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Abstract

Generalized eigenfunctions of the odd-dimensionat (3) relativistic Schrédinger
operatory/—A +V (x) with [V(x)| < C(x)~°, ¢ > 1, are considered. We compute the
integral kernels of the boundary valu& (1) = (V—A — (A £i0))~%, and prove that
the generalized eigenfunctiogs (x, k) := ¢o(x, k) — RF(IK|)V @o(X, K) (¢o(x, k) := %K)
are bounded fo(x, k) € R" x {k | a < |k| < b}, where[a, b] C (0, 00) \ o,(H). This
fact, together with the completeness of the wave operatarables us to obtain the
eigenfunction expansion for the absolutely continuousspm.

On consi@ére les fonctions propreséreralies de l'ograteur relativiste de
Schrodingerv/—A + V(x) ol [V(X)] < C(x)™ en dimension impairen(> 3). On
calcule les noyaux iggraux assoés aux valeurs limiteR*(A) = (V—A — (A £
i0))"%, et on prouve que les fonctions propresngralies p*(x, k) := @o(x, k) —
RF(KDV@o(x, K) (go(x, k) := €**) sont borees pour(x, k) € R" x {k | a < |k| < b},
ou [a, b] c (0,00) \ op(H). Ce fesultat, assoéia la compétude des ograteurs
d’'onde, nous permet d’obtenir leedeloppement en fonction propres pour le spectre
absolument continu.

Introduction

This paper considers the odd-dimensiormal(3) relativistic Schrédinger operator
H=Ho+V(x), Ho=+v—-A, xeR"

with a short range potential (x).
Throughout the paper we assume thg{x) is a real-valued measurable function
on R" satisfying

IV(X)| <C(X)™°, o> 1.

When we deal with the boundedness and the completeness afetieralized eigen-
functions, o will be required to satisfy the assumptien> (n+ 1)/2 andn to be an
odd integer withn > 3.

2000 Mathematics Subject Classification. Primary 35P10p&dary 81U05, 47A40.
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In general, the Schrédinger operator is written-a& +V(x), x € R". In [6], the
completeness of the generalized eigenfunctions for operat\ + V(x) was proved.
However, it was considered in 3-dimensional case. In thatividtic case, the
Schrodinger operator is written by’ —A +m+ V(x), x € R", wherem is the mass
of the particle. But, like the photon, the zero mass partetests. Then, the rela-
tivitic Schrodinger operator is written bid = V—A +V(x), x € R". H is essential-
ly self adjoint on C°(R") [23]. And in the paper [24], T. Umeda considered the
3-dimensional case and proved that the generalized eigguris ¢*(x, k) are bounded
for (x, k) e R®x {k | k e R®, a < |k| < b}, [a,b] C(0,00)\op(H). In [25], T. Umeda
announced that he will deal with the completeness of the rgémed eigenfunctions,
although the full proof has not been published yet.

In the present paper, we show the boundedness of generaligedfunctions for
odd demension® > 3. As is seen in the formula of the resolvent kernel Hf in
Theorem 2.2, our computation is more complicated when 3 than the casa = 3,
and the key estimate is Lemma 3.8 based onltRe-estmate in Lemma 3.6.

From V. Enss’s idea (see V. Enss [3]), we obtain that the waeratorsW.. de-
fined by

W;t = lim eitHe*i'[Ho
t—o0
are complete. Finally, by the idea of H. Kitada [10] and S.Trd¢da [13], we obtain
the completeness of the generalized eigenfunctions asnm®ell Moreover, we deal with
the even dimensions case in [27].

Theorem. Assume the dimensionm> 3) is an odd integero > (n+1)/2, s >
n/2 and [a, b] C (0, ) \ op(H). For u e LZ5(R"), let 7. be defined by

Fru(k) := (271)’"/2/ u(x)e=(x, k) dx.
Rn
Then for an arbitrary [2S(R")-function f(x),

Ex(a, b]) f(x) = (21) "2 / Fu (K)o (x, k) dk

a<|k|<b

where B, is the spectral measure for H

The plan of the paper. In Section 1, we construct generalized eigenfunctions
of v/—A +V(x) on R". We compute the resolvent kernel gf—A on R" in Sec-
tion 2. Section 3 proves that the generalized eigenfunstam® bounded in the case
of odd-dimensiom > 3. We study the asymptotic completeness of wave operators in
Section 4. In the last Section 5, we deal with the completeradsthe generalized
eigenfunctions.
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NoTATION. We introduce the notation which will be used in the presepep.
For x € R", |x| denotes the Euclidean norm gfand (x) = /1 +|x|2. The Fourier
transform of a functioru is denoted byFu or G, and is defined by

Fu(e) = 0(E) = (2r) "2 /R e U dx

Fors andl in R, we define the weightetl>-space and the weighted Sobolev space by

L2SR") = (f | (x)5f € L2 R")}, H"SR") =(f | (x)S(D)' f € LAR")}

respectively, whereD stands for—id/dx and (D) = /1+|D|2 = /1— A. The inner
products and the norm ih?S(R") and H'*S(R") are given by

(f, g)Lz,s=fRn<x>25f(x)@dx. (f, g)Hl,s=/Rn<x>25<D>' f(x)(D)'g(x) dx,
I fllizs = {(F, f)ezs}2, s = {((F, fas}?,

respectively. Fors =0 we write
(1.9)=(F, o= [ 10N 11 fle =1 Flueo
]Rﬂ

For a pair of f € LZ7S(R") andg € L2S(R"), we also define {, g) = [¢. f(x)g(x)dx.
By C3°(R") we mean the space &@>-functions of compact support. BF(R")
we mean the Schwartz space of rapidly decreasing functiamd,by S’(R") the space
of tempered distributions.
The operator,/—A€*¥ is formally defined by

/ %4 1E]5(E — k) de,
Rn

where§(x) is the Dirac’s delta function. As the symbl| of «/—A is singular at the
origin & = 0, giving a definite meaning te/—Ae€*¥ is one of the main tasks in the
present paper.

