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Introduction

The aim of this paper is to study certain semigroups of linear operators in
certain locally convex spaces and to apply them to solve ultraparabolic systems like

Z 6u_ — n
(1) ,gl b;(2) —67, A(x, 9)u = f(t, %), te0, xR

U|ooxrr = U .

Here O is an open subset of R", 80 is the boundary of O, #, is a function defined
on 90 X R" with values in C¥, A(x, 8) is an NX N elliptic system. The work
is arranged as follows: the first paragraph contains the study of the general Nx N
system, parabolic in the sense of Petrovskii,

o,u—A(x, 0)u = f(¢, x), >0, x€R"
(2)

u(0, x) = uy(x), x=R"

in certain spaces of continuous functions which are rather natural for this kind of
problem, from the point of view of semigroup theory. An analogous study is
developed in the second paragraph in the spaces S(R")" and S’(R")¥, with results
of generation of semigroups, quasi-equicontinuity, holomorphy. The third and
final paragraph is an approach to an abstract version of problem (1) and together
with the results of the two first carries easily to applications to concrete equations
in spaces of functions or distributions.

1. Parabolic systems in K, spaces

The aim of this paragraph is to study systems which are parabolic in the sense
of Petrovskii in the framework of certain spaces we shall call K,. It will be
proved that a convenient realization of the system A(x, 8) in a suitable K, space
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is the infinitesimal generator of a Cy-semigroup of linear continuous operators.
We start by stating the assumptions we shall work with. Let n, N, pEN,
xeR", for |a|<2p A,(x) an NX N matrix. Consider the differential operator

> A,(x)87. For reNU {0, + oo} let B'(R"™) be the space of complex valued

16120
functions on R" which are of class C” with all the derivatives of order not

exceeding r bounded. We shall assume:

(h1) the coefficients of A,(x) are in B'*((R") and have uniformly Holder contin-
uous derivatives (of exponent x&]0, 1[) of order |«].

(h2) The system L=8,— >} A,(x)d7 is uniformly parabolic in the sense of

1a<2p
Petrovskii, that is, (see for example [GS] Ch. IIL.2), if we put A%, £)
= 3>} £%A,(x), there exists A,>0, such that, Vx&R", VEESR" with |E|=1,

|laj=2p

any eigenvalue of the matrix A%x, 7€) has a real part not exceeding —A,.

Fundamental solutions for parabolic systems are described and studied for
example in [FR1], [LSU], [EI], in the case of ¢t<[0, T], with T<<-oco. However,
for our purposes, we need some estimates valid for any value of . Most of these
estimates can be obtained with methods analogous to the corresponding in the
books we have indicated and so their proofs will be only sketched. In the
following “C” and “const” will mean constants (which can be different in
each estimate), which are not asked to satisfy any special condition. Instead
C(&,, -+, E,) will be a constant depending on the specified arguments. Assume
that A(x, 8)=A4(d), that is, that it does not depend on x. Then

(3) Zw, 1) = (2e)"H(®) | exp(in-E+AGEME

is a fundamental solution (here H is the Heaviside function and - is the usual
scalar product in R"), with A(i&)= >} (1§)*4,. Let|| || be a fixed norm in
||

1<2¢
the space of N X N matrixes. Then, we have:

Lemma 1.1.  The coefficients of Z are of class C=(R***\ {0} ) and there exists
oy ER, Cy>0, depending on A=sup ||4,||, N such that VB N7,

(4) [108Z(x, t)|| < C(B)t=®+1BNEE exp (wot— Cy | x| 2 [£) @D ,

Proof. As any eigenvalue of A°(f€) has a real part not exceeding —,|&|*,
one has (see [FR2], Ch. 7, Th. 2)

lexp (FAGENI < B 2ILAGE)IY exp (—nat|E17)
< )1V E10D) exp (—hat 1)
<C(4, &) exp (—(ho—ENIEIY),  Ve>0.

For &, nER", put B(E, n)=A(1E—»)—A°GE). One has
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1A% —n)— A°GE)NI < C(AY( 7] |EI?7+ | 7]*)
SCA)E|EI*+CE) ™) VE>O,
so that
IB(E, DIl <C(A)(E,IE1?+C(E) ]+ | E[*7+ []*7'+1) .
One has

t
exp (¢4 (15 —7)) = exp (ff1°(i§))+s0 exp ((t—s)A(EE—n))B(E, n) exp (s4°(i&))ds .
Using the previous estimates and Gronwall’s inequality, one draws:

(5)  llexp FAGE—mI<Ci(4, Ao) exp {—N2|E|*+Co(A, M)t(12]*+1)}

for certain constants positive Cy(4, Ay), Cy(4, ) and A, =N/,2. By Cauchy’s
theorem, VB, VxeR", V>0, VyER", one has

08Z(x, 1) = 2m)™" | (i~ exp (iv- (§-+im)+tAGE—n)dE
and so, using (5) and choosing p=(| x| [(2Cy(4, N)tp))#*(x/|x|), one obtains
(4)-
Lemma 1.2. Assume (h1)—(h2) are satisfied and let
Z(s,t;8) = @m)" [ exp (in- A% i
with

AAE; ) =ME=2,77"A¢(E) :

Let us indicate with 3} and 8% the derivatives with respect to x and . Then there
exist o, ER and VB, y& N with |v| <2p a constant C(B, v)>0, such that
(6)  l1803Z(x, £; E)NISC(B, )t~ 1BV exp (ay t—Cy(| 2| ?[t)) D),
with C, independent of B and y.
Proof. We pose, for , 0= R", V(t, £)=exp (tA(E; in—0)). Then
0, V(t, £) = A(E; in—0)V(2, ), V(0, &) =I.

By well known results concerning O.D.E.s, if 1< |v| <2p,

Q5 Ve, £) = A(E, in—001 Vit O+ 3 (7)o Ales in—0)9 V1, ),

a0, 8) =0,

so that
t

oy (e ) = | Vs 15 ( 7)o aE: -0V £)ds.
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By induction, from (5) one has

(7)

e v, o)
<31 CO, DIA+I01%+ 71 ) exp {—2tln|#*+CANN01%+ 1)}

One has

O10LZ(x, £ £) = (2m) [ (in—0)F exp (i~ (o-+i0))3F exp (¢4°(E3 in—O)dn

VisR".

So (6) can be obtained with the same method developed in Lemma 1.1.

In [FR1] a fundamental solution T'(x, ¢, £) of L is built in the following

way: define
Ki(x, t, §) = (A(x, 8,)— A, 8,))2(x—E, t; £)
and, by induction,
K t, £) = S: L” Ky(x, t—, 0)Ky(n, 7, E)dndr .
Put
O(x, t, £) = Ji Ky(x, 1, £).
Then

t
0

T(x, t, &) = Z(x—¢, t, E)—I—S SR,, Z(x—n, t—7; 7)®(z, T, E)dndT.

The following estimates can be established:

with

Lemma 1.3. Under the conditions (h1), (h2),

1, £, ENI<Clu, A, A, N)t*~272D/50 exp (w,t—Cy | x—E|?[t)/@V),

Ap = sup sup I 4a() — AN/ [2—E]" .

181<2p 2

Moreover, Vp<p

[|B(x, 2, E)—D(p, t, E)IS C(p) | x—1y | #7202 g%
X [exp (—a(p)(| x—E|2/t)/@=D)+-exp (—a(p)(| y—E | 2 [E)4er-D)]

with w, independent of p.

