2) b(t) v(t)>Q\fΐ^Γ, with v(t) normal vector to Γ at ί, inward to O.
(m3) Let s-+S(s, t)(s^I(t), t^O) the maximal solution of
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£« = *<*«)as

v(0) = t .

We assume that VίeOΞί'eΓ, such that t=S(s, t') for some s^I(t'). Now
let X be a sequentially complete, barrelled space, A the infinitesimal generator
of a strongly continuous semigroup in X, c^ Cl(O\ C). We consider the
problem

(16) y ι in O;

with #e C(Γ X),f^C(O X). A solution w of (16) is a function u(ΞC\O X) Π
C(O; Jί) such that, VίeO, w(ί)eD(^4), the first condition of (16) is satisfied
VίeO, the second for every *<ΞΓ (for the definition of C\O\ X) see [GWS],
III. III). To study this problem, we need some results concerning the flow S
generated by b. First of all we remark that, thanks to (ml)— (m3), for a fixed
t&O there exists a unique t'^T and a unique s^I(t'), such that t=S(s,t').
Moreover, s>0 and s=0 if and only if ίeΓ. So, we can define Φ: 0-+R+ XΓ,
Φ(ί)=(Φ1(ί), Φ2(*)), such that SίΦ ί̂), Φ2(OH*

One has:

Lemma 3.1 The mapping Φ is of cass C1 from O to RxRm. More gene-
rally if b is of class Ck and Γ is a Ck manifold in Rm , Φ is a calss Ck (k> 1).

Proof. Assume b and Γ of class Ck(k>l). Let ίeΓ, Ψ a C*-diffeomor-
phism between a neighbourhood U of t in O and a neighbourhood Ψ(£7) of O
in Λ^OGΞΛ'Ί y^O}, such that Ψ(U ΠΓ) = Ψ(l/)n {(/, OJI/eΛ--1}.
For (/, 0)eΨ(Z7), define ^(ί,y')=s(ί> Ψ'X.v'* °)) ^ is defined on an open
subset of RxRm"1

9 it is of class Ck (because Ψ"1 is of class Ck and by well
known results of regular dependence of the solution on the initial datum)
and rf£(0, 0) (σ, *) = σb(t) + d/9'l(y', 0)*((σ, «) e Λ X Λ"1-1). One has that

y', 0)^e j (Γ) (the tangent space to Γ in t).
So, by condition (m2), JS(0, 0) is a linear isomorphism. This implies

that S is a C* diffeomorphism between a neighbourhood V of (0, 0) in
[0, +oo[χRm-1 and a neighbourhood Z7=S(F) of t in O. If ί^ϋ, necessarily

Φ$ ̂  ((S-1)!̂ ), ^ (̂(S-1)̂ ), 0)

so that Φ is of class Ck in a neighbourhood Ω of Γ in O. Now, assume feO.
There exists s>0, such that S(—s, t)^Ω and, for this fixed s, there exists a
neighbourhood V of £ in O such that S(—s, t) is defined and S(—s, £)eίl. For

, Φ1(ί)=Φ1(5(— ί,ί))+ί, Φ2(ί)=Φ2(ίS(— ί, ί)). As Φ is of class Ck in Ω, j



114 D. GUIDETTI

is fixed, t-*S(— s, t) is of class Ck

y Φ is of class Ck in V and so it is of class Ck

inO.

Proposition 3.2. Assume u is a solution of (1.6). Then, Vί<Ξθ, if W(s9 1)

(17) «(0 = W^), ί)-1 exp

J ΦiCO
exp ((Φ,(t)-σ )A)W(Φί(f), f)-

Proof. Put Ό(s)=ιt(S(s—Φ1(t), t))(s<=]0, δ[, for some δ>0). Then, for

»'(*) = Σ δ/^-ΦΛ*), O ί - Φ Λ * ) , ί))
'̂ = 1 Otj

= -C(s(s- Φ.ίί), ίjjβW+^w+ΛSίί-Φ^ί), *)).

From this, for ίe]0, δ[,

j-(W(s, t)v(s}) = ̂ (̂ , ίX*))+W(*. ί)/(5(*-Φι(*). 0)

One has that V*'eZ)(^') ϊ-><PF(ί, ί)β(ί), Λ^eC'QO, 8[)ΠC([0, δ[) and, for

It follows from [GU] Th. 3.4 that

W(s, t)v(ή = exp (ί,4χθ)+Γ exp ((s-σ)A)W(σ,
o

exp (sA)v(0)+(* exp ((ί-σ)^)WT[*, ί)"1 W(σ, t)
Jo

From this the result follows.

Proposition 3.3 Assume that f=0. Let {exp(tA)\t>0} be the semigroup
generated by A. Assume that T(t)(X)^D(A)Vt>0. Then, if gGC\Γ;X)
(that is, g is the restriction to T of a C1 function defined from Rm to X), u(t) =
W(Φl(t\ t)-1 exp (Φ1(t)A)g(Φ2(t)) is the only solution of (17). // A^£(X), u is
of class C1 on O.

Proof. One has that t-> W(Φ1(t), t)-lGCl(O; C), ί->exp (sA)x belongs to
, +oo[; X)ΠC1(]Qy +oo[;X)Vxt=X and to C\[Q, +oo[; X) if
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and — (exp (sA))=A exp (sA). As X is a barrelled space and t -» exp (Φ^A))

^(Φ2(ί))eC1(O; X) Π C(O; X)(eC\O; X) if A&£(X)). From this the result
follows by computation.