For a pair of Hilbert space{ and K, B(H, K) denotes the Banach space of all
bounded linear operators frofif to K. For a selfadjoint operatds in a Hilbert space,
o(H) and p(H) denote the spectrum dfl and the resolvent set dfi, respectively.
The point spectrum, the essential spectrum, the contingpastrum and the absolute-
ly continuous spectrum oH will be denoted byop(H), oe(H), oc(H), andoac(H)
respectively. Ey denotes the spectral measure for and Eq(A) = En((—o0, A]),
En((a b)) = Eq(b) — En(a). The continous subspace and the absolutely continuous
subspace oH will be denoted byH., Hac, respectively. ByF(t > A), F(t < A),
F(t > A) and F(t < A) we mean the characteristic functions of the sgtst > A},
{tit<A} {t|t>A}and{t|t < A}, respectively.
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1. Generalized eigenfuction

We construct generalized eigenfunctions6fA+V (x) on R" in this section, and
show that they satisfy the equation

9= (%, K) = po(x, k) — RF (kDVe=(x, k),
where Ry(2) is the resolvent ofHy = /—A defined by
Ro() := (Ho— )~ = FX(¢| - 97'F,
and go(X, k) is definded by
po(X, k) = €*,

Similarly R(z) is the resolvent oH = /—A +V(x) on R" and we assume that(x)

is a real-valued measurable function &1 and satisfie§V(x)| < C(x)~° for o > 1.
To show the above equation for eigenfunctions, we use tworémes demonstrated by
Ben-Artzi and Nemirovski. (see [2, Section 2 and Theorem)4A]

Theorem 1.1 (Ben-Artzi and Nemirovski). Let s> 1/2. Then
(1) For any A > 0, there exist the limits R(x) = lim,, ;o Ro(x i) in B(L?S, H-79).
(2) The operator-valued functionsél{?z) defined by

_[Ro(2) if zeC*
Ré(z)‘{Ra—‘(x) if z=1>0

are B(L?S, H=S)-valued continuous functionsvhere C* and C~ are the upper and
the lower half-planes respective\C* = {z e C | £Im z > 0}.

Theorem 1.2 (Ben-Artzi and Nemirovski). Let s> 1/2 ando > 1. Then
(1) The continuous spectrum.(H) = [0, co) is absolutely continuoysexcept possibly
for a discrete set of embedded eigenvalagH) N (0, 00), which can accumulate only
at 0 and oco.
(2) For anyx € (0, 00) \ op(H), there exist the limits

Ri()L) = LILT?) R()\‘ 4+ |M) in B(LZ'S, Hl’is)_

(3) The operator-valued functions*Rz) defined by

_[R@ if zeC*
Ri(Z)—{Ri(x) if z=21¢€(0,00)\ap(H)

are B(L?S, H1)-valued continuous functions
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The main results of this section are

Theorem 1.3. Leto > (n+1)/2. If |k| € (0, 00) \ op(H), then the generalized
eigenfunctions

™ (%, K) = go(x, K) = RF(KD{V (- ol -, K)}(X)
satisfy the equation
(V=Ax+V()u=[klu in S'(RY)
where go(x, k) is definded bypo(x, k) = €Xk.

Theorem 1.4. Leto > (n+1)/2. If |k| € (0,00)\op(H) and /2 <s<o —1/2,
then we have

9* (%, k) = go(x, k) = RE(KDIV(-)e™ (-, K}(x) in L275(R").
First, we investigate the propeties @f = €*X. It is easy to prove the next lemma.

Lemma 1.1. Leto >1and n> 1.
(1) If s < —n/2, then go(x, k) € LZS(RY).
(2) If s <o —n/2, then (X)po(X, k) € L2S(RY).
(3) If s+t <o, then V(x) € B(LZ7S(RY]), L2Y(RY)).

Proof. Using the following formulas, we can get this lemmAV(x) < C(x)?,
then

lpo(X, K)lILzs = 1(X)°]l 2,
IV (X)@o(X, K)[lL2s < CZ[{X)5 .2,
IV(X)ullLze < C)S U]l L2s. O

Next, to prove the main Theorem 1.3, we make the next préparat

Lemma 1.2. Leto > (n+1)/2.
(1) For all k e R", go(x, k) satisfies the pseudodifferential equation

V=Axgo(X, K) = [Klgo(x, k) in S'(RY).
(2) Letx €(0,00)\o0p(H), s>1/2,ifue L2s then u satisfies the equation

(V=Ax +V(X) = [K)REMu=u in S'(RY).



856 D. WEI

Proof. From Lamma 1.1 (1), we have thaj(x, k) belongs toL2S(R") for ev-
ery s < —n/2, This fact, together with T. Umeda [23, Theorem 5.8], ireplithat
v —Axpo(x, k) makes sense. Then, we can prove (1) similarly to T. Umeda [2M-
ma 8.1]. To prove (2), we see T. Umeda [24, Theorem 7.2 (ii)]. ]

We now prove the main Theorem 1.3.
Proof of Theorem 1.3. Using Lemma 1.2 (1) and Lemma 1.2 (2),gete
(vV=Ax +V())g0 = [Kipo + Vo,
(V=25 + VORF(KDIV ()l - K} = IKIERF(KDIV (- ol - K
From the definition ofp*, we have
(V=2x + V()™ = [Kigo — [KIRF(KNV (- )l - KOO} = [Klgo*.
Then we have the theorem. U

Next, in order to prove Theorem 1.4, we make the next prejoarat

Lemma 1.3. Leto > 1. If 1/2<s <o —1/2 and ze C* U{(0, 00) \ ap(H)},
then

(I - RE@V)(I +Rs (V) =1 on L?>SR"),
(I +R;@V)(I —R*(@@V)=1 on L>5R"),
whereC* and C~ are the upper and the lower half-planes respectively

C*={zeC|+lmz> 0.

Proof. In view of Lemma 1.1 (3), Theorem 1.1, Theorem 1.2 aachina 1.1 (3),
we can get Lemma 1.3 similarly to T. Umeda [24, Lemma 8.2] O

Using this lemma, we can prove the main theorem 1.4.

Proof of Theorem 1.4. According to the definition @f (x, k)
@ (%, K) 1= po(x, y) = RT(KDIV (- ol -, K}(X) = {I = RT(KK)V }go(x, K),

and Lemma 1.1 (1), we see thanif2 < s thengg(x, k) € LZ~S(R). We use Lemma 1.3,
and get

{1+ RF(KDVIg™(x, k) = {I + RF(KDVHI — RF(KK)V }go(x, K)
=@o(x, k) in LZ7S,
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for |k| € (0, 00) \ op(H) andn/2 <'s <o — 1/2. Then, we obtain
9= (X, k) = go(x, K) = RF(KDV(X)¢*(x, k) in  L>SR"). L

2. The integral kernel of the resolvents ofHg

This section is devoted to computing the resolvent kerneHg= v/—A on R",
wheren=2m+1, m> 1 andm € N. Then we compute the limit of,(x) asu | O,
wherez=A+iu andA > 0, and study the properties of the integral opera@fs In
this section we suppose that (cf. [4, p.269, Formula (46) @)

1) n=2m+1, m=>1andmeN,

Zr e Ot %{Ci(_'x'z) sin(|x|2) — si(—[x|2) cos(x|2)},

(2)  Mg(x) =

tz
Nz(x) :/0 e‘zt2 +t|X|2 dt = ci(—|x|2) cos(x|z) + si(—|x|2) sin(x|2),

®) m;.(X) = Ci(A[x]) sin(.|x[) + si(%|x[) cos@|x]),
N, (X) = ci(r|x]) cos@|x]) — si(r|x]) sin(.|x]).