Proof. Using the method developed in [FR1], Ch. 9.4, one verifies that
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1K (5 1, E)I A0 exp (a;8—Cy | —E | J1er~D)

for certain constants 4;, at;, C;. If my>(n+-2p)/p, again by induction, one can
show that, V7N,

NEK pgrr(%, 2, ENISAB T(rp/(2p)+1) ! exp (0" t—C'(| x—E |22 [t)/@2-D)

for certain constants A, B, C’>0, o' R. From this the first estimate follows.

Now we prove the second estimate of the statement. With the same method

developed in Ch. 9.4 and Ch. 1.4, Th. 7 in [FR1], one shows that, for 0<¢ <1,

1K (%, 2, &) —Ky(3, t, ENIS C(p) | x—y | Pt*=P=n=20)020 [exp (—a( p)(| x—E | 2 [t)¥*~D)
+exp (—alp)(| y—& | #[e)-)]

If t>1, one has

“Kl(x) t, E)—K\(y, t, E)|<||A(x, 8,)Z(x—E, t; E)—A(y, 8,)Z(y—E, t; E)ll
+IIA%E, 0))[Z(x—E, t; E)—Z(y—E, t; E)]Il

Using Lemma 1.1, each addend can be majorized with
const {exp (wyt—Cy( | x—&|?[t)/@ D) {exp (wyt—Cy( | y—& | [t)/@~1)}

and with const exp (w,2)|x—y|". So, by interpolation, we have the estimate
for ||K\(x, t, £)—K,(», t, E)|| for any w;™>w, The result follows from this, from
the first estimate of the lemma and from

¢
B, 1, ) = K(w £, O+ | Ki(w—n, t—r, m)®l, 7, E)ndr.
Definition 1.4. LetreR. We define
K, = {usC(R*; C"): Yb>0 exp(—b|x|"usL=(R"; CY)} .
K, is a Frechét space with the family of seminorms
i) = llexp (—blx Nl (>0).
We remark that the space K, coincides with the space K, ,, in [GS], Ch. III,
Th. 2. Now, define g=2p/(2p—1). We have:

Lemma 1.5. Assume (hl), (h2) are satisfied. Let feC(R*; K,) be such
that;
(@) Vb>0 py(f(2)) <Xs(2), with X, Lig.(R*) and X,(t)=0(t"")(t—0), for some
yel[0, 1[.
(b) Fve]0, 1 such that

| f(£)(x)—f(£)(9) | <Xy(t) | x—y|" [exp(b| x|*)+exp(b] y|*)] Vb>0.
Put



94 D. GuipeTTI

V() (x) = S:SR Z(x—E, t; E)f(r)(E)dEdT .

Then:

@) t—V({H)eCY(R*; K,);

(1) K,lim V()=0;

(IIl) V>0, V(t)eC*(R*; CV) and VB, | B <2p, t—>0EV(H)EC(R*; K,);
(IV) # |81 <2p, K,-lim 10} V()=0.

Proof. Assume 0<<¢<T<+oo. Then, by Lemma 1.1, ¥5'>0,

VO <O, ) [ (6= exp (— |5 12— @)
xexp (b' ||,/ (v)dEd
<C(T, b) S:x,'(f)( [ e (1E1(= Cyrt-2b Twem)ag)ar exp (b1])

if 276’ <b, 270’ T9@N < C,, for a fixed 5>>0. From this it follows V() K, and
K -lim V(#)=0. The continuity of V' in #,>>0 can be proved in an analogous
t>0

way. If |B| <2p—1, one has, for >0,
t .
BV ()(x) = jo Sm 8 Z(x—E, t—; E)f(r)(E)dEdr
and, for 0<t<T<<+ oo, V¥b'>0,
|02 V(2)(%) |
t
<c(g, T, 0') [[[_ (t—m)errevrens, (z) exp (— C|x—& ] (t—m) )
oJR"
xexp(b'|E|%)dE .
For a fixed >0, if '<min {2795, C,2~* T~} one has
108 V(8)(x)| < C(B, T, b') exp (6| x]%) S'(t—f)-'ﬂ'/@»x,,/(f)df .
[}

From this, one draws K lim 3% V(t)=0, for |B]|<2p—1. It is also easily
t>0

seen that t—03V(t)e C(R*; K,). If |B|=2p, one has (with methods analo-
gous to [FR1], Th. 4)

2w ={ (] .
= ['(f, @28, 15 DU DO —F (N DNEYT
#0228, 1—r; )01 Z(—, t—7; MBS () (w)dr

(as SR“ RZ(y, t; x)dy =0).

R Z(x—E, t—; E)f(r)(E)dE)dr
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From Lemmas 1.1 and 1.2 and assumptions (a) and (b), one draws the existence
of 85 V(t)(x) for any £>0, x&R" and the continuity on R* of t—85V(t). If
0<¢<1, one has, again using Lemmas 1.1 and 1.2 and assumptions (a) and (b),
for any >0, for any b’ sufficiently small,

|68 V(£)(x) | < const ( g: [(t—7)/@ 1L (t— )@, ()dr) exp (b] x]%),
so that
2u(08V (1)) < const ( S:[(t—T)Wﬂ)-l+(t—f)*/<”>-1]xb,(7)d7)
and

25(85 V(t)) < const /@)1 — (),

>0

Finally, like in [FR1], Ch. 9.3, Lemma 5, for >0,

t
VO =[O+ (| A€ 0)26—, t—7; D) ENE)dr
and from the continuity of ¢— 3% V(¢) VB, |B| <2p, one has that t—3,V(f)
C(R*; K,) so that the lemma is completely proved.

Definition 1.6. Let feK,. Define T(0)=1, and for >0,

T = | T 1 /@)

(here T is the fundamental solution of L described previously).

Lemma 1.7. V:>0, T(f)8(K,). Moreover VYfeK, t—TE)fE
C([0, +oo[; K,).

Proof. One has, for t>0, T(¢)=U(t)+ V(t), with
Ui = | 26— &, DB,
v =|.( 26— t—r (| _ @0 = Of@E)drdn.

For what concerns U(t)f, it is easily seen that U(t)f €K, V>0, t— U(t)f €
C(R*; K,). Now, we show that K, —lim U(t)f=f. One has
>0

UOfR)—f@) = (20—, 1 )~ Za—E, 1; D]/ ©)de+

+S oo 2@, 15 R)[f(E)—f()]dE +[exp (24%x; 0))—I]f(x)
= Ui@&)f(x)+ U,(0)f(%)+ Uy(0)f() -
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We prove that, for j=1,2,3, Uy(f)f—0. The fact that U,(2)f = 0 follows from
>0 4

Lemma 1.2. Even the convergence of Uyf)f to 0 as t—0 is easy. Consider
U,t)f. Fix b, €>0. One has, for 0<z<1,

(8) exp(—blxl)| | _ 28, t; EX((©)—f () de]
<const exp (—b|#|[ (| exp(~GiIEI)| flx—trPE)|dE+1 f#)])
One has lim exp (—b|x|%)(x)=0 and there exists R,(6)>0 such that if |x] >
R\(€), exp (—b|x|*) | fix)| <E. Moreover,
exp (—b21%) | exp(—GE19] fls—teg)| dg

<pulf) exp (~b1x1% |_exp(—~GlEI+b s~ 2/EI9E = 0,

|z]|> +o0

if 5'<277b, 27°6'<C,. It follows that, for some R(£)=>0, one has that (8) can
be majorized by const &, if |x| >R(E), t]0,1]. Assume |x| <R(€). Then,
for 0<t<1, M >0,

exp(—blx[9)] [ Za—¢, t; XSO —Fo)E]

<const( [ exp(—GilEIY] fla— P E)—f(x)|dE

+, exp(—~GIEI] fle—t1o0E)—f ()| dE.
One has

lim

""“"glEI>M exp (— Gl E])| f (x—2/PE) |dE =0,

uniformly for |x| <R(E), t€]0, 1]. For any M >0,

Sm exp (—ColE|°)| f(x—1/®PE)—f(x)|dE >0,
M t>0

uniformly for |x| <R(€), in force of the uniform continuity of f on compact
subsets of R". So

Uf=0, and UWf=.
Now we show that V(¢) f;: 0. Put, for >0, x€R",

g0 = | (s 1, HFEME .
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From Lemma 1.3 one has that g satisfies assumption (a) of Lemma 1.5.

