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1. Introduction

We consider the large time behavior of the solutions for the following
Cauchy problem:

ut = (um)xx-vnun inΛx(0, oo)
[ ' j vt = (vm)xx-unvn inRx(0, oo)

with initial conditions

(1.2) u( , 0) = u0 and v( , 0) = v0onR.

Here, m>ί and n>\ are real numbers. Throughout this paper, we assume
that m>ί and n>\.

By [10], the following properties are shown:
When the reaction arises among some reactions, for each reactant the equa-

tion for reaction-diffusion takes the form

— = div D grad O+q',

where C is the concentration, D is the diffusion coefficient and q' is the amount
of material formed through chemical reactions per unit volume per unit time.
When a reaction arises among n molecules of a substance A and n molecules of a
substance B and does not reverse, that is to say, when the reaction is written as

nA-\-nB qt product,

then q' of both equations for A and B are proportional to — CAC
n

By where CA and
CB are the concentrations of the substances A and B, respectively. That is to
say, the concentrations CA and CB satisfy the equation

- ^ = div DA grad CA-kCA Cn

B

(1-3) J ϊ
^ = div DB grad CB-kCn

A CB ,ot
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where k is a positive constant. Here we omit the equation of the concentration
of the product, since the concentration does not need to study CA and CB in our
situation.

In this paper we consider (1.3) in case of DA=CA~X and DB=CB

t~1. Then
equations (1.1) are equivalent to the equations (1.3). We make the following
assumptions (A.I.) on the initial data u0 and v0:

(A.I.) (1) The functions u0 and v0 are nonnegative and continuous on i2,
(2) they have compact support and are not identically zero on R.

Moreover, in this paper, we assume that every function is bounded and nonnega-
tive.

If uo = vo on jβ, the solutions u and v of (1.1) and (1.2) would coincide in Rx
[0, oo) and satisfy the following Cauchy problem with p=2n:

(1.4) ut = {um)xx-uP ini2x(0,oo)

(1.5) w ( . ,0) = w0 o n Λ .

As for the study of the large time behavior of solution for (1.4) and (1.5),
it is important to investigate the large time behavior of supports and L°°-norms
of the solutions. Therefore many authors have studied on supports and L°°-
norms of the solutions (See [1], [5], [7]-[9], [H]-[13] etc.).

The support and L°°-norm of the solution u of (1.4) and (1.5) have the fol-
lowing properties:

If 1 <Lp<tn> then U t^o supp w( , t) is bounded in R.

—inf {supp κ( , ί)}, sup {supp w( , t)} ~log t if l<p=m .

—inf {supp u( , t)}, sup {supp u{ , t)} ~*(*-*)/(2*-2) if max (l,p—2)<m<p .

—inf {supp u( , t)}, sup {supp u( , t)} ~ ^ ( w + 1 ) if l<m<p—2 .

log(K ,*)l-Λ)~-* if 1 =p<m.
|tf( >*)U.*~*"1/(*-1) if max(l,/>—2)<j»and \<p .

Here a(t)~b(t) means that there exist two positive constants cx and c2 satisfying

cx a(t) <b(i) <c2 a(i) for any sufficiently large t.

In this paper, for the initial data u0 and v0 satisfying the following assump-
tion, we consider the solutions of (1.1) and (1.2),

(A.II.) u0 ^v0 on R and 0<w 0 <^ 0 on R .

The purposes of this paper is to investigate whether the large time behavior of
the solutions for the system (1.1) differs from the behavior of the solutions for
the equation (1.4).
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The following is our main theorem.

Theorem 1.1. Let m>ί and n>\ and suppose that u0 and v0 satisfy (A.I)
and (A.IL).

The initial value problem (1.1)—(1.2) has a unique pair of solutions u and v
which are nonnegatiυe. Then, the support and L°°-norm of u and v have the follow-
ing properties:

U t£o S U PP u( yt) is bounded in R, if 2n— l<m.

—inf {supp u( yt)}, sup {supp u( , t)} ~ l o g t if 2n—\—m.

- i n f {supp u( y t)}, sup {supp */(., t)} ~ί(Wfl-(<«-i>/<--i)>(i-tf

ifln—2<m<2n— 1.

—inf {supp u{ , t)}, sup {supp u{ , t)} ~tι/(m+l) if m<2n—2.

log |κ( , f)l-.Λ~ —tmKm+ι> ifn = 1.

K β > 0k*~*~ { 1 / ( n~1 ) H 1~n / ( w + 1 ) } if2n-2<m and \<n.

M ιOI vB~*~1/(lll+i) ifm<2n-2.

In all of the above cases, the solution v satisfies

—inf {supp z>( , £)}, sup {supp ^( , ί)} ~ 2 1 / ( w + 1

Therefore, the behavior of v is independent of the behavior of u.

By Theorem 1.1 we see that the large time behaviors of u and v in our case
are different from the behaviors in case of uo = vo. That is to say, the behavior
of solutions for the system (1.1) is essentially different from one for the equa-
tion (1.3).
And we remark that the solutions v and u is similar to the solutions of (2.2) in
Section 2 and (5.1) in Section 5, respectively (See Lemma 5.2).

In particular, we have:

Corollary 1.2. Under the assumptions of Theorem 1.1, the supports of u
and v of the system has the following properties:

If 2n—l<m, then U o<s* S U PP u( .t) is bounded in R.
Ifl<m<i2n—\,then Uo<;* supp w( , t)=R.
And, for all of the above cases, U 0£* supp v ( , t)=R.

Acknowledgement. The autor would like to express his gratitude to
his referee and Professor H. Tanabe for their kind advices.

2. Notations and definitions

Throughout this paper, we use the following notations and definitions.
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For any measurable subsets E of R or Rx [0, oo), the usual norms of the spaces
Lq(E) for 1 <q<oo are denoted by | | qE and C0(E) is the space whose elements
are compactly supported continuous functions in E. As for the other function
spaces, we use the notations and the definitions in [14].

Next we shall define the solutions of (1.4) and (1.5). For^>>l and μ>0,
the operator Bw is defined with the domain

by

= (\w\m-1w)xx-μ\w\p-1w for

By [2], it is shown that JB<μ> is m-dissipative in L\R). Therefore, by [6], it
is shown that a contraction semigroup T^\i) on L\R) is defined by

w = lim(l-X.BW)-['/Ai w
λ\0

for t>0 and

where [•] is the Gauss function. Then, for wo^L\R) we define the solutions
w of (1.4) with «;(•, 0)=wQ by

(2.1) w{ ,t)

We also consider the equation:

(2.2) *# = (*")„ in Λx(0,oo),

with initial condition

(2.3) *( ,0) = * 0 onR.

For zQeL\R), we define the solution of (2.3) and (2.4) by

(2.4) z( ,t)

For a positive constant M we see

(2.5) z(x, t; M) = t-^m+1^a2-

for (*,i)GSx(0,oo)

where Λ=ΛW M ( w " 1 ) / ( w + 1 ) with a certain constant tfw and bm=(m—l)/(2m(m-\-l)).
We call the function (2.5) the self-similar solution or the explicit solution (of (2.2)).
We can observe that the self-similar solution satisfies (2.2) in JRX(0, oo) and
that the corresponding initial condition is Mδ 0 , where δ0 is the delta function.
The Banach space 3C denotes (L\R))2 with the norm

\(u,v)\x= \u\ltJt+\v\ltR for (u9
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We shall define an operator Jί with the domain

D(Jl)= {(u,v)

by

(u,υ) = ((\u\'-1u)st-\v\"\u\-1u,(\v\<'-1v)xx-\u\"\v\'-1v).

By Lemma 3.3 in [16] it is shown that Jl is wt-dissipative in 3? and that a con-
traction semigroup S(t), ί>0, on 2£is defined by

S(t) V = l i m ( l - λ Jiyvn V for t>0 and V<=2£.
λ->0

Then, we define the solutions u and υ of (1.1)—(1.2) by

(2.6) (u(.yt),v( ,t))

3. The existence and the uniqueness of generalized solution

In this section we shall consider the following Cauchy problem:

(3.1) wt = (wm)xx~Pwq in Rx [0, oo)

(3.2) w(-yt)=zwQ on R

where q> 1, P is a function on Rx [0, oo) and w0 is a continuous function on R.
Throughout this section, we assume q>l.

Definition 3.1. We say that w is a generalized solution of (3.1) if w belongs
to C([0, oo); L\R)) f)L°°(Rx[0, oo)), and for tQy tly a.e. x0 and a.e. xx such that
0 < ί 0 < ί 1 , XQ<XV the following integral identity holds:

dxdt(3.3) I(uJ, E) = Γ1 Γ1 {wmfxx+wft-Pw«f}
<— Jt0 JXQ

satisfying

/(*b,0 =/(*i» 0 = 0 for ί e [ ί o , ί j ,

where we set £=[x 0 , Λ?J X [t0, ί J.

Definition 3.1 is slightly different from ones in [9] and [11]-[13]. That
is to say, they have assumed that the solutions are continuous in Rx[0> oo),
while we do not assume such a continuity.

REMARK 3.2. Under (A.I), the solutions of (1.1) and (1.2) defined in Sec-
tion 2 are generalized solutions. Since this is shown by the following Lemma
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3.3-3.5 and the standard argument, we omit the proof.

Lemma 3.3 Let PSΞC2'\RX[0, <χ>)) nL°°(Rx[0, oo)) and w0(=O0(R).
Then there exists a unique generalized solution w of (3.1)—(3.2). Moreover, w is
continuous in ί x [ 0 , o o ) satisfying

|W0U.Λ »ιΛx[0, oo),

where z(x, t M) is the self-similar solution such that

v>o( )£z( ,l;M) onR.

Proof. Let K= | w|ββ f Λ+l Then we can see that there exists a sequence
of smooth functions wQn satisfying the following properties:

(i) l/n<wOn(x)<K for # e ( — n , ή),
(ϋ) toOU(±n)=K9

(iii) wQn is strictly monotonically decreasing with respect to n and uniform-
ly converges to zυ0 in any finite intervals as w-»oo.

We shall consider the following boundary value problem of the form

(3.4) wt = {wm)xx-Pwq in Qn = (-n,n)χ(0, n),

(3.5) w(±n,t) = K on[0,n),

(3.6) w( . , 0) = wOn on [—n, n].

Due to Theorem 4.4 in [14], we see that the problem (3.4)-(3.6) has a unique
classical solution wn^C{Qn) f]H2^c

Λ'1+Λ/2(Qn) (0<a<ί) satisfying

(3.7) 0<wn(x,t)<tK for (x,t)&QΛ.

By the comparison theorem and (3.7), it follows that the sequence of the solu-
tions wn is monotonically decreasing with respect to n. Therefore, for (x, £)e
jRX [0, oo), there exists lim wn(x, t). Denote w the limit. For tQ9 tv xo> xx with

(Kίo<*i> ^o<^i and for / G C 2 - ^ ^ , * J X [ / 0 , ίj) with f(xOy t)=f(xly t)=0,wn

saitsfy the integral identity

and hence, w satisfies the integral identity

(3.8) /K/,[*o>*i]xI/o,*J) = O.

