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1. Introduction

Suppose that and are finite groups such that acts on coprimely. Let
an invariant -block of such that centralizes some defect group of .

In [10], Watanabe proved that whenever is solvable, then there is a perfect isome-
try between and the set of the Glauberman correspondents of the characters in .
Horimoto in [2] proved the case where is nonsolvable.

Now, let be a group of odd order. Let be a prime and a Sylow -subgroup
of . By Irr ′( ), we denote the set of irreducible characters of which havedegree
not divisible by . When is a solvable group of odd order, M. Isaacs constructed a
natural one-to-one correspondence

∗ : Irr ′( ) → Irr ′(N ( ))

which depends only on and (see [3]).
In this paper, we show that there is also a perfect isometry between a block

where all irreducible characters of this have degree not divisible by and the
set of Isaacs correspondents of the characters in . This complements the work by
A. Watanabe and H. Horimoto.

Theorem A. Suppose that is a finite group of odd order and and are
distinct prime numbers. Let be a -block of such that every irreducible character
of has ′-degree. Let be a defect group of . Then there exists a unique -block

∗ of N ( ), for some ∈ Syl ( ), with defect group such thatIrr( ∗) = {χ∗ |
χ ∈ Irr( )}. Moreover, there exists a perfect isometry such that(χ) = χ∗ for
χ ∈ Irr( ).

Some of the results of this paper were obtained while I was visiting Ohio Uni-
versity. I would like to thank the Mathematics Department for its hospitality. I would
also like to thank G. Navarro for many helpful suggestions.

Research partially supported by DGICYT.
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2. Preliminaries

In this section, we review the Isaacs correspondence and we prove some properties
of this. We present the Isaacs correspondence for the prime as it was defined in [3].
Let be a Sylow -subgroup of .

Theorem 2.1 (Isaacs). Suppose that is a group of odd order. Suppose that
= , where , ⊳ , ∩ = and / is abelian. Suppose that = N ( ).

Let θ ∈ Irr( ) be -invariant. Ifχ ∈ Irr ′( ) lies overθ, then

χ = χ( ) + 2 +β

whereχ( ) has ′-degree and lies overθ and no irreducible constituent ofβ lies over
θ. Moreover the mapχ 7→ χ( ) is a bijection betweenIrr ′( | θ) and Irr ′ ( | θ).

Proof. This is Theorem 10.6 of [3].

Lemma 2.2. Let be a group of odd order. Suppose that= O
′

( )′ N ( ).
Let O

′

( ) ⊆ ⊆ . Let χ ∈ Irr ′( ) and let θ ∈ Irr ′( ). Then all irreducible
constituents ofχ have ′-degree and

[χ θ] =
[
(χ( )) ∩ θ( ∩ )

]

In particular, if θ = χ, then

(
θ( ∩ )

)
= χ( )

Proof. Follows from Lemma 2.9 of [9].

Suppose that = 0 and write +1 = O
′

( )′ N ( ). The Isaacs correspon-
dence∗ : Irr ′( ) → Irr ′(N ( )) is obtained by using Theorem 2.1 with respect to
the chain

= 0 > 1 > 2 > · · · > = N ( )

First of all, we review some properties of the Isaacs correspondence.

Theorem 2.3. Let be a group of odd order. Suppose that is a subgroup of
containingO

′

( )′ N ( ). Let χ ∈ Irr ′( ). Then(χ( ))∗ = χ∗.

Proof. This is Theorem 2.3 of [9].

Theorem 2.4. Let be a group of odd order. Suppose that⊆ ⊆ and let
ξ ∈ Irr( ) such thatξ = χ ∈ Irr( ). Let ξ∗ ∈ Irr(N ( )) and χ∗ ∈ Irr(N ( )) be the
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Isaacs correspondents ofξ and χ, respectively. Then(ξ∗)N ( ) = χ∗.

Proof. This is Theorem A of [9].

A key tool for proving our main result is the following.