Moreover, by [FR1], Ch. IX, estimate 4.17, one has that g satisfies also assump-

tion (b) of the same Lemma. Therefore, V(¢)f—0, and Lemma 1.7 is completely
>0

proved.

Now we indicate with 4’(x, 8) the formal adjoint of A(x, 9):
A’(x, 0) = > (—1)"18%(A4,(x)") (BT = transpose of B).
| s2p

Owing to (h1), (h2), 4’(x, ) has properties analogous to A(x, d). We remark
that VfeK,, = D(R")", the mapping

b | f@)- 4 0)pds

R’l
defines an element I f in P(R")¥. We give the following

DrriNiTION 1.8. We define D(A)={ucs K,| Auc K,}. For uc D(4),
Au=Au.

It is immediate to verify that A is a closed densely defined operator in K.

Lemma 1.9. Let ucC([0, +oo[; K,)NC'(J0, +oo[; K,). Assume that:
(a) w(t)eD(A)Vt>0.

®) %0=Au(, ve>0.
() u0)=0.
Then u(t)=0, Vt>0.

Proof. V&>0 take w,&9(R"), such that supp (o)< {x=R"||x| <&},
sm w#)dx=1 and define u,(f)—wpu(z). It is clear that u,(f)eC=(R"; CV),
u,(t):ou(t) uniformly on bounded subsets of [0, 4-co[. Moreover, Vt>0
A(x, 6)u,(t):0Au(t) in (9#(R")"Y. Let £>0, cR". We shall prove that

u(Z)(®)=0. For R>0, define By={x=R"||x—%| <R}, Bx=Bpg,\Bs. For
7, 7, positive, n,<F —n,, take v& C#([0, F—x,] X Bg,,; C) such that v is zero
in a neighbourhood of 8B4, X [0, Z—2,]. Pose Q=]n,, I —n,[ X Bgy,. One has

(9) sn (%—A(x, a)u,)-vdxdt = Sn (—ddl:— v—Au- v)dxdt =0.

Posing L'=—0,—A(x, 8)’, by Green’s formula,

S (ttg+ L'v— Lty v)doedt = —S 8(1ty- v)dxdt
Q Q

= w90l dr—| w00, M,
R+1 Bp4y
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so that

S u-L’vdxdt:lims (ttg L'v— Luty+0)ddt
Q Q

g->»0

= wn)@) oy e uF—n)()-0F—my )

R+1 R+1

Letting 7, — 0 and using (c),

(10) S:'"”(S u-L’vdx)dt:—S w(F—)(x) »0(F— gy %) d .

R+1 R+1
For t>0, x&R", E->T(x, t, )€ C*(R"; C") and

(11) 0,T(x, t, )T = A'(E, 0,)T(, ¢, E)T (see [FR1], Ch. 9.5.)
Moreover, by [FR1], Ch. 9, (5.6) VB, |B| <2p.

(12)  VT>0, |[95T(x, t, E)7||<const £~ *+IEV/E exp (—k(|x—E|*[t)/*7D),

for some k>0, 0<¢t<7T. Assume u(¥)(%)=+0, VR>0 take hpc C{?(Bgy,; CV),
such that hg(x)=u(?)(%)/|u(Z)(®)| if x&Bg and such that sup [[0°Ag||. <+ oo,
VB, |B]<2p. Define "

vg(t, x) = —T(®, F—1, x)7The(x) (t<Z, x=R").

Owing to (11), L'vg(t, x)=0, if t<Z, x&B;. By (10),

SB S’_ﬂzu'L"URdxdt = S (%, 7, x)u(f_n‘*’)(x).hla(x)dx ’

0 R+1

By estimate (12), u+ L'vye L}([0, £] X B%). So, for ,— 0, as T" is a fundamental
solution of L,

i
(13) S s u-L'vgdedt = |u(f)(®)|, VR>0.

0JBp
Again using (12), one verifies that the left side of (13) tends to 0 as R—co.
So, #(Z)(®)=0 and the result is proved.

Therefore we can state the main reuslt of this paragraph:

Theorem 1.10. Under the assumptions (hl), (h2), {T'(¥)|t =0} is a Cy-
semigroup in K, with infinitesimal generator A (see Definition 1.8). Moreover,
V>0, T(2)(K,)= D(4) and, VfEK,, lir? tAT(t)f=0.

>

Proof. By Lemma 1.7, t— T(f) is strongly continuous on [0, +oo[. As
usual take T'(t)=U(t)+ V(?).
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vefw = | ze—t& s osede,

B UDf(x) = ana’l’Z(x~£, 1, E)fE)dE  VBENE, V>0,
and ¢ — 22 Ut)f € C(10, +oo[; K,) -
Moreover, for 0<<t<1, Vb'>0,

102 U(t)f(x) | <C(B) pur(f )2~ PV SR" exp(—GCo|§|*+b" |x— /N E|)dE
< C(B, b)py(f)P1eP exp (b] %),

if &' is sufficiently small (b’ depends only on b). This estimate implies that
VR, |B| <2p—1, lim 38 U(t)f=0 and VB, |B|=2p, the operators {t3ZU(2)|
t->0

t]0, 1[} are equicontinuous. Owing to the remark at the end of the proof of
Lemma 1.7,

V@ = | 26—t - Der)@gds

with g satisfying the assumptions of Lemma 1.5. So, V¢>0, x— T(t)f(x) €
C*(R*; CY). From [FR1], Ch. 9, Th. 3, one has, for >0, x& R",

0, T(2)f(x) = A(, 8,)T(2)f(x) -

So, V¢>0, T(t)f €D(A) and, as t— 35 T()f €C(J0; +oo[; K)VB, |8 <2p,
t—=T(t)fC(]0, +oo[; K,) and 3, T(t)f=AT(t)f, Vt>0. Now we prove the
semigroup property T'(t)T(s)=T(t+s). Let feK,. Define, for s>0, u(t)=
T@)T(s)f—T(t+s)f, t=0. Then uc C([0, +oo[; K,) N C*(J0, +oo[; K,),
#(0)=0, 8,u(t)=Au(t). From Lemma 1.9, one has u(#)=0 V>0, so that
T(#)T(s)=T(t+s). We prove that the infinitesimal generator 4 of the semi-
group is coincident with 4. Let f&D(A). For t>0, 3,T(t)f=AT(t)f, so that
AT(t)f=AT(t)f. But T(t)f;;f, ET(t)f;jo Af; as A is closed, it follows f € D(A)

and Af=Af. On the other hand, assume f€D(4). Put
u(t) = T(¢) f—f—S‘ T(s) Af ds (integral in the Riemann sense).
0

Then us C([0, +oo[; K,), w(0)=0. Moreover, V>0, 0,u(t)=AT(t)f—T(t)Af.

