

Title	Supplement to ``Note on Brauer's theorem of simple groups.''
Author(s)	Nagai, Osamu
Citation	Osaka Mathematical Journal. 1953, 5(2), p. 227-232
Version Type	VoR
URL	https://doi.org/10.18910/12559
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Supplement to “Note on Brauer’s Theorem of Simple Groups”

By Osamu NAGAI

Using the modular representation theory of groups, R. Brauer obtained very interesting results¹⁾ concerning a finite group satisfying the following conditions :

(*) *The group \mathfrak{G} contains an element P of prime order p which commutes only with its own powers P^i .*

(**) *The commutator subgroup \mathfrak{G}' of \mathfrak{G} is equal to \mathfrak{G} .*
Namely ;

Theorem. If \mathfrak{G} is a group of finite order g satisfying the conditions (*) and (**), then $g = p(p-1)(1+np)/t$, where n and t are integers, and t divides $p-1$. The group \mathfrak{G} contains exactly $1+np$ subgroups of order p and t classes of conjugate elements of order p . Moreover, if $n < (p+7)/3$, then either (1) $\mathfrak{G} \cong LF(2, p)$ or (2) p is a prime of the form $2^{\mu} \pm 1$ and $\mathfrak{G} \cong LF(2, 2^{\mu})$.

In a previous note²⁾, we considered the case $n < p+2$ and $t \not\equiv 0 \pmod{2}$, and proved that p is of the form $2^{\mu}-1$ and $\mathfrak{G} \cong LF(2, 2^{\mu})$. In this supplement we shall prove that, including the case $n = p+2$, the previous result is valid ; that is,

Theorem. *Let \mathfrak{G} be a group of finite order satisfying conditions (*) and (**). If $n \leq p+2$ and t is odd, then p is of the form $2^{\mu}-1$ and $\mathfrak{G} \cong LF(2, 2^{\mu})$.*

Before the proof, we shall mention Brauer’s results³⁾ which is needed in the sequel. Under the condition (*), the order of \mathfrak{G} contains p to the first power only. So the ordinary irreducible representations of \mathfrak{G} are of

1) R. Brauer, “On the representation of groups of finite order,” Proc. Nat. Akad. Sci., vol. 25 (1939) p. 291; R. Brauer, “On permutation groups of prime degree and related classes of groups,” Ann. of Math., vol. 44 (1943) pp. 57-79, especially p. 70, Theorem 10. I refer to this paper as [B].

2) O. Nagai, “Note on Brauer’s Theorem of Simple Groups,” Osaka Math. J., vol. 4 (1952) pp. 113-120.

3) [B] and R. Brauer, “On groups whose order contains a prime number to the first power I, II,” Amer. J. of Math., vol. 54 (1942).

four different types: (I) Representations \mathfrak{A}_ρ of a degree $a_\rho = u_\rho p + 1$. (II) Representations \mathfrak{B}_σ of a degree $b_\sigma = v_\sigma p - 1$. (III) Representations $\mathfrak{C}^{(\nu)}$ of a degree $c = (wp + \delta)/t$, where $\delta = \pm 1$ and w is a positive integer. There exist exactly t such representations that are algebraically conjugate. (IV) Representations \mathfrak{D}_τ of a degree $d_\tau = px_\tau$. Denote by $A_\rho, B_\sigma, C^{(\nu)}$ and D_τ the characters of $\mathfrak{A}_\rho, \mathfrak{B}_\sigma, \mathfrak{C}^{(\nu)}$ and \mathfrak{D}_τ respectively.

If we have x characters A_ρ , $\rho = 1, 2, \dots, x$, and y characters B_σ , $\sigma = 1, 2, \dots, y$, then we have

$$(1) \quad x + y = (p-1)/t.$$

Furthermore, for elements G of order prime to p , we have

$$(2) \quad \sum A_\rho(G) + \delta C^{(\nu)}(G) = \sum B_\sigma(G).$$

In particular, for $G = 1$, this gives

$$(2') \quad \sum a_\rho + \delta c = \sum b_\sigma, \text{ or } \sum u_\rho + (\delta w + 1)/t = \sum v_\sigma.$$

Since g is equal to the sum of the squares of all the degrees, we have

$$(3) \quad \begin{aligned} \sum u_\rho^2 + \sum v_\sigma^2 + w^2/t + \sum x_\tau^2 &= (pn - n + 1)/t, \\ \sum u_\rho^2 + \sum v_\sigma^2 + w^2/t + \sum x_\tau^2 &= (p^2 + p - 1)/t \text{ (in the case } n = p + 2\text{).} \end{aligned}$$

Since the first p -block $B(p)$ is of the only lowest kind of \mathfrak{G} , the full number of irreducible representations of \mathfrak{G} whose degrees are prime to p is $(p-1)/t + t$.