By a similar argument to the proofs of Theorem 6 and Theorem 8 in [12], we
can prove that w belongs to C(Rx [0, oo)). By a similar argument to the proof
of Theorem 3 in [12], w satisfies moreover,

0<w{xyt)<z{xyt+VyM)^nάQ<w{xyt)<i\wQ\OOtR for (*, f)e=Jlx[0, oo),
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where z is the self-similar solution such that

wQ(x)<>z{xy 1 M) for x&R .

Therefore, w is a required generalized solution.
To prove the uniqueness we let ΰ) be another generalized solution of (3.1)

and (3.2). Set (cf. Theorem 2 in [13])

An = An(x, f) = Γm iθwn+(l-θ) ty^dθ
Jo

and

c. = cn{x, t) = \\p {θwn+(ί-θ) ay-1 dβ.
Jo

Let Γε(0, n) and let re(0,») be a point where

/(«,/, [-r,r]x[0,ΓJ) = 0

holds ίor f (=O2 \[-r, r] x [0, T\) with

/ ( ± r , ί ) = 0 for

Then wn and ώ> satisfy

(3.9) \^_f {wn{x, t)-m{x, t)} f(x, t) dxj

= -[\τ

o

+ Γ (Γ {^.(*, t)fxx+f-On(x, t)f} {wn-tt} dxdt.
JO J-r

By (3.7), there exist two sequences of smooth positive functions Ankr(xy t) and
Cnkr(x, t) with the following properties:

lim Ankr(x, t) = An(x, t) a.e. in [-r, r] X [0, Γ ] ,

for Λ^ 1 and a.e. in [—r, r] X [0, T],

lim C Λ * , ί) = Cn(x, t) a.e. in [-r, r]χ [0, 71] ,

and

for Λ> 1 and a.e. in [—r, r] X [0, T] ,

where

δ r t = { min
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and

Then the first boundary value problem

ίft+Ankrfxx-Cnkrf = 0 in [-r, r] X [0, Γ],

/( ,Γ)=/o( ) on [-r,r],
l ί ) = 0 on [0,7]

has a unique classical solution f=fnkr, here /0 is an arbitrary smooth function
such that

supp/oc(—r,r) and | / 0 U ϊ Λ ^ l .

Substituting the function f=fnkr into (3.9), we observe that

{u>Λ(x,t)-O)(x9t)}f(x,t)ι

+ Γ Γ (An-Ankr) (wn-w)fxx dxdt
JO J-r

S
τ Γ
0 J-r

Taking the limit as &-»oo, n->oo and r->oo in this order we get by Lemma 3.6
in [12],

( {w(x, T)-ϋ)(x, T)} fo(x) dx = 0,
JR

which implies w( , T)=tΰ('y T) a.e. on R.
Since T is arbitrary, we conclude w=tΰ a.e. in Λx [0, oo). Q.E.D.

Lemma 3.4. Let witO(i=l, 2) be functions on R with compact support and
let wi(i=l> 2) be generalized solutions for

w^iw^-PiW* inRx[0, oo)

with wJ^ , 0)=eϋί>0, where Pf.(z=l, 2) are functions on Λx[0, oo). Then, we have

+ Γ \P1( ,s)wί(.,s)-P2(.,s)wi(.,s)\ltRds
Jo
for *e[0, oo).

The proof is given in a quite similar way as in the proof of uniqueness part
in Lemma 3.3 and omitted.
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Combining Lemma 3.3 with Lemma 3.4 and using approximation procedure
we can prove the following.

Lemma 3.5. Let P be a function on Λχ[0, oo) and let w0 be a compactly
supported function on R. Then, there exists a unique generalized solution w o/(3.1)
and (3.2) and w satisfies

ΰ<w(x,t)<z(x,t+\;M), I Wok*,

for t>0 and a.e.

where z is the self-similar solution such that

0<w0(-)<z( , 1; M) a.e. on R .

4. Comparison theorems

In this section, we shall define the generalized supersolutions and the
generalized subsolutions and give some comparison results.

By the same argument as in the proof of Lemma 4.1, 4.2 in [16], we can
show the next lemma, the proof being omitted.

Lemma 4.1. Let u0, v0, u0 and ϋ0 belong to L\R) Γ\L°°(R) and satisfy

0<u0<u0^ϋ0<v0 a.e. on R .

Let (u, v) and (u, ϋ) be two pairs of solutions of (1.1) with initial data (v0, v0) and
(u0) ϋ0), respectively. Then, the functions satisfy, ί > 0 ,

0<w( , t)<u( , ή^ϋi-y t)<v( , t) a.e. on R .

DEFINITION 4.2. Let G be a connected open subset of Rx (0, oo). A func-
tion w belonging to O([0, oo); L\R)) ΠL°°(RX [0, oo)) is called a generalized su-
per (sub) solution of (3.1) in G, if for t0, tu a.e. x0 and a.e. xλ such that 0 < ί 0 < ί υ

xo<Xι and [x0> xx]x [t0, t^dG, the following integral inequality holds (see (3.3)):

I(wJ,E)<0

for f<=C2Λ(G) withf(xo,t)=f(x1,t)=O,to<t<t1, where we recall £ = [ % Λ ; J X

[to, hi

Lemma 4.3. Let P and w0 be functions in L°°(Rχ [0, oo)) and C0(R), res-
pectively. Let w be a generalized solution of (3.1) with w{ , 0)=w0 and let tΰ be a
generalized super (sub) solution of (3.1). Then, if

wo<w( , 0) a.e. on R ,
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we have, for t>0>

w( ,t)<fi)( yt) a.e. on R.

Proof. By a quite similar argument obtaining uniqueness part in Lemma
3.3 we can prove

(4.1) ( (w(xit)-ΰ)(x>t))fo(x)dx<O
JR

for any function fo(x), which yields the desired result. The details are omitted.
Q.E.D.

For Γ>0, let / be a smooth function in [Γ, oo) such that

l(T)>0 and /'( )>° in [Γ, oo).

and let

G = {(*, t): t>T and *e(-/(i) , /(*))} .

Sj and S-t denote the subsets {(/(*), t); te[Γ, oo)} and {(—/(ί), ί); *G1T> °°)>
of Λ x [0, oo) respectively.

Lemma 4.4. Let w be a generalized solution of (3.1) with w( ,O)=wo&
C0(R) and let tϋ be a generalized super (sub) solution 0/(3.1) in G that belonging to
C(G).

P in (3.1) satisfies that

(S,\jS.,)r\suppP=φ,

Then zυ is Holder continuous in some neighborhood of St\JS-t. Moreover, if

and if

w(l(t),t) <tt{l{t),t) for t>T,

(>«(/(*),))

w(-/(t), *)<«(-/(«),«) for t>T,

(>«(-/(«), ί))

then we have

w(x, ή^tΰix, t) for t>T anda.e. #e[—/(f), l(t)].
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Proof. Let an arbitrary constant T{>T be fixed. There exists a con-

stant δ=δ(Γ, Tv P)e(0, T) such that

( ^ + X 0 U £ Π 0 ) n s u p p P = φ for t^[TyT{\y

where, for δ>0 and t>T, Ei+\t) and Jε(Γ}(ί) denote [l(t)-8, l(t)+8]x[t—8,

t+8] and [-/(*)—δ, -l(t)+8]x[t-8, t+8] respectively.

Then, there exists a sequence of smooth functions P.^L°°(Rx [0, oo)) such

that

|PyU,j2χCo,oo)^|P|oo)Λχ[0too) for j

lim P*(x, ί) = P(x, t) for a.e. (A?, t)&Rx [0, cχ>)

and

for ; > 1 and fe[Γ, Γ J .

Let wQn satisfy the properties (i)-(iϋ) in the proof of Lemma 3.3. For

y > l , let wjn be the classical solutions of

™t = (wm)χχ-Pj ™q in Qn

with (3.5) and (3.6), where Qn denotes (—n, w)x(0, ή).

Then, since wjn are positive in QΛ, wjn are smooth in Qn.

Now, we shall show the uniformly Holder continuity of the solutions wjtt

in E[%\t) and E$(t).

We shall omit (+) and (—) from i?(.+)( ) and £tί~)(-), respectively.

We fix to(Ξ[T, ΓJ and (Λ?X, tx)^E2m{tQ) arbitrarily.

Let ΛJT0 be a smooth function such that

= 1 on [-1,1]

= 0 o n ( - o o , - 2 ) U ( 2 , oo),

and we set

ψδ(x, t) =
ί , - ( ^ -

in/Jxi?.

We set also

ΦOO = Ny(2-y) for

with N=(4ml(m-1)) (| w01 ~,Λ+1)""1-
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Let an arbitrary j>\ and an arbitrary n satisfying E5y6(t0)czQn be fixed.
We shall omit j and n from wjn and P.. Setting {mj{m~\)) wm~1=φ(q)y we see

(4.2) ?, = ( » -

m(-n,n)x[t,,—^S,oo)
Ό

with β=(m+n—2)l(m—l) and \=m((m—l)lm)β.
We differentiate (4.2) with respect to xy multiply by qxψl and consider

a point (x2, to) of E18 where the functon #=(5V^«)2 attains a maximum in [—ny n]
X[t0—(5δ/6), oo). Since we may assume t2>t0—(5δ/6) without loss of gene-
rality, we observe that

y I v f ] —— Γ\ 3.TΊ fi j ^ ί V

Then, at such a point we have the following inequality:

(4.3)

Set

Note that

ς
0<g<l/4 in [—nyn]x[t0——δ, oo)

6

and

(4.4) O^A N<φ'{q)<2Ny φ"{q) = -2ΛΓ

and 1 ^ 1 < — in [—Λ, w]χ[ί0—— δ, oo).
φ 3 6

By (4.3) and (4.4) we obtain

with
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Therefore we have

Λr(*,ί)^l*U.jr ( Wβ(io)^2(c li+-γ-) f o r

and hence,

(4.5) | - ^ (w»-i)x(x, t)

for (x,t)(ΞE(2/3)B(t0).

By (4.5) and Theorem 8 in [13], for; > 1 and n such that U
the solutions w.n satisfy

(4.6) <^jn>i%/2(t0)+<^jnyt%%u0)<CB, for ί o e [ Γ , Γ J ,

where α = m i n ( l , ί/(m— 1)) and Cθ is a positive constant depending only on

I " o k * l*k«χb.-> a n d δ Set £ ( +>=U ί o e[Γ,r1]^/2 )(ίo) and £<->= U ,β 6 t Γ f Γ l]
E{

Bj2(t0). By (4.6) and Ascoli-Arzel& theorem, for e a c h / ^ 1 , a subsequence of
the solutions w.n uniformly converges to w. on Z?(+) (J E^"^ as «->co. Moreover,
we obtain

(4.7) < w / > ^ c o + < ^ > ( , : $ > < : C » for * = + , - .

By Lemma 3.3. Lemma 3.5, Lebegue's convergence theorem and GronwalΓs
inequality, we have

(4.8) lim sup I w.( , t)-w(., t) \ ltR = 0 .

