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Abstract
The Brown-Peterson cohomology for skeleta of the classifying space of the

group Z4 � Z4 is analyzed in order to describe obstructions to the motion planning
problem for a particle moving in a 4-torsion lens space. We discuss the relationship
of this situation to the Euclidean immersion problem for2e-torsion lens spaces, and
the way this leads to an alternative approach to the classical immersion problem for
real projective spaces.

1. Introduction

Despite the ample bibliography there is on the immersion problem for projective
spaces (see [3] for an updated summary), the solution to thisstill open problem ap-
pears to be completely out of hands with present techniques.Here the result that is
perhaps the most comprehensive and, at the same time, with anamazingly simple state-
ment is Davis’ theorem [4] claiming

(1) RP2(n+�(n)�1) 6� R4n�2�(n);
where RPm stands for them-dimensional real projective space,�(n) is the number
of ones in the dyadic expansion ofn, and the symbol6� means “does not admit an
immersion in.”

In [11] the first author has contextualized such a result within a more general sit-
uation by considering the immersion problem for the 2e-torsion (2m + 1)-dimensional
lens spaceL2m+1(2e) and suggesting that forÆ = maxf0; �(n)� eg
(2) L2(n+Æ)+1(2e) 6� R4n�2�(n):

For instance, the casee = 1 is essentially Davis’ result, whereas thee� �(n) case,
which is true and picks up nicely the complex situation [10],has been conjectured to
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be close to optimal in [5]. Yet the above generalization has been proved only under
certain hypothesis. For instance, (2) is verified in [11] provided

(3) 2�(n) > �(n)� e;
where�(n) stands for the highest power of 2 dividingn.

However, the fact that no counterexample is known to (2) may just as well be
a consequence of our little knowledge of the immersion problem for this manifolds.
One of the goals of this work is to partially mend the last situation by studying the
problem from a slightly different point of view (see (5) and (6) below), which we now
elaborate on.

The immersion problem forRPn has several equivalent presentations, one of which
has been recently developed in [8], and has to do with the instabilities in the motion
planning problem for the system consisting of a line which isrevolving in (n + 1)-
dimensional affine space through a fixed point. For our purposes the relevant concepts
are as follows: given a spaceX, let P(X) denote the space of free paths onX, and
let TC(X) stand for the smallest number (either a positive integer or1) of open sets
U that coverX � X in such a way that the fibration

ev: P(X)! X � X

defined byev(
 ) = (
 (0); 
 (1)), admits a local section on eachU . Then the main re-
sult in [8] is the fact that there is anoptimal immersion

(4) RPn � RTC(RPn)��;
where � = 1, except forn = 1;3;7 where � = 0. In other words, finding optimal
Euclidean immersions forRPn is equivalent to a full understanding of the instabilities
arising in the motion planning for a particle in this manifold (see [6, 7]).

Now, the obvious question of whetherTC(L2n+1(k)) has to do with the immer-
sion problem forL2n+1(k) has, however, a negative answer [9], and an indication of
this fact is given by the formulaTC(CPn) = 2n + 1, which is in tremendous con-
trast with the subtleties arising in the immersion problem for CPn. Nonetheless the
“T C approach” for lens spaces can still be used as a way to understand the immersion
problem for (odd dimensional) real projective spaces (see (5) below), a philosophy de-
veloped in [9] by means of the following general result.

Theorem 1.1 ([9]). For n � 0 and e� 1 let s(n;e) denote the integral part of
[TC(L2n+1(2e)) + 1]=2, so that

TC(L2n+1(2e)) = 2s(n;e)� � ; with � = � (n;e) 2 f0;1g:
Then:
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a) s(n;e) equals the smallest positive integer l such that there is aZ=2e-bi-equivariant
map S2n+1� S2n+1! S2l�1.
b) s(n;e) equals the smallest positive integer l such that there is a homotopy com-
mutative diagram

L1(2e)� L1(2e)
� // L1(2e)

L2n+1(2e)� L2n+1(2e) //
?�

OO

L2l�1(2e)
?�

OO

where� is the H-multiplication.
c) s(n;e) equals the smallest positive integer l such that the iterated l-fold Whitney
sum of the exterior tensor product

� 
C �! L2n+1(2e)� L2n+1(2e)

admits a nowhere zero section, where� is the pullback under the canonical projection
L2n+1(2e)! CPn of the complex Hopf line bundle overCPn.