Proof.

It is sufficient to prove that such group does not exist in the case $n = p + 2$, for the case $n < p + 2$ was discussed in the previous note²⁾.

Let $n = p + 2$.

First of all, we shall prove that such group \mathfrak{G} must be simple. Let \mathfrak{G} have a proper normal subgroup \mathfrak{H} of order h . From [B], Theorem 3 and Theorem 4, $\mathfrak{G}/\mathfrak{H}$ also satisfies condition $(*)$ and at the same time $h \equiv 1 \pmod{p}$ and $(1 + np) \equiv 0 \pmod{h}$. Since $n = p + 2$, we have $(p+1)^2 \equiv 0 \pmod{h}$, $h \equiv 1 \pmod{p}$ and $g = p(p-1)(p+1)^2/t$. We put $h = 1 + \alpha p$ and $(p+1)^2 = \beta h$, then $(p+1)^2 = \beta(1 + \alpha p)$. So $\beta \equiv 1 \pmod{p}$. We put $\beta = 1 + \gamma p$. Then $(p+1)^2 = (1 + \alpha p)(1 + \gamma p)$. This gives $p+2 = \alpha\gamma p + \alpha + \gamma$. If $\gamma = 0$, then $\alpha = p+2$. We have $h = (p+1)^2$. Since $\mathfrak{G}/\mathfrak{H}$ also satisfies condition $(**)$, $\mathfrak{G}/\mathfrak{H}$ can not be a metacyclic group of order $p(p-1)/t$. If $\gamma \neq 0$, then, since $\alpha \neq 0$, we have $\alpha = 1$ and $\gamma = 1$. So we have $h = p+1$. This means $g/h = p(p-1)(p+1)/t$.

From [B], Theorem 10, t must be even⁴⁾. This is a contradiction.

Then, we shall examine the degrees of the irreducible representations of \mathfrak{G} . In the case $n = p+2$, n is represented as $n = F(p, u^{(v)}, h^{(v)})^5)$ in two kinds such that $\begin{cases} u^{(v)} = u \\ h^{(v)} = 1 \end{cases}$ and $\begin{cases} u^{(v)} = 1 \\ h^{(v)} = 2 \end{cases}$. So from [B], Theorem 7, the degrees of the irreducible representations of \mathfrak{G} , as far as they are prime to p , can only have some of the values

$$\begin{aligned} a_p &= 1, np+1, up+1, p+1, \\ b_\sigma &= p-1, ((n-1)/u)p-1, (n-2)p-1, \\ c &= (np+1)/t, (up+1)/t, (p+1)/t, (p-1)/t, \\ &\quad \left(\left(\frac{n-1}{u} p-1 \right) / t, ((n-2)p-1) / t. \right) \end{aligned}$$

Since $n = p+2$ is represented as $n = \frac{up+u^2+u+1}{u+1}$, we have $p = u^2 - u - 1$ (this means $u \geq 3$). Using these relations of n and p , we can simplify some of above values such that

$$\begin{aligned} a_p &= 1, np+1, up+1, p+1, \\ b_\sigma &= p-1, ((n-1)/u)p-1 = (p+u)p/(u+1)-1 = (u-1)p-1, \\ &\quad (n-2)p-1 = p^2-1, \\ c &= (np+1)/t, (up+1)/t, (p+1)/t, (p-1)/t, \\ &\quad \left(\frac{n-1}{u} p-1 \right) / t = ((u-1)p-1) / t, \\ &\quad ((n-2)p-1) / t = (p^2-1) / t. \end{aligned}$$

Now we shall eliminate the above values of degrees one by one.

If \mathfrak{G} possesses the irreducible representations β of degree $p+1$, then we can decompose the character ς of β in the normalizer $\mathfrak{N}(\beta) = \{P, Q\}$ of p -Sylow subgroup \mathfrak{P} into its irreducible constituents. But it is easy to find all irreducible characters of the group $\mathfrak{N}(\beta)$ of order $p(p-1)/t = pq$. Let ω be a primitive q -th root of unity. We then have q linear characters ω_μ , ($\mu = 0, 1, 2, \dots, q-1$) defined by

$$\omega_\mu(Q^j) = \omega^{\mu j}, \quad \omega_\mu(P^j) = 1.$$

4) Furthermore, by considering the automorphism of \mathfrak{H} induced by the element of \mathfrak{P} , we can find $p+1=2^\mu$ and \mathfrak{H} must be an abelian group of type $(2, 2, \dots, 2)$. Thus in the case $t \equiv 0 \pmod{2}$, the structure of the non-simple group \mathfrak{G} is determined: that is, \mathfrak{G} contains an abelian normal subgroup of type $(2, 2, \dots, 2)$ and the factor-group $\mathfrak{G}/\mathfrak{H} \cong LF(2, p)$ and $p=2^\mu-1$. This remark is due to Mr. N. Itô.