But (see [KOMU], Prop. 1.2, Cor.) st T(s) Afds€ D(A) and, as A4 is an extension
of 4, 0

4 s; T(s)Afds = T(t)Af—Af .

It follows, V>0,
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Au(t) = AT (@)f—T(t)Af = 0,u(z) .
By Lemma 1.7, u(t)=0 V>0 and so the result follows from [KOMU], Prop. 1.2.
It remains to show that lim tAT(¢t)f=0 VfeK,. One has tAT(t)f=tAU(t)f+
t->0
tAV(t)f. By Lemma 1.5, tAv(t)f—0. From the first part of the proof one
has that {tAU(#)|t<]0, 1]} is equicontinuous. But, if feD(4), tAT(t)f=
tT(t)Af—0. So the result follows, because D(4) is dense in K,.
t->0
2. Parabolic systems in the spaces S(R")¥ and S'(R*)"

Now we want to study parabolic systems via semigroup theory in the spaces
S(R*)¥ and S'(R")Y (which we shall abbreviate respectively with & and §’).
An analogous study in the spaces H=(R") was developed in [MI] and [BA] (for
the case of S'(R") and A(x, 9)=A see also [SZ], Ch. V). We assume the fol-
lowing:

(h3) Va, |a|<2p,  the coefficients of 4, belong to B*(R").
Let

S = SR"N = {p=C~(R*; C")|Va, BEN}, x — x" P L (R")"} .

We pose, for >0, BENE, u<]0, 1], ¢S,
P p(®) = 1217108 ||, bl =|§'1|(1+|x|”)|3"¢lllm
[81 = $p| $(5) = SO /15=31% Il = l1gllms+ 3 P61

The norms || ||,,,, or, alternatively, || ||s,,, form a calibration in §. We con-
tinue to call 7(¢) the restriction of the operator defined in K, to . One has:

Theorem 2.1. Assume (h2), (h3). Then,
(I) V>0, T(1)eXS).
(II) t—>T#)peC([0, +oo[; S) VopeS§.
(IIT) {T(¢)|t=0} is a Cy-semigroup of linear operators in S, with infinitesimal
generator A g defined as follows: D(Ag)=S, Agp=A(x, d)p=A¢.

Proof. By theorem (8) of [FR1], Ch. 9, T(t)p & C=(R"; C¥)V >0 and V3
88 T(t) p(x) = L" 8T (x, t, £)b(E)dE .
For m>0, 0<¢<T, (T>0), by [FR1], Ch. 9, 6 Th. 7,
11§, 08T, 1, E)p(@)aE |

<C(T, B P [ exp(—C|E1)]1"| pla— /) |dE .
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One has
[2]™ | p(x—2VEE) | < C(m)(pom,o(P)+1 P E|" po.o(D)) -
It follows, for 0<t< T,

Pus(T()P)<C(T, B, m)(t™ VeI p,, o(p)+£ " 1BVEN py () .

So, (I) is proved.
Because of the semigroup property, to have (II) it is sufficient to show that
VoS ];Hf)l T(t)p=¢. As usual, T(t)=U(t)+V(t). We start by showing that

U(t)p—¢. One has
U0 = | Zs—&; 1, ©)9EME = | ZE 15 3—E)gpr—EME .

R”

Owing to [FR1], Ch. 9, Lemma 4,
otuee) = 5(2)],.087 26 6 v—porse—pa

= [ 26 s e gs—gaE -5 (2 ) 047 20E, 1 w—pPple—t)aE

For m>0,
#1712, t =—0)Pp(s—E)AE—0Pg(x)|
<1x1”If 2@ t; 1—8)~Z(, £ 9|1 0P $(—) | d+
1171 |12, 15 01107 p(x—)—0P(x) | a5+
+ 17l exp (¢4%x; 0)—I119%(x)| = K@)+ L) +1()
For 0<¢<1, using Lemma 1.2 one draws

L(x) < C(m, B) B/ py o(p)+1"/) po g(9)) — 0.
Again for 0<z<1, m>0,

L= <CO) | 1517 exp (—Cyl 19109 (x— /o) —0Pp(x) | dE

Let R>0, |x| <R. Then the expression is majorized by C(R)p, 1p14+1()t/—0.
On the other hand, for any value of x, 0

LH<COIx1" | exp (—ColE19[0Pg(x—treme|d

11" exp (—CoIEIDaE 1P 9()]
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The first addend is dominated by

ComI|,, _ exp (—CulEI")|x—/eng| | 0Pg(x—/09E |+

1EI<R’

+ Sl bop &P (— Gl E|9) | x—1/@DE | ™ | 8B p(x—1/CPE) | dE1mID) po ()] -

If |x|=>R, |EI<R', t<1, [x—tY®E| >R—R’ and as'llim | x| ™98 (x) =0, one

has that the first integral tends to 0 as |x|—>-oco VR'>0, uniformly with
respect to 210, 1]. The second integral is majorized by

— ‘ -
S|E|>R’ exp ( COIEl )dfpm_p(qs) R’—>+w0 ’
So, I(x)—> 0, uniformly for x&R". Finally,
>0
|1 "lexp (4°%; 0)) 1| |8%(x)] < const 1p,p(h) == 0.
If y<B, 0<t<1,

|#171{, 04 2(e, 1 s—E)OB(x—E)aE]
1wl | [0372(E, t; 3—§) 087 Z(E, 1; 2109 (x—E)dE |
+1x171 | 082(¢, &5 w[0"g(s—§) " (x)1dE |
11711, 08 Z(E, 1 eI ()| = L@ +LEHHLE) .

I, and I, can be treated using methods analogous to the previous and [FR1]
Ch. 9, Lemma 4 to show that they converge to 0 as #—0 uniformly in x.
I(x)=|x|"||05 " exp (¢(A(x; 0))|||8?¢(x)| = O uniformly for x&R". With this
we have proved that U(t)¢:;¢. e

It remains to show that V()¢ —>0. We start by remarking that, for 0<
t<1, VjEN,, e

17108 Ki(x, 1, )BEMEI GGl ipr

This can be easily proved by induction, using the estimates of [FR1] Ch. 9.6,
Th. 7 and observing that

of XR,, Kyt 6)9@®)dE= | 35 CBu By B) SR” [A®(x, 9))

—A°B(x—E, 0,)]052Z(E, t; x—E)0%s p(x—E)dE
and



GENERALIZED CAUCHY PROBLEM 103

o Kot O0@E = 33 OBy 6,6 [ 1A%, 0)

B, +BaFP
_Ao(ﬂl)(x—f, 61)]6gzz(77’ 1—7; x—"))aga( SR” Ki(x—n, 7, E)p(E)dE)dndT .
(A®(x, 0) =|¢|2§zp 9% A(x)9") .

So,
w7102 | 2 t—ms ([ K€ 7, nigaidniaEar|
0VR R
— I#1"13) ( ';3 ) S:SR OZ(E, t—1; x—g)az(sm Kj(x—E, 7, n)p(n)dn)dEd|
< const (/¢ |, 112" bllg, 1) — 0.