Where cik) and sik) are definded by

ci(x):/ &Stdt si(x):—/ Lmd x > 0.
X X

We see that sk) has an analytic continuation sj((see [4, p.145]),

oy T = =" om+1
(2.1) si@) = -5+ mZ:O G+ D @ 1)z .

The cosine integral function cif has an analytic continuation g)( which is a many-
valued function with a logarithmic branch-point at 0 (see [4, p.145]). In this paper,

we choose the principal branch

(2.2) Cig) = -y —Logz— Z (2(m)11)2mz M zeC\ (~o0, 0],

where y is the Euler's constant. The main theorems are
Theorem 2.1. Let n> 3, Rez < 0. Then

Ro(2u = G,u
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for all u € C°(R"), where

_ Y Cnt
G0 = [ ale—yumdy. 6= [ oo dt

+1 00
(2.3) cy=x ™MV2r <nT> r'(x) = / st leSds.
0

Theorem 2.2. Let n=2m+1, m>1 (me N) and s> 1/2, u € L>SR"). Let
[a, b] C (0, 00) and A € [a, b].
(1) There exist polynomialsj&), bj(1), cj(x), j =m, m+1,..., 2m, such that

REGIUC) = GHued = [ g(x = yuty) dy,

g (x) = u% Qrsipn(X) = {8om(A) + bom(€5 X+ m; (%))} x| 2™
2m-1 2m-1

+ Y WX+ D by () ET !+ my (x)x|
j=m j=m

2m—1
+ 37 ¢ ()M 40, (0)1x|

j=m
where R(x) :=lim, o Ro(A £i ).

(2) There exist positive constantsf for j =m, m+1,..., 2m such that

2m
IRy (MU()] = 1GFu(x)| < Y IDju(x)],

j=m

D} ()00 := Cay [ 1x =yl Tu(y)dy.

Let the resolvent ofHy = «/—A be denoted byRy(2) := (Ho — 2)~* = FY(j&] —
2)"LF. If Re(2) < 0, we take the Laplace transform eftte = F~1e '~ to get

/oo eZe7tHo dt = (Hg — 2)71 = Ry(2).

0

Lemma 2.1. If t > 0 and ue C3°(R"), then

e tHoy(x) = /R Pu(x — y)u(y) dy,
where

_ Cnt e (Nt1 [T xe1s
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Proof. Using the idea of Strichartz [21, p.54], we get

o t 2 2
—1 (ot = -st p-1(glE7/4sy g
FH (e /0 (7,3)1/2e F e )ds

_ 2"/t \/TF n+1
“ @2 (2 )

Since the Fourier transform of convolution satisfiggf  g) = (27)"2F(f).F(g), we
get e tHoy(x) = F~le I F(u(x)) = P, * u. O

Lemma 2.2. If Re() < 0, then the integral

/ooo etz{/n (/R PL(x = y)u(y) dy) (%) dx}

is absolutely convergent and is equal (Bo(z)u, v).2 for all u, v e C§°(R"), where
neNand n> 3.

Proof. Forn =3, see T. Umeda [24, Theorem2.1]. For- 3, if the integration
in Lemma 2.2 is absolutely convergent, then

(Ro(2)u, v)2 = /oo e'?(e7tHoy, v) 2 dt
0

- /OOO etZ{/n(fRn P(X — y)u(y) dy)mT(x) dx} dt.

We consider the-integration

=

V e’?P(x — y) dt
0

o Cpt
/ g'Re?) dt|.
0 (t2+|x — y[2)tn+iy2

Now we put

| = * t(Rez) Cnt dt
"l & @k ypeE

Since

d 1 1 _ t
dt n—1(t2+|x — y|2)(n71)/2 - (t2+|x — y|2)(n+1)/2’
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using the integration by parts, we see thatis equal to

| =__Cn 1 LG Rez /00 { Rez 1
"Ton-1x—yrtn-1 Jo (t2+|x — yR)-2r2’

Then

Il =

Cn 1 N cn|Rez| /°° o Rez g = 2Ch 1
n—1[x—y/™t (n=1)x-y/"* Jo n—1|x—y/t

Thus we get

(R@u, v)iet = [ [yt dx dy

= d N d n d
/R w09 x(/X_MH u(y)| dy + /X_Mu u(y)| y)

2cq 2cq 1
< d + - —d
< [ 1ol x(n_lnunu 0l /wfl = y)
< o0

Therefore we obtain the lemma. Ol

Theorem 2.1 is an immediate consequence of Lemmas 2.1 and 2.2
We continueg,(x) analytically to the regiorC \ [0, co) by using integration by
parts.

Lemma 2.3. If Rez <0, then there exist polynomials; &), bj(2), c;j(2), j =m—
1,m,...,2m—1, such that

00 1
/O etzm dt = bin_1(2M(x)|x| =Y

(2.4) |
+ 3" (@) + by (IMa(x) + ¢ (DN(x)) x| .

j=m

Proof. We will prove this lemma by induction.
(i) For m=1, since/,” €Z1/(t? +[x|?) dt = M,(x), (2.4) is obviously valid.
For m = 2, noticing that

1 1 1 t2
(t2+1x12)2  [x2\t2+]x|2 (t2+]x]?)?

df 1 1 ~ t
dt| 2t2+x2| ~ (t2+x2)2’
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and using integration by parts, we get

° 1 1
/o ézm dt = >M,(x)|x| 7 - —N 2()1X| 2.

Then (2.4) is valid too.

(i) Thus we assume that (2.4) is also valid for < | wherel > 2 andl € N.
Now we will prove the casen=1+ 1.

For the casem =1 + 1, we have

o 1 © 1 o t
2.5 o A—; | -2 / etz—dt—/ tele——— __dt}.
( ’té @+ ot { s S @y T e

Noticing that

afi 1 )t
de| -2 @2+ x| 2+ x2)*2
d

1 1 t
{ =20 =Dt +[xP)'- 1} (t2+[x2)"”

and Rez < 0, we make integrations by parts. Then we get

o0 t
tz
/(; te (t2 + |X|2)I+l dt
- tz
2| dt( )(t2+ X]2)! dt

dt
2I / t2+|x|2)I 2I / t2+|x|2)I

00 1
dt+ @-2) / 2~ gil
2|/ t2+|x|2)' a( - ){'X' 2l € @

From (2.5) and (2.6), we have

© 1 Z 2 -1 [ 1
tz dt - _ 72| 2 / tz dt
A e ma—ﬂ” T e

(2.6)

(2.7)
2
dt.
M ), e
Then using assumption of the cases=| andm =1 — 1, we obtain that (2.4) is valid
for m=1+1.
Finally, using (i) and (ii), we can finish the proof of (2.4)rfany integerm > 1.

