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1. Introduction

Suppose thatS and; are finite groups such that  actsGon coprirmety
B an § invariantp -block ofG such thaf centralizes some defecugrd of B.
In [10], Watanabe proved that whenev&r is solvable, theretlie a perfect isome-
try betweenB and the set of the Glauberman correspondentseottaracters irB
Horimoto in [2] proved the case whet® is nonsolvable.

Now, let G be a group of odd order. Lgt be a prime add a Syow g
of G. By Irr,/(G), we denote the set of irreducible charactersGof — which rusgree
not divisible byg . WhenG is a solvable group of odd order, M.alsa constructed a
natural one-to-one correspondence

*1 g (G) — Iy (NG (Q))

which depends only ol  an@  (see [3]).

In this paper, we show that there is also a perfect isomettydsn a block
B where all irreducible characters of this have degree notsille by ¢ and the
set of Isaacs correspondents of the character® in . This leamepts the work by
A. Watanabe and H. Horimoto.

Theorem A. Suppose thatG is a finite group of odd order apd apd are
distinct prime numbers. Le8 be@a -block 6f such that evemyducible character
of B hasg’-degree. LetD be a defect group B8f . Then there exists a unigoleck-

B* of Ng(Q), for someQ € Syl (G), with defect groupD such thdtr(B8*) = {x* |
x € Irr(B)}. Moreover there exists a perfect isometl®  such thafy) = x* for
x € Irr(B).

Some of the results of this paper were obtained while | wagirgs Ohio Uni-
versity. | would like to thank the Mathematics Department its hospitality. | would
also like to thank G. Navarro for many helpful suggestions.

Research partially supported by DGICYT.
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2. Preliminaries

In this section, we review the Isaacs correspondence androve gome properties
of this. We present the Isaacs correspondence for the ppime it veas defined in [3].
Let P be a Sylowp -subgroup off

Theorem 2.1 (Isaacs). Suppose thatG is a group of odd order. Suppose that
G = KH, whereK, LG, KNH =L and K/L is abelian. Suppose thal = LNg(P).
Let 6 € Irr(L) be P -invariant. Ify € Irr,/(G) lies overd, then

xu =X +2A +8,

where x(#) has p’-degree and lies ovef and no irreducible constituent of lies over
0. Moreover the map — x) is a bijection betweerrr (G | 6) and Irr,,(H | 6).

Proof. This is Theorem 10.6 of [3]. U

Lemma 2.2. LetG be a group of odd order. Suppose that= 0”7 (G)' Ng(P).
Let O” (G) C J C G. Let x € Irr,/(G) and let@ € Irr,(J). Then all irreducible
constituents ofy,; have p’-degree and

[ 01 = [0 gmm, 6407]

In particular, if §¢ =y, then

(HOINH — | (H)
(6™7) :

X

Proof. Follows from Lemma 2.9 of [9]. O

Suppose thaG o and write G;41 = or'r (Gi) Ng(P). The Isaacs correspon-
dence*: Irr,(G) — Irr,/(Ng(P)) is obtained by using Theorem 2.1 with respect to
the chain

G=Go>G1>Gz2>-->G,=Ng(P).

First of all, we review some properties of the Isaacs cowrdpnce.

Theorem 2.3. Let G be a group of odd order. Suppose that  is a subgroup of
G containing O”'? (G)’ Ng(P). Let x € Irr,(G). Then(xM)* = y*.

Proof. This is Theorem 2.3 of [9]. U

Theorem 2.4. Let G be a group of odd order. Suppose thatC J C G and let
¢ € Irr(J) such thaté® = x € Irr(G). Let £* € Irr(N;(P)) and x* € Irr(Ng(P)) be the
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Isaacs correspondents gfand , respectively. Theie*)Ne(P) = y*,
Proof. This is Theorem A of [9]. U
A key tool for proving our main result is the following.