5) Cf. [B], Theorem 7.

Besides, we have t conjugate characters $Y^{(r)}$ of degree q such that $Y^{(r)}(Q^j) = 0$ for $j \not\equiv 0 \pmod{q}$.

By [B], Lemma 3, $\varsigma(N)$ (N in $\mathfrak{N}(\mathfrak{P})$) contains only two linear characters: $\varsigma(N) = \omega_\mu(N) + \omega_\nu(N) + \sum Y^{(r)}(N)$. So the determinant of $\mathfrak{Z}(Q^j)$ ($j \not\equiv 0 \pmod{q}$) has the value

$$\omega^{j(\mu+\nu)} \cdot \omega^{t(1+2+\dots+q-1)} = \omega^{j(\mu+\nu)} \cdot (-1)^{(q+1)t} = \omega^{j(\mu+\nu)} \cdot (-1)^t$$

Since t is odd, we have $|\mathfrak{Z}(Q^j)| = -\omega^{j(\mu+\nu)}$. But since the determinant of $\mathfrak{Z}(G)$ (G in \mathfrak{G}) forms a representation of degree 1 of \mathfrak{G} , this value must be equal to 1 for all $j \not\equiv 0 \pmod{q}$. This is obviously impossible, except the case $q = (p-1)/t = 2$. But in this excluded case, if \mathfrak{G} possesses the irreducible representation of degree $p+1$, then by (2)'

$$c = ((u-1)p-1)/t \text{ or } (p^2-1)/t.$$

If $c = ((u-1)p-1)/t$, then by (2)', $1 = (u-2)/t$. But since $p-1 = u^2-u-2$ and $(p-1)/t = 2$, we have $u+1 = 2$. This is impossible. If $c = (p^2-1)/2$, then by (2)', $1 = (p-1)/t$. This is impossible.

Thus \mathfrak{G} does not possess the irreducible representation of degree $p+1$.

Since t is odd, \mathfrak{G} does not possess the representations of degree $p-1$, $(p-1)/t$ and $(p+1)/t^6$. Furthermore, according to the relation (3), \mathfrak{G} does not possess the irreducible representations of degree $np+1$ and $(np+1)/t$.

If \mathfrak{G} possesses the representations of degree p^2-1 , then we can assume that the first p -block $B_1(p)$ contains one character of degree 1, x characters of degree $up+1$, y_1 characters of degree $(u-1)p-1$, y_2 characters of degree p^2-1 and t conjugate characters of degree $(wp+\delta)/t$. From (3), we have

$$u^2 x + (u-1)^2 y_1 + p^2 y_2 + w^2/t \leq (p^2+p-1)/t.$$

Now it is sufficient to draw a contradiction only in the case $t = 1$. For, if $t \geq 3$, then above inequality shows $p^2 y_2 \leq (p^2+p-1)/3$. This is impossible.

Let $t = 1$. In this case the character $C^{(r)}(G)$ is considered as one of those $A_\rho(G)$ ($\rho \neq 1$) or $B_\rho(G)$. So we again assume that $B_1(p)$ consists of one character of degree 1, x characters of degree $up+1$, y_1 characters of degree $(u-1)p-1$ and y_2 characters of degree p^2-1 , where $1+x+y_1+y_2 = p$. From (3), we have

6) Cf. The relation (2)'.

$$u^2 x + (u-1)^2 y_1 + p^2 y_2 \leq p^2 + p - 1.$$

From (2), $x \neq 0$. Then we have

$$\begin{aligned} u^2 + y_1 + p^2 &\leq p^2 + p - 1, \\ u^2 + y_1 &\leq p - 1 = u^2 - u - 2. \end{aligned}$$

This is impossible.

Thus \mathfrak{G} does not possess the irreducible representations of degree $p^2 - 1$. Furthermore, above calculations show that \mathfrak{G} does not possess the representations of degree $(p^2 - 1)/t$.

Then, it remains only the following cases to be considered; $B_1(p)$ consists of one character of degree 1, x characters of degree $up + 1$, y characters of degree $(u-1)p - 1$ and either t characters of degree $(up + 1)/t$ or those of degree $((u-1)p - 1)/t$.

Case A: $B_1(p)$ contains the characters of degree $(up + 1)/t$.

