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Abstract
The Brown-Peterson cohomology for skeleta of the classifyspace of the
group Z4 x Z4 is analyzed in order to describe obstructions to the motiamrpng
problem for a particle moving in a 4-torsion lens space. Weulis the relationship
of this situation to the Euclidean immersion problem ##torsion lens spaces, and

the way this leads to an alternative approach to the cldsisitaersion problem for
real projective spaces.

1. Introduction

Despite the ample bibliography there is on the immersiorblera for projective
spaces (see [3] for an updated summary), the solution tostilisopen problem ap-
pears to be completely out of hands with present technigdese the result that is
perhaps the most comprehensive and, at the same time, wdmaningly simple state-
ment is Davis’ theorem [4] claiming

(1) R P2(n+a(n)—1) g RAn—Za(n) ,

where RP™ stands for them-dimensional real projective space(n) is the number
of ones in the dyadic expansion of and the symbolZ means “does not admit an
immersion in.”

In [11] the first author has contextualized such a result iwith more general sit-
uation by considering the immersion problem for tHet@sion (2n + 1)-dimensional
lens spacd_?™1(2%) and suggesting that fat = max0, «(n) — e}

(2) L2(n+6)+1(26) g R4n—2a(n)‘

For instance, the case= 1 is essentially Davis’ result, whereas the- a(n) case,
which is true and picks up nicely the complex situation [1@ds been conjectured to
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582 J. GONZALEZ AND L. ZARATE

be close to optimal in [5]. Yet the above generalization hasnbproved only under
certain hypothesis. For instance, (2) is verified in [11]vidled

3) 2’0 > q(n) —e,

wherev(n) stands for the highest power of 2 dividing

However, the fact that no counterexample is known to (2) mast ps well be
a consequence of our little knowledge of the immersion mnwbfor this manifolds.
One of the goals of this work is to partially mend the last &ion by studying the
problem from a slightly different point of view (see (5) arg) pelow), which we now
elaborate on.

The immersion problem foRP" has several equivalent presentations, one of which
has been recently developed in [8], and has to do with theliilgtes in the motion
planning problem for the system consisting of a line whichrdgolving in ( + 1)-
dimensional affine space through a fixed point. For our p@pdke relevant concepts
are as follows: given a spack, let P(X) denote the space of free paths #n and
let TC(X) stand for the smallest number (either a positive integesadrof open sets
U that coverX x X in such a way that the fibration

ev: P(X) > X x X

defined byeV(y) = (y(0), (1)), admits a local section on eath. Then the main re-
sult in [8] is the fact that there is aoptimal immersion

(4) an g RTqRP”)—E’

wheree = 1, except forn = 1,3,7 wheree = 0. In other words, finding optimal
Euclidean immersions foRP" is equivalent to a full understanding of the instabilities
arising in the motion planning for a particle in this manifqisee [6, 7]).

Now, the obvious question of wheth@C(L2"*1(k)) has to do with the immer-
sion problem forL2*'(k) has, however, a negative answer [9], and an indication of
this fact is given by the formul@C(CP") = 2n + 1, which is in tremendous con-
trast with the subtleties arising in the immersion problesn €P". Nonetheless the
“T C approach” for lens spaces can still be used as a way to uaddrgie immersion
problem for (odd dimensional) real projective spaces (§eélow), a philosophy de-
veloped in [9] by means of the following general result.

Theorem 1.1 ([9]). For n > 0 and e> 1 let s(n, €) denote the integral part of
[TC(L?™1(2°)) + 1]/2, so that

TC(L2n+1(2e)) — Zs(n, e) -, with 7= ‘[(n, e) € {O, 1}

Then
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a) s(n, e) equals the smallest positive integer | such that there %/ 2°-bi-equivariant
map §n+1 X 82n+1 N Szlfl_

b) s(n, e) equals the smallest positive integer | such that there is mdtopy com-
mutative diagram

Lo0(28) x L®(28) — L= L°(2°)

L2n+1(28) X L2n+l(26) S L2I—l(2e)

where i is the H-multiplication
c) s(n, e) equals the smallest positive integer | such that the iterdtéold Whitney
sum of the exterior tensor product

n Q¢ n— L2n+1(2e) % L2n+1(2e)

admits a nowhere zero sectiowheren is the pullback under the canonical projection
L2"1(2%) — CP" of the complex Hopf line bundle ovérP".