Theorem 2.5. Let be a group of odd order and let ⊳ . Suppose thatχ ∈
Irr ′( ) and θ ∈ Irr ′( ) is -invariant. Then
(a) [χ θ] 6= 0 if and only if [(χ∗)N ( ) ϕ

∗] 6= 0 for someϕ ∈ Irr ′( | θ).
(b) If ϕ ∈ Irr ′ ( | θ), then

(θ) ∩ N ( ) = N ( )
(
(ϕ∗)N ( )

)

Moreover, if χθ is the Clifford correspondent ofχ over θ and [(χ∗)N ( ) ϕ
∗] 6= 0,

then χ∗
θ is the Clifford correspondent ofχ∗ over (ϕ∗)N ( ).

Notice that (ϕ∗)N ( ) ∈ Irr(N ( )) sinceN ( ) is a normal subgroup ofN ( )
of -index. As an inmediate consequence of this theorem, we have the following re-
sult.

Corollary 2.6. Let be a group of odd order and let ⊆ ⊳ . Suppose that
χ Irr ′( ) and θ ∈ Irr ′( ). Then
(a) [χ θ] 6= 0 if and only if [(χ∗)N ( ) θ

∗] 6= 0.
(b) We have that

(θ) ∩ N ( ) = N ( )(θ∗)

Moreover, if χθ is the Clifford correspondent ofχ over θ, thenχ∗
θ is the Clifford cor-

respondent ofχ∗ over θ∗.

Proof. Follows from Theorem 2.5.

First of all, we prove the Theorem 2.5 for the correpondence described in Theo-
rem 2.1.

Proposition 2.7. Let be a group of odd order and letO
′

( ) ⊆ ⊳ .
Suppose thatχ ∈ Irr ′( ) and θ ∈ Irr ′( ) is -invariant. If = O

′

( )′ N ( ),
then
(a) [χ θ] 6= 0 if and only if [(χ( )) ∩ ϕ( ∩ )] 6= 0 for someϕ ∈ Irr ′ ( | θ).
(b) If ϕ ∈ Irr ′ ( | θ), then

(θ) ∩ =
(
(ϕ( ∩ )) ∩

)
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Moreover, if χθ is the Clifford correspondent ofχ over θ and [(χ( )) ∩ ϕ( ∩ )] 6=
0, then χ( ∩ (θ))

θ is the Clifford correspondent ofχ( ) over (ϕ( ∩ )) ∩ .

Proof. Since ⊳ , we have that every irreducible constituent ofχ has
′-degree. And, by Lemma 2.2 we have that [χ ϕ] = [(χ( )) ∩ ϕ( ∩ )].

Hence, the part (a) follows.
Now, suppose thatϕ ∈ Irr ′ ( | θ). Let ξ ∈ Irr(O

′

( )′) be a -invariant
character which lies underθ and hence, underϕ. By Theorem 2.1, we have that

ϕ ∩ = ϕ( ∩ ) + 2 +β

whereϕ( ∩ ) has ′-degree and lies overξ and no irreducible constituent ofβ lie
over ξ (and hence over any of the -conjugate ofξ). Write α = (ϕ( ∩ )) ∩ We
have that

θ ∩ = ϕ ∩ =
(
ϕ( ∩ ))

∩
+ 2 ∩ + β ∩ = α + 2 ∩ + β ∩

Let ∈ (θ) ∩ . Sinceα and α are irreducible constituents ofθ with odd mul-
tiplicity lying over ξ, it follows that α = α. And ∈ (α). Now, suppose that

∈ (α) Notice that if ∈ (ϕ( ∩ )) = (ϕ) ∩ then ∈ (θ). Thus,
we may assume that 6∈ (ϕ( ∩ )). Hence, by Gallagher’s lemma, we have that
(ϕ( ∩ )) = ϕ( ∩ )λ for some linear characterλ ∈ Irr( ∩ / ∩ ) (we
can also seeλ ∈ Irr( / )). By Lemma 2.2, we deduce thatϕ = ϕλ. Then
θ = (ϕλ) = θ. Therefore, ∈ (θ) ∩ and the first part of (b) is proven.

Now, suppose thatχθ be the Clifford correspondent ofχ over θ and assume that
[(χ( )) ∩ ϕ( ∩ )] 6= 0. Write = (θ). By the first part of (b) we have that
χ( ∩ )
θ ∈ Irr ′( (α) | α). By Lemma 2.2, it follows thatχ( ) = (χ( ∩ )

θ ) . Therefore
χ( ∩ )
θ is the Clifford correspondent ofχ( ) over α, as desired.

As consequence we have the following result which is a particular case of Theo-
rem 2.5.