It is obvious that the numberss(n;e) satisfy the relationss(n;e) � s(n0;e0) pro-
vided n � n0 or e� e0, and in this terms (4) and Theorem 1.1 are just saying that the
chain of inequalities

(5) s(n;1)� s(n;2)� s(n;3)� � � �
can indeed be considered as a way to understand the difficulties in (roughly)half the
immersion problem for odd dimensional real projective spaces (the comments after (7)
give a more precise statement of what is meant here). In such an approach one has
the extra bonus thats(n;e) is described easily enough for “large”e (see [9, Proposi-
tion 2.2]):

(6) s(n;e) =

(
2n + 1 for e> �(n);
2n for e = �(n):

On the other hand, it is quite profitable to compare the “s-approach” in (5) with
the immersion problem for 2e-torsion lens spaces. This is done by means of the main
result in [2] to obtain (see [9])

(7) 2s(n;e)� 1� Imm(n;e):
Here Imm(n;e) is the minimal Euclidean dimension whereL2n+1(2e) can be immersed.
It is worth noticing that fore = 1, (7) is optimal up to parity, namelys(n;1)� 1 is
just the integral part of (1=2) Imm(n;1) (see [1] or [9, (24)]).
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We are now in position to introduce the main motivation for this work: in terms
of (7), “halving” Davis’ theorem (1) yields

(8) s(n + �(n)� 1;1)� 2n� �(n) + 1;
that is a particular case of the analogue for (2) which, when valid, would read

(9) s(n + �(n)� e;e) � 2n� �(n) + 1;
at least fore � �(n). But in view of (6), for e = �(n), (9) is optimal only for�(n) =
1, and in general, the lower bound given by (9) seems to be rather weak for large
values ofe. The calculations in this paper give evidence to the following (conjectural)
improvement of (9):

(10) s(n + �(n)� e;e) � 2n� �(n) + e:
For instance (6) claims that (10) is in fact an equality fore = �(n).

The philosophy behind (10) parallels that in Davis’ result (1) and its proposed
generalization (2)—namely, that in order to get information on the immersion problem
for real projective spaces, one can make use of the interaction dimension/torsion in
lens spaces—, having now the advantage that, by using the approach in (5), not only
dimension/torsion play a role, but also the actual lower bound for s(m;e) depends on
the torsion, something not present in (2) nor (9).

One should remark that the restrictione� �(n) suggested in (9) is indeed needed
for (10) to hold, and this is closely related to the “stable” values ofs(n;e) described
in (6). A clean view of this is obtained by comparing with the way one uses the full
power of Davis’ result: in order to get the best non-immersion for RP2m coming
from (1), one takes out of thosen having

(11) m� n + �(n)� 1

the one for which 4n� 2�(n) is largest possible. In any case such ann must
have n � m. However without the restrictione� �(n) the analogous condition
m� n + �(n)� e—to be used when taking full advantage of (10)—may hold even for
n > m and, in such a situation, (10) leads to nonsense. For instance takem = 2l+1� 2
so that�(m) = l , and taken = m + 2 = 2l+1. Then m � n + �(n) � l for l � 3, so that
s(m; l ) � s(n + �(n) � l ; l ) which would be at least 2n� �(n) + l = 2m + l + 3 if (10)
applied. But this is in contradiction to (6):s(m; l ) = 2m.

We summarize this motivational section by stressing the geometrical meaning and
importance of (10): as suggested by (7), the inequality in (10) gives lower bounds for
the topological complexity for 2e-torsion lens spaces which, towards an understanding
of the immersion problem for real projective spaces, improve the lower bounds one
could get by studying Euclidean nonimmersions for lens spaces.
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2. Main result and outline of proof

Let h� be a multiplicative complex oriented cohomology theory, let x and y stand
for the corresponding (2-dimensional) orientations over the axes inL2n+1(2e)�L2n+1(2e),
and let F denote the formal group law forh�. Then an easy consequence of Theo-
rem 1.1 is:

Corollary 2.1. s(n;e) > l whenever(x +F y)l 6= 0.