On the other hand, if <1, by the estimates of the derivatives of the K;_, in
[FR1] Ch. 9.6, one has

10, (33 K, £, E)) < comst £0-#-2#-1B0/@) exp (—C(| w—E |/1)+=)
so that
#7102 | 53K (v, 1, E)p(8)dE] <const -0/l
R"j=v '

If »>|B], one has
w1102, { 2=, t=rs (| S K m, 7, ©06(@)ENIndr|
= 121715 () [1f . 087200 t=rs wmpar( [ 5 K= v, £)800)

-d dydr| < const 1~ IE/ED| ||, o — 0
t>0

As
V(t)p(x) = 2 S; SR, Z(x—E, t—m; E)( SR, K&, 7, n)p(n)dn)drdE
+ ] 2e—e = (| S K, 7 Domidndra,

we have shown that, Vm>0, VB N;, VoS, p,s(V(t)p)—0. So we
t->0

have proved that t— T'(¢)p=C([0, 4 oo[; S)V¢ €S8. To verify that the
infinitesimal generator of the semigroup A s is Ag, remark that, certainly,
quED(AS), A3¢ Ad¢ (see Def. 1.8) and so, as p=C=(R"; CV), AS¢ Agp.
As Ag is continuous, it follows that A < is continuous and, as it is closed and
densely defined, it is necessarily A s=4s. So the theorem is completely proved.
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We recall the following definition (see [HC], page 294):

DerFINITION 2.2. Let T={T(t)|t>0} be a C,-semigroup in a locally
convex space X. T is said quasi-equicontinuous if there exists >0, such that
{exp (—wt)T(¢)|t>0} is equicontinuous.

We want to emphasize the following important difference between the semi-
groups we have considered in K, and in §: in the first case they are not quasi-
equicontinuous, in the second they are.

Now we shall give an example to show that quasi-equicontinuity is not
satisfied in K,. Consider the simplest case, namely n=N=1, A(x, 9) =07,
2p=qg=2. For S8R, put fy(x)=exp (8x); ;= K,V8=R. If the semigroup
{T'(#)|t =0} were quasi-equicontinuous, there would exist & >0, such that
exp (—wt)T(t)f,(x)‘::O, Vxe R, V8€R. But T(t)fs(x)=exp (8%+8x) and so

such an » cannot exist.
Now we want to prove the following

Theorem 2.3. The semigroup {T(t)|t=>0} is quasi-equicontinuous in S.
To prove this result, we need the following lemma:

Lemma 2.4. There exists p>0, such that Ym, m' >0, with m<m', Vp,
ve]0, 1, with p<v, there exist C>0, ac]—1, 0], a'>a, dependent on m, m’,
u, v, such that

T (2)bllm,2p,, < C2*+1) €xp (p2) bl 0,3 »
V>0, VopeS§.

Proof. Put p=max{w;|j=0, 1, 2, 3}. Let m, m'>0, with m<m’, p, ve
10, 1[ with x<v. We have to prove that

T @l = 3,10+ 12170 TSI+ 3 [02T (1)1

<C(t*+1*) exp (p)(Il(1+ | 2| ™) pll=+[$]s) »

for certain C, a, a’ with the declared properties. As usual, 7(¢)=U(t)4 V().
If |B]<2p—1, using Lemma 1.1, one proves that

(11517 |08 U©)$(x) | S C(8, m) exp (wf)(t™ PVen-16m~ B[],
If |81=2,
(1+1%1)" |28 U $(3)]
<1171 | 108 Za—E, 15 )-8 Z(v—E, 1; M (E)E]
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+(1+1%]7) SR,, 105 Z(x—£, t; %)|l| ¢ (€)— p(x) |dE = L+1,.
Using Lemma 1.2, one has,

L, <C(m, B) exp (at)(#/EN ! -1 D/ENT)|| ]|, .

Moreover,

L<CO(B)(1+ 11" exp (@) | exp (—Col| x—E [#/eyrer-D)
[BRIx—E 1" 13— (9 dE<(Ve]o, 1)
CBNST, exp (@)t @71+ [117) [ exp (—ColE1[2)| p(e—rve)
—g()"-"d
One has
(11517 | exp (—CiIE1412)] gla—t/o)E— () |*-*a

<C(B, O{(1+1=]") SR, exp (—Co(1€1%/2) | ¢ (x— YN E) | dE+-||p||w7c1-9.0}
< C(B, E)lBllnrcr-o,0H™® poof($) "}
so that
L,<C(B, €) exp (g )(2"/®N 714U EN1) [Tl b [m7Cie1.05
veleO0, 1[.  If é=1—m/m’, one has
L C(B, m, m") exp (wy)(f*4=mm @1 | g/ @ +v=mim @Y1 [ 4]+ ||l o) -

Further, again with |3 |=2p, we have
RUNG) = (108208, 1 ©)—022(—E, 1; W]p(E)E
+{,. 0t 20—t 1 [6®) —pat,

so that
O U(p(x)—0tUMS(y) = | [01Z(x—, t; ©)~01 Z(x—E, 1; )
—08Z(y—E&, t; E)+ORZ(y—E, t; y)]p(E)dE
+{,, 12—, 1; )~ 0 Z(y—E, £; VI [HE) —p(x)]dE

+{,, PV Z(y—E, t; )-8 Z(y—E, 1 y)][$(E)— p(x)ldE
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+{,. 00209, t; ) ()—$()] = Tt Tot Sot s
One has
=0tz £ =—p)— 0 ZE, t; Wlp(s—E)dE
002, 1 3502, 15 I $ly— )it
= |, 012, t; s—§)—0UZ(E, 1; )01 Z(E, 15 y—E)+OLZE, 13 ) ]$r—E)dE
+{, [08Z(E, t; y—E)— 00 ZE, &5 P [$x—E)—$(y—ENdE = Jut T

One has, by Lemma 1.2,

K(E, t, % y) = 1002(E, t; x—§)—00Z(E, t; x) =08 Z(E, 13 y—E) 0L Z(E, £ )
SC(B)t"(’”'”)/(”) exp (“’1 t) , E , exp (_Cl( l E |2p/t)1/(2p—1))

< C(B)L4-"~2@ exp (a;t) exp (—%‘( |E [ty eD ) :
On the other hand,

<(by Lemma 1.2) C(B)t~**?P/¢|x—y| exp (w,t) exp (—Cy( |E|?[t)/@-D),

so that

(14) Kt %, y)
<C(B, 1) |x—y|*O=--21%D exp (w;2) exp (—(Cy/2)(|E[#[eye-D)

It follows
Ju<C(B, p) exp (o, t)|x—y|* 10~/ g]|, .
Further,

J<C(B, Iﬁ)tl/(m—l exp (@, ) [p]u|x—y|".
It follows

Ji<C(B, p)|x—y|* exp (o,2)(¢¢ /P ENT)(||B]],0+ [Pu) -
One has

Jo= sm 08 Z(E, t; x)[p(x—E)—p(x)]dE —SR” 08Z(E, t; x)[p(y—E)—p(x)]dE .

Note that the second addend is equal to Sn" 05 Z(E, t; x)[p(y—E)—p(¥)]dE, so
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that
| .l SC(B, 1) exp (o)1 ], .
On the other hand,
J.= otz & 9ls—5—s(r—olag,
and so

| [l SC(B, 1) exp (wo?)t™ | x—y|[$], -
Putting together the two estimates,
| | SC(B, p, v) exp (apt)t®=E~! x—y|*[¢], .