Theorem 2.5. Let G be a group of odd order and I < G. Suppose thak €
Irr,,(G) and @ € Irr, (M) is P-invariant. Then
(@) [xm, 6] #0if and only if [(x*INu,(p), ¢*] # O for somey € Irr, (MP | 0).
(b) If p€lrr,(MP|0), then

16(0) " NG(P) = Ing(p) (0" INu(p)) -

Moreover if yy is the Clifford correspondent of over 6 and [(x*)n,.p), ¢*] # O,
then x; is the Clifford correspondent of* over (¢*)n,,(p)-

Notice that (*)n,,p) € IIr(Ny(P)) sinceNy (P) is a normal subgroup dflp (P)
of p-index. As an inmediate consequence of this theorem, we Itize following re-
sult.

Corollary 2.6. Let G be a group of odd order and le2 C M <G. Suppose that
xIrr,/(G) and 6 € Irr,,(M). Then

(@) [xm. 0] #0if and only if [(x*Inyp), 0] Z 0.
(b) We have that

16(0) N NG(P) = Ing(p)(07) .

Moreovet if x4 is the Clifford correspondent of over 6, then xj is the Clifford cor-
respondent ofy* over 6*.

Proof. Follows from Theorem 2.5. O

First of all, we prove the Theorem 2.5 for the correpondenescdbed in Theo-
rem 2.1.

Proposition 2.7. Let G be a group of odd order and l&d”'? (G) € M«G.
Suppose thai € Irr,(G) and 6 € Irrp/ (M) is P-invariant. If H = 077 (G) Ng(P),
then
(@ [xm, 0] #0if and only if (X)) grup, pHMP)] # 0 for somey € Irr, (M P | 6).
(b) If o €lrrp,(MP|0), then

I60) N H = In (6" ™) pew) .
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Moreovet if xy is the Clifford correspondent of over and [(x'"))grwp, o #MP)] #
0, then /"¢ is the Clifford correspondent o) over (o) 0.

Proof. SinceMP < G, we have that every irreducible constituent pf;» has
p'-degree. And, by Lemma 2.2 we have thatulp, ] = [(X")unmp, oHOMP).
Hence, the part (a) follows.

Now, suppose thatp € Irr, (MP | 6). Let § € Irr(0”'? (G)') be a P -invariant
character which lies undet and hence, undep. By Theorem 2.1, we have that

PHAMP = <P(HQMP) +2A +43

where o(#"MP) has p’-degree and lies ovef and no irreducible constituent ¢f lie
over ¢ (and hence over any of thH -conjugate &f Write o = (@H"™MP)) ;0. We
have that

Ouom = oanm = (QO(HQMP))

wom F2810m * Brom = o+ 2850w + Braom
Let i € I(0) N H. Sincea and o’ are irreducible constituents @f with odd mul-
tiplicity lying over &, it follows that o = a. And 2 € Iy(c). Now, suppose that
h € Iy(a) Notice that it h € Iy(eP™MP)) = [;(p) N H thenh € I5(0). Thus,
we may assume that ¢ I (oH"P)). Hence, by Gallagher's lemma, we have that
(QUHNPMY = H(HOPM)\ for some linear charactek € Irr(H N PM/H N M) (we
can also see\ € Irr(PM/M)). By Lemma 2.2, we deduce that" = o). Then
0" = (p\)w = 0. Therefore,h € I(0) N H and the first part of (b) is proven.

Now, suppose thaky be the Clifford correspondent of over 8 and assume that
("N gmp, @ TOMP)] # 0. Write I = I ¢). By the first part of (b) we have that
X e i, (In(a) | @). By Lemma 2.2, it follows that ™ = ({"M)#. Therefore

XY is the Clifford correspondent of*) over o, as desired. O

As consequence we have the following result which is a pdaticcase of Theo-
rem 2.5.

