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Supplement to "Note on Brauer's Theorem of
Simple Groups"

By Osamu NAGAI

Using the modular representation theory of groups, R. Brauer
obtained very interesting resultsι:> concerning a finite group satisfying
the following conditions :

( * ) The group © contains an element P of prime order p which
commutes only with its own powers P1.

(**) The commutator subgroup ©' of © is equal to ©.
Namely

Theorem. If © is a group of finite order g satisfying the conditions
(*) and (**), then g = p(p — 1) (1 + np)/t, where n and t are integers, and
t divides p—1. The group © contains exactly \+np subgroups of order
p and t classes of conjugate elements of order p. Moreover, if n<^
(P+7)A then either (1) © ** LF(2, p} or (2) p is a prime of the form
2^±1 and © ̂  LF(2, 2^.

In a previous note2), we considered the case n<^p + 2 and ίφO
(mod 2), and proved that p is of the form 2μ-l and © ̂  LF(2, 2μ). In
this supplement we shall prove that, including the case n = p+2, the
previous result is valid that is,

Theorem. Let © be a group of finite order satisfying conditions (#)
and (*#). // n < p + 2 and t is odd, then p is of the form 2μ—1 and
© ̂  LF(2, 2*).

Before the proof, we shall mention Brauer's results3) which is needed
in the sequel. Under the condition (#), the order of © contains p to the
first power only. So the ordinary irreducible representations of © are of

1) R. Brauer, "On the representation of groups of finite order/' Proc. Nat. Akad. Sci.,
vol. 25 (1939) p. 291; R. Brauer, "On permutation groups of prime degree and related
classes of groups," Ann. of Math., vol. 44 (1943) pp. 57-79, especially p. 70, Theorem 10.
I refer to this paper as [B].

2) O. Nagai, " Note on Brauer's Theorem of Simple Groups/' Osaka Math. J., vol. 4
(1952) pp. 113-120.

3) |[B] and R. Brauer, "On groups whose order contains a prime number to the first
power I, II," Amer. J. of Math., vol. 54 (1942).
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four different types: (I) Representations SIP of a degree ap =
(II) Representations S3σ of a degree bσ = vσp— 1. (Ill) Representations
&°° of a degree c = (wp-4-δ)/£, where δ = ± l and w is a possitive
integer. There exist exactly t such representations that are algebraic-
ally conjugate. (IV) Representations ®τ of a degree dτ = pxr . Denote
by Ap , Bp , C(V) and Dτ the characters of Sϊp , SBσ , (£(V) and ®τ respectively.

If we have x characters Ap, p = 1, 2, ... , #, and 2/ characters Z?σ,
σ = 1, 2, ... , ?/, then we have

(1)

Furthermore, for elements G of order prime to p> we have

(2) Σ^p(

In particular, for G = 1, this gives

(2)' Σ<*P + S C = : Σ & σ > °Γ

Since $r is equal to the sum of the squares of all the degrees, we have

,
? = (^2 + 2>-l)A (in the case ιa =

Since the first p-block B(p} is of the only lowest kind of @, the full
number of irreducible representations of © whose degrees are prime to
p is (p-l)/t + t.

Proo/.
It is sufficient to prove that such group does not exist in the case

for the case n<^ p + 2 was discussed in the previous note2).

Let n = p + 2.

First of all, we shall prove that such group © must be simple.
Let © have a proper normal subgroup § of order h. From [/?],
Theorem 3 and Theorem 4, ®/ξ> also satisfies condition (*) and at the
same time A = l(mod p} and (l + np*) = 0(mod h\ Since n = p + 2, we
have (p-4-l)2 = 0(mod Λ), /i = l(modp) and ff = p(p — 1) (2?4 l)2/ί. We
put h = l + ap and (p±lγ = βh, then (2? + 1)2 = β(l-f<xp). So /3 = 1
(mod 2?). We put /9 = l + 7p. Then (p-fl)2 = (1 + αp) (1 + 7P). This
gives p 4-2 = ay p±a + y. If 7 = 0, then a = p + 2. We have h — (2? + l)2.
Since ®/ξ> also satisfies condition (**), ®/ξ> can not be a metacyclic
group of order p(p — l)/t. If 7 Φ 0, then, since a Φ 0, we have α = l
and 7 = 1. So we have h = p + l. This means g/h = p(p — l) (p + l)/ί.
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From [β], Theorem 10, t must be even4). This is a contradiction.
Then, we shall examine the degrees of the irreducible representations

of ©. In the case n = p + 2, n is represented as n = F(p, u^\ /2(V))5) in

two kinds such that jj^ ̂  ̂  and {̂  ̂  | So from Cβl Theorem 7,

the degrees of the irreducible representations of ©, as far as they are
prime to p, can only have some of the values

ap — 1 , np + 1 , up + 1 , p + 1 ,

bσ = p-l , ((w-l)/ίθp-l , (n-2)p-l ,

Since n = p + 2 is represented as w = u^ + u +^+ we have ^ = ^^2

^4-1
— w — 1 (this means u I> 3). Using these relations of ^ and p, we can
simplify some of above values such that

Now we shall eliminate the above values of degrees one by one.
If © possesses the irreducible representations 3 of degree p + 1,

then we can decompose the character ζΓ of 3 in the normalizer ϋft(^β) =
JP, Q\ of p-Sylow subgroup 5β into its irreducible constituents. But it
is easy to find all irreducible characters of the group $β($β) of order
p(p — l)/ί = Ptf. Let ω be a primitive #-th root of unity. We then have
q linear characters ωμ , (μ = 0, 1, 2, , ... , <? — 1) defined by

4) Furthermore, by considering the automorphism of ^ induced by the element of $£,
we can find />-f-l=2μ> and ξ) must be an abelian group of type (2,2, ,2). Thus in the
case feO (mod 2), the structure of the non-simple group (§ is determined: that is, ® con-
tains an abelian normal subgroup of type (2,2, ,2) and the factor-group
and p=2*-l. This remark is due to Mr. N. Itύ.