O

Then by the definition in the Theorem 2.1 we can compute thelvest kernel
g-(x). We give the next lemma.
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Lemma 2.4. If Rez < 0, there exist polynomials ;&z), b;(z), cj(z), j = m —
1,m,...,2m—1, such that

gz(x)— |x| M 4 P 1(2) M (x) x| M)
2m—-1 '
+ Y (a2 +bj(QM(X) + ¢; (N x| 7,
j=m

where g, g;(x) are the same as iTheorem 2.1.

Proof. From (2.3), noticing that

af 1 1 )
dt 2m (t2 + |x|2)m _(t2+|x|2)m+l

and making integration by parts, we get

(o]
— tz Cnt
9(x) = f (t2 + |X|2)(n+l)/2 dt= /0 € (t2 + |x|2)m+1 dt
— —-2m CnZ tz 1
= —|X + — ef—
2m| | 2m J (t2 + |x[|2)m
Thus using Lemma 2.3, we obtain the lemma. O

Making analytic continuation of sif and ci@g), we can get the next theorem.

Theorem 2.3. Letn=2m+1, m=>1 (meN) and ze C\[0, 00). If u € C*(R"),
then there exist polynomials; @), bj(2), ¢j(2), j =m—-1,m, ..., 2m — 1, such that

Ro(2U(X) = GoU(x) = / G:(x — y)u(y) dy,

gz(x)— |x| M+ bn_1(2)M,(x) x| ™D

2m-1

+ ) (3j(2) +bj@Ma(x) + ¢ (2N())IXI .
j=m
Proof. From Theorem 2.1 and Lemma 2.4, we get

Ro(2)u = G_u,

for all u e C°(R") and Rez < 0. From (2.1) and (2.2),Qu, v).2 is a holomorphic
function of z in C\ [0, oo] for any test functiorw € S(R"). Then Ro(2)u, v), 2 is also
a holomorphic fuction ofz in C\ [0, oo]. O
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Next, letz=Xx+in and i > 0. We study the limit ofg,(x) asu | 0. From (2.1)
and (2.2), we get

Si(—z) - —m —si(A), ci(—2) — +im +ci(A),
asu | 0. Then we get
lim Mj2i, (%) = x| 75X+ m; (x)),
ul0

u% NA:tiu(X) - e:i:i(Mx|+7r/2) + n)L(X).

This fact together with Lemma 2.4 yields that there existypomials a;(1), b;j(%),
Cj(A), j=m,m+1,...,2m such that

g (x) = lim G.si, ()

= {agm(X) + bom(€X X + my (x))} x| 72"

2m-1 2m-1
(2.8) AT+ Y b () (ET !+ my () 1x]
j=m j=m
2m-1
+ 37 ¢ MEH ) 4 0, ()X
J=m

Checking the properties af;"(x), we get the next lemma.

Lemma 2.5. Let[a, b] C (0,00). If A € [a, b], then there exist positive constants
Cabj, j =m,m+1,...,2m, such that

2m

1G5091 < D CanjlxI .

j=m
Proof. It follows from the definition of ctf and sif) that

. tt if t>1,
il = ConSt'{1+|Iogt| it 0<t<1,
and the integration by parts yields thagi(t)| < const.(1 Ht[)"1. Since lim g sint(1+
llogt]) =0, and|x|*(1+|log(x|x])]) = O (x| — 0) for all § > 0, we get|m; (x)| < Cap,
n.(X)| < Cap|x|~L. This fact, together witHet*XI| = |g* IxI*7/2)| = 1 and (2.8), gives
the lemma. O

Then, we can give the next theorem.
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Theorem 2.4. Letn=2m+1, m>1 (meN)andx > 0. If ue CFR"), then
there exist polynomials;§,), bj(1), cj(r), A for j =m, m+1,..., 2m, such that

RE(UG0 = GFu(, GFue) = [ gFtx—yu(y)dy,

where R (1) :=1lim, 0 Ro(x £iu), and g (x) are defined by2.8).

Proof. Letu andv belong toC5°(R"). Noticing that if c > 0, then there exists
a positive constanC,,. such that

|Gt (X — YUYIVX)| < CruwelX — YIPMu(y)v(X)]

for all 0 < |X| < ¢, we can prove this theorem similarly to T. Umeda [24, Theo-
rem 4.1]. O

Next, we will consider the action of the resolvent on the fiows in L23(R") for
s> 1/2. It follows from Lemma 2.5 that ifd, b] C (0, c0) and A € [a, b], there exist
positive constant&apj, j =m, m+1,..., 2m, such that

2m
@9) G700l = Y IDUCOL, Dyu():=Cany [ I yi Tu(y)dy.
j=m

We will consider the properties db;. At first, we make the next preparations.

Lemma 2.6. Let ne N and ®(x) be defined by

1
o} = —  dy.
) fR X— Py Y

If 0<pB <nandp+y > n, then®d(x) is a bounded continuous function satisfying

(x)~(Brr=n) if O<y<n,
|D(X)| < Cpyn y (X) P log(L +(x)) if y=n,
(x)~F if ¥ >n,

where G, is a constant depending ofl, y and n
For the proof of this lemma, see T. Umeda [24, p.62, Lemma.A.1]

Lemma 2.7. Let s> 1/2. If u(x) belongs to ES(R"), then there exists a positive
constant Gps such that|Dyu(X)| < CapsllU] L 2s.
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Proof. Lettings > 1/2 and using the definition oDyu(x) and the Schwarz in-
equality, we have

1 1/2
IDmu(x)| < Cabs{/Rn X =y (y)% dY} llullLzs.

Applying Lemma 2.6 with8 =2m andy =2s > 1, we get this lemma. ]

Lemma 2.8. Let s> n/2. If u(x) belongs to B(R") then there exists a positive
constant Gpjs such that for all m+ 1< j <2m, ||Djull 2-s < Capjsllull 2.

Proof. First, lettingu € L>S(R"), we prove that
(2.10) IDjullz < Capsllulli2s,

where C,ps IS @ positive constant. WitlB = {x | [X| < 1} and E = {x | |X| > 1}, we
decomposéx|~! into two parts

x|} = hgj(x) + hgj(x),

- Fx=1) _Fx=1)
hej(9 = — 5= hej00 = — 5=

where F(x < 1) and F(x > 1) are the characteristic functions of the s&sand E
respectively. It is easy to prove thagj(x) € LY(R"), hgj(x) € L3R") for all m+
1< j<2m. Then we can prove (2.10) for afl > n/2 similarly to T. Umeda [24,
Lemma 5.1 (i)].