We deduce a number of cases of (10) by analyzing (x +F y)l for n = m+�(m)�e
and l = 2m��(m)+e�1, whenh� is Brown-Peterson cohomology (BP�) at the prime 2.
In that caseF is in fact the universal 2-typical formal group law, whose importance
and complexity has put a great challenge for its practical use. Despite this we will
only require the obvious observation thatF can be written in the form

(12) x +F y = x + uy

whereu 2 BP�(L2n+1(2e)� L2n+1(2e)) is a unit. The real crux of the matter will rather
be to perform calculations in this last ring. As a first simplification, we will restrict
the computation of powers of (12) toBP�(L2n(2e)� L2n(2e)) which, according to [10,
Proposition 3.1], in the relevant dimensions takes the form

(13) An;e = BP�[x; y]
Æ �

xn+1; yn+1; [2e](x); [2e](y)
�:

Here [2e](x) stands for the associated (universal 2-typical) 2e-series, andBP� is the
Z(2)-polynomial algebra on generatorsv1; v2; : : : with deg(vi ) = 2(2i � 1) (as usual we
have changed the “cohomological” dimensions of the coefficient ring to “homological”
dimensions, so that eachvi acts on Brown-Peterson cohomology by lowering degrees).
In order to apply Corollary 2.1, we reduce thel -th power of (12) to a suitable multiple
of xnyn 2 An;e. The next result summarizes the calculations in the rather technical
Section 3.

Proposition 2.2. For �(m)� 0 and �(m) � e, (x + uy)l divides2e�1v�(m)�e
2 xnyn

in An;eÆ�v3
1xnyn

�
, provided e= 2.

The required conclusion will then be derived from the next result, which in turn
will be deduced in Section 4 from the work of G. Nakos on the generalized Conner-
Floyd conjecture forZ4 � Z4.

Proposition 2.3. For e = 2 the annihilator ideal of xnyn in An;e is contained in�
4;2v1; v4

1

�
.

We will then have proved our main result in the direction of (10):
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Theorem 2.4. For �(m)� 0 and �(m) � 2, s(m+�(m)� 2;2) � 2m� �(m) + 2.

Lemma 3.1 in the next section is more specific on how large�(m) is required to
be in Proposition 2.2 and Theorem 2.4.

As explained in the introduction, having a proof for an unrestricted (10) not only
would yield information on the topological complexity of lens spaces (a problem rele-
vant to the motion planning in these manifolds), but would also push a long way our
understanding of the role the 2-torsion plays in the immersion problem for projective
spaces. The calculations needed to approach the general case of (10) would depend
on having versions for Propositions 2.2 and 2.3 valid fore � 3. After going through
the next section the reader will realize this would require amajor computational ef-
fort in the case of 2.2 (both for extending the calculations to e � 3, as well as for
removing the extra hypothesis�(m)� 0). Yet a generalization for 2.3 appears to be
much less transparent: as explained in the final section, onewould need to have a
good hold on the annihilator ideal for the toral class in theBP-homologyof the classi-
fying space forZ2e�Z2e—a generalized Conner-Floyd conjecture. As observed in [16,
17], such a goal could seem to be far from reach with present knowledge. Nonethe-
less the authors hope that this paper (Section 3 in particular) encourages and helps re-
searchers in the field to settle the structure of annihilatorideals of the type above. As
exemplified by the work on the classical Conner-Floyd conjecture [18] and [13, 14],
such a task would contribute to extending the computability—and thus usefulness—for
Brown-Peterson theory.

3. Algebraic input

As in the last section, we fix the notationl = 2m��(m) +e�1, n = m+�(m)�e,
and An;e to represent the ring in (13). We will also assumee� �(m). In terms of (12),
the relevant class in Corollary 2.1 takes the form

(14) (x +F y)l =
3(�(m)�e)+1X

i =0

�
l

n� i

�
xn�i yl�n+i ul�n+i :

The extra hypothesis in Proposition 2.2 and Theorem 2.4 represents the analogue
of the assumption (3) used in [11]. Here it is only used to makesure all but two of
the summands in (14) are trivial.