It is obvious that the numbers(n, €) satisfy the relations(n, €) < s(n', €) pro-
videdn <n’ ore<¢, and in this terms (4) and Theorem 1.1 are just saying that the
chain of inequalities

®) s(n, 1) <s(n, 2) <s(n,3) < ---

can indeed be considered as a way to understand the di#gutfti (roughly)half the
immersion problem for odd dimensional real projective ggafthe comments after (7)
give a more precise statement of what is meant here). In snchparoach one has
the extra bonus thad(n, €) is described easily enough for “large’ (see [9, Proposi-
tion 2.2]):

©) s(n. €) = 2n+1 for e> «a(n),
for e=ua(n).

On the other hand, it is quite profitable to compare teeapproach” in (5) with
the immersion problem for®2torsion lens spaces. This is done by means of the main
result in [2] to obtain (see [9])

©) 2s(n, e) — 1 > Imm(n, €).
Here Imm@, €) is the minimal Euclidean dimension whek&"(2°) can be immersed.

It is worth noticing that fore = 1, (7) is optimal up to parity, namelg(n, 1) — 1 is
just the integral part of (22) Imm(n, 1) (see [1] or [9, (24)]).
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We are now in position to introduce the main motivation foistiwork: in terms
of (7), “halving” Davis’ theorem (1) yields

(8) s(n+a(n)—1,1)>2n—a(n)+1,
that is a particular case of the analogue for (2) which, whalidywould read
9 s(n+a(n) —e e) >2n—a(n) +1,

at least fore < «(n). But in view of (6), fore = a(n), (9) is optimal only fora(n) =
1, and in general, the lower bound given by (9) seems to beeratleak for large
values ofe. The calculations in this paper give evidence to the folfmyv{conjectural)
improvement of (9):

(20) s(n+a(n) —e e) >2n—a(n) +e.

For instance (6) claims that (10) is in fact an equality éor «(n).

The philosophy behind (10) parallels that in Davis’ resul) énd its proposed
generalization (2)—namely, that in order to get informatmn the immersion problem
for real projective spaces, one can make use of the interaactimension/torsion in
lens spaces—, having now the advantage that, by using theagpin (5), not only
dimension/torsion play a role, but also the actual lowerrabior s(m, €) depends on
the torsion, something not present in (2) nor (9).

One should remark that the restrictien< a(n) suggested in (9) is indeed needed
for (10) to hold, and this is closely related to the “stablelues ofs(n, €) described
in (6). A clean view of this is obtained by comparing with the@ywvone uses the full
power of Davis’ result: in order to get the best non-immarsior RP?™ coming
from (1), one takes out of those having

(11) m>n+a(n) —1

the one for which A —2«a(n) is largest possible. In any case such anmust
have n <m. However without the restrictione < «(n) the analogous condition
m > n+a(n) — e—to be used when taking full advantage of (10)—may hold ewsn f
n > m and, in such a situation, (10) leads to nonsense. For irstaiem = 2+ — 2
so thata(m) =1, and taken = m+2 = 2*1, Thenm > n+a(n) — 1| for | > 3, so that
s(m, 1) > s(n+«(n) —I,1) which would be at leastr2— a(n) +1 = 2m+1 + 3 if (10)
applied. But this is in contradiction to (6%(m, ) = 2m.

We summarize this motivational section by stressing therggncal meaning and
importance of (10): as suggested by (7), the inequality B) dives lower bounds for
the topological complexity for 2torsion lens spaces which, towards an understanding
of the immersion problem for real projective spaces, imprdive lower bounds one
could get by studying Euclidean nonimmersions for lens epac
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2. Main result and outline of proof

Let h* be a multiplicative complex oriented cohomology theory,Xeand y stand
for the corresponding (2-dimensional) orientations ower axes inL2"1(2°) x L2"1(29),
and let F denote the formal group law fdn*. Then an easy consequence of Theo-
rem 1.1 is:

Corollary 2.1. s(n, €) > | whenever(x +¢ y)' #O0.