Proposition 2.8. Let be a group of odd order and letO
′

( ) ⊆ ⊳ .
Suppose thatχ ∈ Irr ′( ) and θ ∈ Irr ′( ) is -invariant. Then
(a) [χ θ] 6= 0 if and only if [(χ∗)N ( ) ϕ

∗] 6= 0 for someϕ ∈ Irr ′( | θ).
(b) If ϕ ∈ Irr ′( | θ), then

(θ) ∩ N ( ) = N ( )((ϕ∗)N ( )∩ )

Moreover, if χθ is the Clifford correspondent ofχ over θ and [(χ∗)N ( ) ϕ
∗] 6= 0,

then χ∗
θ is the Clifford correspondent ofχ∗ over (ϕ∗)N ( )∩ .



THE ISAACS CORRESPONDENCE 317

Proof. We argue by induction on| |. Let = O
′

( )′ N ( ). If = ,
then there is nothing to prove, and thus we suppose that< . Let χ( ) ∈
Irr ′( ) the correspondent ofχ by the correspondence of Theorem 2.1. We have that
χ∗ = (χ( ))∗ ∈ Irr ′(N ( )) by Theorem 2.3. By Proposition 2.7 we have that
[χ θ] 6= 0 if and only if [(χ( )) ∩ ϕ ∩ ] 6= 0 for someϕ ∈ Irr( | θ). Since

∩ ⊳ , by induction, we have that [(χ( )) ∩ ϕ( ∩ )] 6= 0 if and only if
[(χ∗)N ( ) ϕ

∗] 6= 0. And (a) follows.
Now, let ϕ ∈ Irr ′( | θ). By Proposition 2.7, we know that

(θ) ∩ =
(
(ϕ( ∩ )) ∩

)

Since ∩ ⊳ by induction (applied to (ϕ( ∩ )) ∩ ) we have that

(
(ϕ( ∩ )) ∩

)
∩ N ( ) = N ( )

(
(ϕ∗)N ( )∩

)

Hence,

(θ) ∩ N ( ) = N ( )
(
(ϕ∗)N ( )∩

)

as desired.
Now, suppose thatχθ be the Clifford correspondent ofχ over θ and assume

that [(χ∗)N ( ) ϕ
∗] 6= 0. Notice that [(χ( )) ∩ ϕ( ∩ )] 6= 0. Write =

(θ). By Proposition 2.7, we have thatχ( ∩ )
θ is the Clifford correspondent ofχ( )

over (ϕ( ∩ )) ∩ And, by induction (applied to (ϕ∗)N ( )∩ ) we have thatχ∗
θ =

(χ( ∩ )
θ )∗ is the Clifford correspondent ofχ∗ = (χ( ))∗ over (ϕ∗)N ( )∩ , as desired.

Now, we are ready to prove Theorem 2.5.

Proof of Theorem 2.5. We argue by induction on| |. Write = N ( ). Let
be the inertia group ofθ in . We may assume that =O

′

( ) 6⊆ . Otherwise
= O

′

( ) ⊆ and the result follows by Proposition 2.8.
Let / be a chief factor of such that ⊆ < . It follows that
6⊆ , and hence < . Now /( ∩ ) is an abelian ′-chief factor of .

Thus, ′ ⊆ ∩ ⊆ . Hence, ′ ⊆ , and χ( ) ∈ Irr ′( ) is defined.
Since ⊆ , it follows that χ( ) lies over all -invariant irrdeucible characters of
χ . Hence, [χ θ] 6= 0 if and only if [(χ( )) θ] 6= 0. By induction, we have that
[(χ( )) θ] 6= 0 if and only if [(χ∗)N ( ) ϕ

∗] 6= 0 for someϕ ∈ Irr ′( | θ), and
(a) follows.

Now, let ϕ ∈ Irr ′( | θ), by induction we have that

(θ) ∩ = ((ϕ∗) ∩ )
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Hence,

(θ) ∩ = ((ϕ∗) ∩ )

as desired. Now, letχθ be the Clifford correspondent ofχ over θ. Since ⊆ , it
follows that χ( ) lies over θ. Let δ ∈ Irr( ∩ | θ) be the Clifford correspondent
of χ( ) over θ. We have thatχ( ) = δ . By Theorem 2.4, it follows thatχ∗ =
(χ( ))∗ = (δ )∗ = (δ∗) .