Then we remark that

o=, 08205, t; =01 Z(y—E, £; DI SE —SME,
so that, by Lemma 1.2,

| Jsl <Clu, B, v)|x—y|" exp (pt)t"/®7[], .

Finally, J,=0.
So, for |81 =2p,

[02 U(t)) < C(u, B, v) exp (pt)(t®/P12/EN1) (]| ], 0+[$]s) -
Putting together the two estimates we have obtained, we have that
” U(t)qS”m.Zp.p.SC(m’ m,’ 12 D) exp (pt)(tal—l—t’i)”(ﬁ”m'.o,v ]

with —1<a,<af and «,, af dependent on m, m’, 4, v. Now we consider
Vg, If 18] <2p—1, m=0,

(1+1%17) 2V (D9(#)|
=+ 27 (' 012G, t—r; ) [ ®n, 7, E)(E)IENIndr]
<(by Lemmas 1.1 and 1.3) C(m, B) exp (pt)(t®~1B/@D | gim+1=180/CP)| ||, o .
Now let |B|=2p.

A+ 12110V <A+ 1211 |0t Zr—n t—ri ([ [0n 7, &)
~ 0, 7, EEMENdr| +(1+ 121 (| 08 Z(e—n, t—7; )

08 Z(x—n, t—7; 0)]( qu’(x’ 7, EYp(E)dE)dndr| = L+1,.
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From Lemmas 1.1 and 1.3, one has
I,< const exp (pt) (V@ tmDIEO-1)[|p]] 0.
Further,
L,<(by Lemmas 1.2 and 1.3) const exp (pt) (£¥@P~14-¢m=2/CO-1)|| ]| .
So, if |B|=2p,
1182 V' (£)$lln,0< C(m, B) exp (pt)(£/ 17141 *D/EPTN)]|g||q .

It remains to estimate [87 V(#)$]u, for |B|=2p. Posing

0@ = _ 6 7, O$E)ME,

by Lemma 1.3, ‘
|80 —g®)(3)| < Cw) exp (@311~ x—y | glo
and
| 8(2)(x) | < const exp (w242 [l
So,
|02 V()9 (x)— 0LV ()9(5) |
<If'{_1082E, t—r; 5—p)—012(E, t—r; y—Da(r)e—EdEdr]
+1{,§,.002¢ t—r3 y—Blere——g)y—§lddr| = L+1,.
LI | 1tz t—r; s—)—08 2(¢, t—r; 908 Z(E, t—75 y—)
+0YZ(E, t—; y)]g(r)(x—EdE)d|
+ 1§, 1082, 1—r; 908 Z(¢, t—7; ] [e(r)—E)—g(r)(=)]dEd|
=I+1,.
One has, by (14),

IHSC(/Q, ©) S:SR” |x—y| u(t__.r)(l-#-n—zp)l(zm exp (col(t——‘r))
X exp (—(Cy2)(IE1#[(t—7)"®) exp (0p7) 7 pllo,d7dE
< const exp (pt) | x—y| "2~ |g]l, o -

- By Lemma 1.2,
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I,<const S: Ln [x—y|exp (wy(t—7))(t—7)""® 1 exp (—C,(|E|?[(t—T))V®P)
X exp (wy7) A= P/@-1| £|#|| ]|, o dEdT< const | x—y|exp ()71 ||B]lo.o
On the other hand,
I,,< const exp (e, 8)/??Y|¢|l0.0 »
so that
I,< const exp (pt)t/®"=1|p[lo ol x—y|* .

Then,
L[ 1002 t—r3 y—0)—002(E, t—m; Pe(r)—E) —g(r)(y—BdE d|

FIf'f 082(E, t—v; ) [etr)o—E)—glr)y—E) ()W) +ar) (e x|

= L,+1,.

I < const exp (pt)t®=" =1 |x—y|*|pllo,o -

Further,
| 8(7)(x—&)—g(r)(%)—&(r)(y—E)+&(r)(¥)]
< C(u, B) exp (pt)r4ePx—y [*|E|"*||blloo »

so that

I, < const exp (pt)t*=P@=1 | x—y | *||pllo,o -
It follows

[0 V()plu < C(u, B)(t0~1VEP714-¢E=1NEN)]|]lo,0 exp (p2) -
So the lemma is completely established.

Lemma 2.5. Let BENG]. Then Vt>0
t
B¢ — T 0%)+ |, Tt —gse)ds,

with gg(t) =] ('8 )A(‘""’(x, 0)01 T(¢)p (the integral is intended in the Riemann
¥<B \ &y
sense).
Proof. VB, v, ¢ —>A®P(x,d)¢ is continuous in &, so that gg&

C([0, +oo[; S). By [FRI], Th. 10, (t, x)— T(2) ¢ (x) €C=(R* X R"; C), so
that, V>0, VxeR",
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8,08 T(t)g(x) = A OET(t)b() +8s(£)() -
If veS'(RY)Y, V>0,

0,05 T (1), ¥ = <AOET()p, ¥>+<ga(t) ¥
= OLT(t)p, Agh>+<gs(t), ¥>

and this function is continuous on [0, +oco[. From [GU] Th. 3.4 the result

follows.

Proof of Theorem 2.3. We show that, Vm, m’' >0, with m<<m', VrE N,,
r>2p, Vu, ve]0, 1[ with p<v there exist a, a’, C—1<a<a’, (dependent

onm, m', q, u, v) such that

(15) 1T ) pllm,r,u < CE*+17) €xp (p2)]Ibl It =205 »

where p is the number appearing in the statement of Lemma 2.4. The proof is
by induction on r>2p. If r=2p, it is true by Lemma 2.4. Assume (15) for

a certain r>2p. It is clear it suffices to show that,

VB, 18] = r+1—2p, [08T#)pllm,z,, < C exp (p)(t*+ 1) pllw,1p1,v »

for certain C>0, —l<a<a’'<+o. By Lemma 2.4,

T = T(OLp+(, T(t—5)gs(e)ds.
So,

108 (Ol 2 ST @02 Sl | TE—)20(6)dl -

1T ()05 Bllm,25,,, < C: €xp (pt)(t"1+12)|05 bl w0,
< C; exp (pt)(t*1+1%) Bl | 181, -

t t
1, 7~ 9856 dellm, <[ NTE—5) 256N,
T (t—5)8a(6) 2. < C x (P(t—5))((t—8)"2-+(t—5) D)1 RS0, »
with m<m” <m', u<u'<v, by virtue of Lemma 2.3. But

[186()Ilm”,0, < const || T(s)pllm,,,,,» < (by the inductive assumption)
const exp (ps)(s"a+s"'5)||¢||,,,/,,_zp,‘, .
So,

188 T(0)bllm. 25,0 < s €xp (AL 1)1l 11,
+const exp (pf) | [(t—s)5-+(t—5) 6" +54)ds |l ip-1.-
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From this, (15) follows.

Now, let w>p. One has, taking into account that the norms || ||,,,, are a
calibration for § and inequality (15), that {exp (—ewt)T(#)|¢t=>1} is equiconti-
nuous. On the other hand, in a barrelled space every Cy-semigroup is locally
equicontinuous (see [KOMU], Prop. 1.1) and this gives the result.

We recall the following definition (see [YO], Ch. IX, 10):

DeFINITION 2.6. Let X be a locally convex space and T'={T(#)|t>0} a
linear equicontinuous semigroup in X. 7T is said holomorphic if it admits a
weakly holomorphic extension to some sector {|Arg A | <6,}, for some 6, posi-
tive, and the extension is equicontinuous.