We deduce a number of cases of (10) by analyziggy) for n=m+a(m)—e
andl = 2m—«(m)+e—1, whenh* is Brown-Peterson cohomologBP*) at the prime 2.
In that caseF is in fact the universal 2-typical formal group law, whosepimtance
and complexity has put a great challenge for its practica. iespite this we will
only require the obvious observation thatcan be written in the form

(12) X+py=Xx+uy

whereu e BP*(L2"1(2°) x L2"*1(2°)) is a unit. The real crux of the matter will rather
be to perform calculations in this last ring. As a first sirfipéition, we will restrict
the computation of powers of (12) ®P*(L2"(2°) x L2"(2%)) which, according to [10,
Proposition 3.1], in the relevant dimensions takes the form

13) Ane = BP.IX, yI / (X" y™ [2°1(x), [2°1(y))-

Here [Z](x) stands for the associated (universal 2-typicd)s@ries, andBP, is the
Z»-polynomial algebra on generators, v, ... with deg@i) = 2(2 — 1) (as usual we
have changed the “cohomological” dimensions of the coefficiring to “homological”
dimensions, so that eaah acts on Brown-Peterson cohomology by lowering degrees).
In order to apply Corollary 2.1, we reduce th¢h power of (12) to a suitable multiple
of x"y" € A,.. The next result summarizes the calculations in the ratbehnical
Section 3.

Proposition 2.2. For v(m) > 0 and a(m) > e, (x +uy)' divides 2e-1p%Mexnyn
in Ane/(v3X"y"), provided e= 2.

The required conclusion will then be derived from the nexdule which in turn
will be deduced in Section 4 from the work of G. Nakos on theegalized Conner-

Floyd conjecture folZy x Zj.

Proposition 2.3. For e = 2 the annihilator ideal of Ry" in A, is contained in
(4, 2v1, v‘ll).

We will then have proved our main result in the direction od)1
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Theorem 2.4. For v(m) > 0 and a(m) > 2, s(im+a(m) — 2, 2) > 2m —a(m) + 2.

Lemma 3.1 in the next section is more specific on how lar®) is required to
be in Proposition 2.2 and Theorem 2.4.

As explained in the introduction, having a proof for an utreted (10) not only
would yield information on the topological complexity ofnie spaces (a problem rele-
vant to the motion planning in these manifolds), but woulsoabush a long way our
understanding of the role the 2-torsion plays in the imnoergiroblem for projective
spaces. The calculations needed to approach the generalo€g40) would depend
on having versions for Propositions 2.2 and 2.3 valid éor 3. After going through
the next section the reader will realize this would requirenajor computational ef-
fort in the case of 2.2 (both for extending the calculationset> 3, as well as for
removing the extra hypothesigm) > 0). Yet a generalization for 2.3 appears to be
much less transparent: as explained in the final section,vemdd need to have a
good hold on the annihilator ideal for the toral class in Bl2homologyof the classi-
fying space forZ,. x Z,.—a generalized Conner-Floyd conjecture. As observed in [16
17], such a goal could seem to be far from reach with preseatvladge. Nonethe-
less the authors hope that this paper (Section 3 in partjcafecourages and helps re-
searchers in the field to settle the structure of annihilateals of the type above. As
exemplified by the work on the classical Conner-Floyd canjec[18] and [13, 14],
such a task would contribute to extending the computab#iynd thus usefulness—for
Brown-Peterson theory.

3. Algebraic input

As in the last section, we fix the notatidon= 2m—a(m)+e—1, n = m+a(m) —e,
and Ane to represent the ring in (13). We will also assume a(m). In terms of (12),
the relevant class in Corollary 2.1 takes the form

3(@(m)—e)+1

I . ) _
(14) (X +E y)' = Z (n B i>Xr'll yI—n+| u|7n+| .

i=0

The extra hypothesis in Proposition 2.2 and Theorem 2.4esepts the analogue
of the assumption (3) used in [11]. Here it is only used to msilee all but two of
the summands in (14) are trivial.