By (4.7), (4.8) and Ascoli-Arzelλ theorem, there exists a subsequence of the
solutions w. which uniformly converges to w on E^ljE^'K

Therefore, the generalized solution zv is Holder continuous in E^\JE^"K
Let tΰ^C(G) be a generalized supersolution in G.
There exists a positive constant η which has the following property; For

any sufficiently large n and j , w.n satisfy that

(4.9) »„(*, t)<β>(x, t)

for /e[Γ, ΓJ and μ |

For any integer H>\ and λ=0, 1, 2, ..., H-l, we set 4^ )=T+(7 1

1-7 1) h/H

and G^=[-/(/H, /(^Hx WF), 4Ώ]
We fix a large if such that

Repeating the same argument obtaining uniqueness part in Lemma 3.3 we can
prove
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(4.10) \'li* (w(x, tj-a(x, h)}/„(*) dx<L0

where f^C2 \G0) be an arbitrary function such that/(±/(*0), 0 = ° f o Γ

and consequently

(4.11) \'W (w(x, * , ) - * ( * , O

By (4.9) and (4.11) we have

(4.12) «,(., O ^ ^ ( , *i) a.e. on [-/

From (4.12), the same argument yields

w( , **)^«( , **) a.e. on [-/

Repeating this procedure we arrive at

w(. f r x ) < ^ ( - , Γ,) a.e. on [-/(Γ^, /(Γ,)].

Since Γ ^ Γ is arbitrary, we conclude

ί) for ί > Γ and a.e. on [—/(*), /(ί)]

Q.E.D.

Lemma 4.5. L ί̂ w0 in (3.2) belong to C0(R).
Let w be a generalized solution of (3.1) #/wί (3.2). And let tΰ be a generalized

supersolution o/(3.1) in G and be continuous and positive in G. Suppose that:

, T) ax. on [-/(Γ),

suppw (1(^115-,) = φ.

«, w and satisfy

w(x, t)<tΰ(xy t)for t>T and a.e. x<Ξ[—l

The proof is given in a quite similar way as in the one of Lemma 4.4 and
omitted.

Finally, we state for following.

Lemma 4.6. Let l(t)==lQ on [T, oo).
Let P in (3.1) and w0 in (3.2) belong to L°°(Rx [0, oo)) n C2Λ(Rx [0, oo)) and

C0(R) repsectively.
Let w be the generalized solution of (3.1) and (3.2). And let w be a generalized

subsolution of (3.1) in G and be continuous in G.
Suppose that:

w(-,T)>ίϋ(*,T) on [-/0,/J

v>(l<»t)>w(lQ,t) and w(-lo,t)>ίv(-lOyt) for t>T.
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Then, w and tθ satisfy

w>tϋ in G.

The proof is standard and omitted.

5. The large time behavior of the solutions for

In this section, we consider the large time behavior of solutions for the
following equation:

(5.1) wt = (wM)xx-\(l+t)-«'(m+v wn in jRχ(0, cχ>)

with initial condition

(5.2) w( ,0) = w0 on R.

where λ > 0 and w0 satisfies (A.I.) in Introduction.
In order to investigate the large time behavior of the generalized solution

for (5.1), we shall derive an estimate of\(wm~1)x( yt)\eoR. The following is
proved similarly as in the proof of Lemma 3.1 in [8].

Lemma 5.1. Let w be the generalized solution of (S.l)-(5.2). Then we
have

: J { ) ^ for

where C is a positive constant independent of t and wQ.

Our main result in this section is as follows.

Lemma 5.2 Let p^=nmj{m-\-\—n). Let w0 satisfy the assumptions (A.I.)
and w be the generalized solution of (5.1) and (5.2). Then, the support and L°°-
nornt of w have the following properties:

U ̂ 0 supp w( ,t)is bounded in R, if 2n— 1 <m .

—inf {supp w( > t)}> sup {supp w( , £)}~log t ifm = 2n—l .

—inf {supp w(*y t)}, sup {supp «;(•, t)}~t(p*~mM2p*-2)

if 2n—2<m<2n—l .

—inf {supp w( , t)}, sup {supp «;(•, t)}^t^m+1) if m<2n—2 .
/im+1) ifn=\.
if 2n—2<m and n>\ .
ifl<m<2n-2.
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Proof. For simplicity we assume that «;0(0)>0.

(I) Case:»=l.

Let tΰ be a generalized solution of (2.2) with initial condition ίv( , 0)=«/0.

Weset for ί>0

p(t) = exp

and

Then, we can observe

w(x,t) = p(t)fi)(xtv(t)) for (*,*)eΛx(0, oo),

and the result follows from [17].

(II) Case: In— \<m and n>ϊ.

Let w* be a generalized solution of (1.4) with p—p* and with w*( , 0)=α;0.

In Introduction we describe the estimate of supp zϋ*( ,£) and |«>*(•, 01 ~,R>

which is the required one also for w(t). Suppose that λ is so large to satisfy:

(5.3) ^*(Λ?,ί)(Λ-1)/^+ 1-Λ)<λ1 / r t(l+0 ("1 ) / ( w + 1 ) for (*,f)eΛx(0, oo).

For such a constant λ, since w is a generalized subsolution of (3.1) with

P=eϋ*(n-1)/(|n+1-n) and q=n we obtain by Lemma 3.3, Lemma 4.3 and (5.3) that

w*>w in JRX[0, oo). Let a and b be positive constants satisfying am~ιb2=l

and set fi)(x, t)=aw(bx, t) for (xf ί)GJΪx(0, oo). Then tO is a generalized solu-

tion of the following equation:

«;, = (wM)xs--mka1-*(l+t)-*'<m+1> to* in JKx(0, oo).

Therefore, we obtain the upper estimates of suρρw( , t) and \w( , ί)U,Λ

Let A O G ( 0 , 1) and let It be the solution of the following Cauchy problem:

(%")"= μ(hn-h) on (0, oo)

- K *<!» = 0, Were „ - x - * -

It is easy to observe that It has a zero point, and let δ be the first zero point

of h. Then, there exists an nontrivial and nonnegative solution h for

A) = (O«, on (-8,8),

such that

(5.4) w,^A on ( - δ , δ ) .
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Let T be the solution of the following Cauchy problem:

r τ\t) = -λ(l+*)~ n / ( l > l + 1 ) rn on (0, oo),
(3.3) I

where τo=min{l, ((m-\-ί)l(X(n— 1) (m—n
Then, we observe that

(5.6) (τA)^((τA) w ^-λ( l+0- Λ / ( w + 1 ) (τΛ)n in (-S, δ)x(0, oo).

By (5.4), (5.6) and Lemma 4.6, we get that hτ<w in (—δ, δ)x(0, oo).
Moreover, the decay rate of T in t is equal to the one which we want to show.
Therefore, we have a lower estimate of \zυ( , £) U,,Λ

(III) Case:»*=2ίi-1.
Let c>0 and set λ=λ(w— l)(*+«-2>/(«-i). We consider the Cauchy Problem:

f ( ί T + < ? ' + ? - V = 0 on [0, v)
{ " ^ I ?(0) = JL-^-1), on [0, v ) ,

where η is a positive constant. This problem has a solution for some 97>O and
the behavior of it is known (See [1].). Using this we can construct desired
generalized supersolutions and subsolutions (See [5].).

(IV) Case: 2 » - 2 < m < 2 n - l .
Set

(5.8) w+{x, t) = A(l+t)-°(D-Xχi+t)-ηi«>»-v
for (x, f )eΛx(0, oo)

where Λ=1/(/>#—1), b=(p%—m)/(p*—l) and ̂ 4 and Z) are positive constants.
Then we obtain that

- 1 ) " 1 mAm-1(ί+t)-<m-»-t+1

for (*,ί)eΛχ(0,«>).

Since a(m— ί)-\-b—1=0, we have

(5.9) L(a;*)<-^(»ι-l)

X (4(wi-l)-1 j«4

X (a-2(m-1)"1

for (x, ί)eΛx(0, oo),
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where ψ='\]r(x, t)=(D—#2(l + 0"~*)+ Since 2a>b, there exists a positive con-
stant A such that 2α>4m (w— \)~l Am~ι>b. Let such an 4̂ be fixed. More-
over, there eixts a sufficiently small constant Z)>0 such that a—2 (m—I)"1 mAm~ι

—\An-ιD^n-ι^m-ι)>Q and wo(x)>A(D—ofγ4im"ι) on Λ and we shall fix such a
constant D. Then we have L(w*)<0 in iδx(0, oo). Since w%t, (w%)xxG
L\RX [0, T1]) for J Γ > 0 , ZU* is a generalized subsolution of (5.1). Therefore, we
have by Lemma 3.3 and Lemma 4.3, that w*<w in i ϊx(0, oo). Thus, we ob-
tain the lower estimates of supp w ( , t) and | w ( , t) \ „ R.

Let w* be a solution of (5.5) with the initial condition ^*( , 0)= |α>0U ϊΛ.
By Lemma 3.2, there exists a smooth function / in [0, oo) such that

/(0)>0, Γ>0 in [0, oo),

supp w( , t)(Z(—l(t), l{t)) for t>0 .

Set G={(#, t): t>0 and Λ?G(—l(t), l(t))}. Since w* is a generalized super-
solution of (5.1) in G, we find by Lemma 4.5 an upper estimate of \zu( , 0 U,Λ
On the other hand, we see by Lemma 5.1.

(5.10) I (w^U , 01 o o ^ ^ C r c 1 ^ 1 ^ - 1 ^ * - ^ .

By a similar argument to one which is used for the porous medium equation, we

can show that supp w( > i) is an interval (£\(0> ^(0) f°Γ large t and that

(5.11) fί(ί) = -ϋ- (a-WAt), t) for large t, i = 1, 2 .

By (5.10) and (5.11), we see

(5.12) Iζ<(t) I «£α-(W(i+(«-i>/c# -i>>,

where C is a positive constant. Integrating (5.12) from 0 to ty we have the
desired estimates of | ζ^t) \ and | ζ2(t) \.

(V) Case: m<2n—2.
We set again

w#(*, 0 = ^(l+O^ί^-^l+O"*)^" 1^ f o r

We put for £>0

(5.13) a = l/(»+l)+β, 6 = 2/(m+l)-fi(m-l) f -4

Z) = (χ-i^i- 5)(--«/( -υ and E =

Then, for any sufficiently small £>0, we get

(5.14) wo(x)>EXι-Di/2tDi/2Ί(x) for



DEGENERATE QUASILINEAR PARABOLIC SYSTEMS 869

where % is a characteristic function. We fix such an £>0. By (5.9), (5.13)
and (5.14), we see that w* is a generalized subsoluiton of (5.1), and w>w* in
ΛX[O, oo). Set Γ1=(θλ-M1- 2-1)-1'«--l, which q=(2n-2-m)l(m+l)>0.
Then we see

w(*,Γ0^-4(l + Γ1)^
1>(Z)(l)--Λ!'(l+21

1)-*W)y<--1> on R,

with α(l)=l/(m+l)+S/2, b(ί) = 2l(m+l)S(m-l)l2 and D(1) = D(1+
TJ-^-V'2. Setting

zo(M(x, t) = A(l+t)-*v (D(l)-x2(l+t)-*vy«>»-» in Λχ(0, oo).

We see

%(*i))<0 in Rx[Tly oo)

and

for Γ > 0 .