Now, it follows that O
′

( )′ ( ∩ ) ⊆ ∩ . Hence by Theorem 2.3, we
have thatχ∗

θ = (χ( ∩ )
θ )∗. We want to show thatδ = χ( ∩ )

θ . For this, we prove that
[(χθ) ∩ δ] is odd. We have that [(χθ) ∩ δ] = [χ ∩ δ] = [χ δ ] which
is odd. And by induction it follows thatχ∗

θ is the Clifford correspondent ofχ∗ over
(ϕ∗) ∩ , where [(χ∗)N ( ) ϕ

∗] 6= 0

3. Some perfect isometries

Let be a prime, and let R be the ring of algebraic integers inC. We let =
{α/ | α ∈ R ∈ Z − Z} be the ring of -local integers. We fix ( D ) a

-modular system, where is algebraically closed and⊆ D (see [5]).
M. Broué introduced the notion of a perfect isometry in [1].Suppose that and

are finite groups, and let and a block of and , respectively. Anisometry
:̂ Z[Irr( )] → Z[Irr( )] is perfect if the following two conditions are satisfied:
(i) for all ∈ , ∈ , we have that

1
|C ( )|

∑

χ∈Irr( )

χ( )χ̂( ) and
1

|C ( )|
∑

χ∈Irr( )

χ( )χ̂( )

belong toD;
(ii) if

∑
χ∈Irr( ) χ( )χ̂( ) 6= 0, then is -regular if and only if is -regular.

The following lemma is well-known and, together with weak block orthogonality,
guarantees that the identity is a perfect isometry.

Lemma 3.1. Suppose that is a -block of . Then

1
|C ( )|

∑

χ∈Irr( )

χ( )χ( ) ∈

for , ∈ .

Proof. If χ ∈ C is the central idempotent associated toχ ∈ Irr( ) and
=
∑

χ∈Irr( ) χ, just compute the coefficient of̂ in ˆ , where is the conju-

gacy class of , is the conjugacy class of−1 and ˆ is the sum of the elements of
⊆ . Now apply that the coefficients of lie in (see the proof of Corollary 3.8

of [7]).
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It is not difficult to see that the composition of perfect isometries is a perfect
isometry. (see, for instance, Lemma 1 of [10].)

Another example of perfect isometry is given by the Fong-Reynolds correspon-
dence.

Lemma 3.2. Let ⊳ and let be a -block of . Let ( ) be the stabilizer
of in . Suppose that is the Fong-Reynolds correspondent of∈ Bl( ( ) | ).
Then the mapIrr( ) → Irr( ) given byψ 7→ ψ defines a perfect isometry for
and .

Proof. Let be ( ). Let ∈ and ∈ . First we show that if

∑

ψ∈Irr( )

ψ ( )ψ( ) 6= 0

then is -regular if and only if is -regular. Notice that if no -conjugate of
lies in , thenψ ( ) = 0. Hence we have that some -conjugate of lies in . Let

1 . . . be representatives for the classes of contained in the -conjugacy class
of . By using the formula of page 64 of [4], we have that

∑

ψ∈Irr( )

ψ ( )ψ( ) =
∑

ψ∈Irr( )

(
|C ( )|

∑

=1

ψ( )
|C ( )|

)
ψ( )

=
∑

=1

|C ( )|
|C ( )|

( ∑

ψ∈Irr( )

ψ( )ψ( )

)

If this is nonzero, then is -regular if and only if is -regularby weak block
orthogonality applied in .

Now, we prove that

1
|C ( )|

∑

ψ∈Irr( )

ψ ( )ψ( ) and
1

|C ( )|
∑

ψ∈Irr( )

ψ ( )ψ( )

are elements of . As above, we may assume that some -conjugateof lies in .
By Lemma 3.1, and using the same notation as before, we have that

1
|C ( )|

∑

ψ∈Irr( )

ψ ( )ψ( ) =
∑

=1

1
|C ( )|

∑

ψ∈Irr( )

ψ( )ψ( ) ∈

Also,

1
|C ( )|

∑

ψ∈Irr( )

ψ ( )ψ( ) =
∑

=1

|C ( )|
|C ( )|

(
1

|C ( )|
∑

ψ∈Irr( )

ψ( )ψ( )

)
∈
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by using Lemma 3.1 and the fact that

|C ( )|
|C ( )| =

|C ( )|
|C ( )|

is an integer.