Lemma 3.1. Under the two conditions
• �(m)� e< 2�(m)�1,
• �(m) > �(m)� e+ �(�(m)� e) + �� �(m)�e�1

2�(m)�2e�i

�
, for �(m)� e+ 1� i � 2(�(m)� e),

we have
a) �� l

n�i

� � i + e, provided0� i � 2(�(m)� e) and i 6= �(m)� e,

b) �� l
n�i

�
= �(m)� 1, provided i = �(m)� e.
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Proof. We will use without further notice the well known relation ��ab� = �(b) +�(a � b) � �(a); likewise, in view of our hypothesis onm, the fact that�(2L � a) =
L � �(a � 1), for 0 < a � 2L , will be translated below as the formula�(m� a) =�(m)� 1 + �(m)� �(a� 1), for 0< a � 2�(m). Thus for b) we have

�� l

n� i

�
= ��2m� �(m) + e� 1

m

�
= �(m) + �(m� �(m) + e� 1)� �(2m� �(m) + e� 1)

= �(m) + (�(m)� 1 + �(m)� �(�(m)� e))

� (�(m)� 1 + �(m) + 1� �(�(m)� e))

which, as claimed, is�(m)� 1. For a) we note that�� l
n�i

�
is equal to

(15) �(m + (�(m)� e� i )) + �(m� (2�(m) + 1� 2e� i ))� �(2m� (�(m)� e+ 1)):
Note that both 2�(m)+1�2e� i and�(m)�e+1 are positive. In case that�(m)�e� i
is positive too, (15) takes the form

�(m) + �(�(m)� e� i ) + (�(m)� 1 + �(m)� �(2�(m)� 2e� i ))

� (�(m)� 1 + �(m) + 1� �(�(m)� e))

= �(m)� 1 +�(�(m)� e� i ) + �(�(m)� e)� �(2�(m)� 2e� i )

= �(m)� 1 + ��2�(m)� 2e� i�(m)� e

�
� �(m)� 1

� i + e:
In case that�(m)� e� i is negative, (15) should be thought of as

�(m� (e+ i � �(m))) + �(m� (2�(m) + 1� 2e� i ))

� �(2m� (�(m)� e+ 1))

= (�(m)� 1 + �(m)� �(e+ i � �(m)� 1))

+ (�(m)� 1 + �(m)� �(2�(m)� 2e� i ))

� (�(m)� 1 + �(m) + 1� �(�(m)� e)):
Using the second condition in the hypothesis and the well known relation�(a � 1) =�(a)�1+�(a), the last expression is easily seen to be bounded from belowby i +e.

Together with [11, Corollary 2.6], Lemma 3.1 implies that, up to a unit, (14) re-
duces to

2�(m)�1
�
xn�(�(m)�e) yn�2(�(m)�e)�1 + xn�2(�(m)�e)�1yn�(�(m)�e)un�(�(m)�e)

� :
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Using now [11, Corollary 2.7], they-multiple of the last expression takes the form

(16) 2e�1v�(m)�e
1 xnyn�2(�(m)�e):

The remaining of the section is then devoted to proving the following key relation.

Proposition 3.2. For e = 2 and i � 0 with n � 2i + 2, the following relation
holds up to units in An;eÆ�v3

1xnyn
�
:

2e�1vi
1xnyn�2i = 2e�1vi

2xnyn:
Write [4](x) =

P
s�0 asxs+1, and recall from [12] that the 2-divisibility properties

of the coefficientsas 2 BP� are given by

(17) �(as) = 2d0 + d1

wheres + 1 = d0 + 2d1 + 4d2 + � � � is the 2-adic expansion ofs + 1.
The rest of the properties we need about the 4-series are contained in the follow-

ing result whose verification is done by a straight forward calculation left to the reader.

Lemma 3.3. a) a3 = w1v3
1 + 2w2v2, wherew1 and w2 are odd numbers.

b) a7 2 (2; v1).
c) Up to units, a0 = 4, a1 = 2v1, and a2 = 8v2

1.

Proposition 3.2 is deduced below from (17), Lemma 3.3 and thenext result whose
proof constitutes the technical core of the paper.

Lemma 3.4. The following relations hold in An;2Æ�v3
1xnyn

�
for i � 0:

(a) 2vi +2
1 xnyn�2i = 0, provided n� 2i � 2.

(b) vi +3
1 xnyn�2i = 0, provided n� 2i � 4.

