

Title	極低温強磁場下の比熱測定
Author(s)	小林, 達生
Citation	大阪大学低温センターだより. 1995, 92, p. 21-25
Version Type	VoR
URL	https://hdl.handle.net/11094/12579
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

極低温強磁場下の比熱測定

基礎工学部 小林 達生(内線6446)

E-mail : tckobayashi@mp.es.osaka-u.ac.jp

1. はじめに

筆者は多重極限下の物性に興味を持ち、その最も単純かつ重要なマクロ測定の1つとして比熱測定を 行っている。現在、筆者のグループで行われている比熱測定は強磁場(H<13T)低温(T>80mK)実 験であり、圧力下(P<2GPa)の測定については開発の段階にある。ここでは、低温強磁場中の比熱 測定について実験的なことに触れた後、S=1一次元ハイゼンベルグ反強磁性体(ハンデンギャップ系) と重い電子系超伝導体の測定例をあげる。

2. 低温強磁場下の比熱測定

筆者のグループでは断熱法で実験を行っている。原理はごく単純である。まず、試料系(試料、保持版、ヒーター、温度計)を外界と断熱状態に保ち、わずかのヒートリークに対してはサブヒーターで補償を行う。メインヒーターで系をパルス的に加熱した後での系内部での熱平衡への過程を観測し、系に加えたジュール熱が100%有効に使われたときの系の温度上昇を見積もる。

低温/強磁場実験は³He/He希釈冷凍機に8Tあるいは14.5Tの超伝導magnetを取り付けて行う。磁 場中の実験で唯一しかし重大な問題になるのは、抵抗温度計の磁場変化てある。筆者のグループでは compensation coil付の超伝導magnetを用いており、磁場が打ち消されている場所に温度計を取り付 けることで、抵抗の磁場変化を防いでいる。この問題のために、比熱測定を行っている研究者は数多く いるが、磁場中の測定となると筆者の知る限りわずかである。

3. ハルデンギャップ系

ハルデンギャップはS=1の一次元ハイゼンベルグ反強磁性体における一重項基底状態と励起状態の 間のエネルギーギャップである。S=1/2の場合はgaplessであり、現実の試料では有限のチェーン間相 互作用のために低温で秩序状態に転移するが、ハルデンギャップ系ではチェーン間相互作用がエネルギー ギャップより小さい物質で秩序状態は低温まで現れない。ところが磁場でギャップをつぶした状態では、 秩序状態の出現が期待される。これが低温磁場中での比熱測定の動機である。

典型的ハルデンギャップ系として知られるNi(C₄H₄N₂)₂NO₂(ClO₄)(NENP)の磁気比熱を図1に示す ¹⁾。5K以上の磁気比熱が理論計算と一致するように格子比熱は差し引いてある。ゼロ磁場ではハルデン ギャップムを反映したC~exp($-\Delta/T$)の温度依存性を示す。磁場中ではギャップがつぶれる様子が観 測されるが、さらに磁場をあげるとショットキー型の異常が現れ、再びギャップは増大する。この特徴 的なエネルギーギャップの磁場依存性はESRでも観測されている^{2,3)}。これはNENPのジグザクの結晶 構造に起因する磁場と垂直方向のstaggered磁場によるもので、数値計算によるギャップの磁場依存性

- 21 -

図1 ハルデンギャップ系NENPの磁気比熱(H || chain-axis)。

は比熱とESRの実験結果とよく一致する⁴。話は前後するが、これ以前に磁場中でのstaggered momentの出現はNMRで観測されており、staggerd磁場による定性的な説明がなされていた⁵。

その後、このような結晶構造の問題のないハルデンギャップ系で磁場中秩序を探索したが、未だ確認 されていない。

4. 重い電子系超伝導体の比熱

重い電子系はCe, U化合物において低温で現れ る有効質量mが大きい電子系である。伝導電子が 局在性の強い f 一電子と混成し、Fermi面での状 態密度が増大することによる。これによる低温比 熱の大きな γT 項は、重い電子系において象徴的 である。

重い電子系のいくつかの物質はさらに低温で超 伝導状態に転移する。三宅さんの研究ノート(低 温センターだより、Na82)にもあるように、重い 電子系超伝導体は「型にはまらない超伝導」のオ ンパレードである。低温で観測されるべき乗則は、 BCS超伝導体とは異なるgaplessの状態密度の存 在を示している。またこれらの系での磁性と超伝 導の関連も興味深い。

4.1 CeCu₂Si₂

CeCu₂Si₂(*T*_c~0.7K) は超伝導状態と磁気秩序 状態が微妙に絡んでいる系である。磁気秩序状態

図2 重い電子系超伝導体CeCu_{2.05}Si₂の磁場 - 温度相図。

-22 -

図3 多結晶CeCu_{2.05}Si₂の磁場中比熱。

は単純な長距離秩序状態ではなく、その詳細は明 らかでない。この異常磁性は、NMR⁶、磁気抵抗⁷、 μ SR⁸⁰で観測されており、*H*-T相図(図3)に示 すように異常磁性相Aの超伝導状態が存在するこ とが分かっている⁹⁾。NMR測定により異常磁性 を示すことが確認されている試料CeCu_{2.05}Si₂につ いて比熱測定を行った¹⁰⁾。