Proposition 2.8. Let G be a group of odd order and l&”'? (G) C M <« G.
Suppose thaj € Irr,/(G) and 6 € Irr,,(M) is P-invariant. Then
(@) [xm, 6] Z0if and only if [(x )Ny, (p), ¢*] # O for someyp € Irr,, (M P | 0).
(b) If p €lrrp(MP|0), then

16(0) N NG (P) = Ing(p)((¢"INg(P) M) -

Moreovey if xo is the Clifford correspondent of over § and [(x*)n,.(p). ¢*] #Z O,
then x; is the Clifford correspondent of* over (¢*)ng Py -
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Proof. We argue by induction ofG|. Let H = O”'? (G) Ng(P). If H = G,
then there is nothing to prove, and thus we suppose Hiat< G. Let xy() ¢
Irr,,(H) the correspondent of by the correspondence of Theorem 2.1. We have that
x* = (x)* € Irr,(Ng(P)) by Theorem 2.3. By Proposition 2.7 we have that
[xu. 6] # 0 if and only if [(x")grmp, ?"MP] # 0 for someyp € Irf(M P | 6). Since
H N MP < H, by induction, we have that Y(*))zup, o#"MP)] # 0 if and only if
[(XINus(P)> ©*] 7 0. And (a) follows.

Now, let ¢ € Irr, (M P | 6). By Proposition 2.7, we know that

Ig(0) NV H = I (0¥ ™M) )
Since H N M < H by induction (applied to 4", ,/) we have that
Iy ((QO(HOMP))HOM) NNG(P) = Ing(r) ((¥"INa(P)M) -
Hence,

I6(0) N NG(P) = Ingp) (9 INa(P)n1)

as desired.

Now, suppose thal, be the Clifford correspondent of over § and assume
that [(¢*)n,,(p) 7] # 0. Notice that [(‘D)yryp, o H™MP] # 0. Write I =
I6(0). By Proposition 2.7, we have that/’™ is the Clifford correspondent of (")
over (pHMP)y, .. And, by induction (applied to{*)nypynm) We have thaty) =
(KM« is the Clifford correspondent of* = (x(#))* over (o*)ny(p)yow, as desired.

O

Now, we are ready to prove Theorem 2.5.

Proof of Theorem 2.5. We argue by induction [@. Write N =Ng(P). Let T
be the inertia group of in G. We may assume thak ©7'7(G) ¢ M. Otherwise
KP =0 (G) C T and the result follows by Proposition 2.8.

Let KM/R be a chief factor ofG such tha¥ C R < KM. It follows that
K ¢ R, and henceRN < G. Now K/(K N R) is an abelianp’-chief factor of G .
Thus, K’ € KN R C R. Hence,K'N C RN, and x®V) ¢ Irr,/(RN) is defined.
Since N C RN, it follows that (") lies over all P -invariant irrdeucible characters of
xum- Hence, k. 0] # 0 if and only if [(x®¥),, 6] # 0. By induction, we have that
[(xEM)y, 0] # 0 if and only if [(x*In,.(p), ¢*] # O for somey € Irr, (M P | 6), and
(a) follows.

Now, let ¢ € Irr, (M P | 6), by induction we have that

Inn(0) NN = In((¢™)Nem) -
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Hence,
Ic(O) NN = In((¢™)Nrm)

as desired. Now, lek,y be the Clifford correspondent of over 6. Since N C RN, it
follows that x(®V) lies overd. Let 6 € Irr(T N NR | 6) be the Clifford correspondent
of x(®V) over §. We have thaty(*V) = §VR By Theorem 2.4, it follows that* =
(X(RN))* = (5NR)* = (5*)N

Now, it follows that O”'? (TY(NNT) C TN RN. Hence by Theorem 2.3, we
have thaty; = (x{""""))*. We want to show thas = x{*"™"). For this, we prove that
[(xe)rnnr, 6] is odd. We have that §s)rnng. 6] = [xrrvgs 8] = [xvr, 0V %] which
is odd. And by induction it follows thaj; is the Clifford correspondent of* over

(‘p*)NﬂMv where [(X*)NMI’(P)’ QO*] _T/ 0 U

3. Some perfect isometries

Let p be a prime, and let R be the ring of algebraic integer&€inVe let U =
{a/m | « € Rym € Z — pZ} be the ring ofp -local integers. We fixk( D, F) a
p-modular system, wher& is algebraically closed &hd D (see [5]).