If $x = 0$, then from (2)'

$$(u+1)/t = y(u-1).$$

But from the relations $1 + x + y = (p-1)/t$ and $p = u^2 - u - 1$, we have

$$\begin{aligned} (u+1)/t &= (u^2 - u - 2) (u-1)/t - (u-1), \\ t(u-1) &= (u+1) (u^2 - 3u + 1), \\ (u+1)/t &= (u-1)/(u^2 - 3u + 1). \end{aligned}$$

Since $(u+1)/t \geq 1$, $u-1 \geq u^2 - 3u + 1$. Hence $u = 3$. But $u+1 \equiv 0 \pmod{t}$. This contradicts $t \not\equiv 0 \pmod{2}$ ⁷⁾. Thus we can assume $x \geq 1$.

The degree a_p must divide the order g of \mathfrak{G} . But using $p = u^2 - u - 1$, a_p and g are decomposed into the forms:

$$\begin{aligned} a_p &= up + 1 = (u-1)^2 (u+1), \\ g &= p(p-1) (p+1)^2/t = (u^2 - u - 1) (u-2) (u+1) u^2 (u-1)^2/t. \end{aligned}$$

This gives $(u-2)u^2 \equiv 0 \pmod{t}$. But since $u+1 \equiv 0 \pmod{t}$, $t = 3$ or $t = 1$.

If $t = 1$, then by (2)' and by (1), we have

$$ux + u + 1 = y(u-1) \text{ and } 1 + x + y = p - 1.$$

So

$$\begin{aligned} u(u^2 - u - 3 - y) + u + 1 &= y(u-1), \\ y(2u-1) &= u^3 - u^2 - 2u + 1. \end{aligned}$$

7) If $t=1$, then the character of type C may be considered as one of those of type A_p or of type B_σ . So even in this case $B_1(p)$ contains the character of degree $up + 1$.

Since $((u^3 - u^2 - 2u + 1), (2u - 1)) = 1$, such y cannot be a rational integer.

If $t = 3$, then we have

$$ux + (u+1)/3 = y(u-1) \text{ and } 1+x+y = (p-1)/3.$$

So

$$\begin{aligned} u((u^2 - u - 2)/3 - y - 1) + (u+1)/3 &= y(u-1), \\ 3y(2u-1) &= u^3 - u^2 - 4u + 1. \end{aligned}$$

But $8(u^3 - u^2 - 4u + 1) = (2u-1)(4u^2 - 2u - 17) - 9$. This means $9 \equiv 0 \pmod{(2u-1)}$. Hence $u = 5$. So $y = 3$, $p = 19$ and $x = 2$. Thus $g = 2^5 \cdot 3 \cdot 5^2 \cdot 19$, $a_1 = 1$, $a_2 = 2^5 \cdot 3$, $b_\sigma = 5^2 \cdot 3$ and $c = 2^5$. Since the characters $A_2(G)$ and $C^{(v)}(G)$ are of highest kind for 2 and since $B_\sigma(G)$ is of highest kind for 3 and furthermore since the normalizer $\mathfrak{N}(\mathfrak{P})$ of p -Sylow subgroup \mathfrak{P} contains an element Q of order $(p-1)/t = 6$, we have

$$A_1(Q) = 1, A_2(Q) = 0, B_\sigma(Q) = 0 \text{ and } C^{(v)}(Q) = 0.$$

This contradicts (2).

Case B: $B(p)$ contains the characters of degree $((u-1)p-1)/t$.

If $y = 0$, then from (1) and (2)'

$$\begin{aligned} u((p-1)/t - 1) &= (u-2)/t, \\ u^3 - u^2 - 3u + 2 &= ut. \end{aligned}$$

So $2 \equiv 0 \pmod{u}$. This is impossible. Thus we can assume $y \geq 1$.

As in the case A, since $b_\sigma = (u-1)p-1 = u(u-2)$ must divide the order g of \mathfrak{G} , we have $t = 3$ or $t = 1$.

If $t = 1$, then from (2)' and (1), we have

$$ux = y(u-1) + u - 2 \text{ and } 1 + x + y = p - 1.$$

So

$$\begin{aligned} u(u^2 - u - 3 - y) &= y(u-1) + u - 2, \\ y(2u-1) &= u^3 - u^2 - 4u + 2. \end{aligned}$$

But such y cannot be a rational integer.

If $t = 3$, then we have

$$ux = y(u-1) + (u-2)/3 \text{ and } 1 + x + y = (p-1)/3.$$

So

$$\begin{aligned} 3u((p-1)/3 - y - 1) &= 3y(u-1) + u - 2, \\ 3y(2u-1) &= u^3 - u^2 - 6u + 2. \end{aligned}$$

But such y cannot be a rational integer.

Thus, in the case $n = p+2$, such group can not exist.

Combining this with the previous result, we get the Theorem.

(Received September 21, 1953)