5) Cf. [B], Theorem 7.
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Besides, we have t conjugate characters Y(τ) of degree q such that
r«XQ>) = 0 for y φ O (mod g).

By [B], Lemma 3, ς (ΛΓ) (N in Sft($β)) contains only two linear
characters: ^(N>= ωμC^ + ω^ΛΓJ+Σ YC<0(N). So the determinant of

(;φO(mod ?)) has the value

Since £ is odd, we have l,8(Q')l = -ω'cμ+v>. But since the determinant
of 3(G) (G in ©) forms a representation of degree 1 of ©, this value
must be equal to 1 for all j φ 0 (mod <?). This is obviously impossible,
except the case q = (2? — l)/ί — 2. But in this excluded case, if © pos-
sesses the irreducible representation of degree p-4-1, then by (2)'

c = ((w-l)p-l)/ί or (p2

If c = ((tt- !>-!)/*, then by (2)', l = (w-2)/t. But since p-l =
u2 — u—2 and (p — l)/ί = 2, we have w + l = 2. This is impossible. If
c=r(p2-l)/2, then by (2)', l = (p-l)/ί. This is impossible.

Thus © does not possess the irreducible representation of degree
p + 1.

Since t is odd, @ does not possess the representations of degree
p — 1, (29 — l)/t and (2) + l)/ί6). Furthermore, according to the relation (3),
@ does not possess the irreducible representations of degree np + 1 and

If © possesses the representations of degree p2 — 1, then we can
assume that the first p-block B^p) ' contains one character of degree 1,
x characters of degree wp + 1, yl characters of degree (u — 1> — 1, yz

characters of degree p2 — 1 and t conjugate characters of degree
From (3), we have

Now it is sufficient to draw a contradiction only in the case t — 1. For,
if £i>3, then above inequality shows p2y2 <I (p2 + p — 1)/3. This is
impossible.

Let ί=l. In this case the character (7CV)(G) is considered as one
of those Ap(G) (p Φ 1) or Bσ(G). So we again assume that Bλ(p} consists
of one character of degree 1, x characters of degree wp + \9 y characters
of degree (u — l)p — 1 and ?/2 characters of degree p2 — 1, where 1

= P From (3), we have

6) Cf. The relation (2)'.
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From (2), x 4= 0. Then we have

^> — 1 = u2—u—2 .

This is impossible.
Thus @ does not possess the irreducible representations of ά.egτee

P2 — 1. Furthermore, above calculations show that © does not possess
the representations of degree (p2 — l)/ί.

Then, it remains only the following cases to be considered; #i(p)
consists of one character of degree 1, x characters of degree up + 1, y
characters of degree (u— l)p— 1 and either t characters of degree (u
or those of degree ((w— l)p— !)/£.

Case A : Bλ(p} contains the characters of degree (up + Y)/t.
If x = 0, then from (2)'

But from the relations \-\ xΛ-y .= (p— l)/t and p = u2— u— 1, we have

Since (w + l)/ί^l, ^-I^w 2-3w + l. Hence u = 3. But ^ + 1 = 0
(mod f). This contradicts ^φO (mod 2)7). Thus we can assume x 2> 1.

The degree αp must divide the order g of ©. But using p = u2 —
u — 1, a,p and g are decomposed into the forms:

= (u — I)2

This gives (u-2}u2 = 0 (mod ί). But since w + l = 0 (mod *), ί = 3 or

*=1.
If t= 1, then by (2)' and by (1), we have

z=y(M — 1) and

So

w(^2 — w — 3— ?/)4-w + l = 2/(w— 1),

7) If t=l, then the character of type C may be considered as one of those of type AP

or of type Bσ. So even in this case Bι(p) contains the character of degree up-fl.
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Since ((u*—u2— 2^4-1) , (2u — 1)) = 1, such y cannot be a rational integer.
If t = 3, then we have

ttα?4-(tt + l)/3 = y(u — 1) and 1 + x-t-y — (p —

So

But 8O3-w2- 4^ -4- l) = (2w-l) (4w2-2w-17)-9. This means 9=0 (mod
(2w-l)). Hence w = 5. So y = 3, p = 19 and α? = 2. Thus 0:=25 3
52 19, αx = 1, α2 = 25 3, bσ = 52 3 and c = 25. Since the characters A2(G)
and CCV)(G) are of highest kind for 2 and since B/G) is of highest kind
for 3 and furthermore since the normalizer 9t(φ) of p-Sylow subgroup
φ contains an element Q of order (p— l)/ί = 6, we have

A/Q) - 1, A2(Q) - 0, Bσ((?) = 0 and C^XQ) - 0 .

This contradicts (2).
Case B: B (p) contains the characters of degree ((w— l)p — l)/t.
If y — 0, then from (1) and (2)'

So 2^0 (mod w). This is impossible. Thus we can assume 2/S>l .
As in the case A, since 6σ = (u — l)p — 1 = ^(w— 2) must divide the

order g of ©, we have t = 3 or £ = 1.
If t = 1, then from (2)' and (1), we have

%# = y(u— T)-\-u— 2 and 1 + a -f y = p — 1 .

So
— 2 ,

But such T/ cannot be a rational integer
If t = 3, then we have

ux = y(u—T)+(u—2)/3 and
So

2 .

But such T/ cannot be a rational integer.
Thus, in the case n — p + 2, such group can not exist.
Combining this with the previous result, we get the Theorem.

(Received September 21, 1953)