Lemma 3.1. Under the two conditions
o a(m) —e<2vM-1
o u(m) > a(m)—e+v(a(m) —e)+v(m5h), for a(m) —e+1<i < 2((m)—e),
we have
a) v(,',)=>i+e provided0<i < 2(x(m)—e) and i # a(m) — e,
b) v(,'.)=a(m) -1, provided i=a(m) —e.

n—i
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Proof. We will use without further notice the well known riten v(z) =a(b) +
a(a —b) — «(a); likewise, in view of our hypothesis om, the fact thatw(2- — a) =
L —a(a—1), for 0 < a < 2%, will be translated below as the formutam — a) =
a(m) —1+v(m) —a(a—1), for 0< a < 2°M, Thus for b) we have

”<n|_i> :v<2m—a(:)+e—l)

za(m)+a(m—a(m)+e—1)—a@m—ao(m)+e—1)
= a(m) + (¢(m) — 1 +v(m) — a(ax(m) — €))

= ((m) = 1+v(m) +1—a(a(m) —e))
which, as claimed, is«(m) — 1. For a) we note that(n'_i) is equal to
(15) a(m+ (@(m)—e—i))+a(m— (2a(m)+1—2e—i)) — a(2m — (a(m) — e+ 1)).

Note that both 2(m)+1—2e—i anda(m)—e+1 are positive. In case thafm) —e—i
is positive too, (15) takes the form

a(m)+a(e(m)—e—i)+ (@(m) —1+v(m) — a(2a(m) — 2e —i))

— (a(m) —1+v(m) +1—a(a(m) —€))

=a(m) — L+a(a(m) —e—i)+a(e(m) —e) — a(a(m) — 2e — i)

_ 20(m) — 2e — i
—oz(m)—1+v( a(m) — e )
>a(m)—1

>i+e

In case thatx(m) — e —i is negative, (15) should be thought of as
a(m—(e+i —a(m))) +a(m— 2a(m)+1—2e—i))
—a(2m — (a(m) — e+ 1))
=(a(m) —1+v(m) —a(e+i —a(m) —1))
+ (@(m) — 1 +v(m) — a(2a(m) — 2e —i))
— (a(m) — 1 +v(m) + 1 — a(x(m) — €)).

Using the second condition in the hypothesis and the wellMneelationa(a — 1) =
a(a)—1+v(a), the last expression is easily seen to be bounded from biejoiwe. [

Together with [11, Corollary 2.6], Lemma 3.1 implies thap to a unit, (14) re-
duces to

2a(m)—1 (Xn—(oz(m)—e)yn—2(oz(m)—e)—1 + Xn—2(a(m)—e)—1yn—(a(m)—e)un—(a(m)—e)) .
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Using now [11, Corollary 2.7], the-multiple of the last expression takes the form
(16) zaflviu(m)—exnyn—z(a(m)fe).

The remaining of the section is then devoted to proving thieviing key relation.

Proposition 3.2. For e = 2 and i > 0 with n > 2i + 2, the following relation
holds up to units in Ae/(v3x"y"):
297lvilxnyn72i — Zeflvizxnyn_
Write [4](X) = > _s-0 asxS*!, and recall from [12] that the 2-divisibility properties
of the coefficientsas € BP, are given by

(17) V(as) = 2d0 + d]_

wheres+1 =dp+2d; +4d, +--- is the 2-adic expansion of+ 1.
The rest of the properties we need about the 4-series araigedtin the follow-
ing result whose verification is done by a straight forwarttwation left to the reader.

Lemma 3.3. a) az= wlvf + 2w,v,, Wherew, and wo are odd numberts
b) a7 € (2, vy).
c) Up to units ag =4, & = 2vq, and & = &2,

Proposition 3.2 is deduced below from (17), Lemma 3.3 andnthé result whose
proof constitutes the technical core of the paper.

Lemma 3.4. The following relations hold in A/ (vix"y") for i > 0:
() 2;"x"y"2 =0, provided n—2i > 2.
(b) vi*x"y"=2 =0, provided n— 2i > 4.