We have the following result:

Theorem 2.7. Assume (h2), (h3) are satisfied; then there exists w>0 such
that the semigroup {exp (—ot)T(t)|t=>0} is holomorphic in S.

Proof. Owint to [YO], ch. IX, 10, it is sufficient to show that there exist
©>0, 6,>x/2, such that |Arg A | <6, implies o+AEp(A) and N (A +w—
Ag) *|kEN,, |ArgA|<0,} is equicontinuous. As the coefficients of A,(x) are
uniformly bounded, there exists M >0 such that Vxe R", VE€ R", with |£|=1,
any eigenvalue of A%x; 7€) satisfies |\ | <M. So, by (h2), there exists ,>x/2
such that, VxR", with |£|=1, any eigenvalue of A%x; i£) is of the form pe®,
with |@| >80, Therefore, for every 8, |0|<<6,—=/2, the operators e®A(x, 9)
satisfy (h2), (h3).

Now, fix 0, #/2<<0,<6,. If 0=60,—=/2, by Theorem 2.3 there exists w,>0,
such that the semigroups generated by —w-+4¢ and e*¥(—w-+A4) are equi-
continuous. As (A +w—Ag)'=e*(Ntefw—e?As)”!, we shall have the
result if we prove that, if B is the infinitesimal generator of an equicontinuous
semigroup, {A&C|Re >0} S p(B) and the operators {\*(A—B)7*| |Argr | < ¢,
ke N} are equicontinuous, for any ¢ <=/2. In fact, by the Hille-Yosida
theorem (see [YO], Ch. IX, 7) the result is true if ¢=0. LetA’>0, p a con-
tinuous seminorm. For AeC, REN,

POV PO —B) 1) VR - [ Hg(x)

with ¢ continuous seminorm dependent only on p. Therefore, if |[A—\'| <A/,
as & is complete, (A—B)™! exists and

(A—B)™'x = ?3, (=1 =AY —B)* 1.

If |Arg 0| < p<<z/2, there exists A'>0, such that |[A—\'| <A\ sin¢ and [A| <



112 D. GuibeTTI

A/. So, for every continuous seminorm p, there exists a continuous seminorm
g, such that, VaeN,

POTN—B) ) = PN 35 - 33 (— I e By h )

< In” pIRRDS A=A [ hattbm /b ke m g ()
£=0  km=0
<(1—sin $) Tq(x)
With this the result is proved.

For what concerns §’'=&'(R")", we have:

Theorem 2.8. Assume A(x, 0) satisfies (h2), (h3). Define D(Ag)=S&,
Agp=A(x, 0)p. Then, Ag. is the infinitesimal generator of a quasi-equicontinuous
semigroup in S. Further, there exists >0, such that —w-+Ag is the infini-
tesimal generator of a holomorphic semigroup in S.

Proof. The formal adjoint A’(x, 8) satisfies (h2), (h3). Therefore the
result follows from Theorems 2.3 and 2.7 and from the results of [YO] Ch. 9,
13, concerning dual semigroups in reflexive spaces.

ReMARK 2.9. A consequence of Theorem 2.8 is that the equation
(A—A(x, 9))u=f has a unique solution in &'V fe &, for any A sufficiently large.

REmARK 2.10. It is easily seen that, if g €&’, V>0 T(2)p(x)=<T(x, t, £),
¢(£)>, so that, owing to the estimates of [FRI1] Ch. 9, (¢, x)— T(¢)p(x)E
C=(R*x R"; C).

3. Generalized Cauchy problem for certain ultraparabolic systems

In this section we shall consider generalized Cauchy problems for certain
systems we shall call ultraparabolic, extending some results of [VD]. In the case
of equations, papers on this subject (in spaces of Sobolev type) are (under even
more general conditions) [GE], [SA], [GI], [VG]. Besides, abstract equations
leading to ultraparabolic problems in Banach and Hilbert spaces were considered
also by A. Favini [FA] and J.L. Lions [LI].

Now we introduce the general assumptions we shall work with. Let O be
an open connected subset of R"(m>1), T the boundary of O. Assume that T’
is a C* manifold in R" of dimension m—1, O is on one side of T', b is a C! real
vector field on O such that:

(ml) &(¥)=*0VieO.
(m2) b(t)-»(t)>0VteT, with »(¢) normal vector to T" at ¢, inward to O.
(m3) Let s—S(s, t)(s€(t), t=O0) the maximal solution of
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225 = b(o(e)
v(0) =1¢.

We assume that V¢=O3t' €T, such that t=S(s, t') for some s€I(t'). Now
let X be a sequentially complete, barrelled space, 4 the infinitesimal generator
of a strongly continuous semigroup in X, ¢ CY0; C). We consider the
problem

g(ﬂ(MWW)MWJm in O;
u(t) =g(t) ’ tel’

with ge C(T"; X), f€C(0; X). A solution u of (16) is a function u C*O; X)N
C(0; X) such that, V¢ €0, u(t)eD(A), the first condition of (16) is satisfied
Vt=O, the second for every T (for the definition of CY(O; X) see [GWS],
ITI. III). To study this problem, we need some results concerning the flow S
generated by b. First of all we remark that, thanks to (m1)—(m3), for a fixed
teO0 there exists a unique ¢'€T" and a unique s€I(t’), such that t=5(s, t').
Moreover, s>0 and s=0 if and only if t€T". So, we can define ®: O—R*xT,
D(t)=(D,(t), P,(2)), such that S(D,(2), ®,(t))=t.
One has:

(16)

Lemma 3.1 The mapping ® is of cass C* from O to RXR". More gene-
rally if b is of class C* and T is a C* manifold in R", ® is a calss C* (k>1).

Proof. Assume b and T of class C*¥(k>1). Let teT, ¥ a C*-diffeomor-
phism between a neighbourhood U of ¢ in O and a neighbourhood ¥(U) of O
in R¥={yeR"|y,>0}, such that ¥(UNT)=Y(U)N{(y’, 0)|y'eR"'}.
For (y’, 0)e¥(U), define §(s,y’)=S(s, vy, 0)). S is defined on an open
subset of R X R™", it is of class C* (because ¥™! is of class C* and by well
known results of regular dependence of the solution on the initial datum)
and dS(O 0) (o, 2)=0b(t)+d, ¥ (y", 0)2((s, 2) ER X R™'). One has that
d,¥(y’, 0)z€ T(T") (the tangent space to I in £).

So, by condition (m2), d S (0, 0) is a linear isomorphism. This implies
that S is a C* diffeomorphism between a neighbourhood V¥ of (0, 0) in
[0, +oo[ X R™! and a neighbourhood U= S( V)of tin 0. If f€U, necessarily

() = ((S)u(), TS (), 0)

so that @ is of class C* in a neighbourhood Q of I" in O. Now, assume teo.
There exists s>>0, such that S(—s, f)EQ and, for this fixed s, there exists a
neighbourhood ¥ of # in O such that S(—s, £) is defined and S(—s, £)€Q. For
teV, @,(t)=,(S(—s,t))+s, @y(t)=D,(S(—s, t)). As D is of class C* in Q, s
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is fixed, — S(—s, 2) is of class C*, @ is of class C* in V" and so it is of class C*
in O.

Proposition 3.2. Assume u is a solution of (1.6). Then, Vt<O, if W(s, t)
—exp (|| d(Ste—,(2), H)do,
(A7) u(t) = W(D\(2), 1)" exp (Dy(£)A)g(D(2))
+{7 e (@O -V W@,(2), 1 W, DS —,(1), D)do .