Next, letu € L2S(R"). Then the lemma follows from (2.10) similarly to T. Umeda
[24, Lemma 5.1 (ii)]. ]

Proof of Theorem 2.2. In view of Theorem 2.4, (2.9), Lemma&hd Lemma 2.8,
we obtain the theorem. U

3. Boundedness of the generalized eigenfunctions

In this section, we assume that V(x) andk satisfy the following inequalities:

D) n=2m+1 (meN) and m>1,
@) VeI C, o> 1T

3 kefkla<lkl<b} and f, b] C(0,00)\op(H).
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Applying Theorem 1.4, we see that generalized eigenfuatix, k) defined by
3.1 @* (%, K) = go(x, y) = RT(KDIV (- ol -, K)}(X),

satisfies the equation

(3.2) @ (%, K) = po(x, K) — RF KDLV (- )e™ (-, K)}(X),

where go(x, k) = &XK,

In this section, le{D;V (-)p=(-,K)}(x) be denoted byD;V (X)p~(x, k). Moreover,
let V(x)Dj, V(X)Dj,_, - - - V(X)Dj,V(X)¢*(x, k) be denoted by

(1‘[ V(x)Djp>{V(x)<pi(x, K)}.

p=1
The main theorem is

Theorem 3.1. Let n=2m+1, m>1 (m ne N), and[a, b] C (0, o) \ o(pH).
Then there exists a constant;Csuch that generalized eigenfunctions defined by
9= (X, K) 1= go(X, y) — RF(KD{V (- )eo( -, K)}(x) satisfy

™ (X, K)I < Cap,
for all (x, k) € R" x {a < |k| < b}, wherego(x, k) = €*,

First, in order to use Theorem 2.2, we have to prove #@t)p®(x, k) belongs
to L2 for s > 1/2.

Lemma 3.1. If s > n/2, then V(- )p*(-, k) are L2° S(RN)-valued continuous
fuctions on{k | |k| € (0, 00) \ op(H)}.

Proof. The lemma follows from Lemma 1.1 and the definitiorlY&imilarly to
T. Umeda [24, Lemma 9.1]. Ll

From Lemma 3.1 withv > m+ 1, Theorem 2.2 and (3.2), we get

2m

(3.3) lo*(x, K)I < lgo(X, K)| + [RE(KDIV ()™ (-, KO < 1+ 1DV ()™ (%, K)L,

j=m

where D; are the same operators as those in Theorem 2.2. We now give lsonmas
concerning the properties db;.
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Lemma 3.2. There exists a positive constantgCsuch that| D,V (X)p* (X, K)| <
Cap, for all (x, k) e R" x {a < |k| < b}.

Proof. From Lemma 3.1, we géW (X)g*(X, k)|l 2s < CL,, for (x,k) € R"x {a <
|k| < b}, whereC], is a positive constant. This fact, together with Lemma 2ivesy
the lemma. Ul

Lemma 3.3. Letm<j <2m(j € N)and C,, is a positive constantlf |u(x, k)| <
C, for all (x, k) € R" x {a < [k| < b}, then there exists a positive constant such that

IDjV (x)u(x, K)| = Cap,
for all (x, k) e R" x {a < |Kk| < b}.
Proof. From definition (2.9), the assumption anly)| < C(y)~°, we get
ID,VO0U(, K = oy [ k= v V(I dy
< CCyCany [ Ix=yI7 () dy.

Sincej >mando > m+1, we getj +o > n. Then applying Lemma 2.6 witl§ = j,
y =0, we obtain the lemma. O

Lemma 3.4. Letm+1<j <2m (j eN)and p>n/(n—j). If u(x,k) € L3RY)N
LP(RY), and [u(x,K)ll.2 < Cp, Ilu(X,K)llLe < CL,, (C,, and C,, are positive constanys
for all (x, k) € R" x {a < |k| < b}, then there exists a positive constanf,Csuch that

[Dju(x, K)| < Can,
for all (x, k) € R" x {a < k| < b}.

Proof. From definition (2.9), we get
(3.4)

IDJUO)! = Cay [ 1x =y luty, 1 dy
Rn
SCabj/ Ix =yl T ju(y, k)|dy+Cabj/ X =yl ju(y, )| dy.
x—y|<1 X—y|>1
The assumptionjju(x, k)|l 2 < C,, together with the Schwarz inequality, yields

. . 1/2
(3.5) / IX =y~ u(y, k)| dy < Céb(/ Ix —y| 72 dy) :
X=yl>1 X—yl>1

Sincej > m+1, we have 2 > n, so that the function ok defined by the integral on
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the right hand side is bounded. The assumptjafx, k)||.» < CJ,, together with the
Holder inequality, gives

. ) (p—1)/p
(3-6) / X =y~ u(y, k)l dy < Céﬁ;(f (Ix -y 1yp/te-D) dy) .
x-yl=t Ix—yl<1

Sincep>n/(n—j)>1MmM+1<j<2m), we havejp/(p—-1)=j/(1—-1/p) <
j/(L—=(n—j)/n)=n. So the function ofx defined by the integral on the right hand
side of (3.6) is bounded. In view of (3.4), (3.5) and (3.6), el#ain the lemma. [

Lemma 3.5. Letr,jpeNands>1/2. fm+1<j,<2mforl<p<r, then

(1‘[ V(x)D ,-p>{V(x)w*(x, k)} € L2S(RY)

p=1

for all r € N. Moreovey there exits a positive constant,gsuch that

=< Cab
|_2,s

H <H V(x)D ,-p> Ve™* (x, k)}

p=1

for all (x, k) € R" x {a < |k| < b}.

Proof. Applying Lemma 3.1, we see that there exists a pesitonstantC/,
such that

(3.7) IV(X)e* (X, K)llL2 < Cly.

Form+1<j; <2m, by Lemma 2.8, we have that & —1/2 >t > n/2, there exists
a positive constanCapj,s such that

D,V (X)@E (X, K)llL2— < Capjut IV (X)@* (X, K)ll L2 < CabjytChp-

Noticing that|V(x)] < C{(x)™?, o > (n+1)/2, ando —t > 1/2, whereC is a positive
constant, we get

IV()Dj,V(x)¢* (X, K)llL2o-t < CCapjssChp

Similarly, we can prove this lemma by induction. O

Lemma 3.6. LetO<a <n, 1<p<qg<ooand felLP(R"). Let I, f(x) be
definded by J f (x) := [ga IX—y|™™* f(y)dy. If 1/q=1/p—a/n, there exists a positive
constant Gq such that

e flla < Cpqll fllLe.
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For the proof of the lemma, see [20, p.119].

Lemma 3.7. LetreN. Ifm+1<j,<2m (1<qg <r), and ZZ‘gzljp >
(29 — 1)n for all g <r, then

(1‘[ V<x)Djp>{V(x)¢*(x, k) € L2VETp i@ ) RY)

p=1

for all r < n— 1. Moreover there exits a positive constant;Csuch that

=< Cab

(3.8) H ( V(X)Djp> V()e*(x, k)}
p=1

L 225l Tp-(2r -0}
for all (x, k) € R" x {a < |k| < b}.