Proof of Proposition 3.2. We proceed by induction ignthe casei = 0 being
trivial. Using (13) and (17), we express.;‘12<”y“‘2i as an element of the ideal

T = vil—lxn (4yn72i71’ 8yn72i+1’ a3yn72i +2’
4yn72? +3’ 2yn72i +4’ 8yn72i +5’ a7yn'72i +6’
4yn72|+7’ 2yn72|+8’ 8yn72|+9’ yn72|+lO )

The generators in the first and third columns are trivial sifk" = 0. The generators
in the second column are trivial by induction. By Lemma 31%4'1*1x“y”*2'+6 lies in
the ideal generated byv2 *x"y"~2%*¢ and vix"y"~?*6, poth of which are zero in view
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of Lemma 3.4 (the later is trivial for = 3 in view of the indeterminacy we are impos-
ing; we note however thaﬂzfx”y” # 0 in An2 [16, 17]). Likewise, the last generator
of the idealZ is trivial by Lemma 3.4 too. It is then clear that up to units

n-2i — asvll—lxnyn—2| +2,

20l x"y/
which once again by Lemmas 3.3 and 3.4 takes the forfi’2,x"y" 201, Thus, the
result follows from the inductive assumption. ]

In proving Lemma 3.4 it turns out to be easier to verify thddwing more com-
plete statement (partaa) and @) of Lemma 3.4 are respectively contained in parts
(a&_,) and @) of Lemma 3.5).

Lemma 3.5. The following relations hold in A /(vix"y"), for i > 0.
(&) 2vi"2xnUyn—v = 0, for u+v =2 +1.
(i) 4o Ix-U=tyn=v =0, for u+v =2 + 1.
(i) vi3x"-uy—v = Q, for u+v = 2.
(&) 2vi3xn—uyn—v = 0, for u+v =2 +2.
() doiP2xn—u=tyn=v = 0, for u+v =2 +2.
() vi4x"uynv =0, for u+v =2 +1.

REMARK 3.6. Although not explicitly noted, the relations in Lemma& 3Jjust as
in Lemma 3.4) are claimed to hold provided there are “enoygiwers ofy (and thus
of x). In detall, in partsa, o, &, o’ above we requiren — u — v > 2, whereas in parts
b andb’ we needn—u—wv > 4. For instance, the latter condition will allow us to use
the 4-series ory as indicated in (18), (19) and (21). The six relations abovié lve
verified inductively, and the reader can check that the loeinds just described on
the powers ofx andy behave well in the induction.

REMARK 3.7. With respect to the statement of Lemma 3.5 it is cleat (&3,
(o) and ) imply the corresponding primed versions for— 1. We have however
chosen to write the result in such a way to reflect the strafegythe proof, which
will depend on a detailed analysis of the interdependencthe$e six statements. (In
retrospect, we will see that the primed versions are lolyicaduivalent to the corre-
sponding non-primed versions.)

Proof. The six relations will be proved by induction orin the following order
(20). (@) = (bo) = (ap). (@) = (bp) = (a1). (1) = (b)) = (a2), (e2) = - -

The basic strategy in the proof is to let both relations carfiom the 4-series in (13)
to interact among each other. In the process we make useo(witturther notice)
of (17) and Lemma 3.3.
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For (ao) it is enough to note thati2x"y"* € x"(4y"~2, 8vfy") = 0. For () we
have: 4:x"1y"1 e v;(2v1x")y"1 which has already been seen to be trivial, whereas
4v1x"2y" is trivial since in fact 4" = 0. We have already noted thato) is trivial
(just) by indeterminacy. Forag) and ;) we have: 27x"y"2 € v;x"(4y"~3, 8v2y"1,
a3y”). The first two generators of this ideal are certainly trivigd that 22x"y"=2 ¢
(v3, 2)vax"y" which has already been shown to be trivial. Now we havex%1y"-2 e
v1(2v1X")y" 2 = 0 and 22x"y"1 € vyx"1(4y" 2, 8v2y") = 0 (all the other relations
in (ay) and ¢g) follow by symmetry).

For (o), and in order to complete the start of induction, we firstenot

(18) v3y" e (4y"4 201y 3, BuZy" 2, 2upy" Tt Ay").