M. Broué introduced the notion of a perfect isometry in [$uppose thatG and
H are finite groups, and leB ankl a block 6f ahd , respectively.isametry
~ Z[Irr(B)] — Z[Irr(b)] is perfectif the following two conditions are satisfied:

(i) for all g € G, h € H, we have that

1

T 2 @) and s 3 (@R

X €Elrr(B) X €Elrr(B)
belong toD;

(i) if erlrr(B) x(g)x(h) # 0, theng isp -regular if and only ik i -regular.
The following lemma is well-known and, together with wealodk orthogonality,
guarantees that the identity is a perfect isometry.

Lemma 3.1. Suppose thaB is @ -block @ . Then

1

ICa(2)] > x@xtmeu

X €Elrr(B)

for g, h € G.

Proof. If e, € CG is the central idempotent associated o € Irr(G) and
f8 = Yy eimm €x- Just compute the coefficient af in fzK, whereK is the conju-
gacy class ofg L is the conjugacy class/oft and X is the sum of the elements of
X C G. Now apply that the coefficients ofy lie ity  (see the proof of @liary 3.8
of [7]). O
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It is not difficult to see that the composition of perfect isires is a perfect
isometry. (see, for instance, Lemma 1 of [10].)

Another example of perfect isometry is given by the Fong+iks correspon-
dence.

Lemma 3.2. Let N< G and letb be ap -block ofN . LeT'(b) be the stabilizer
of b in G. Suppose thaB® is the Fong-Reynolds corresponderit efBI(7(b) | b).
Then the magdrr(B) — Irr(B) given byvy — ¢ defines a perfect isometry fas
and BS .

Proof. LetT beT & ). Letg € G andt € T. First we show that if
> 9O (9)u() 70,
Ypelrr(B)

then g is p -regular if and only it isp -regular. Notice that if @ conjugate ofg

lies in T, theny%(g) = 0. Hence we have that son@ -conjugategof liein . Let
g1, ..., & be representatives for the classes7of contained inGhe ugaoy class

of g. By using the formula of page 64 of [4], we have that

RLOTOEDS (|cc(g)|2|“g’ o

Ypelrr(B) ypelrr(B)

= ! |CG(g)|( eV )
;|CT(&')| Z P(gi)(t) |

Ypelrr(B)

If this is nonzero, theng i -regular if and only if i -regulay weak block
orthogonality applied irn?" .
Now, we prove that

ST W) and ——— 3 wC(e)

[Ca(a)] (g)| elr(B) Cr(®)] elr(B)

are elements oU . As above, we may assume that s6me -conjabgtdies in T'.
By Lemma 3.1, and using the same notation as before, we hatve th

)G D = b(g: )
Co@)] (g)| > WO = Z|C( 52 v e,

P eElrr(B) P eElrr(B)

Also,

1Cq(3)| 1
oS “‘g)“’)‘z|cT(g,-)|(|cT(;)| > we)i) e

Ypelrr(B) Ypelrr(B)
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by using Lemma 3.1 and the fact that

1Cq(3)| - 1Cq(si)|
ICr(g)| ICr(g)l

is an integer. ]

Our next goal is to find certain perfect isometries assodiatenormal p’-sections
of groups.

If His a subgroup ofG and < Irr(H), we denote by IrrG | ) the set of irre-
ducible constituents of“.