Proof. Put o(s)=u(S(s—®,(¢), t))(s€]0, 3[, for some §>0). Then, for
s€]0, 8,

V') = 3 b(S(6—,(2), 1) 2 (S~ .1, 1)
= —e(S(s— (D), Do)+ A +ASE—D(0), 1)

From this, for s€]0, 3],
d%(W(S, £)o(s)) = A(W(s, yo(s))+ W (s, )f(S(s—Dy(?), 7)) -

One has that Vx'eD(4’) s—{W(s, t)o(s), x> C(]0, 8[)N C([0, 8[) and, for
s>0,

%(W(& 2)o(s), x> = <W(s, )v(s), A'%>+SW s, O (S(s—Py(2), 7)), 27>
It follows from [GU] Th. 3.4 that
W(s, t)v(s) = exp (sA)fo(O)—}—S: exp ((s—a)A)W(a, t)f(S(c—D,(2), t))do ,

o(s) = Ws, ) exp (sA)v(O)—i—S: exp (s—a)A)W(s, 1) W(a, ?)
X f(S(e—®y(2), ))do .

From this the result follows.

Proposition 3.3 Assume that f=0. Let {exp (¢4)|t>0} be the semigroup
generated by A. Assume that T(t)(X)< D(A)Vt>0. Then, if g CYT'; X)
(that is, g is the restriction to T of a C* function defined from R"™ to X), u(t)=
W(D,(2), t)! exp (Dy(£)A)g(Dy(2)) s the only solution of (17). If A= LX), u is
of class C* on O.

Proof. One has that t— W(®,(t), £)"*€C¥O0; C), s— exp (s4)x belongs to
C([0, 4+oo[; X)NC'(J0, +oo[;X)VxeX and to CY([0, 4 oo[; X) if A= _L(X)
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and ‘% (exp (s4))=A exp (s4). As X is a barrelled space and ¢ — exp (D,(¢)4))-

g(@,(t))eCY0; X)NC(0; X)(eCYO0; X) if Ac_L(X)). From this the result
follows by computation.

Proposition 3.4. Consider (16) with g=0. Assume f=C¥O; X). Then
o,(D
u(t) = W@ @), 1y | exp (@) —0)4)W(o, Df(S(e—@,0), D)do
solves (16).
@,
Proof. S exp (®1(t)— o) A)W(a, 1)f(S(e—Dy(2), 2))do
[}
_ S:‘“’exp (AW D) —a, Df(S(—a, H))do .
Put g(o, t)=W(®,(t)—oa, t)f(S(—0, t)). g is of class C* on its domain. We
have, for t>0, |p| sufficiently small,

o @, (t+ped) , 2,0
pH( So exp (sA)g(s, t+pe’)ds— So exp (sA4)g(s, t)ds)

@, (t+ped) . @, (0 .
= p! S exp (sA4)g(s, t+pe’)ds+p! So exp (sA4)[g(s, t+pe’)—g(s, t)]ds .

,(t)

As X is barrelled, {exp (s4)|s>0} is locally equicontinuous. So,

@, ( 3
o7t [ exp (sA)g(s, tpe)—gls, 11ds = " exp (s4) 28 (s, ).
0 p>0 Jo 0t;

- S@,(Hpei) 0, (+P(0 /0t )(£)

o P (sA4)g(s, t+pef)ds = p* S exp (s4)g(s, t-+pe')ds
ot

o So,(ﬁ-pel)

@,(t)

exp (sA)g(s, 1+pe’)ds = EB1(1) exp () 4)g(@,(8), 1)

@, (1) +p(304/0¢ ;) (1)
Besides, for >0,

N0 o,
iexp (tA)—1)( | exp (sA)g(s, )ds) = i [ exp (s4) Lgls—h, 1)—g(s, 1)1ds
0 h
o, (O+h k '
+h? S exp (s4)g(s—h, t)ds—h™? S exp (sA4)g(s, t)ds
@) 0
@, (0 0g
- ~S0 exp (s4) 25 (5 D)ds+exp (2y()4)(g(D1(2), )—8(0, 7)) -
From these identities the result follows by computation.

Assume m=1, O=R", b(t)=1, ¢(t)=0. Then we have the usual system
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du .
‘E(t)—Au(t) = f(?), t>0

u0) =g .
Proposition 3.6. Assume exp (tA)(X)< D(A)Vt>0, tAexp (tA)x— 0
t->0

VxeX, fis Holder continuous from [0, +oo[ to X (that is, V p continuous semi-
norm on X there exist a€]0, 1], C >0, such that p(f(t)—f(s))<C|t—s|% Vs,
t>0). Then

(18)

t
(19) u(t) = exp (¢4)g +So exp ((1—5)4)g(s)ds
solves (18). If A€ _L(X), it suffices to assume that g is continuous.

Proof. It is sufficient to show that v(¢)= St exp ((t—s)A)g(s)ds solves (18)
0

with g=0. for £>0, £>0, define v,,(t)zg' “exp (t—s)A)g(s)ds. Tt is easily
0

seen that, V&>0, for t>¢€,

v, (t) = exp (SA)g(t—E)—{-S _!A exp ((t—s)A)g(s)ds .

t
0
One has exp (64)g(t—&)— g(t) uniformly on compact subsets on R* (because
20

the semigroup is locally equicontinuous) and

[ aexp (@—9)ds = [ A exp (1—9)4)(8()—g(0)ds
+exp (t4)g(t)—exp (EA)g(t)
[ aexp (@—9a)80)—g®)ds = " A exp (1—5) A)(a(s)—2 (1) ds

owing to the assumptions, uniformly on compact subsets of R* and
exp (6A4)g(t)— g(t), uniformly on compact subsets of R*. It follows (see [GWS]
e->0

ITI. III) that
veC(R"; X), v'(t) = | AT(—9)(e0)—g®)ds+ exp (1))

On the other hand, for t>¢,

av,(t) = | AT@—9)gds = | AT(E—5)(g(6)—g ) ds+exp (g )—(®).

As A is closed, it follows, V>0,
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H
4v(t) = | AT(—5) (8()—g (2) ds-+exp (t4)8()—2 (0
and the first result is proved. The second statement is easy.

So, we have:

Proposition 3.7. Assume (ml)-(m3) are satisfied. Consider the problem
(16) in X=K,, with A defined in definition 1.8. Then, ¥ f=CYO; K,) there
exists a unique solution of (16) given by (17).

If X=&" and we substitute in (16) A with A%, an analogous result is true
and the solution ucC*0; S’). In the case of problem (18), if X=K, and f is
Holder continuous, (19) furnishes the only solution of the problem. When X=3S’,
it is sufficient to assume that f € C(R*; X).

Proof. It follows from Theorem 1.10, Theorem 3.1, Propositions 3.4, 3.6,
3.5.

RemaArk 3.8. The conditions

(20) exp (¢4)(X)S D(A)Vt>0, lim tAT(f)x = OVxEX
t->0

characterize holomorphic semigroups in Banach spaces (see [BB], Prop. 1.1.11).
Even in Frechét spaces this is no more true. For example, take X=E(R),

=‘%. A generates the group of translations and is continuous, so that it
satisfies (20), but there exist elements f € X such that t—T(¢)f does not admit
a holomorphic extension to any neighbourhood of R* in C (it is sufficient to

consider a C* function which is not analytic).
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