Proof. Forr =1, sincem+1< j; <2m, we get O< 2j; —n <n. Let g =2,
a=n-—j;, y=2n/(2jy —n). Then 0<B=2<y, and ¥y =1/8 —a/n. Since

IV(X)] < C(x)™® < C (C is a positive constant), we apply Lemma 3.6 wiph= g,
g =y, and we get that there exists a const@p{ such that

IV()D},V(x)¢* (X, K)| < CCab / X — YTV (Yot (y, K) dy.
Rn
Therefore we have
IV(X)Dj,V(X)p~ (X, K)lILr < CCabj,Cpy IV (X)™ (X, K)ls-

This fact together with (3.7) gives (3.8) for=1. Similarly, we can prove this lemma
by induction. [l

Lemma 3.8. LetreNandr<n. If m<j,<2m forall 1< p<r, then there
exists a positive constant,g such that

S Cab.

(3.9) >

23 e Jp<(2r=1n

r-1
Dj, <l_[ V(X)Djp>{V(X)¢i(X. K)}

p=1

for all (x, k) € R" x {a < |k| < b}.

Proof. We will prove this lemma by induction.
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(i) Forr =1, sincem< j; <2m, then 4; <n= j;=m, SO

>~ DV (X, k) = DmV (@™ (X, k).

2j1<n

Applying Lemma 3.2, we see that (3.9) is valid for 1.

(i) Thus we assume that (3.9) is also valid for< | wherel > 1 andl € N.
Now we will prove the case =1 + 1.

From the assumption of cases< |, there exist positive constanG,,, such that

(3.10) >

2% fp<(@-1n

< Cabr

r-1
Dj, (1‘[ V(x)Djp>{V(x)wi(x, k)}

p=1

forr <|I.
For the case =1 +1. Let

A={(Ju, j2o .-, ) Im=<jp<2mforall 1< p<l},

B={(ju j2, ..., ) Im+1l<jp<2mforall 1< p<l},

C:Aﬂ{(jlv j2!"'1 J|)

q
Zij>(2q—1)nfor1§q§I}.
p1

Sincen is an odd integer, there does not exigt, (j2, - - -, ji) satisfying Zer:l ip=
(2 — )n, forr <I. Then, we get

2

J1sQ2sesir

=)

25 jp>(@-1n

>

23 jp<@-1n

r—1
D, (H V(X)Djp>{V(X)<pi(X, K)}
p=1

r-1
Dj, (l_[ V(X)Di,;){V(X)wi(X- K)}

p=1

r-1
D;, (1‘[ V(x)D;p){V(x)go*(x, k)}

p=1

for all r <. By this fact together with assumption (3.10) and Lemma 2:8,get that
there exists a positive consta@t, such that

(3.11) < Clp

-1
D|+1V(X){Z D;, <H V<x)Djp>{V(x)¢i(x, k)}}

AC p=1




GENERALIZED EIGENFUNCTIONS FORRELATIVISTIC SCHRODINGER OPERATOR 871

From Lemma 3.2, Lemma 3.5, Lemma 2.7 and Lemma 3.3, we sedhirat exists a

positive constanC7,, such that

-1
(3.12) D.+1V(x){2 D; (1‘[ V(x)D;p>{V(x)¢i(x, k)}} <
A\B p=1
For (j1, j2, ---, Ji) € BN C, applying Lemma 3.5 and Lemma 3.7, we see that

there exists a positive consta@ty, such that

< Cani,
|_2,s

H (1‘[ V(x)D,p>{V(x><pi(x K))

[
(]‘[ V(x)Djp>{V(x)¢i(x, K)}
L2 p=1

< Canls
v ey ip-@-10)

H (1‘[ V(x)D,p>{V(x)<ai(x K))

wheres > 1/2. For 22”1 jp < (2 + 1)n, we get 21/(22p 1ip— (@ —1)n) >
n/(n — (I +1)). It follows from Lemma 3.4 that there exists a positivanstantCap+1
such that

(3.13) < Cap+1

|
Dia Z(]‘[ V(x)D,-p>{V(x)¢f(x, k)

BNC \ p=1

for 22”1 jp < (2 +1)n. Collecting (3.11), (3.12) and (3.13), we obtain that (3D)
valid forr =1 +1.
Finally, using (i) and (ii), we finish the proof of (3.9) for wnntegerr > 1. [

In view of the lemmas and (3.3), we will prove the main theorgr.
Proof of Theorem 3.1. From (3.3), we get(x,K)| <1+ZJ M DV (X)eE(X,K)I.

Applying (3.3) again, similarly, we see that there exists @sifive constantC,
such that

(314) I KI<Cht 3
JER Pt

<l_[ V(X)Djp>{V(X)¢i(X, K},

p=1
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wherem < j, < 2m for 1 < p < n. Noticing that 2)"_; jp < 2n x 2m=2n? —2n <
(2n — 1)n, we get

>

i1 J20eedn

=

230 jp<(@n=1)n

(]‘[ V(x)D;p>{V(x)goi(x. K)}
p=1

(]‘[ V(x)Djp>{V(X)¢i(X, K)}

p=1

This fact together with Lemma 3.8 with=n yields that there exists a positive constant
C,p, such that

n
> (1‘[ V(x)D;p>{V(x)¢*(x, k)} < Clp.
jud2eenl \p=1
From this inequality together with (3.14)), we finally haveettheorem. O

4. Asymptotic completeness

We investigate the asymptotic completeness of wave opsratothis section. We
assum that the potentid(x) is a real-valued measurable function BA satisfying

(4.1) IV(X)] < C(x)™%, o >1.

Under this assumption, it is obvious thdtis a bounded selfadjoint operator irf(R"),
and thatH = Ho+V defines a selfadjoint operator I?(R"), whose domain igH*(R")
(see T. Umeda [23, Theorem 5.8]). Moreoudris essentially selfadjoint o€g°(R")
(see T. Umeda [23]). Sinc¥ is relatively compact with respect td, it follows from
Reed-Simon [18, p.113, Corollary 2] that

oe(H) = ge(Ho) = [0, o0).

In this section, we prove the next main theorem with V. Eng¥s (see V. Enss [3]
and H. Isozaki [7]).

Theorem 4.1. Let Hy = +/—A, H = Ho + V(X) and V(x) satisfies(4.1). Then
there exists the limits
Wj; = lim eitHe*itHoy

t—=+o0

and the asymptotic completeness holds

R(Wy) = Hac(H).
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Lemma 4.1. Let Hh=+/—A, H = Hp+V(x) and V(x) satisfies(4.1). Then there
exists the limits

W, = lim etHe itHo,

t—=o0

Proof. The proof of this lemma is similar to H. Kitada [8, p.6Dheorem 6.2].
U

It is obvious thatR(W.) C Hac(H) (see [7, p.70 Lemma 1.2]), then we just need
to prove thatHac(H) C R(W.).