Theorem 3.3. Suppose thak is a normal’-subgroup ofG . LetH C G with
KH =G and write L = K N H. Suppose thaf € Irr(K) is G-invariant and such that
;. € Irr(L). Let G° be the set ofp -regular elements 6f .f ¥ € Irr(G | ), then

> x@G ) =K LY x(eY.

xeGO yEHO

Lemma 3.4. Suppose thatk is a normal subgroup 6f . LBt C G with
KH = G and write L = K N H. Suppose that € Irr(K) is G-invariant and such
that 6, € Irr(L). Leth € H. Then ifx, ¢ € Irr(G | 6), we have

D OxkRY((kR) ™) = K LY xUh)g(h) ) .

kek leL

Proof. Consider the groupy & (h). Note thatV =W N H = L(h). Sincef is
W-invariant, there is somé < Irr(W) extendingd. Hence

Xw :éAX,

where A, is a character ofW /K by Gallagher’s theorem (Corollary 6.17 of [4]).
Also, by the same reason, we have that

Yw :équ,

where A, is a character oW /K. Now,

D x(kh)yp(kh) = > " (kh) A (h)0(kh) Ay (h)

kek kekK

= A (ALY O(kn)(kh) = |K | Ay (DA, (R).
kek

by Lemma 8.14.c of [4]. Now, we have that

Xy = év(Ax)v,
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where (A, )y is a character oV /L, and
Py =0y (Ay)v,

where (A,)y is a character o/ /L. Arguing as before and using thé € Irr(V), we
get

> XURYG(R) = |L| A () Ay (R) .

leL

This proves the lemma. U

Proof of Theorem 3.3. Ifx € G, notice thatx isp -regular iff all the ele-
ments inKx arep -regular. This follows from the fact that s uleg iff K(x)
is a p’-group. By the same argument (|8  with ), we may write

HO = ULt,

teT

as a disjoint union. We claim that

G0=UKt,

teT

is also a disjoint union. Ifc € G° thenx =kh for somek € K andh € H. Since
K (x) is a p’-group, it follows thath ¢ H°. Hence,h =t for some € 7 and/ € L.
Hencex € Kt. Also, if z € KtNKs fort, s € T, thents™ ¢ KN H = L and
Lt = Ls. Hencet =s , as claimed. Now the result follows from Lemma 3.4. [

Corollary 3.5. Suppose thaK is a normal’-subgroup ofG . LetH C G with
KH = G and write L = K N H. Suppose that € Irr(K) is G-invariant and such
that 0, € Irr(L). Let B be a block ofG such thdtr(B) C Irr(G | ). Then there is
a unique blockb ofH such thdtr(b) = {xu | x € Irr(B)}. In this case restriction
defines a perfect isometry betweBn  dnd

Proof. By Lemma 10.5 of [3], we have that restriction definesbigection
Irr(G | 6) onto Irr(H | 6y). By Theorem 3.3 above and Theorem 3.19 of [7], we have
thatb ={xu | x € Irr(B)} is a block of H . Now, Lemma 3.1 and weak block orthog-
onality guarantee that restriction is a perfect isometriwben B andb . U

Our last result in this section, is to find a perfect isometsgoziated to certain
odd fully ramified sections of a group.

A five-tuple G, K, L, 0, ) is acharacter fiveif K/L is a normal abelian section
of G and ¢ is a G -invariant irreducible character @&  fully ramified witkspect to
K /L; that is to saypX =ef with ¢ = |K/L| for somed € Irr(K).
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If (G,K,L,B0,p)is a character five, thgood elements ofG with respect to the
character five are defined in Definition 3.1 of [3], and arewva for our purposes
here.

The following is one of the key tools when studying charadtexory of groups
of odd order.

Theorem 3.6. Let (G, K, L, 0, ») be a character five. Assume thg& : K| or
|K : L] is odd. Then there exists a charact¢rc Char(G/K) and H C G be such
that
(8 HK =G andHNK = L.