Proposition 3.4. Consider (16) with g=Q. Assume f^C\O\ X). Then

u(t) = (̂Φ )̂) O"1 I X exP((Φι(0~~<Γ)^)'^7(σ> t)f(S(CΓ~Φι(t)> t))dσJo

solves (16).

ΓΦjCO
Proof. I exp ((Φι(t)—σ)A)W(<r, t)f(S(σ—Φ1(t)ί t))dσ

Jo
=Γ°expι

Put £(σ, ί)=W7(Φι(0-σ > *)f(S(—<r, t)). g is of class C1 on its domain. We
have, for ί>0, \ρ\ sufficiently small,

ΓΦ1(/+Pβ ^) fΦι(f)
1 ( exp (ί̂ (ί, t +pe*)ds- \ exp (̂ )̂ (ί, ί)ds)

Jo Jo
fΦM+peί'ί . ΛΦ.(0

- p-1 \ exp (sA)g(s, t+pe^ds+p-1 exp (̂ )[̂ , t+pe')-g(sy t)]ds .
JΦ!«) JθJΦ!«)

As JΓis barrelled, {exp(sA)\s>0} is locally equicontinuous. So,

fΦι(ί)

Jo P->O Jo

fΦι(

-1

Jo

rΦM+peb fΦjCO+POΦi/δίpCO

-1 exp(ί4)^(ί, t+pe )ds = p~l Γ ' exp(^)^, t+pe>)ds
JφiC/) JΦ!«)JΦ!«)

^φ+p-> exp (̂ )̂ , t+peOΛ - (f) exp Φ ί̂μ^Φ ί̂), ί) .

Besides, for λ>0,

J Φι(ί) ΓΦι(O
exp (ί̂ )̂ (ί, t)ds) = h~Λ1 exp (ί̂ )[^(ί-A, ί)-̂ 5, t)}ds

o J Λ
ΓΦjCO+A Λ A

1 \ exp (sA)g(s-h, t)ds-h-1 exp (
JΦ!«) JO

From these identities the result follows by computation.

Assume w=l, O=R+, bl(f)=l, c(t)=Q. Then we have the usual system
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(18)

11(0)=*.

Proposition 3.6. Assume exp(tA)(X) cZ)M)V*>0, tA exp (tA)x~* 0
/-M)

Vx^X,fis Holder continuous from [0, +oo[ to J\Γ (£te £y, V^> continuous semi-
norm on X there exist αe]0, 1], C>0, «#A *&α£ p(f(t)— f(s))<C\t— s\*9 Vs,

(19) u(t) = exp (M)*+ exp ((t-s)A)g(s)ds

solves (18). // A^£(X), it suffices to assume that g is continuous.

i t
exρ((t—s)A)g(s)ds solves (18)

o

J ί-β
exp((t—s)A)g(s)ds. It is easily

seen that, V£>0, for

ϋJίO = exp £ f - e + , exp ί-
Jo

One has exp (£A)g(t—£) -*g(i) uniformly on compact subsets on R+ (because
ε->o

the semigroup is locally equicontinuous) and

f A exp ((t-s)A)g(s)ds = ('"' ̂  exp ((ί-
o Jo

Γ' A exp ((ί-ίμ)(ί(ί)-^(ί))Λ - ( ' A exp ((ί-
Jo ε >o Jo

owing to the assumptions, uniformly on compact subsets of R+ and
exp (εA)g(t)-*g(t), uniformly on compact subsets of R+. It follows (see [GWS]

ε->o

III. Ill) that

βeC(!f; X), v'(t) = Γ AT(t-s)(g(s)-g(t))ds+ exp
Jo

On the other hand, for t>£,

Aυ.(t) = Γ* AT(t-s)g(s)ds = AT(t-s)(g(s))-g(t))ds+exp (tA)g(t)-g(t) .
Jo

As A is closed, it follows,
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Av(t) =

and the first result is proved. The second statement is easy.

So, we have :

Proposition 3.7. Assume (ml)-(m3) are satisfied. Consider the problem

(16) in X=Kqy with A defined in definition 1.8. Then, V/eC^O; Kq) there

exists a unique solution of (16) given fry (17).

If X=S' and we substitute in (16) A zϋith Ag, an analogous result is true

and the solution u^.C\O\ <S'). In the case of problem (18), if X=Kq and f is
Hϋlder continuous, (19) furnishes the only solution of the problem. When X=S',

it is sufficient to assume that f^C(R+\ X).

Proof. It follows from Theorem 1.10, Theorem 3.1, Propositions 3.4, 3.6,
3.5.

REMARK 3.8. The conditions

(20) exp (tA)(X)^D(A)Mt>^ lim tAT(t)x =

characterize holomorphic semigroups in Banach spaces (see [BB], Prop. 1.1.11).
Even in Frechέt spaces this is no more true. For example, take X=β(R)y

A= — . A generates the group of translations and is continuous, so that it
at

satisfies (20), but there exist elements f^X such that t-+T(ί)f does not admit

a holomorphic extension to any neighbourhood of R+ in C (it is sufficient to

consider a C°° function which is not analytic).
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