Let ¢(t) € C3°((a, b)), a > 0, p+(t) € CF°(R) satisfy p.(t) + p1(t) = 1, p+(t) =0
for t < —1/2, p_(t) =0 fort > 1/2. Let x(x) € C§°(R") satisfy x(x) = 0 for |x| < 1,
x(x) =1 for |x] > 2. We putwy = x/|X| and ws = &/|€|. Let pL(X, &) be defined by

P=(X, &) = pr(wx - we) x (X)e(1£1),

and P is the psendodifferential operator with symhbwl(x, &)
Pou= (@02 [ d¢putx, £)0(E) ds
Rn

and PL(A) = x(x/A)P. (A > 0). Let F(t > A) and F(t < A) be the characteristic
functions of the set$t |t > A} and {t |t < A}, respectively.

Lemma 4.2. If u € Hae(H), then e'Mu converges weakly t6 as t — oo.

Proof. LetEy()) be the spectral measure ¢h. For everyv € L2(R"), we have

ety v) = /oo e " d(Ex(M)u, v).

[e¢]

Since Ex(M)u, v) is absolutely continuous oh, there exists a functiorf (A) € L1(R),
such that

. oo .
(eMu, v) :/ e f (1) da.
—0Q0
Lemma 4.2 now follows from Riemann-Lebesgue’s lemma. O

Lemma 4.3. Letd>0,s> 1. Then

(4.2) supl|(1 +t +|x|)SP_e tHo(x)~S|| 2 < oo,
t>d

(4.3) sup (1 —t + |x|)3Pse™"tHo(x) =S| 2 < o0.
t<—d
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Proof. We will prove (4.2). The proof of (4.3) is similar. Wg the interpolation

theorem, we just need to prove the casesN. Let G(§) be the Fourier transform of
u(x). The definition of P_e 't"o js

P e itHo, = (27'[)7“/2/ g (st p_(x, £)G(§) dé.
Rl’l
Let

L= —i|Ve(X-& —t|E])[2Ve(x - & — tIE]) - Ve.

We havelL g *s—tED = g¢-tiED - Since supm- C {ox - ws < 1/2} andt > 0, we get
2 _ 2 _ 2 2 2 2 1 2 2
[Ve(X - & —t|E])]° = |X — twe|” = [X|"+1° — 2tX - g > |X[*+t° —t]X]| > 5(|x| +1).

Noticing thatt > d > 0, we have that there exists a positive cons@nguch that,
(4.4) IVe(x-§ —t]§])] > C(Ix] +t +1).

Then using integration by parts, we have

PiefitHou - (27T)—n/2 /

OEtED = (p (x, £)0(£)} dé,
RN

whereL* is adjoint operator of.. Notice that supp_ C {a < |¢] < b} ando > 2. Then
we see that there exists a positive cons@nsuch that P_e tHou| < Cy(1 +t + |x|)~ L.
Thus we get (1 + + |x|)|P_e"'tHou| < C,. Then, we use integration by parts again and
we get that there exists a positive const@atsuch that (1 4 + |x|)?|P_e"'tHou| < C.
Similarly, fors e N, we get (1 +|x|)$|P_e~'tHou| < Cs, whereCs is a positive constant
depending ors. Then, we can finish proving this lemma. O

Lemma 4.4. Let d> 0. Then

(4.5) supl(e”H — e tHo)p, (A)*|| — O,
t>d

(4.6) sup (e —e )P (A)*| - O,
t<—d

as A— oo, where B.(A)* is the adjoint of the operators ;RA), respectively
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Proof. We will prove (4.5). The proof of (4.6) is similar. Nchg that
d . . . . . .
el e|tHefltHQ =j HeltH e*ItHo _ ieltHefltHOH
dt{ } 0

- ieitH(H _ Ho)e—itHo - ieitHVe_“HO,
we have
t
e—itH _ e—itHo - e—itH(I _ eitHe—itHo) - _ie—itH / eisH\/e—iSHD ds.
0
Sincee =94 is uniformly bounded it —s € R, we have by (4.1)

t
(4.7) I(e™™ — e MHoyp (A < C /0 {(x)~7e~"SH P, (A)*| ds.

Since P.(A)* = P;x(x/A), we have
(x) = e~SPe P (A)¥|
< Ix) eSO P (A (L +s+ X)L +s+IX|) " F(X| > A
<C'(1+s+A) (1 +s+|x])7 P(A)E o (x) 7,

whereC’ is a positive constant. Then applying (4.3) and (4.7) andtimgt thato > 1,
we get this Lemma. ]

Lemma 4.5. If u € Hae(H) then|P_e'™Hu| .. — 0, as t — oo.

Proof. Letd > 0. It follows from Lemma 4.4, for everg > 0, there exists a
constantA > 0, such that

(4.8) suq{x <%> P_(e M — g7itHo)y

t>d

<Eé.

Since u € L2(R"), for every ¢ > 0 there exists a function € S(R"), such that
Jlu — v|liz2 < e. Noticing that P_e"'™Ho is uniformly bounded int € R, we get
|P_e tHo(u—v)||.2 <&, for all t. It follows from Lemma 4.3 thaf P_e 'tHoy|| > — 0,
ast — oo. So, we get

(4.9) | P_e~"tHoy|| > — 0,
ast — oo. The integral kerneK.(x, y) of the operator (& x(x/A))P. is

e, 9) = @0 (1= (5 ) )20 [ @00 puton - oapoten .

Noting that(x — y)~2(1— Az)e *0¢ = g&-¥¢  we make the integration by parts, and
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get K (x, )| < C(1— x(x/A)(x —y) ?". SoK. € L%R" x R"). Then we have that
(1 — x(x/A)P. is a compact operator, aret'*"u converges weakly to 0 as— oo
(Lemma 4.2). Then we get

(4.10) tm” (1— X(%))P_ei“*u

Collecting (4.6), (4.9) and (4.10), we ggP_e '"Hu| . — 0, ast — oo. O

=0.

Lemma 4.6. If u € Hac(H) thenlim_, o [[e ™M p(H)u — P.(A)e " u|.. =0, for
all A>D0.

Proof. The equation of resolvent i$l(—2)™ — (Ho—2)"1 = —(H —2)"V(Ho —
2)~L. Noticing thatV (Ho — 2)~! is a compact operator (see H. Isozaki [7, p.27, The-

orem 4.8]), we get thap(H) — ¢(Ho) is a compact operator. This fact, together with
Lemma 4.2, implies

(4.12) Jim Jlo(H)e™ ™ u — p(Ho)e " ul = 0.