Our next goal is to find certain perfect isometries associated to normal ′-sections
of groups.

If is a subgroup of andθ ∈ Irr( ), we denote by Irr( | θ) the set of irre-
ducible constituents ofθ .

Theorem 3.3. Suppose that is a normal′-subgroup of . Let ⊆ with
= and write = ∩ . Suppose thatθ ∈ Irr( ) is -invariant and such that

θ ∈ Irr( ). Let 0 be the set of -regular elements of . Ifχ, ψ ∈ Irr( | θ), then
∑

∈ 0

χ( )ψ( −1) = | : |
∑

∈ 0

χ( )ψ( −1)

Lemma 3.4. Suppose that is a normal subgroup of . Let ⊆ with
= and write = ∩ . Suppose thatθ ∈ Irr( ) is -invariant and such

that θ ∈ Irr( ). Let ∈ . Then ifχ, ψ ∈ Irr( | θ), we have
∑

∈

χ( )ψ(( )−1) = | : |
∑

∈

χ( )ψ(( )−1)

Proof. Consider the group = 〈 〉. Note that = ∩ = 〈 〉. Since θ is
-invariant, there is somêθ ∈ Irr( ) extendingθ. Hence

χ = θ̂ χ

where χ is a character of / by Gallagher’s theorem (Corollary 6.17 of [4]).
Also, by the same reason, we have that

ψ = θ̂ ψ

where ψ is a character of / . Now,

∑

∈

χ( )ψ( ) =
∑

∈

θ̂( ) χ( )θ̂( ) ψ( )

= χ( ) ψ( )
∑

∈

θ̂( )θ̂( ) = | | χ ( ) ψ( )

by Lemma 8.14.c of [4]. Now, we have that

χ = θ̂ ( χ)
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where ( χ) is a character of / , and

ψ = θ̂ ( ψ)

where ( ψ) is a character of / . Arguing as before and using thatθ̂ ∈ Irr( ), we
get

∑

∈

χ( )ψ( ) = | | χ( ) ψ( )

This proves the lemma.

Proof of Theorem 3.3. If ∈ , notice that is -regular iff all the ele-
ments in are -regular. This follows from the fact that is -regular iff 〈 〉
is a ′-group. By the same argument (in with ), we may write

0 =
⋃

∈T

as a disjoint union. We claim that

0 =
⋃

∈T

is also a disjoint union. If ∈ 0, then = for some ∈ and ∈ . Since
〈 〉 is a ′-group, it follows that ∈ 0. Hence, = for some ∈ T and ∈ .

Hence ∈ . Also, if ∈ ∩ for , ∈ T , then −1 ∈ ∩ = and
= . Hence = , as claimed. Now the result follows from Lemma 3.4.

Corollary 3.5. Suppose that is a normal′-subgroup of . Let ⊆ with
= and write = ∩ . Suppose thatθ ∈ Irr( ) is -invariant and such

that θ ∈ Irr( ). Let be a block of such thatIrr( ) ⊆ Irr( | θ). Then there is
a unique block of such thatIrr( ) = {χ | χ ∈ Irr( )}. In this case, restriction
defines a perfect isometry between and .

Proof. By Lemma 10.5 of [3], we have that restriction defines abijection
Irr( | θ) onto Irr( | θ ). By Theorem 3.3 above and Theorem 3.19 of [7], we have
that ={χ | χ ∈ Irr( )} is a block of . Now, Lemma 3.1 and weak block orthog-
onality guarantee that restriction is a perfect isometry between and .

Our last result in this section, is to find a perfect isometry associated to certain
odd fully ramified sections of a group.

A five-tuple ( θ ϕ) is a character fiveif / is a normal abelian section
of and ϕ is a -invariant irreducible character of fully ramified withrespect to
/ ; that is to say,ϕ = θ with 2 = | / | for someθ ∈ Irr( ).
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If ( θ ϕ) is a character five, thegood elements of with respect to the
character five are defined in Definition 3.1 of [3], and are relevant for our purposes
here.

The following is one of the key tools when studying charactertheory of groups
of odd order.