Proof of Proposition 3.2. We proceed by induction oni , the casei = 0 being
trivial. Using (13) and (17), we express 2vi

1xnyn�2i as an element of the ideal

I = vi�1
1 xn

�
4yn�2i�1; 8yn�2i +1;a3yn�2i +2;
4yn�2i +3; 2yn�2i +4;8yn�2i +5;a7yn�2i +6;
4yn�2i +7; 2yn�2i +8;8yn�2i +9; yn�2i +10

�:
The generators in the first and third columns are trivial since 4xn = 0. The generators
in the second column are trivial by induction. By Lemma 3.3,a7vi�1

1 xnyn�2i +6 lies in
the ideal generated by 2vi�1

1 xnyn�2i +6 andvi
1xnyn�2i +6, both of which are zero in view
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of Lemma 3.4 (the later is trivial fori = 3 in view of the indeterminacy we are impos-
ing; we note however thatv3

1xnyn 6= 0 in An;2 [16, 17]). Likewise, the last generator
of the idealI is trivial by Lemma 3.4 too. It is then clear that up to units

2vi
1xnyn�2i = a3vi�1

1 xnyn�2i +2;
which once again by Lemmas 3.3 and 3.4 takes the form 2vi�1

1 v2xnyn�2(i�1). Thus, the
result follows from the inductive assumption.

In proving Lemma 3.4 it turns out to be easier to verify the following more com-
plete statement (parts (a) and (b) of Lemma 3.4 are respectively contained in parts
(a0i�1) and (bi ) of Lemma 3.5).

Lemma 3.5. The following relations hold in An;2Æ�v3
1xnyn

�
, for i � 0.

(ai ) 2vi +2
1 xn�uyn�v = 0, for u + v = 2i + 1.

(�i ) 4vi +1
1 xn�u�1yn�v = 0, for u + v = 2i + 1.

(bi ) vi +3
1 xn�uyn�v = 0, for u + v = 2i .

(a0i ) 2vi +3
1 xn�uyn�v = 0, for u + v = 2i + 2.

(�0i ) 4vi +2
1 xn�u�1yn�v = 0, for u + v = 2i + 2.

(b0i ) vi +4
1 xn�uyn�v = 0, for u + v = 2i + 1.

REMARK 3.6. Although not explicitly noted, the relations in Lemma 3.5 (just as
in Lemma 3.4) are claimed to hold provided there are “enough”powers ofy (and thus
of x). In detail, in partsa; �;a0; �0 above we requiren� u� v � 2, whereas in parts
b and b0 we needn�u� v � 4. For instance, the latter condition will allow us to use
the 4-series ony as indicated in (18), (19) and (21). The six relations above will be
verified inductively, and the reader can check that the lowerbounds just described on
the powers ofx and y behave well in the induction.

REMARK 3.7. With respect to the statement of Lemma 3.5 it is clear that (ai ),
(�i ) and (bi ) imply the corresponding primed versions fori � 1. We have however
chosen to write the result in such a way to reflect the strategyfor the proof, which
will depend on a detailed analysis of the interdependency ofthese six statements. (In
retrospect, we will see that the primed versions are logically equivalent to the corre-
sponding non-primed versions.)

Proof. The six relations will be proved by induction oni in the following order

(a0); (�0)) (b0)) (a00); (�00)) (b00)) (a01); (�01)) (b01)) (a2); (�2)) � � � :
The basic strategy in the proof is to let both relations coming from the 4-series in (13)
to interact among each other. In the process we make use (without further notice)
of (17) and Lemma 3.3.
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For (a0) it is enough to note that 2v1xnyn�1 2 xn
�
4yn�2;8v2

1yn
�

= 0. For (�0) we
have: 4v1xn�1yn�1 2 v1(2v1xn)yn�1 which has already been seen to be trivial, whereas
4v1xn�2yn is trivial since in fact 4yn = 0. We have already noted that (b0) is trivial
(just) by indeterminacy. For (a00) and (�00) we have: 2v2

1xnyn�2 2 v1xn
�
4yn�3;8v2

1yn�1;
a3yn

�
. The first two generators of this ideal are certainly trivial, so that 2v2

1xnyn�2 2�v3
1;2�v1xnyn which has already been shown to be trivial. Now we have 4v1xn�1yn�2 2v1(2v1xn)yn�2 = 0 and 2v2

1xn�1yn�1 2 v1xn�1
�
4yn�2;8v2

1 yn
�

= 0 (all the other relations
in (a00) and (�00) follow by symmetry).