Thus, ^ (*D(^, 0 is a generalized subsolution of (5.1) in Rx[Tυ oo), and we
have by Lemma 4.3 wim)<w in JBx [Tl9 oo).

For any positive integer j, we put a(j)=ll(m-\-l)Jrβ2~i, b{j)=2j{mJ

Γ\)—
S(tn-l)2-\ Ts=(€X-1A1-2-i)-v*-l and J \
Setting

(y))i/(w"1) in J?X(O, oo).

We get similarly w>w^j) in Rx[Tjy oo). Therefore, we get for

(l+t)-iΛ-+i)|inf {supp « ( . , *)} I ̂ D O
(i+ί)-iΛ-+i> | S U p { s u p p « , (

and

Since lim D(/)=D(oo)>0 and lim (1 + Ϊ 1 , + 1 )- I 2 " y =l, we obtain the lower esti-

mates of supp α>( , ί) and |«;( , ί)|oo)Λ.
Let so* be a generalized solution of (2.1) with initial condition &>*(•, 0)=w0.

Then we can show that w* is a generalized supersolution of (5.1). Therefore,
we obtain the upper estimates of supp w( , t) and \w( , £)I~,Λ Q.E.D.

6. Regularity and semiconvexity of the solution for (1.4) and (1.5)
in case of infxeΛ M?0(JC)>0

In this section, we let the function w0 belong to C(R) n£°°(-R) and satisfy
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(6.1) inf wQ(x)>0.
xεβ

We shall consider the regularity and the semiconvexity of the solution for
(1.4) and (1.5) under this assumption.

By Theorem 0 in [8], we know the following proposition.

Proposition 6.1. Let wo^C(R)nL°°(R) satisfy (6.1). Then, there exists
a unique classical solution of (1.4) and (1.5), and the solution is smooth in Rx (0, <χ>).

Now we shall show main results of this section.

Lemma 6.2. Let wo^C(R) ΓiL°°(R) satisfy (6.1) and let w be the classical
solution of (1.4) and (1.5). Then, w satisfies

χ{£)i-(ι»-l)/(2ι»-l)_(ί+£)2)-(m-l)/(2Wί-l)J-l/2 fQr (Xy t)(=RX(0,

where Dn mis a positive constant depending only on m and n,

D^ = / \wo\oo,R \ n m 2) 2

χ ^2(inf ^0(x)

Proof. Set W=(mj(m— l^w""-1. Then, ίF satisfies the equation:

ϊF", = (m-1) WW«+1 PF,| 2 -λPF^ in JSχ(0, oo),

with β={2n+m—2)l(m—ί) and \=mβ-\m— if.
By the comparison theorem, we have

(6.2) !»(ί+C*)-(—«'<I -I>^ίΓ(*,ί)^/»(ί+C*)-<—«'<I"-1> in Λχ[0, oo),

with ^={λ(2//-l)/(m-l)}-<<<'-1^2»-i), C*=(2«-l)-1(inf,SBa;o(Λ;))-ί!"+1 and C*

= ( 2 « - l ) - 1 |w,|=fi+1-
Set

Q(x, t) = (t+2O*)"(W(x, O-^ί+aC*)^—W(«-») in Λχ[0, oo),

where a=(2n+m—2)/(2«— 1).
Then, 0 is positive in i?X [0, oo) and we obtain the following estimates:

(6.3) Q(x, t) ̂ μ^=\ (ψή* (2C*-C*) in Rx [0, oo)

and
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(6.4) Q(x, t)^μ£=± c* in Rx[0, oo).
Δn—1

Setting

r(s) = {{2C*y-*-(a-l)s)-**-* on [0,

with S*=(2O*)ι-"(a-l)-\ we find

r' = r* on (0,5*)

Using r(s) we set

Q(x, s) = Q(x, r(s)-2C*) in Λχ(0, S*).

Then

(6.5) Q, = («-l) (Q+^r) QMβ+\Q9\*+\μ'f

~\μβ r^l+μ-1 r'1 Qf+ar*'1 Q

in Λx(0, S*).

Set ΛΓ=8^(m-l)(2«-l)-1(2CH ί/C*)β >(2CH ί-C*) and *(y)=iVy(l-y). By a
quite similar argument obtaining (4.5), since we can prove

(6.6) | Q , ( * , * ) | 2 : £ — for

Therefore we omit the proof of (6.6).
Since

5

it follows from (6.6) that

I W (x t) I <Z) ί—^-i (20 C ) i(2C y~* (2C A-t)1"06]-'1^2

χ(ί+2C,)- in Λχ(0, oo),

for a certain D. m>0. Q.E.D.

Lemma 6.3. Let m>2n. Let wo&C(R)nL~(R) satisfy (6.1) and let to
be the classical solution of (1.4) and (1.5). Tfett, the solution w satisfies the fol-
lowing inequality:

{w~*)Jx, t)>-
X {Dj-(^-l)/(2«-l)_

in i?X(0, co),
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with K=max((m—l)l(m(m-\-l)), ί)n mD\), where Dj and D2 are the constants in
Lemma 6.2 and £>nm is a positive constant depending only on n and m.

Proof. We differentiate the equation in (6.5) twice with respect to x and
set P=QXX to get

(6.7) P,= (m-l)(Q+μr)Pxx+2mQxPx+(m+l)P2

r-'Qy-1-!} P

in Λx(0,5«).

We shall consider the differential operator:

(6.8) 1(0) = θ,-(m-ί) (Q+μr) θxx-2mQx θx-(m+ί) θ2

+ar*-H(l+μ-ir-iQy-i-l}θ in

Then from (6.4), (6.6) and (6.7) it follows that

tns

in J8x(0,S*).

Let k>0 and 0<η<S*. We substitute P=—kj{s—η) into (6.7) to get (note
that \<β<2)

L(P)<: f7 λ f ( / 3 1 ) a r \ μ r Q ) { l + μ r Q)
(s-η)2 (s-vγ s~v

in RX(V, S*).

If the positive constant k satisfies

we have

(6.9) L(P)>L(P) in

By Theorem 5.1 in Chapter 7 of [14] P is bounded in Rx[η, (S*+η)l2] and
there exists a positive constant £0 such that

(6.10) P>P in

Thus, choosing

we have
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P>P= i
*-V

Since η is an arbitrary constant such that 0<57<<S!|C) we get

«^-— in
s

Therefore it follows that

m— l

in Λx(0, oo).

Q.E.D.

7. The estimates of v in (supp u)c

In this section we shall consider the estimates of v in (supp u)c, where u
and v are the solutions for (1.1) and (1.2). Throughout this section, we assume
2n—2<m and that u0 and v0 satisfy (A.I.) and (A.IL). Set do=(bm)-1/2 am( \ v0 \ 1R

~ \uo\i,RYm~1)/(m+1)9 where am and bm are the constants in (2.5).
For </<Ξ(0, d0), we set h=h{d)=

Lemma 7.1. Let u and v be the solutions of (1.1) and (1.2).
For d&(0,d0) and £e(0, d0—d) such that h(d+e)>(3/4) h(d), there exists

a positive constant T1=T1(d, 6) satisfying the property:

supp «(., f)cΓ-— t^m+ι\ — ί^+ 1)Ί for t>Tx.
L_ O O —I

Moreover, for t>Tx, there exist xι=xι(d, S, t)e[dt^m+1\ (d+ε) t^m+1>] and x2=
x2{d, ε, t)(=[-(d+ε) t*m+ι>, -dt^m+1>] such that

v{x,, t)>^-h{d) r « +') for i = 1, 2 .

Remark 7.2. For η e (0, e), we put

G = {(xy t): t>Tly xt=[-(d+v) t***

Applying Lemma 4.4 to the solution v, we see that v is continuous in

{(x, t): t>Tlf x(Ξ[-(d+S) t^m+1\ -dt1'^-1)] U [dt^m+ι\ (d+6)

Proof of Lemma 7.1. For λ > 0 and (/0,go)&3£ such that/0(x) andgo(x)>0
a.e. xGΛ, we put (fκ,gλ)=(I—~λ«-Λ)~1 (fQ, gQ)y where <Λ and 3£ are the operator
and the space in Section 2 respectively. Since (l/J^Vx)** and
belong to L\R), we have that
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\ gλ(x)dx-\ fx{x)dx=\ go(x)dx-\ Mx)dx.
JR JR JR JR

Therefore, by the definition of the solutions u and v in Section 2, we get that

(7.1) \v(->t)\ltR-\u(.yt)\ltR=M for ί > 0 ,

where M = | v01 τ R - \ u0 \ 1R.

Let w be the generalized solution of (1.4) (p=2n) with w( > 0)=u0. Then,
since 2n—2<m, the solution w satisfies the following properties:

lim |w( , ί ) | ι Λ = 0

and there exists a positive constant Γ1# such that

(7.2) suppw( , ί ) c [ - — t*m+1\ — W+V] for

Therefore, by Lemma 4.1, the solution u satisfies that

(7.3) supp«( , ί ) c Γ - - ^ ί I 4 - + ^ - ^ ί 1 Λ +ί>Ί for
I O 3 J

and

(7.4) J m | « ( . , t ) k β = 0.

By (7.4), there exists Γ2ί|t=71

2*(£, <ί)>Γ!* such that

(7.5) \u(;t)\ltR<^h(d)S for

Let Ό* be the generalized solution of (2.2) with ^*( , T2*)=v( > Γ2*) i
Λx [T2̂ ς, oo). From Lemma 4.1 it follows that

(7.6) v(xy ί)^^*(x, t) for ί>T 2 ϊ ί ί and a.e.

By [7] and [15], the solution z>* satisfies that

(7.7) sup {supp v*( , t)}, -inf {supp «;*( , ί)}

and

(7.8)

where ί?(Λ?, i)=f(ic, ί; |z;( , Γ^ίli.ji) a n d ̂  is the self-similar solution ((2.5)).
From (7.7) and (7.8), it follows that

(7.9)
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Now we shall show the existence of the point xv

By Remark 7.2 and (7.3), the negation of our conclusion is as follows:

There exist a constant £^(0, d0—d) and a sequence of the points

h{d+ε)>—h(d)y lim tn = oo
4 * • > * •

and

(7.10) ^.K^WS"1*"*1*

for »^1 and *e[Λy<-+I), (d+S) ίiΛ-+U].

From (7.6), (7.8) and (7.10), it follows that

(7.11) W ,O

where

^ +i)] for ί > 0 .

For any positive constant € such that h(d-\-ε)>(3j4) h{d), the function ϋ satisfies
that

(7.12) *>(*,*)>—
4

for ί > 0 and

Since any generalized solutions # of (2.2) conserve the total mass:

l*( »0l i.*= l*( .0)|1 > J e,

it follows from (7.1) and (7.5) that

(7.13) K ,0k*+^&-

> | 0 ( >IΊ*)li .«= I»*( ,«)II.JΪ forany

By (7.12) and (7.13) we have

(7.14) |f( ,Oli .*>5 Λ / ( ( , e (* .O^+|-A€

-|t>*( ,ί,,)-«>( , * « ) l i . * ~ * € for
24

From (7.11) and (7.14) it follows that

(7.15) l»*( , O - « ( , ' . ) l i .«>^te for
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The property (7.15) contradicts with (7.9). Thus, for any sufficiently large t,
there exists a point x1 having the required property.