Since (1— X(X))go(Ho) is a compact operator (check the integral kernel similamly
Lemma 4.5), ance""u converges weakly to 0 as— oo (Lemma 4.2), we get

(4.12) Jim (1 = x ()¢ (Ho)e™ "l = 0.
Noting that x (X)¢(Ho) = P + P_, we get

(4.13) Jim le(Ho)e Mu — (P, + P_)e ™My = 0.
Collecting (4.11), (4.12), (4.13), and Lemma 4.5, we have

Jim e ™ p(H)u — Py(A)e " ul.2 = 0. O
—00

Lemma 4.7. Let ue Ha(H), d > 0. For everye > 0, there exists s> 0 and
A > 0, such that sup_q lle"t*Hus—e Mo P, (A)e7'SHu|| 2 < &, where =€ 'SHp(H)u.

Proof. By the definition ofp.(x, &), we get
|3Q‘8£ p+(X, §)| < Caﬂ(x)*laI@)—me'

for all m > 0, whereC,; is a positive constant. Sinc& x (x/A) = A=/(32 x)(x/A),
we have

020 pu(x, £)] < Cup AHE)™™ P,
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for all |«| > 1. Then we get the symbaj(x, &; A) of P.(A)* — P.(A) satisfying
a8l a(x, &; A)| < Cop A Hg) ™™ 1A
Then

IP+(A)* — P(A)ll <

e}

where C > 0 is a constant. This fact together with (4.5) yields ,syf(e™""H —
e 1tHo)p,(A)| — 0, asA — oo. From Lemma 4.6, we get that there exigts- 0, s >
0 such that, syp, e "Hus—e Mo P,(A)e~"sHu| .2 < . Then we get the lemma.[]

Proof of Theorem 4.1. From Lemma 4.1, we get that there efigtdimits

Wi = lim égtHeitto,

t—+o0

Then we just need to prove that
ulRW,)=u=0

for all u € Hac(H). (The caséW_ is similar.)
let0<a<c<d<b, pr) e C5°((a, b)) satisfy

e(AM)=1 (Cc<ar<d).
Let us = e 'SHp(H)u. It follows from Lemma 4.7, that

”uS”Z — (efitH Us, efitH us) — (efitHo P+(A)efiSHu, efi’[H us) + 0(8)

— (p(H)esHW,etHop, (A)e™'SHu, u) + O(¢)
ast — oo. Since
((p(H)eiSHW*_efitHo P+(A)efiSHu’ U)

= /‘Oo (p()»)eis}‘ d(EH(}»)WJ,e_itHD P+(A)e_iSHu, u)

o0

= / h (L)€ d(W,(En, (e Mo P, (A)e'sHu, u)

= (p(Ho)es e tHop, (A)e 'sHu, Wiu)
= (Wi (Ho)e* be o P, (A)e "My, u),
we get||us||2 = (W+¢(H0)eisHoe—itHo p+(A)e7isHu’ U)+O(e). Applying thatu L R(W),

we get|lusll = O(e). So¢(H)u=0. Sincep(r) is an arbitraryCg°((0, oo)) function,
we getu =0. Ul
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5. Eigenfunction expansions

In this section, we assum that the dimensioris an odd integer,n > 3, and
o > (n+1)/2. We consider the completeness of the generalized eigetifanin this
section. The main idea is the same as the idea in H. Kitada 4bd] S.T. Kuroda
[13], besides, in this section, we use the method in T. IkeheJection 11]. It is
known that

oe(H) = ge(Ho) = [0, o0).

We need to remark that,(H) N (0, oo) is a discrete set. This fact was first proved
by B. Simon [19, Theorem 2.1]. Moreover, B. Simon [19, Theor2] proved that
each eigenvalue in the sep(H) N (0, co) has finite multiplicity.

The main theorem is

Theorem 5.1. Assume the dimension (m > 3) is an odd integero > (n+1)/2,
s> n/2 and [a, b] C (0, o) \ op(H). For u e LZ5(R"), let 7. be defined by

(5.1) Feu(k) := (271)‘“/2/ u(x)e*(x, k) dx.
Rn
For an arbitrary L23(R")-function f(x),

En([a, b)) f (x) = (27)™"2 f Fi f(e™(x, k) dk,

a<|k|<b

where Ey is the spectral measure on ,Hand ¢*(x, k) are defined inTheorem 1.3.

Lemma 5.1. Let[a, b] C (0, 00) \ op(H). Then(Wego( -, k), g) = (9*(-, k), 9)
for all g € CP(R") and ke [a, b], where go(x, k) = €**, and W, is the same as in
Theorem 4.1.

Proof. Noticing that
t
eitHe—itHo = +|/ eitHVe—irHo d‘L’,
0
and lettingt — +o00, we get
oo | .
Wago(- 19, = (o, )1 [ (@MVer (- 19, g)d.

Putting f = Xk, we have

+oo . +o0 . .
i / (€*Hvel™of gydr =i Iirfg/ etr (@ Hvel™f g)dr
0 & 0
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+o0 . . +o00 ) .
=ilim e (f, éHove gy dr =i lim et (f, F e MFrve'Hg)dr
&0 Jo el0 Jo

Sinceg € C3°(R"), k € [a,b], and ¢o(x,K) is bounded for X, k) € R" x {k | a < k < b},
we can interchange the-, x-, andk-integrations. Then we get

+o00

+o0
i/ (@ ve T f, g)dr =i m/ e (f, FveH-kg) dr
0 € 0

=1 lim fom(f- Vet H-(KEN gy 47 = (f, V RE(K|)g) = (RF(KV T, g).

So, by the definition ofp*(x, k), and k € [a, b], we get Wigo( - ,K), Q) =
((p:t( ) k)v g) ]

Lemma 5.2. Let[a,b] C (0,00)\op(H), supm(k) C {k|a < |k] <b} and f(x) €
Cg°(R"). Then

(F=f,8) = (FWLT, 9),

where F. are defined by5.1).

Proof. By the definition ofF 1, we get
(FWif, @)= (f, WF1g) = (f, W, / po( -, k)@(k)dk>-

Since f € CP(R"), suppd(k) C {k|a < |k| < b}, andgo(x, k) is bounded for X, k) €
R" x {k | a < k < b}, we can interchange the-, andk-integrations. Then, we have

(FWET 8= [ (F, Wao( - k)80 e
Noticing sup@(k) C {k | a < |k| < b} and using Lemma 5.1, we obtain Lemma 5.2

Finally, we start to prove our main Theorem 5.1.

Proof of Theorem 5.1. It follows from Theorem 3.1 and Theorérh that the
wave operatordV,. are complete, and the eigenfunctiopd(x, k) are bounded for
(X, k) € R" x {k | a < |k|] < b}. Then, noticing thatCS°(R") is dense inL%(R"), to-
gether with Lemma 5.2, and using the idea of S.T. Kuroda [136@], we can obtain

Theorem 5.1. O
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