For (b00), and in order to complete the start of induction, we first note

(18) v3
1yn�1 2 �4yn�4;2v1yn�3;8v2

1yn�2;2v2yn�1;4yn
� :

Then lettingv3
1yn�1 = 2A we havev4

1xnyn�1 = 2Av1xn 2 A(4xn�1) = 2xn�1
�v3

1yn�1
�
,

which has already been shown to be trivial.
The inductive step is verified in a similar way (all essentialideas have already

been used up to here). So assume the six relations have been verified for j < i .
In order to prove (ai ) and (�i ) we start by noticing:

2vi +2
1 xnyn�2i�1 2 vi +1

1 xn
�
4yn�2i�2;8v2

1yn�2i ;a3yn�2i +1; 4yn�2i +2;
2yn�2i +3; 8yn�2i +4; Dyn�2i +5; yn�2i +9

�:
Here the coefficientD lies in (2; v1) and includes the termsai with 7 � i � 10 (in
view of (17), ai is in fact divisible by 2 for 8� i � 10), moreover the first, sec-
ond, fourth and sixth generators in the last ideal are zero byorder, so the ideal is
contained in�vi +4

1 xnyn�2i +1;2vi +1
1 xnyn�2i +1; vi +2

1 xnyn�2i +5; vi +1
1 xnyn�2i +9� :

This last ideal is zero because all generators are. The first one by (b0i�1), the second
one by (ai�1), the third one by (b0i�3) and the fourth one by (b0i�5).

Suppose now that 2vi +2
1 xn�uyn�v = 0, for u + v = 2i + 1, and observe

4vi +1
1 xn�u�1yn�v 2 vi +1

1 yn�v�2v1xn�u; 8v2
1xn�u+1;a3xn�u+2;4xn�u+3;

2xn�u+4; 8xn�u+5; xn�u+6
�

and

2vi +2
1 xn�u�1yn�v+1 2 vi +1

1 xn�u�1
�
4yn�v; 8v2

1yn�v+2;a3yn�v+3;4yn�v+4;
2yn�v+5; 8yn�v+6; yn�v+7

�:
As before, all generators in this last two ideals are trivial. Indeed, for the first

ideal we have that the first and second generators are zero by induction. For the third
generator: the term that is multiple of 2 is zero by (ai�1) and the term that is multi-
ple of v3

1 is zero by (b0i�1). The fourth, the fifth and the sixth generators are zero by
(a0i�2). The last generator is zero by (b0i�3).
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Note that the first, the second, the fourth and the sixth generators of the second
ideal have just been shown to vanish, and then we have that this ideal is contained in

�vi +4
1 xn�u�1yn�v+3;2vi +1

1 xn�u�1yn�v+3; vi +1
1 xn�u�1yn�v+7� :

For this last ideal we have that all generators are zero; the first one by (b0i�1), the
second one because (ai�1) and the last one by (b0i�3).

To verify (bi ) we considervi +3
1 xn�uyn�v with u + v = 2i . Let A, B and C be the

elements fitting in the formula

(19) v3
1yn�v = 2A + Byn�v+4 + Cyn�v+8

which comes (analogously to (18)) from the relation 0 =yn�v�4 � [4](y), where B 2
(2; v1) contains the termsai with 7 � i � 10, A contains the 2v2-multiple in a3 as
well as the termsai with 0� i � 6, i 6= 3, andC contains all otherai ’s. Then

vi +3
1 xn�uyn�v 2 �2Avi

1xn�u; Bvi
1xn�uyn�v+4; vi

1xn�uyn�v+8�:
In this last ideal the second and third generators are zero. The second one because
(bi�2) and (a0i�3), for the multiples ofv1 and 2 respectively. The third generator is zero
by (bi�4). So we have that the ideal above is contained in

(20)
vi�1

1 A
�
4xn�u�1; 8v2

1xn�u+1;a3xn�u+2; 4xn�u+3; 2xn�u+4;
8xn�u+5; Dxn�u+6; xn�u+10

�;
where as aboveD 2 (2; v1). We will see that all generators of (20) are trivial. For the
first one we get from (19)

4Avi�1
1 xn�u�1 2 2vi�1

1 xn�u�1
�v3

1yn�v; Byn�v+4; yn�v+8
�

and this ideal is contained in

�
2vi +2

1 xn�u�1yn�v;2vi
1xn�u�1yn�v+4;4vi�1

1 xn�u�1yn�v+4;2vi�1
1 xn�u�1yn�v+8� ;

all of whose generators are trivial. The first one because (ai ), the second one by (ai�2),
the third one by (�0i�3), and for the last one we use (ai�4).