By the similar argument, we can show the existence of the point x2.
Q.E.D.

In the proof of the following lemma, since we shall use the scheme employ-
ed in the proof of Lemma 3.1 in [8], we omit the proof.

Lemma 7.3. For d^(O,do)y there exist two positive constants T2=T2(d)
and O2=C2(v0, d) such that

for t>T2

and a.e. x<=(— oo, -dtι/(m+ι)] U [dt1/(m+1\ oo).

By Lemma 7.1 and Lemma 7.3, we can show the following lemma.

Lemma 7.4. For ί/G(0,J0), there exists a positive constant T3=T3(d,v0)
such that

1\ t), v ( - d t \ t)>

for t>T3.

Proof. Fix rfe(0, d0) and choose

(7.16) ε = 1 {(A

where C2 is the constant in Lemma 7.3. Let T3=max(T1, T2). Then, it fol-
lows from Lemma 7.1 and (7.16) that

A h(d)

for t>T39

where xx is the point in Lemma 7.1.
By a similar argument, we obtain

for t>T3.

Q.E.D.

8. Proof of Theorem 1.1.

Part I (Case tn<2n—2.).
Let w* be the generalized solution of (2.2) with α>*( , 0)=v0. By [17], it is
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shown that the solution w* satisfies

(8.1) |w*(%0U^~r*-+1>

and

(8.2) sup (supp «>*( , *)), -inf (supp w*( , ή) ~tWm+v>.

Let w be the generalized solution of (1.4) (p=2n) with w( ,0)=vo. By the
result stated in Introduction, the solution w satisfies

(8.3) M ,ί) l-.Jt~

and

(8.4) sup (supp w( , *))> —inf (supp to ( , t))

On the other hand, by Lemma 4.1 we have

(8.5) tD(x,t)£Ό(x,t)£tD*(x9t)

for t>0 and a.e. x&R

It follows from (8.1)-(8.5) that

(8.6) l«( ^)U > Λ ~ί-* / ( β + 1 )

and

sup (supp v ( , t))y —inf (supp v ( , t))

Therefore we have the estimates of \v( ,t) |oo>Λ and supp v( > i).
By (8.6), there exists a positive constant λ such that

(8.7) (v(x,t)

for £>0 and a.e.

For such a λ, we let u% be the generalized solution of (5.1) with u*( , 0)=u0,
By (8.7), the solution u* is a subsolution of (3.1) with P=vn and q=n. Hence,
by Lemma 4.1 and Lemma 4.3, we have

(8.8) n#(ff, t)^u(xy t)<tw(x, t) in Λx[0, oo).

By Lemma 5.2, the solution u* satisfies

(8.9) M ,ί)l~.«~'-1/('"+1>

and

(8.10) sup (supp u*( , t)), —inf (supp u*( , ή) ~*1/<w+1>.

From (8.3), (8.4) and (8.8)-(8.10), we obtain the required estimates of |w( ,
and supp w( , t).
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Part II (Case of 2n—2<m.).
The following lemma gives some lower estimates of v in a subset of

(supp u)\

Lemma 8.1. Let

f(ί) = {rΛ(")Γ"" <rt!"'

and let

v%\x, t) = ( m~~ί y/(W"1} t'^m+1\A2-{x-k{t))2 rV(«+i))V<—i) in /ex [0, oo) .

Then, u and v satisfy

8uP Ptf(.,*)c[-r(o,r(*)] /or t>τx

and

v(x,t)9υ(-x,t)^v$Xx,t)

for t>Tx and ax. x^(—ooy At^m+^]

for certain positive constants k, ζ0 and Tv

Proof. Let w be the generalized solution of (1.4) with w( , 0)=u0. Then,
as is noted in Introduction, it holds for sufficiently large ζ0 and Γ1Hί that

supp w(.,t)(Z[-ζ(t), ?(ί)] for

By Lemma 4.1, we have also

(8.11) suppu(.,t)c[-ζ(t),ξ(t)] for

We set

(8.12) ^ = (2»

where d0 is the constant in Section 7. By Lemma 7.4, (8.12) and 2n—2<nt,
there exists a positive constant Γ2! l.=Γ2#(^4)>71

l ! |. such that

(8.13) v(At^m+1\t),v(-At^m+1\t)>—h(A)t-^m+^ for

and

(8.14) supp«( ,ί)c[-i-^ί1/('»+ 1)>^-^ί1/c«+i)] for

where h is the function in Section 7.



DEGENERATE QUASILINEAR PARABOLIC SYSTEMS 879

Here, we take

(8.15)

and set

GTu = {(*, t);

We shall compare the function v$ in this lemma and the solution v in
By (8.15), the function vφ satisfies

(8.16) v$\x, 2V*) = 0 for

Since

Λ(ί)>A>Λ-+1> for ί > 0

we have

(8.17) v$\At*m+1\t)<±-h(A)t-1«'»+» for

(8.18) βgχ-iίίV("+1), ί) = 0 for

and

(8.19) ^ (
for t>T^ and a.e. x^[-At^m+v>,

By (8.11), the solution u satisfies

(8.20) (supp u) Π (supp *#>) = φ in GT 2,.

Since the function ((OT-1)/(2»I(OT+1)))1Λ'»-1> r1/(1»+1>(^2-Λ;2r2Λ<"+1))i./<w-1> sat-
isfies (2.2) a.e. in Λx(0, oo), we obtain by (8.19) and (8.20)

(8.21) v$-W)

That is, v1^ is a subsolution of (3.1) with P=vn and q=n in GTίJi. Thus, by
(8.13), (8.14), (8.16)-(8.18) and Lemma 4.4, we conclude υφ^v in GTit.

Q.E.D.

Lemma 8.2. There exist a positive constant T2 and a positive function
p defined on [T2, oo) such that

v(x,t)>p(t)>0

for t>T2 and a.e. x(Ξ[-

where A is the constant in Lemma 8.1.
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Proof. Case: 2n—2<m<2n.
Let w be the generalized solution of (1.4) with w( 90)=u0. Then, by

[8], [9], [12] and [13], there exists a nonnegative constant T^ such that for each
t> T^y {x&R: w(x> t)>0} is an open interval in R containing x=0. By Lemma
8.1, there exists a constant Γ2Hί>max(Γ1Hί, 2\) such that

(8.22) v(x,t)>φo(x;t)

for ί>T2ϊ !canda.e. x^[~

where

and A and 7\ are the constants in Lemma 8.1.
For each s>T2%, let w( , ;s) be the generalized solution of (1.4) with

w( , ί;^)=max {w( , s), φo{ ;s)} in Rx[s, oo) and let φ( y ;s) be the gene-
ralized solution of (1.4) with φ( > s; s)=φo( s) in Rx [s, oo). Then, by (8.21),
Lemma 4.1 and Lemma 4.3, we have

(8.23) φ(xyt;s)<w(x,t;s)<tv(x, t)

for s>T2*, any t>s and a.e. x^R .

We observe by [9], [12] and [13] that for each t>s, {x&R: φ(x, t; s)>0} is an
open interval in R.

Since m<2n, the result in Introduction implies that there exists a constant
T3*(>T2*) such that

{x€:R:w(x,t)>0}nix<ΞR:<p(xyt;s)>0}Φφ for t>T3*.

Let E0(t)=ix£ΞR: w(x9t)>0}9 Es(t)={x(ΞR: <p(x,t;s)>0} and ER{t)=
{»Giί: v$\x, ί)>0}, where ^ ^ is the function in Lemma 8.1. Since EQ(t),
ER(t) and JB#(ί) extend as t increases we obtain by [9], [12] and [13] that

(8.24) E0(t)UER{t)[j( U

for ί > Γ 3 H ί .

Since [0, At^m+ly\ is compact there exists a finite sequence {i.}^iC[r 2 #, ί] such
that

(8.25) E0(t)z)ER(t)υ ( U £„•(*)) =>[0, i4ίV(-+«].

By Lemma 3.3, w and <p( , s) are continuous in Rx[0, oo) and Λx[ί, oo)
respectively. When we put

p+(ί) = min {max (to(x, t), v$\xy t), ψ(xy t\ sx)y ••• ,

φ(x91; sj)): *e [0 , At*>»+»]} for
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Lemma 4.1, (8.23) and (8.25) imply that the function p + is positive in [T3Hί, oo)
and satisfies

(8.26) v(

for t > T& and a.e. x <= [0,

By a similar argument, we find a positive constant TA* and a positive function
p_ defined on [T4ίie, oo) such that

(8.27) v(x,t)>p-(t) for *>Γ4ί | ί and a.e. x^[~At^m+1\ 0] .

Case: m>2n.
By a result stated in Introduction and Lemma 4.1, there exists a positive

constant b such that

(8.28) suppu(.yt)a[-^,^] for ί>0.

By (8.28) and Lemma 4.4, ^ is continuous in (/2\(—2i/3, 2ό/3))x[0, oo).
Hence, by Lemma 8.1, there exist two positive constants a and T5Hί such that

(8.29) v(x,

for t>T5* and | Λ I | > 6 .

For Γ > 0 , we let w(xy t;T)be the solution of

(8.30) wt = (^ w )^~λ^ in JBχ(Γ, o

with

w ( . , Γ ; ϊ 1 ) = ϋ( ,Γ) on Λ

where λ = l̂ o I ^.i1.
By Remark 3.2, Lemma 3.5 and 4.1, we have

and hence, by the comparison theorem,

(8.31) w(.,t;T)<v(.,i) for t and T with Z>Γ>0 .

If we can show

(8.32) U U (supp w( , ί; Γ))°3[-6, 6],

this together with (8.32) will give the desired result. In fact, for xo^[—by b]
there exist t(xo)>T(xo) such that

w(x0yt(x0);T(x0))>0.
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Then, there exists an open interval I(x0) such that

*oe=/(*o)c(supp «>(., t(x0); T(xo)))° .

Since supp w( ,t; T(x0)) is monotonically non-decreasing with respect to t, we
get

I(xo)a(suppw(.yt;T(xo))y

for t>t(x0).

Since there exist finite points { J C ; ) / . I C [ - b , b] such that \JjwmχI(xj)'Ώ
[—by b]y we obtain

v(Xyt)>h(t)>0

for any x^[—byb] and any £>£*, where t* = maxt(Xj) and /r(ί) = min max
w(x91; T(x})). 5 i

In order to show (8.32), we assume

*U> U^supp w(.y t; T))°φ[-by b].

Then there exists a point ^ e [ — b y b] such that

«>(**, t Γ) = 0 for Z and 71 with t>T>0 .

Therefore, v0 and u0 satisfy vo(x^)=uo(x^)=O. Note that

(8.33) I vQ(y)dy>\ uo(y)dy
J x* Jx+

or

J x* *x*

-oo J-c

We assume (8.33) without loss of generality.
Let

and let t;^ and u* be the solutions of (1.1) with ***(•, 0)=z;}H0 and «*(•, 0)=wHί0.
Then, by Lemma 4.1 we have for ί > 0

(8.34) υ(x, t)>v*(x, t)>u*(xy t)>u(x, t)>0

for a.e.