Then lettingv3y"~! = 2A we havev{x"y"! = 2Av;x" € A(4x"1) = 2x"1(vfy"?),
which has already been shown to be trivial.

The inductive step is verified in a similar way (all essentdgas have already
been used up to here). So assume the six relations have beéedvior j <i.

In order to prove &) and ;) we start by noticing:

2U5‘+2Xnyn—2i—1 e v;-+1xn(4yn—2i—2’ svfyn—Zi , a:_Byn—Zi +1’ 4yn—2i +2’
2yn—2i+3’ 8yn—2i+4’ Dyn—2i+5’ yn—2i+9 )

Here the coefficienD lies in (2 v1) and includes the termg with 7 < i < 10 (in
view of (17), & is in fact divisible by 2 for 8< i < 10), moreover the first, sec-
ond, fourth and sixth generators in the last ideal are zermtger, so the ideal is
contained in
(v2-+4xnyn—2i+1’ 2v&+1xnyn—2i+1’ v&+2xnyn—2i +5’ v&+lxnyn—2i +9) .

This last ideal is zero because all generators are. The fisthy @ ;), the second
one by &_1), the third one by lf ;) and the fourth one byb{ z).

Suppose now thatv'g"zx”*“y”*” =0, foru+v =2 +1, and observe

4U§L+1Xn—u—1yn—v e v;-+1yn—v (zlen—u’ 8va"_“+l, a3x”‘“+2, 4Xn—u+3’
2Xn—u+4 8Xn—u+5 Xn—u+6 )

and

Zvi1+2Xn—u—1yn—u+1 e Uil+1xn—u—1(4yn—v’ 8vfyn—v+2’ agyn—u+3’ 4yn—v+4’
2yn7u+5 8yn7v+6 yn7v+7 )

As before, all generators in this last two ideals are triviadeed, for the first
ideal we have that the first and second generators are zerndogtion. For the third
generator: the term that is multiple of 2 is zero lay_¢) and the term that is multi-
ple of vf is zero by b _,). The fourth, the fifth and the sixth generators are zero by
(& _,). The last generator is zero b (;).
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Note that the first, the second, the fourth and the sixth ggoer of the second
ideal have just been shown to vanish, and then we have thraidbal is contained in

i+4,n—u—1,,n—v+3 i+1,n—u—1,,n—v+3 _i+l,,n—u—1,,n—v+7
(v1™x yh v 201X Yyt o y" ).

For this last ideal we have that all generators are zero; tise dne by  ;), the
second one because; (1) and the last one bybf{ ,).

To verify (b)) we considerv}™®x" Uy with u+v = 2i. Let A, B and C be the
elements fitting in the formula

(19) w3y U = 2A+ By U+ Cyt vt

which comes (analogously to (18)) from the relation 0/%"~* . [4](y), where B e
(2, v1) contains the terms; with 7 < i < 10, A contains the #-multiple in az as
well as the termsy with 0 <i <6,i # 3, andC contains all othelg;’s. Then

v|1+3xn—uyn—u c (2Avllxn—u, Bvllxn—uyn—v+4’ Uixn—uyn—v+8)‘

In this last ideal the second and third generators are zehne. Second one because
(bi—2) and &/_,), for the multiples ofv; and 2 respectively. The third generator is zero
by (bi_4). So we have that the ideal above is contained in

v'l_lA(4Xn7u71, 8van7”+l, a3Xn7u+2’ 4Xn7u+3’ 2xn7u+4’

(20) 8Xn7u+5 Dxn7u+6 Xn7u+10 )

where as abové € (2, v;). We will see that all generators of (20) are trivial. For the
first one we get from (19)
4Avi—1xnfufl c Zvi—lxnfufl (viynfu Byn7u+4 yn7v+8)
1 1 El ’
and this ideal is contained in
(Zvil+2Xn—u—1yn—v’ 2Uilxn—u—1yn—v+4’ 41);71Xn_u_lyn_v+4, 21);71Xn_u_lyn_v+8) ,

all of whose generators are trivial. The first one becaagg the second one by »),
the third one by &;_5), and for the last one we use;(4).