The above argument also takes care of the second, fourth and sixth generators
in (20). As for the first half of the third generator in (20), namely the term that is
multiple of 2, we use again (19) to obtain:

2vi�1
1 Axn�u+2 2 vi�1

1 xn�u+2 �v3
1yn�v; v1yn�v+4;2yn�v+4; yn�v+8� :

The first generator of this last ideal is zero by (bi�1), the second by (bi�3), the third
because (a0i�4) and the last one by (bi�5).
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This argument takes care also of the fifth and the first half of the seventh gener-
ators in (20). For the second half of the third generator in (20), namelyvi +2

1 Axn�u+2,
we note that from its definition

A 2 1

2

�
4yn�v�3;2v1yn�v�2;8v2

1yn�v�1;2v2yn�v;4yn�v+1;2yn�v+2;8yn�v+3� ;
that is,

A 2 �2yn�v�3; v1yn�v�2; yn�v�;
so that

vi +2
1 Axn�u+2 2 vi +2

1 xn�u+2�2yn�v�3; v1yn�v�2; yn�v�:
As before, all generators of this last ideal are zero. The first one by (ai ), the second
one by an inductive argument (grounded by the relationxn+1 = 0) on u, and the third
one because (bi�1).

For the second half of the seventh generator in (20):

vi
1Axn�u+6 2 vi

1xn�u+6
�
2yn�v�3; v1yn�v�2; yn�v� = 0:

The first generator is zero by (ai�2), the second one because (bi�2) and the last one
by (bi�3).

Finally, for the eighth generator in (20):

vi�1
1 Axn�u+10 2 vi�1

1 xn�u+10
�
2yn�v�3; v1yn�v�2; yn�v�= 0:

In this case, (ai�4), (bi�4) and (bi�5) take account of the first, the second and the third
generators respectively.

We now proceed to prove relations (a0i ) and (�0i ). We start by noticing that the
term 2vi +3

1 xnyn�2i�2 lies in the ideal

vi +2
1 xn

�
4yn�2i�3;8v2

1yn�2i�1;a3yn�2i ;4yn�2i +1;2yn�2i +2;8yn�2i +3; Dyn�2i +4; yn�2i +8
� ;

where againD 2 (2; v1). The first, the second, the fourth and the sixth generators are
zero by order. The fifth generator, as well as the first halves (multiples of 2) of the
third and seventh generators are trivial by (a0i�1), whereas the second half of the third
(the multiple of v3

1) because (bi ). The second half of the seventh generator vanishes
because (bi�2), and (bi�4) takes account of the last generator.

Suppose now that

2vi +3
1 xn�uyn�v = 0; for u + v = 2i + 2;

and observe that 4vi +2
1 xn�u�1yn�v lies in the ideal

vi +2
1 yn�v �2v1xn�u;8v2

1xn�u+1;a3xn�u+2;4xn�u+3;2xn�u+4;8xn�u+5; xn�u+6
� ;
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whereas 2vi +3
1 xn�u�1yn�v+1 lies in the ideal

vi +2
1 xn�u�1

�
4yn�v;8v2

1yn�v+2;a3yn�v+3;4yn�v+4;2yn�v+5;8yn�v+6; yn�v+7
� :

For the first ideal we have: the first and second generators arezero by induction.
The first half of the third generator (the multiple of 2), the fourth, the fifth and the
sixth are zero by (a0i�1). The second half of the third generator by (bi ). The last gen-
erator by (bi�2).

For the last ideal we note that the first, the second, the fourth and the sixth gen-
erators are zero as we have just shown. (a0i�1) takes account of the fifth generator as
well as the first half of the third generator. (bi ) does the corresponding for the second
half of the third generator, and (bi�2) for the last one.

To prove (b0i ) we consider vi +4
1 xn�uyn�v with u + v = 2i + 1 and use the

formula—identical to (19)—

(21) v3
1yn�v = 2A + Byn�v+4 + Cyn�v+8

(recall B 2 (2; v1)), to observe thatvi +4
1 xn�uyn�v lies in the ideal

�
2Avi +1

1 xn�u; vi +2
1 xn�uyn�v+4;2vi +1

1 xn�uyn�v+4; vi +1
1 xn�uyn�v+8� :

Now (b0i�2), (ai�2) and (b0i�4) take account of the second, the third and the fourth gen-
erators respectively. In this way we have that this last ideal is contained in

(22)
vi

1A
�
4xn�u�1; 8v2

1xn�u+1;a3xn�u+2; 4xn�u+3;
2xn�u+4; 8xn�u+5; Dxn�u+6; xn�v+10

�;
where once againD 2 (2; v1). We will see that all generators of (22) are trivial. For
the first generator we get from (21)

vi
1A4xn�u�1 2 2vi

1xn�u�1�v3
1yn�v; Byn�v+4; yn�v+8�:

In this last ideal (a0i ), (�i�2), (a0i�2) and (a0i�4) take care of the first generator, the first
(multiple of 2) and the second (multiple ofv1) halves of the second generator, and
the third generator respectively. Now note that the same argument takes account of the
second, the fourth and the sixth generators of (22).