(b) The equationyy =u X, for x € Irr(G | 6) and x € Irr(H | ) defines a bijection
between these sets of characters.

(c) If |G: L|is odd then x and y correspond above if and only ffyxz, x] is odd.
(d) Every element off is good with respect (@, K, L, 6, ©).

(€) |(g)l* = Ck,1(g)l for g € G.

(f) If x elrr(G | ), then x(g) =0 unlessg lies in som& -conjugate &f

(g) H® is G-conjugate toH for all automorphism a@f fixing, L, 6 and ¢.

Proof. See Theorem 9.1 of [3]. Part (d), which is not exgiicitated in [3], can
be found in Theorem 3.2 of [6]. ]

We shall refer to such subgrougé in Theorem 3.6 agytied complementwith
respect to G, K, L, 6, ©).
The next theorem is also in [2]. Here, we show another proahist

Theorem 3.7. Assume the hypotheses and notatiorTloéorem 3.6and suppose
that K is a p’-group. LetB be ap -block oG  withrr(B) C Irr(G | 6). Then there
is a uniquep -block off such thdty | x € Irr(B)} = Irr(d) is a p-block of H . Alsp
the mapy — x is an isometry betwee and

Proof. If x, p € lrr(G | 0), first we claim that

> x@pt) =K LY x(x)ulx) .
xeG° x€H°
Arguing as in the proof of Theorem 3.3, we may write
G°=[J k.

teT

as disjoint union, where

HOZULI,

teT
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is also a disjoint union. Now, since the elements Bf  are gdndCorollary 3.3
of [3], we have that

Cry)] S X@HE) = 1K L] S x)uo).-

xeKh xeLh

By Theorem 3.6,

K DL x(@)p(x) = K LR Y R6OAR),
X€Lh x€Lh
and our claim easily follows.
Now, by Theorem 3.19 of [7], we have that there is a unigue clblb of H
such that{x | x € Irr(B)} = Irr(d) is a p-block of H .
Now, if g € G andh € H, we let

alg.h)= Y x(@)(h).

X €Elrr(B)
We wish to prove that

1 1
——afg,h) and ———a(g, h
Cot " # eme
lie in U and that ifa(g, h) # 0, theng isp -singular if and only i: i -singular.
By Theorem 3.6 (f), we may assume that H. Hence,

alg. h) =1(g) > R(e)R(h).

X €Elrr(B)

From here, weak block orthogonality i, and the fact that ¢haractery is never
zero, we deduce that wheneve(g, n) # O, theng isp -singular if and only if: is
p-singular. Also, we have that

Lt R0 o
|CH(h)|a(g’ h) ICu(h)] xeer(B)X(g)X(h) ceU
by Lemma 3.1. Finally,
: = __££__ % :._l____i__
ma(g, h) = |CG_(8)| X;;B)X(g)x(h) o0 [Co @] X;;B)X(g)x(h)
_ v 1
~[Ck/(m)] ICa(g)| Xelz”;B)X(g)X(h),

by Theorem 3.6 (e). This element belongstto by Lemma 3.1 aedatt thatK /L
is a p’-group. O
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4. Proof of Theorem A

Lemma 4.1. Let G be a solvable group. Le? € Syl,(G) and Q0 € Syl (G)
with p # g. If P CNg(Q), then0?'? (G) C O, (G).

Proof. It suffices to provep C O, (G). We have thatO,, (G) C PO, (G).
Since P C Ng(Q), it follows that

0y, (G) QO (G)} [ ( G ) 00, (G)} _,
Oy (G)’ 0, (G) ! 0, (G) ’ O, (G) .

By Hall-Higman’s lemma 1.2.3, it follows tha@ C O, (G), as desired. O
In order to prove Theorem A, we need the following result.

Theorem 4.2. Let p, ¢ be primeslet G be a finite{p, ¢ }-separable group, and
let B be ap -block ofG such that all of its ordinary irreducible aslacters have de-
gree not divisible by; . Then a defect group Bf normalizes s8glew g -subgroup
of G.