Theorem 3.6. Let ( θ ϕ) be a character five. Assume that| : | or
| : | is odd. Then there exists a characterψ ∈ Char( / ) and ⊆ be such
that:
(a) = and ∩ = .
(b) The equationχ = ψ χ̂, for χ ∈ Irr( | θ) and χ̂ ∈ Irr( | ϕ) defines a bijection
between these sets of characters.
(c) If | : | is odd, then χ and χ̂ correspond above if and only if[χ χ̂] is odd.
(d) Every element of is good with respect to( θ ϕ).
(e) |ψ( )|2 = |C / ( )| for ∈ .
(f) If χ ∈ Irr( | θ), then χ( ) = 0 unless lies in some -conjugate of .
(g) is -conjugate to for all automorphism of fixing , , θ and ϕ.

Proof. See Theorem 9.1 of [3]. Part (d), which is not explicitly stated in [3], can
be found in Theorem 3.2 of [6].

We shall refer to such subgroups in Theorem 3.6 as thegood complementswith
respect to ( θ ϕ).

The next theorem is also in [2]. Here, we show another proof ofthis.

Theorem 3.7. Assume the hypotheses and notation ofTheorem 3.6,and suppose
that is a ′-group. Let be a -block of withIrr( ) ⊆ Irr( | θ). Then there
is a unique -block of such that{χ̂ | χ ∈ Irr( )} = Irr( ) is a -block of . Also,
the mapχ 7→ χ̂ is an isometry between and .

Proof. If χ, µ ∈ Irr( | θ), first we claim that

∑

∈ 0

χ( )µ( ) = | : |
∑

∈ 0

χ( )µ( )

Arguing as in the proof of Theorem 3.3, we may write

0 =
⋃

∈T

as disjoint union, where

0 =
⋃

∈T



THE ISAACS CORRESPONDENCE 323

is also a disjoint union. Now, since the elements of are good,by Corollary 3.3
of [3], we have that

|C / ( )|
∑

∈

χ( )µ( ) = | : |
∑

∈

χ( )µ( )

By Theorem 3.6,

| : |
∑

∈

χ( )µ( ) = | : ||ψ( )|2
∑

∈

χ̂( )µ̂( )

and our claim easily follows.
Now, by Theorem 3.19 of [7], we have that there is a unique -block of

such that{χ̂ | χ ∈ Irr( )} = Irr( ) is a -block of .
Now, if ∈ and ∈ , we let

α( ) =
∑

χ∈Irr( )

χ( )χ̂( )

We wish to prove that

1
|C ( )|α( ) and

1
|C ( )|α( )

lie in and that ifα( ) 6= 0, then is -singular if and only if is -singular.
By Theorem 3.6 (f), we may assume that∈ . Hence,

α( ) = ψ( )
∑

χ∈Irr( )

χ̂( )χ̂( )

From here, weak block orthogonality in , and the fact that thecharacterψ is never
zero, we deduce that wheneverα( ) 6= 0, then is -singular if and only if is

-singular. Also, we have that

1
|C ( )|α( ) =

ψ( )
|C ( )|

∑

χ∈Irr( )

χ̂( )χ̂( ) ∈

by Lemma 3.1. Finally,

1
|C ( )|α( ) =

1
|C ( )|

∑

χ∈Irr( )

χ( )χ̂( ) =
1

ψ( )
1

|C ( )|
∑

χ∈Irr( )

χ( )χ( )

=
ψ̄( )

|C / ( )|
1

|C ( )|
∑

χ∈Irr( )

χ( )χ( )

by Theorem 3.6 (e). This element belongs to by Lemma 3.1 and the fact that /

is a ′-group.
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4. Proof of Theorem A

Lemma 4.1. Let be a solvable group. Let ∈ Syl ( ) and ∈ Syl ( )

with 6= . If ⊆ N ( ), then O
′

( ) ⊆ O ′ ( ).

Proof. It suffices to prove ⊆ O ′ ( ). We have thatO ′ ( ) ⊆ O ′ ( ).
Since ⊆ N ( ), it follows that

[
O ′ ( )
O ′ ( )

O ′ ( )
O ′ ( )

]
=

[
O
(

O ′ ( )

)
O ′ ( )

O ′ ( )

]
= 1

By Hall-Higman’s lemma 1.2.3, it follows that ⊆ O ′ ( ), as desired.