For the first half of the third generator of (22), namely 2Avi
1xn�u+2, we have

from (21):

2Avi
1xn�u+2 2 vi

1xn�u+2 �v3
1yn�v; Byn�v+4; yn�v+8� = 0;

where (b0i�1), (ai�3), (b0i�3), and (b0i�5) respectively guarantee that the first generator,
the first (multiple of 2) and the second (multiple ofv1) halves of the second genera-
tor, and the third generator of this last ideal are zero. The fact that this ideal is zero,
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shows that the fifth and first half (multiple of 2) of the seventh generators of (22) are
zero too.

For the second half of the third generator of (22), that isvi +3
1 Axn�u+2, we recall

that from its definition

A 2 1

2

�
4yn�v�3;2v1yn�v�2;8v2

1yn�v�1;2v2yn�v;4yn�v+1;2yn�v+2;8yn�v+3� ;
that is,

A 2 �2yn�v�3; v1yn�v�2; yn�v�;
so that

vi +3
1 Axn�u+2 2 vi +3

1 xn�u+2�2yn�v�3; v1yn�v�2; yn�v� = 0;
where (a0i ) and (b0i�1) take care of the first and last generators, whereas the second one
is zero by an inductive argument (again grounded by the relation xn+1 = 0) on u.

For the second half of the seventh generator of (22):

Avi +1
1 xn�u+6 2 vi +1

1 xn�u+6�2yn�v�3; v1yn�v�2; yn�v� = 0:
The first, the second and the third generators of the last ideal are zero by (a0i�2), (b0i�2)
and (b0i�3), respectively.

Finally for the eighth generator of (22):

Avi
1xn�u+10 2 vi

1xn�u+10�2yn�v�3; v1yn�v�2; yn�v� = 0;
where (a0i�4), (b0i�4) and (b0i�5) take care of the first, the second and the third genera-
tors of this last ideal, respectively.

4. Topological feedback

In this final section we prove Proposition 2.3 by making use ofG. Nakos’ work
on the Brown-Peterson homology of the classifying space forZ4�Z4, thus completing
the proof outlined in Section 2 for our main Theorem 2.4.

We begin by observing that the ringAn;e in Section 3 can alternatively be inter-
preted as the tensor productBP�(L2n(2e))
BP�(L2n(2e)) where, as usual,BP�(L2n(2e))
is given as theBP�-polynomial algebra on a generatorx with relationsxn+1 = 0 and
[2e](x) = 0. On the other hand, a standard Gysin sequence argument (see [13, (2.11)]
for the n = 1 case) exhibitsfBP�(L2n(2e)) as theBP�-module with generatorszi 2fBP2i�1(L2n(2e)) for 1� i � n, and relations

X
0�s<i

aszi�s = 0 (1� i � n)
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where, as in Section 3,
P

s�0 asxs+1 = [2e](x). It is then clear that the corresponding
tensor productfBP�(L2n(2e))
fBP�(L2n(2e)) can be thought of as a submodule ofAn;e
in such a way that the bottom “toral” classz1
 z1 2 fBP�(L2n(2e))
fBP�(L2n(2e)) gets
identified with the “top” classxnyn 2 An;e.

Consider now the K̈unneth-Landweber map [15]

(23) fBP�(B(Z2e))
fBP�(B(Z2e))! fBP�(B(Z2e) ^ B(Z2e)):
According to [17] (see also [16]), fore = 2, the annihilator for the image ofz1 
 z1

under the composite of

fBP��L2n(2e)
�
fBP��L2n(2e)

�! fBP�(BZ2e)
fBP�(BZ2e)

with (23) is given by the ideal
�
4;2v1; v4

1

�
. Proposition 2.3 now follows by assembling

all these pieces together.
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