For Γ > 0 , we let «?#(•, •; Γ) be the solution of (8.30) with w*( , T; T)=v*(-, T).
Then, since Γ > 0 w( , Γ ) ^ ^ . , Γ) in Λ χ ( Γ , oo), we get
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«>*(#*, t; T) = 0 for t and T with t>T>0 .

For r > 0 , we let #*(•, •; Γ) be the solution of (2.2) in Λx(Γ, co) with
**(.,T;T)=υ*{;T).

Then, we have

(8.35) w*(x, t;T) = eλ<Γ-» z*(x, \'~T «-<—»>»»&; Γ ) .
Jo

By the comparison theorem and (8.35), z% satisfies

(8.36) z*{x,s+T;T) = 0 for s<=(θ \ ,

and for t>T,

(8.37) **(., ί; T)>z>*( > ί) a.e. on Λ.

For each Γ>0, let

Then, we shall show that vλ(-, ;T) is the solution of (2.2) in Rx(T,T+
l/(λ(»ι-l))) with ^ ( , T; Γ)=»*( > Γ) %[,,,co). For this we take ί0, ί ^ ί Γ , T +
l/(X(m— 1))] with / 0 < ί i aπd #0, ̂ G Λ with Λ?0<Λ?1.

For δ>0, we set

and

p ί ί M C ) ) ) - 1 ) if |*-(**+δ)|<δ,
W 10 if μ - ( ^

C^Xpo, ί j X [*β, Λ J ) with/(x0, t)=f(xv ί)=0, z* satisfies

I(**,fiί, [t0, <J X [*o. *J) = 0 .

Since there exists a constant C=C(t0, ί j such that

K^-'M . ' ^ U ^ C for ί e [ ί o > ί j ,

we have

0 = I(z*,βs, [t0, <J X [«b, *J)

and, letting δ->0,
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(8.38) /(** Xix^h /, [ίo, ί j x [xOf *J) = 0 .

Therefore ^ ( , T) is the solution of (2.2) in Λx (Γ, Γ+l/(λ(w— !))).•
Let α; be the solution of (1.4) with w( , 0)=u0 and let v2=w %(_«,,-c,]. By

Lemma 4.1, we see

v*(xy t)>w(x, t) for t>0 and a.e.

and hence, by (8.36) and (8.37),

«>(#*, *) = 0 foΓ *^°
By a similar argument we can show that v2 is the solution of (1.4) (p=2ή) with

ί;2(.,0)=i/0%(-oo^].

For Γ > 0 , let »(., •; T 1 ) ^ : ^ . , •; Γ)+z;2 and let w=^2. Then »(., •; Γ)
and w are the solutions of (1.1) in Rx(Γ, Γ+l/(λ(ιw—1))). First we take Γ = 0 .
Since

ί)( , 0; 0) = ί>*o>tt*o>#( > 0) a.e. on R.

we have by Lemma 4.1 that for *e[0, \j{χ{m— 1))]

(8.39) »(., ί; 0 ) > ^ ( . , ί)>«*(;, 0 > ^ ( , ί) a.e. on R.

Since #=i> if x<x* v*=u* in (— ooy ̂ x [0, \j{\{m— 1))].
By induction, we conclude

ϋ * = % = w%(_oofJc#] in (— oo, χ#] x [0, o o ) .

By a result stated in Introduction, U ̂ 0 supp w{ , t) is bounded in R} while
U /̂ o supp ^*(#> 0 ^(-~,**] is not bounded in 72 by Lemma 7.1. This contradicts
to the above equality and (8.32) is now proved. Q.E.D.

For T, ΛΓ>0, we shall consider the following boundary value problem:

(8.40) wt = (wm)xx-w2n in Q?,

(8.41) w(±Nζ(t), t) = 4r^2 Λ-1> on [T, oo),

where ©?={(#, ί )GΛχ[0, oo): ί > Γ , Λ;e[—iVf (ί), Nζ(t)]} and ? is the func-
tion in Lemma 8.1.

Lemma 8.3. If 2n—2<m<2n, there exist two positive constants T3, N
and a positive classical solution wb of (8.40) and (8.41) in Qτz such that

u(x91)<wb(x, t)<v(x, t)

for t>T3 and a.e. xεΞ[-Nζ(t), Nζ(t)],

v(±Nζ(t), ί)>5rV<« -D in [Tz> oo),



DEGENERATE QUASILINEAR PARABOLIC SYSTEMS 885

where w is the generalized solution of (\A) with w( , 0)=w0.

Proof. By a result in Introduction, there exist two positive constants N>2
and Ttf. such that

(8.42) ^ y

Hence, there exists a positive constant T2ίt.^.max(Tlίt., 7\) such that

(8.43) v$\Nζ(t),t)>5t-W-» for

where Tx and v^ are the constant and the function in Lemma 8.1, respectively.
By (8.42), Lemma 4.1 and Lemma 4.4 v is continuous in JBx [T2*, °°)\QτN

2{
3

and we have by (8.43) and Lemma 8.1 that

(8.44) v(Nζ(t), ί)>5r1 /(2 Λ-1) for t>T2*,

Let Γ3Hc=max(Γ2Hί, Γ2), where T2 is the constant in Lemma 8.2. Then, by
Lemma 4.1, Lemma 8.1 and Lemma 8.2, v satisfies

(8.45) υ(x, F o r n a x K 1 } (*, Γ^), v$\-x, T3*),

w{xf Γ3ίiί)} for a.e. x^[-

where A is the constant in Lemma 8.1 and p is the function in Lemma 8.2. By
Theorem 0 in [8] to is smooth in {(#, f )eΛx(0, oo): w(x, t)>0} and by (8.42),
(8.44), (8.45) there exists a positive function w0beΞH2+β([-Nζ(T&), AΓ?(Γ35iί)]),
0</3<l, such that

(8.46) w(*, Γ3ίiί) ̂ WO,(

fora.e. ^ e [ -

and that wob satisfies the compatibility condition of first order for (8.40) and
(8.41) in Q?3+.

Since wob is positive on [—Nζ(T3*)9 Nζ(T3*)], we can show by Theorem 6.1
of Section 5 in [14] and the change of variables the existence of the positive
solution w,€=H&M+ίVΪ(Q?8,) of (8.40) and (8.41) with w,(., T3*)=w0b in ©?3#.
Since wb is a generalized solution of (1.4) in Qτz*> we obtain by (8.42), (8.46).,
Lemma 4.1 and Lemma 4.5 that

(8.47) u(x, t)<,w(x, t)<wb(x, t)

for t>T3* and a.e. χζΞ[-Nζ(t)y Nζ(t)] .

Thus, wb is a subsolution of (3.1) with P=un and q—n in Qr34t and by (8.43),
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(8.46), (8.47) and Lemma 4.4 we have

(8.48) u (*, t) ζwb(x, t)^v (x, t)

for t^T^ and a.e. x(Ξ[-Nζ(t), Nζ(t)].
Q.E.D.

Lemma 8.4. If 2n<m, there exists a positive constant b such that

Moreover, suppose that for such a constant b, there exist three functions U, v and
α>*e#&* 1 + ^([—M]x[ϊ ! , , oo)), 0</3<l , Γ 4 >0, satisfying the following pro-
perties :

U is a generalized supersolution for wt=(wm)xx—vn wn in [—6, b] X [TA, oo), 5

is a generalized subsolution for wt=(wm)xx—Un wn in [—b, b] X [Γ4, 00) and w* is a

generalized solution for wt=(wm)xx—w2n in [—b, b] X \TA> 00),

JL t -V(«-D<β(±6, ί)^w*(±ί, t)<v(±b, t)

) fort>τ4,

u(x, T4)<u(x, TA)<w*{x, TA)<v(x, TA)

<v(x, T4) for a.e. x^[—b, b],

u(x,t)<w*(xyt)

for t>TA and ax. # e [—b, b],

0<U<w*<υ in [—b, b] X [T4, 00).

Then, those functions satisfy that

u(x, t)<U(xy t)<w*(x, t)£v(x, t)<v(x, t)

for t>T4 and a.e. *e[—b, b] .

Proof. We know already that there exists a positive constant b such that
supp w( , t)a[—b/2, b/2] for 2>0. Let us fix such a constant b. We shall con-
sider the following initial boundary value problems:

(8.49) X(to q) = w-{wm)xx+q" W " = 0 in [-b, b] X [Γ4, oo) ,

(8.50) w{b, t) = w(-b, t) = i - ί-V(*-i) on [Γ4, oo),

(8.51) w(x,Ti) = uob on [-b,b]

and

(8.52) X{w; q) = 0 in [-i, b] X [Γ4) oo) ,

(8.53) w(b, t) = w(-*, ί) = 2ί"V(2»-i) on [Γ4) oo),
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(8.54) w(x, T4) = vob on [-δ, b]

where q is an arbitrary function belonging to L°°([—b, b] X \T4) oo)), vob=
2T7i/(2n-i) a n d UQb i s t h e convolution of max {*/(., TA)9 (1/2) JV^-D} and an ap-
propriate mollifier. Therefore, uob and vob satisfy the compatibility condition of
first order for (8.49)-(8.51) and (8.52)-(8.54), respectively.

Let uQ=v0=w*. Then there exist two sequences of the positive functions
u. and v .^H^c

βΛ+β/\[—by b]x[T4, oo)) satisfying the following properties:
F o r y > l , Vj is the classical solution of £(yo\ uJ^1)=0 with (8.53) and (8.54) in
[—by b]χ[T4y oo) and u. is the classical solution of J2(w\ vJ-1)=0 with (8.50)
and (8.51).

We can prove that there exist lim vXxy t) and lim u,(x91) in [—b> b] X [T4> oo).

Setting vb(xy ί)=lim v .(#, t) and ub(x, ί)=lim uAx, t), we can obtain

(8.55) u(x, t)<ub(x, t)<w*(x, t)<vb{x, t)<v(x, t)

for ΐ^T4 and a.e. x&[—b, b] .

Let όo=v and let ύQ=U. Then, for anyy>l, άj is the classical solution for
X{w\ ύrl)=0 with (8.50) and (8.51), ύ. is the classical solution for X(w; ά.-^O
with (8.53) and (8.54). We can prove that there exist lim ύJx, t) and lim ά (x, t)

in [—b, b]χ[T4, oo). Setting ύb(x, t)=\\m ΰ.(x91) and ΰk(x, t)=lim ύ§(x91), we
obtain

(8.56) άb<U<υ<:ύb< | ^ I ~ , [ - M ; , in [-4, b]x[T4, oo).

Therefore we can observe that

(8.57) άb(x, t) = ub(x, t) for t > T4 and a.e. Λ?G [—b, b],

(8.58) ύh(x91) = vb(x91) for t>T4 and a.e. x<=[—b, b] .

From (8.55)-(8.58) we conclude

u(x, t)<U(x, t)<w*(x, t)<v(xy t)<v{x, t)

for t>T4 and a.e. Λ?G[—b, b] .

Q.E.D.