In order to prove Theorem A, we need the following result.

Theorem 4.2. Let , be primes, let be a finite{ }-separable group, and
let be a -block of such that all of its ordinary irreducible characters have de-
gree not divisible by . Then a defect group of normalizes someSylow -subgroup
of .

Proof. This is Theorem A of [8].

We are ready to prove Theorem A.

Proof of Theorem A. We argue by induction on| |. By Theorem 4.2, let be
a Sylow -subgroup such that ⊆ N ( ). Let be a normal ′-subgroup of .
Let χ ∈ Irr( ). We have thatχ ∈ Irr ′( ). Now, let θ be an -invariant irreducible
constituent ofχ . Then Irr( )⊆ Irr( | θ), because the block covers the block{θ},
as desired. Write = (θ), the stabilizer ofθ in . We claim that we may assume
that θ is -invariant. Otherwise, by the Fong-Reynolds correspondence (Theorem 9.14
of [7]), there exists a unique block of coveringθ such that Irr( ) ={ψ | ψ ∈
Irr( )} and such that is a defect group of . We have that⊆ Irr ′( | θ). Since
| | < | |, by induction we have that there exists a unique block∗ of ∩ N ( )
with defect group , with

Irr( ∗) = {χ∗ | χ ∈ Irr( )}

and such that the mapψ 7→ ψ∗ is an isometry. Now, by Theorem 2.5, it follows that
there isϕ ∈ Irr( | θ) such that Irr( ∗) ⊆ Irr( N ( )(α∗) | α∗) whereα∗ = ϕ∗

N ( )∩ .
We also know that (χ∗)N ( ) = (χ )∗ for every χ ∈ Irr( | θ) by Theorem 2.4. By
the Fong-Reynolds correspondence, we conclude that (∗)N ( ) = {(χ∗)N ( ) | χ ∈
Irr( )} = ∗ is a block of N ( ) with defect group . Also, in this case, by using
twice Lemma 3.2 and the fact that composition of perfect isometries is a perfect isom-
etry, the proof of the theorem is complete.
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Now, by the previous paragraph applied toO ′ ( ) and Theorem 10.20 of [7],
we have that = Irr( | θ) and that is a Sylow -subgroup of , where
θ ∈ Irr(O ′ ( )). Hence, we have that ⊆ N ( ). By Lemma 4.1, it follows that
O ′ ( ) N ( ) = . In particular, we have thatO ′ ( ) ∩ N ( ) = O ′ (N ( )).
Let θ∗ ∈ Irr ′(O ′ (N ( ))) be the Isaacs correspondent ofθ. By Corollary 2.6, we
have thatα∗ is N ( )-invariant. Hence, by Theorem 10.20 of [7] it follows that
Irr(N ( ) | α∗) is a block ofN ( ) with defect group . By Corollary 2.6, we have
that the Isaacs correspondence maps Irr(| θ) onto Irr(N ( ) | α∗).

Write = O
′

( ) ⊆ O ′ ( ). If is trivial, then = N ( ) and there is
nothing to prove. Thus we suppose that is not trivial. Let/ be a chief fac-
tor of . By coprime action, notice thatC / ( ) = 1 (because / is abelian
and [ / ] = / ). Hence, N ( ) is a complement of / in . Notice that

N ( ) is the unique complemet of / containing . Letξ ∈ Irr( ) and ǫ ∈ Irr( )
be -invariant characters such that Irr( ) covers{ξ} and {ǫ}. We already know that
we may assume thatξ and ǫ are -invariant. Hence, by the going down theorem (The-
orem 6.18 of [4]), we will have that eitherξ = ǫ or that ǫ is fully ramified with re-
spect to / .

Suppose thatξ = ǫ. Notice that if χ ∈ Irr( | ξ), then (χ N ( ))∗ = χ∗ by The-
orem 2.1. In this case, the theorem follows by induction applied in and Corol-
lary 3.5.

Suppose now thatξ = ǫ with 2 = | : |. By Theorem 3.6 (g) we may assume
that there is a good complement which contains and by uniqueness, we have that

N ( ) = is a good complement, in the language of Theorem 3.6. In this case, the
theorem follows from Theorem 3.7, Theorem 3.3 and the inductive hypothesis.
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