13Tまでの磁場中比熱の結果を図2に示す。ま ず特徴的なことはT。での飛びがブロードである こと、そしてHa~2T以上の磁場をかけてもブロー ドな比熱異常が残ることである。これから、この ブロードな比熱異常は異常磁性によるものである と推測できる。またその比熱異常は磁場中で低温

側にシフトして、 $H \sim 7 \, \mathrm{T}$ で最小値をとりさらに強磁場側では高温側に動いていく。Brulsらの弾性定 数、熱膨張係数で求められた相図¹⁰にこの様子をプロットする。(図 2)これらの実験から、強磁場磁 性相Bの存在が明らかになった。比熱から分かることはその磁性相が単純な長距離秩序状態でないこと である。弾性定数の変化から、磁性相Aと超伝導相は共存していないと言われている¹⁰。すなわち、超 伝導状態に転移すると磁性は消滅する。さらに低温での比熱測定(H=0)は、磁性と超伝導の共存の 問題あるいは異方的超伝導ギャップを考える上で興味深い。また、この磁性と超伝導はCe, Cu, Siの 組成比に敏感であることが知られており、圧力効果にも興味が持たれる。

-23 -

4.2 UPt₃

図4は理学部大貫研で合成されたUPt₅純良単 結晶の比熱である。UPt₅は「型にはまらない超 伝導体」の代表格であり、2段の超伝導転移を示 す(T_{c1} =0.53K, T_{c2} =0.48K)^{12.13)}。これはp-波(triplet)の内部自由度から現れるものと考え られている。比熱と超音波から求められた超伝導 相のH-T相図を図5に示す¹⁴⁾。超伝導相は3つの 相からなり、特徴的な四重臨界点を持つことが示 されている。同様の結果から熱膨張の実験からも 得られている¹⁵⁾。筆者らの比熱測定から求められ た転移点を図5にプロットし比較してみると、良 く再現されていることが分かる。

また中性子散乱の結果、この系ではT_N~5K で反強磁性秩序状態に転移するが¹⁶⁾、圧力下で消

図4 純良単結晶UPt₃の磁場中比熱(H||c)。

滅することが報告されており、それと2段転移の 関連から、その*PーTーH*相図に興味が持たれる。 既に実験例¹⁷⁻¹⁹⁾はあるが、まだconsistentな結果 が得られていない。筆者らに課せられた課題であ る。

低励起状態については、T < 0.1Kで比熱が上昇 するため明らかではないが、これより高温側では Tの温度依存性があり $\gamma \sim 0$ である。低温での比 熱上昇は他のグループでも確認されている^{n, n}が 現時点ではミステリーであり、これが明らかになっ て初めて正確な低励起状態についての議論ができ ると考えている。

5. おわりに

以上に見られるように、さらに低温あるいは圧 力下での測定に興味が持たれており、この方向で の測定の開発を急いでいる現状である。近い将来 これらの測定が可能になり、多重極限下の研究の 幅が広がることを期待している。

参考文献

- T. Kobayashi, Y. Tabuchi, K. Amaya. Y. Ajiro, T. Yosida and M. Date : J. Phys, Soc. Jpn. 61 (1992)1772.
- W. Lu, J. Tuchendler, M. von Ortenberg and J. P. Renard : Phys. Rev. Lett. 67 (1991)3716.
- W. Palme, H. Kriegelstein, B. Luthi, T. M. Brill, T. Yosida and M. Date : Int. J. Mod. Phys. B7 (1993)1016.
- 4) T. Sakai and H. Shiba : J. Phys. Soc. Jpn. 63 (1994)867.
- 5) M. Chiba, Y. Ajiro, H. Kikuchi, T. Kubo and T. Morimoto : Phys. Rev. B44 (1991)2838.
- 6) H. Nakamura et al., J. Magn. Magn. Mater. 76-77 (1989)517 ; j. Phys. Condens. Matter 4 (1992)473, Y. Kitaoka et al., Physica B206 & 207 (1995)55.
- 7) U. Rauchschwalbe et al., J. Magn. Magn. Mater. 63-64 (1987)347.
- 8) Y. J. Uemura et al., Phys. Rev. B39 (1989)4726.
- 9) M. Lang et al., Phys. Scripat T39 (1991)135.
- 10) T. C. Kobayashi et al., Physica B206 & 207 (1995)600.

-24 -

- 11) G. Bruls et al., Phys. Rev. Lett. 72 (1994)1754.
- 12) R. A. Fisher et al., Phys. Rev. Lett. 62 (1989)1411.
- 13) R. A. Hasselbach et al., Phys. Rev. Lett. 63 (1989)93.
- 14) S. Adenwalla et al., Phys. Rev. Lett. 65 (1990)2298.
- 15) N. H. van Dijk et al, Phys. Rev. B48 (1993)1299 ; j. Low Temp. Phys. 93 (1993)101.
- 16) G. Aeppli et al., J. Magn. Magn. Mater. 76 & 77 (1988)385.
- 17) M. Boukhny, G. L. Bullock, B. S. Shivaram and D. G. Hinks, Phys. Rev. Lett. 73 (1994)1707.
- 18) N. H. van Dijk, A, de Visser, J. J. M. Franse and L. Taillefer, Physica B199 & 200 (1994)159.
- 19) M. Sieck, H. v. Lohneysen, L. Taillefer, Physica B206 & 207 (1995)603.
- 20) E. A. Schuberth, B. Stricker and K. Andres, Phys. Rev. Lett. 68 (1992)117.
- 21) J. P. Brison et al., Physica B199 & 200 (1994)70.