Proof. This is Theorem A of [8]. U

We are ready to prove Theorem A.

Proof of Theorem A. We argue by induction ¢@|. By Theorem 4.2, letf) be
a Sylow g -subgroups  such thd C Ng(Q). Let N be a normalp’-subgroup ofG .
Let x € Irr(B). We have thaty € Irr,/(G). Now, let § be anQ -invariant irreducible
constituent ofyy. Then IrrB ) Irr(G | 6), because the blocB  covers the blofk},
as desired. Writel' 4 &), the stabilizer ofg in G. We claim that we may assume
that 6 is G-invariant. Otherwise, by the Fong-Reynolds correspond (Theorem 9.14
of [7]), there exists a unique block df coveriggsuch that Irr@ ) ={y¢ | ¢ €
Irr(p)} and such thatD is a defect group bf . We have that Irr,/ (T | 6). Since
|T| < |G|, by induction we have that there exists a unique blé¢kof T N Ng(Q)
with defect groupD , with

Irr(b*) = {x* | x € Irr(b)}

and such that the map — «* is an isometry. Now, by Theorem 2.5, it follows that
there isp € Ir(NQ | 0) such that Irg*) C Irr(In,()(a*) | ) wherea™ = o oyn-
We also know that *)Ne(@) = (y9)* for every x € Irr(T | 6) by Theorem 2.4. By
the Fong-Reynolds correspondence, we conclude tigh'((@) = {(x*)No(Q | x €
Irr(b)} = B* is a block of Ng(Q) with defect groupD . Also, in this case, by using
twice Lemma 3.2 and the fact that composition of perfect iswims is a perfect isom-
etry, the proof of the theorem is complete.
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Now, by the previous paragraph applied @, (G) and Theorem 10.20 of [7],
we have thatB = InG | ¢) and thatD is a Sylowp -subgroup af , where
0 € Irr(O, (G)). Hence, we have thaD C Ng(Q). By Lemma 4.1, it follows that
0, (G)Ng(Q) = G. In particular, we have thaD, (G) N Ng(Q) = O, (Ng(Q)).
Let 6* € Irry/ (O, (Ng(Q))) be the Isaacs correspondent thf By Corollary 2.6, we
have thata* is Ng(Q)-invariant. Hence, by Theorem 10.20 of [7] it follows that
Irr(Ng(Q) | «*) is a block ofNg(Q) with defect groupD . By Corollary 2.6, we have
that the Isaacs correspondence mapsGlirf) onto Irrf(Ng(Q) | o).

Write K = 077 (G) C O, (G). If K is trivial, then G = Ng(Q) and there is
nothing to prove. Thus we suppose thkt is not trivial. lletL be a chief fac-
tor of G. By coprime action, notice thaC,, (Q) = 1 (becausek/L is abelian
and [K/L, Q] = K/L). Hence,LNg(Q) is a complement oK /L in G. Notice that
LNg(Q) is the unique complemet af /L containingQ . Let{ € Irr(K) and e € Irr(L)
be Q -invariant characters such that Br( ) covéeg and {¢}. We already know that
we may assume thgtande are G -invariant. Hence, by the going down theorem (The-
orem 6.18 of [4]), we will have that eithef, = ¢ or thate is fully ramified with re-
spect toK /L.

Suppose that; = e. Notice that if x € Irr(G | €), then ing)* = x* by The-
orem 2.1. In this case, the theorem follows by induction i@dpin LN and Corol-
lary 3.5.

Suppose now thag; = ee with ¢2 = |K : L|. By Theorem 3.6 (g) we may assume
that there is a good complemeAt  which contafd's  and by un&gserwe have that
LNg(Q) = H is a good complement, in the language of Theorem 3.6. imdase, the
theorem follows from Theorem 3.7, Theorem 3.3 and the irdeidtypothesis. O
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