Let Γ > 0 and let

Gτ = {(xy ήeiRx [Γ, oo): x^[-At^m+1\ At*"*1*]} ,

where A is the constants in Lemma 8.1. Let us consider the following initial

boundary value porblem (I.B.):



T. SENBA

t \ ) XX VXj y

ut = (um)xx-v"uH in Gτ,

», ί) = A
y

on [Γ, eo),
(I.B.)(

u(4-AtVlm+1) tλ — /-i/(»+i)-2 o n rψ \
tΛf \ i JLJulr * j If I — — If yJίί. IJLJ ^ J I )

ϋ( , i j = VQJ, on [—-̂

w( , Γ) = Ôj on

First, we shall construct some convenient initial functions.

Lemma 8.5. There exist a positive constant T5 and two positive functions
v and U such that

+l)/

v(',t),u( ,t)

for t^T5j

v(x, t) ̂ v(x; t)>a(x; t)>w{x, t)>u(x, t)

for t>Ts and a.e. xe[—Atv<m+1\ Atv<m+1>],

»;t) = v(-AtWm+1>; t) = — (

for t>Ts,

*>; ί) = π(-At*« +1>; t) = *-V!C-H-J>-«<_L (
9 \2/»(ίw+l)

—i) ri/<«+i) / o r t>T5,

min fe(*; ί); Λ S [-At*

>max {B(x; t); xe[-

for t>T5

and for T>TS Π( T) and v(', T) satisfy the compatibility condition of first order
for (I.B.), where A is the constant in Lemma 8.1 and w is the generalized solution
of{\A)withw(',Q)=uQ.

Proof. Case: 2n—2<m<2n.
Let a be the solution of the Cauchy problem

(a' = c r + ^ - i - α 2 " in (0, oo)

1 α(0) =

2 \
-D r i

Then, the solution a is monotone decreasing with respect to t and satisfies

(8.59) a ( i ) ~ r I * 2 ' - 1 > .

We set

#*(*» t) = a(t) exp(*2 α 2 "" 1 ^)).
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Then it follows that

(8.60) X(ΰ>#) = «•,-(

""1) {exp((2»- l )x 2 α 2 "- 1 )- l-(2»-

in Λx(0, oo).

By (8.59) and (8.60), there exists a positive constant Tw such that
for ί > Γ 1 % + Γ 3 and x e [ - N ζ ( t ) , Nζ(t)] and that

(8.61) wt(x, t) > Λ«(*, ί + Γ,*)

for f > Γ 3 and *e[-JV?(ί), Nζ(t)],

where 7̂ 3, N and wb are two constants and the function in Lemma 8.3 respec-
tively and ζ is the function in Lemma 8.1.

Let us fix the positive constant Tw satisfying (8.61) and let w*{x, t)=

By (8.61), Lemma 8.3 and the comparison theorem,
we obtain

(8.62) «;*(*, t) <,wb(x, t) <,v{x, t)

for t>T3 and a.e. xe[—Nζ(t),Nζ(t)] .

On the other hand we see by Lemma 4.5 and Lemma 8.3 that

(8.63) w{x, t)<,{2n-l)-V(*

for (*, ί )sQ?, (

By (8.63), Lemma 4.1 and Lemma 8.3 we obtain

(8.64) u(x,t)^{2n-ί)-^2 '

for t^.T3 and a.e.

By (8.62) and (8.63), there exists a positive constant Γ j * ^ ^ s u c n

(8.65) u(x, t) <£(2w-l)-«2*-1\t+dJ-*2>'-v<a(t+ T»)

<,w*(x, t)<,wt{x, t)<,v(x, t)

for ί^T 2 * and a.e. x(=[-Nζ(t), Nζ(t)] .

Here, let

v*(x; t) —

9
if μ i e

oS>(*, ί) if
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and let

U*(x; t) = max {w(xy t), r 2 -

Then, by Lemma 8.1, there exists a positive constant T3%>T2* such that for
t > T3ί|c v%( t) and #*( , t) satisfy the properties of this lemma except these re-
gularities.
Let #*( t) be the convolution of v*( t) and an appropriate mollifier and let
U{ t) be the convolution of U*( t) and an appropriate mollifier. Then, for
t> T3*y v( t) and u( t) satisfy the properties of this lemma.

In case of 2n<m.
Let p be the function in Lemma 8.2.

Let T4Jjί be the positive constant such that

Γ 2,

( Y
9 \2m(m+l)J

for any
where Tx and 4̂ are the constants in Lemma 8.1 and T2 is the constant in Lem-
ma 8.2.
We set

(8.66) wf(x) = max{w(xy

for

By Theorem 0 in [8], there exists a unique positive classical solution w* of (1.4)
with &/*(•, T4*)=zuf in Rx[T4*y oo) satisfying the following properties:

(8.67) (2n-\yιK2n

for (x,t)eiRχ[T4*y oo),

where

rf3= (2H-1)-1 {min(p(Γ4ίiί), ( 2 ^ -

By Lemma 4.1 and the comparison theorem, the solution w* satisfies

u(xy t)<w(xy t)<w*(xyt) for

and a.e.

and zu* is a generalized subsolution of (3.1) with P=un and q=n in GΓ4#. Then,
by (8.66), (8.67), Lemma 4.4 and the definitions of p and T4* we have

(8.68) u(xy ή^w^x, f)<v(x, t)
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for t>T* and a.e. x(=[-AtWm+1>, Atv<m+1>] .

Now, by a result in Introduction, Lemma 4.1 and Lemma 8.1 there exist two
positive constants b and Γ5Ψ ;> T& such that

βupp«(.,*)<= [-A, A] f o r

v(x,

for ί > T 5 * and x(Ξ[-Atv<a+1\ -b] U [b,

We set

A,
2

with P=2ia2(21+l)('"-2 ' '>/(a i-1)+2, where Γ > Γ 5 * UΓ and 5 are constants chosen
later.
We set further

W{x,t) (w{x,t)Y\
tn—1

U(x, t) = -^j(w*(x, t))«-\ί-l(x-ξ)ζ)
m— 1

and

V(x, t) = -l"—{w*{xy ή)m-\l+l(x-ξ)p

+)
tn — 1

Now, let us consider the differential operator:

3t(F\ H) = Ft-(m-l) FFxx-(Fx)
2+\Hn'<m-

with \=m((m-ί)lmγ2n+m-^m-1K
Then we observe that

(8.69) 3ί(W; W) = 0 in Λx(Γ4ί|s, oo).

We shall find T, K and S such that

(8.70) 3t{U\ V)>0 in [-4,i]x[Γ, oo),

(8.71) 3ί{V; U)<0 in [-b, b]x[T, oo).

First, we shall consider (8.70).
We see
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(8.72) 31{U; V) = [Wt(l-l(x-ξ)ζ)-(m-l) WWxx{\-l{x-ζ)lf

+[Wi-l'(x-ξ)p

++Plξ'(x-ξ)i-*}-W2P2l2(x-ξ)Y-2

+(m-l)P(P-ί) W*l(x-ξ)ζ-χi-l(x-ξ)ζ)]

+[2m Pl(x-ξ)ζ-1 WWx(ί-l(x-ξ)ζ)]

= I+II+III in l-b, b] X [T, oo).

L e t 5 > l . Then, we see for y e[0,1/5]

(8.73) (1—-y)c-i)Λ»-i)(i-|.:),)«/(»-i)_l>(l-|-J_)-(«.-2)/(«-i)(l_ 1 )(»-

s s

Let

and let 5 be a constant such that

(8.74) Caa(S)>

By (8.69), (8.73) and (8.74) we have

(8 751 I> -f ^ w (2»+«-2)/(«ι-
<• * ; -^(m-l)

χl(x—ξ)ζ(l—l(x—ξ)ζ) in [—δ, fr]x[jΓ, oo),

and hence, by (8.75) and Lemma 6.3, there exists a positive constant
such that

(8.76) / ^ 0 in [-δ, δ] x [T, oo).

To treat // we observe

(8.77) /'(ί)^0.

Then, we have

(8.78) Π>{m-\) P(P-l)l(x-ξ)ϊ-2 W
7 ^ p Λ.(JM— 1)(P— 1)
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-iJ i n [-b,b]x[T, oo).

Here, by choosing T larger, if neccessary, we have

(8.79) W(x, 0>f—
\3

3 / m—1

for t>T.

Now, we choose S, K such that

(8.80) S>3(l+
V m— 1

and

(8.81) ϋ : > (^-Y'1 A ( 2 Λ - i)(-+a.-2)/(2«-D(m_ l ) .

Then, by (8.78)-(8.81) we obtain

(8.82) II>^(m-l)P(P-l)l(x-ξ)ζ-2W2

in [—b,b]x[T, oo).

It follows from (8.80)-(8.82) that

(8.83) Π+III>(rn-l)P(P-l)l(x-ξ)ζ-2W2\\- m ^ ^
13 (m—Y) K W

in [-b,b]x[T, oo).

By choosing T larger, if neccessary, it follow from Lemma 6.2, (8.79) and (8.83)

that

(8.84) / / + / / / > 0 in [-b, b] X [Γ, oo).

Thus, from (8.76) and (8.84) we conclude (8.70).

If we choose S satisfying (8.74), (8.80) and

(8.85) S>(l-^yy\ (2"-1-!)-1,

then by (8.79) we have that

(8.86) U(±b, t)>~^— ( — Γ " 1 (2^-l)-^-1)A2«-i) r(«-i)/(

in [-b,b]x[T, oo).

By the definitions of the functions / and £, we see

(8.87) V(x, T) = U(x, T) = W(x, T) on [-b, b] .
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By a quite similar argument obtaining (8.70), since we can prove (8.71), we
shall omit the proof of (8.71).

Further, (8.67) and (8.85) we have

(8.88) V(±b9 t)<2m~1 m
m — 1

for t>T.

Thus, (8.68), (8.70), (8.71), (8.86)-(8.88) and Lemma 8.4 we obtain

(8.89) u(x, t)<

<

m
U(x, t)

V(x, t)

<zc*(x, ΐ)

}<v(x,t)

Similarly, setting

for t>Γand a.e. xe[—b, b].

U(x, t) = W{x, t) (l-/(_*_

and

these have the same estimates as U and V, respectively, and we obtain

/fy, 1 Λ \l/(Wί-l)

(8.90) u(x, t)<{~—i U(x, t)) <w*(xy t)

( m 1 Λ \l/(m-l)
Z ΛZ(χ f\ \ <C7)(x A

V \<Λ/y If J J ^ ^ U IΛj Li

for * > Γ a n d a.e. x<=[—b, b] .

By the definitions of the functions / and ξ, there exists a positive constant
such that

(8.91)

i n

Here, let

_8_ / m-\
9 \2m(m+l)l

if \x\ei[Atu<>m^-\, oo)

i ^OM) if | * |

n*ίv if |*|e[0,i]

and let
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t̂-»-iΛ-+D if | * | e [ * , oo)

Then, by (8.68) and (8.91), there exists a positive constant T7*>T6* such that
for t>TΊ* v#( t) and #*( ί) satisfy the properties of this lemma except these
regularities.

Let v{ t) be the convolution of v%( ί) and an appropriate mollifier and
let U( t) be the convolution of #*(•;£) and an appropriate mollifier. Then,
for t>T7%, v( t) and U( t) satisfy the properties of this lemma. Q.E.D.