The above argument also takes care of the second, fourth iatid generators
in (20). As for the first half of the third generator in (20),mely the term that is
multiple of 2, we use again (19) to obtain:

ZvllflAXn—u+2 c vllflxn—u+2 (vfy”‘", 1)lyn—u+4’ 2yn—v+4’ yn—u+8) .

The first generator of this last ideal is zero Wy (), the second byk{_3), the third
becaused ,) and the last one byb(_s).
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This argument takes care also of the fifth and the first halfhef seventh gener-
ators in (20). For the second half of the third generator m),(hamelyv‘fZAx”*“*Z,
we note that from its definition

Ace % (4yn—v—3, 2U1y“—v—2’ 8vfy“—v—1’ 2v2yﬂ—v’ 4yn—v+17 2yn—u+2, 8yn_v+3) ’

that is,
Aec (zyn—v—3’ vlyn—v—Z’ yn—v)’

so that

n—v—3 n—v—2

ViPPAXTZ ey

il+2 n— u+2(

2y VAR A §

As before, all generators of this last ideal are zero. The fire by &), the second
one by an inductive argument (grounded by the relatit = 0) onu, and the third
one becauseb(_;).

For the second half of the seventh generator in (20):

’ ynfu) = O‘

n—v—3 n—v—2

n—u+6 X"~ u+6
vj AX € viX (

2y 1Y

The first generator is zero byi(,), the second one becaudg_() and the last one

by (bi—3).
Finally, for the eighth generator in (20):

vllflAXn—u+10 cv 2yn v-3 n—v—2

i—1 X~ u+10
1 ( , V1Y

, yn—v): 0
In this case, &_4), (bi_4) and {;_s) take account of the first, the second and the third
generators respectively.

We now proceed to prove relations) and ). We start by noticing that the
term 21"3x"y"~2-2 Jies in the ideal

vi1+2Xn (4yn—2i—3’ 8v%y”*2‘*1, a3yn72i , 4yn—2i+1, Zyn—2i+2’ 8yn72i +3’ Dy”*Z‘ +4’ yn72i +8) ,

where againD € (2, v1). The first, the second, the fourth and the sixth generat@s a
zero by order. The fifth generator, as well as the first halveslt{ples of 2) of the
third and seventh generators are trivial lay_¢), whereas the second half of the third
(the multiple of vf) because lf). The second half of the seventh generator vanishes
becauself_»), and @;_4) takes account of the last generator.

Suppose now that

013X Uy =0, for u+v=2+2
and observe thatv}?x"~~1y"? Jies in the ideal

U5-+2yn—v (zlen—u’ SU%Xn—uﬂ’ a3Xn—u+2’ 4Xn—u+3’ ZXH_UM, 8Xn_U+5, Xn—u+6) ,
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whereas 2/"3x"~U=1y"~v*1 Jies in the ideal
Uil+2Xn7u—1 (4yn7v’ 8U%ynfu+2’ a3yn—u+3, 4yn—u+4’ Zyn7v+5’ 8yn7v+6’ yn—u+7) )

For the first ideal we have: the first and second generatorgexe by induction.
The first half of the third generator (the multiple of 2), theuith, the fifth and the
sixth are zero byd _,). The second half of the third generator Hy)( The last gen-
erator by b_o).

For the last ideal we note that the first, the second, the Hoand the sixth gen-
erators are zero as we have just shova). ) takes account of the fifth generator as
well as the first half of the third generatob;) does the corresponding for the second
half of the third generator, andj( ;) for the last one.

To prove B) we consider v‘l"“x”*”y”*” with u+v = 2i +1 and use the
formula—identical to (19)—

(21) VYNV = 2A+ By UM 4 CyutE
(recall B € (2, v1)), to observe thabl"™x"~Uy"~" lies in the ideal
(ZAUTan—u’ v5+zxn—uyn—v+4’ 2v;-+1xn—uyn—v+4’ U;+1Xn—uyn—v+8) .

Now (b_,), (&—2) and @] _,) take account of the second, the third and the fourth gen-
erators respectively. In this way we have that this lastlige&ontained in

UilA(4Xn—u71’ SU%anuﬂ’ a_an7u+2, 4Xn7u+3,

(22) 2Xn—u+4’ 8Xn7u+5’ Dxnfu+6’ Xn7v+10 )’

where once agaiD € (2, v;). We will see that all generators of (22) are trivial. For
the first generator we get from (21)

i n—-u-1 iyn—u—1/ 3,n— —v+4 | n—v+8
v} AdX € 2uiXx (vfy™Y, By yn e,

In this last ideal &), («i—2), (& _,) and & _,) take care of the first generator, the first
(multiple of 2) and the second (multiple af) halves of the second generator, and
the third generator respectively. Now note that the samenaegt takes account of the
second, the fourth and the sixth generators of (22).

For the first half of the third generator of (22), namelﬁz@x”*‘“z, we have
from (21):

i yN—u+2 iynN—u+2 ( 3,,nN—v —v+4 |\ n—v+8) —
2Av) X € vjX (vy"", By"U Ty = 0,

where b ;), (@-3), (b_3), and @ ) respectively guarantee that the first generator,
the first (multiple of 2) and the second (multiple of) halves of the second genera-
tor, and the third generator of this last ideal are zero. Tdwt that this ideal is zero,
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shows that the fifth and first half (multiple of 2) of the sevegenerators of (22) are
zero too.

For the second half of the third generator of (22), thabill*s"Ax”*“*z, we recall
that from its definition

Aec % (4yn—v73, 20y U2, 8vfynfvfl’ 20y, Ay"NHL Dy, 8yn*”+3) ’

that is,
Ac (2yn7v73’ vly”’”’z, ynfv)’
so that
vi1+3AXn—u+2 c v'+3 n— u+2(2yn V=8 Y2, yn—v) =0,

where @) and @/_,) take care of the first and last generators, whereas the demon
is zero by an inductive argument (again grounded by theioalat"** = 0) on u.
For the second half of the seventh generator of (22):

Avll+an_U+6 e v|l+1xn—u+6(2yn—v—3’ vlyn—u—z’ yn—u) =0

The first, the second and the third generators of the last ateazero by & ), (b _,)
and @_;), respectively.
Finally for the eighth generator of (22):

Avg_Xn u+10 c len u+10(2yn—v—3’ Ulyn—v—2, yn—v) - 0’

where & ), (bi_,) and @ ;) take care of the first, the second and the third genera-
tors of this last ideal, respectively. O

4. Topological feedback

In this final section we prove Proposition 2.3 by making useGofNakos’ work
on the Brown-Peterson homology of the classifying spaceZfox Z4, thus completing
the proof outlined in Section 2 for our main Theorem 2.4.

We begin by observing that the ring, . in Section 3 can alternatively be inter-
preted as the tensor produBP*(L?"(2°%))®@ BP*(L2"(2°)) where, as usuaBP*(L2"(29))
is given as theBP,-polynomial algebra on a generatgrwith relationsx™?! = 0 and
[2%](x) = 0. On the other hand, a standard Gysin sequence argurmen{i3, (2.11)]
for the n = oo case) exhibitsBP,(L2"(2%)) as theBP,-module with generatorg, e
BP,_1(L2"(2¢)) for 1 <i < n, and relations

Y az <=0 (1<i<n)

O<s<i
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where, as in Section 3} . ax5"! = [2°](x). It is then clear that the corresponding
tensor producBP,(L2"(2¢)) ® BP,(L2"(2%)) can be thought of as a submodule Af
in such a way that the bottom “toral” clags® z; € BP,(L2"(2%)) ® BP,(L2"(2°)) gets
identified with the “top” clasx"y" € Ane.

Consider now the Knneth-Landweber map [15]

(23) BP,(B(Z)) ® BP.(B(Z2)) — BP.(B(Z2) A B(Z2)).

According to [17] (see also [16]), foe = 2, the annihilator for the image of ® z;
under the composite of

BP.(L*"(2%)) ® BP,(L*(2%)) — BP,(BZz) ® BP.(BZx)

with (23) is given by the idea(4, 2vy, v}). Proposition 2.3 now follows by assembling
all these pieces together.
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