Lemma 8.6. Let T6be the constant such that

Γ6>max{Γ5, 1}, n * + 2 -

j j

b are the constants in Lemma 8.1, Lemma 8.3 tf/w/ Lemma 8.4
respectively, ζ is the function in Lemma 8.1 α̂ rf H=((m— l)l(2tn(tn+ΐ))y/<m-ΐ>

/*£ constant T in (I.B.) be Γ6 αwt/ ̂  uob=u( Γ6)
(I.B.), where U and v are the functions in Lemma 8.5.

7%£w, ίA r̂β ^mίί a unique pair of positive classical solutions ub and
Hΐ£β'ί+β/2(GT6) of{I.B.)y satisfying the following properties:

u(xy t)<^ub(x> *)<^(#, t)<tv(xy t)

for t^T6 and a.e. x^[-

and there exists a positive constant h% such that

for t>Te and a.e. x^[—

where u and v are the solutions of (1.1) and (1.2).

Proof. Since u( ; T6) and v( ; T6) are positive functions satisfying the
compatibility condition of first order for (I.B.), then by Theorem 7.1 of Section
7 in [14] and the change of variables there exists a unique pair of positive clas-
sical solutions ub and vbeH£c

β-1+β'2(GT9) of (I.B.).
Let us consider the following initial boundary value problem:

(8.92) w, = ( « - ) „ - « * in G T i ,

(8.93) w(±At^m+1\ t) = \ Ht-w»+ι) on [Ts, oo),
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(8.94) «>(., Γo) = wob on [-ATl'<m+ι

There exists a positive function wob(=H2+β([-ATl«m+1\ ATl'<m+1>]) satisfying
the compatibility condition of first order for (8.92)-(8.94) and the following
property:

(8.95) * ( . T6)<w0b<v(. T6) on [-AT\<^\ AT¥<-+»].

Then, by Theorem 4.1 of Section 4 in [14] and the change of variables, there
exists a unique positive classical solution wb^H^c

βΛ+β/\GTβ) for (8.92)-(8.94).
By Lemma 8.5 and (8.95) we see

0b o n [-

and hence, by Lemma 4.5,

(8.96) w<wb in GTe.

Let -C(p\ q) be the differential operator defined in (8.49).

By Theorem 4.1 of Section 4 in [14] and the change of variables there exists
a unique positive classical solution Vι

(8.97) X(w;wb) = 0 in

(8.98) w(±At^m+1\ t) = Z-Ht-W*"^ on [Γ6, oo),

(8.99) w{ Γ6) = v{. Γ6) on [ - ^ Γ ^ - + 1 ) , ^ Γ ^ + 1 > ] .

Since ^x is a subsolution of -f^x; u)=0 in GΓβ, Lemma 4.4, Lemma 8.1, Lem-
ma 8.6, the comparison theorem and (8.95) give

(8.100) wb(x91) <vx{x, t)<v(xy t)

for t>T6 and a.e. « e [ -

By a similar argument, there exists a unique positive classical solution uxE=.
of

(8.101) 4κ>;c 1 ) = 0 i n G T ( )

(8.102) wίiA^f-""), ί) = t-vim*»-2 on

(8.103) w( , Γβ) = β( Γ6) on [-.4r£Λ» + 1

By (8.100) Mj is a supersolution for -£(wi; ©)=0 in GT 6, and Lemma 4.5, Lemma
8.6, the comparison theorem and (8.96) give

(8.104) «(*, ί) £Ul(x, t) ̂ wh(x, t)

for t>T6 and a.e. xe[-At*m+1>, At*m+ι>].
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By a similar argument, there exist two sequences of positive functions u. and
Vj&H*+c

β>1+β/2(GTβ) satisfying the following property:
For each j>29 v. is a unique classical solution for X(v .\ uj-1)=0 with (8.98)
and (8.99) in GTe and Uj is a unique classical solution for X{u^\ z>y)=O with (8.102)
and (8.103) in Gτ%.

By (8.100), (8.104), Lemma 4.4, Lemma 4.5 and the comparison theorem
we see

(8.105) u(x, ί ) < - : ^ 2 ( * > t)^iφ, ή<wb(x, t)

<*vx(x, t)<v2(xy ί ) ^ <v(xy t)

for t>T6 and a.e. x^[-

Similarly as in (8.57), (8.58) we can prove

vb(x, t) = lim Vj(x, t) for (x,

ub(x, t) = lim Uj(xf t) for (x,

and

(8.106)

Setting

and

u(x, t)^ub(x, t)£fot(x, t)<vb(x,

for t>T6 and a.e. x<=Ξ[-

ύ(y, s) =
9 e

s)

ύ(y, s) = es«>»+1) ub(es«m+»y, es),

we see that the functions ύ and ΛeHj£ β 1+fl/2([—A, A] X [log Γ6, oo)) satisfy

OT+1 ' m+ί

in [-Λ^]x[logΓ 6, oo),

fΛ1Λ\ \ V Λ \ J- J

in Γ - Λ ^ ] x [ l o g Γ 6 , oo),

*) = J-tf on

) = e-2 >on [logΓ6 )oo),

ύ(y, log Γ6) = ryc+w υ(yTl«»>+»; Γ6) on [-^, ^ ] ,

,ύ{y, log Γ6) = r^« + 1 ) iZ(^Γy(»+1); Γ6) on [-^, A\ .

Let 5 * be an arbitrary positive constant such that 5*>log Te and let λ be an
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arbitrary positive constant such that

(8.107) 1 λL_>e-W(»+D)2>e("
w+1

λ 2 w £(»-2.+2)SV(.»+l) ( I VQ I m^

Let 5y=\y+log 2V Then, there exists a finite sequence of positive classical
solutions βλ( , S,)e# 2 + p ([-,4,,4]), ./=l, - , [λ"\S*-log Γ6)], of the problem

(8.108) ύλ(., 5 , ) - λ ( ^ U , 5 y ) - - ^ ^ A , ( . , S,)

's/) = ̂ *> V0-λβ (-

_x) ώj(., S,_0 on [-i4, A]

with

(8.109) ίλ(±Λ5,)=|-H,

where ύλ( , S0)=ύ( , So) on [-Λ-4] Also, for j=ί, -, [\-\S*-log T6)],
there exists a positive classical solution ώλ( , S^eH^tf—A, A)] of the problem

(8.110) ώλ( , S,)

X ^X^Sj.J on [-i

with

(8.111) ύλ(±A,Sj) = e-^

where ώλ( , 50)=ώ( , 50) on [—A, A].
In fact, by (8.109), se see

ύλ(y, sy-λe""* 2 -W--H) ύι{y> So) ύι{y> s<j)>0 f o r y e [ . ^ 4

ώλ(j, 50)-λ^"+2-2'"Vc«'+i) ί-(y, 50) ύl{y, 5 0 )>0 for ^ e [ - Λ ^

and

for y^[-A, A] .

Hence by Theorem 5.1 of Section 8 in [18] and the comparison theorem we
find a required unique positive classical solution $λ( , Sj), $λ( , 5x)
([-i4, i4]) satisfying

for y^[—A9
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By induction, there exist two finite sequences of the positive classical solutions
ώλ( , Sf) and *)λ( , 5y)(=H2 + β([-A, A]) with the property

(8.112)

ίorj=l,2,--,[\-ι(S*-logTβ)]

and ye [—A, A].

Further, we can show

(8.H3) \K{ ,S})\^t.AiA^H

for/ = 0,1, -.., [ λ - ^ - l o g Γ6)].

Indeed, setting £ y = |ώλ( , Sy) | . c-^3 for j = 0 , 1, - , [χ-\S*-log T6)], we see
by (8.109), (8.112), Lemma 8.5 and the definitions of Te that

and by induction, we have (8.113).
For each j=0y 1, •••, [λ-1^*—log Γ6)], we set d—min {ύx{y, S.):

We shall show that

(8.114) d.-E.>80 for j = 0, 1, «., [ λ - ^ -log Γ6)],

where δo=mm(do-EOf 7H/1S).
Let y^ and yf be the points satisfying d.=ύλ(yjή:i S.) and E.=ύλ(yf, *Sy), re-
spectively.

In case of yf and jyyHίe(—^4, A), we observe by (8.109) and (8.112) that

(8.115) (dβ-E.

In case oί y^=±Ay we get by (8.113)

(8.116) dj—Ej>-—H-
18

In case of jyyίIίe(—^4, 4̂) znάyJ=±:Ai we have by (8.112) and the definitions
of λ and T6>
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fory<E[-A,A]<

and that Erl>e~2sJ-i>e-2sJ = E.

Then, since

, (l - ~ ) i-i,-,- x>-'<"»»;-.-»;-. {v.I •-', i,.x

we have

(8.117) dj-^j

By (8.115)-(8.117) we conclude (8.114).
For;=l, 2, - , [ λ - 1 ^ * - ^ T6)], let

fj(y) = £ {Hy, s)-t,(y, s,)) ds

and let

Then we observe that for y^[—A, A]

(8.118) ύ(y, S,)-\(F)y,(y, SJ-^yd^y, S.)

— T T *(y. SJ)

XUΛ(y,SJ.1)ΰ*(y,Srl)+f.(y)
forj=l,2,...,[\-χS*-logTβ)]

and

(8.119) ύ(y, S,)-\(ύ )n(y, S^-^yύ^y, S,)

Let
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— 1 for JG(-oo,0],

ky

1 fo

<Pk(y) =

We subtract (8.108) from (8.118) and multiply φk(ύ(y9 S.)-ύλ(y, S.)). We shall
denote by (8.120) the resulted equation. Similarly we subtract (8.109) from
(8.119) and multiply φk(ύ(y, Sj)—ύλ(y9 S.)). We shall denote by (8.121) the
resulted equation. Adding (8.120) and (8.121) and integrating over [—A>A]
we have

> s^-ύλ{y, s.)) dy

> Sj)-άλ(y, S,)) dy

Letting k-*-°°, we have that

(8.122) \ύ( , S.)-ύλ(.,

+

(

(i -

Setting

We obtain by (8.107) that

(8.123)

where

+ 4 M ^ ( - -

L = 2 (l+-^-

\gj\l,t-A.AU •

\ά{; S.)-ύλ(;

1 g, I i . i - ^

ήj
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By (8.107), (8.122) and (8.123) we have

(8.124) | ί ( , S.)-ύλ(., 5 . ) | l t [ - ^ ] + \ύ(., S.)-A( , Ss)\l9ί-A9ja

< 2 S * βvc+υs Lλβ/2 f o r j = 1 , 2 , . . . , [ λ ^ S -log Γ6)].

Letting λ-*0 we have by (8.114), (8.124)

min {ύ(y9 s): yϊΞ[-A, A]}-\ύ(.,s)\^AtAl

>δo>O for

Thus, by changing the variables es=t, yes/(m+1)=x, we conclude

min \vb{xy t): *€=/(*)} - \ ub( , t) \ m j ω

> δ o r i/ ( w + i ) f o r a n y

where I(t) = [-

which proves the lemma. Q.E.D.

By Lemma 8.1 and Lemma 8.6, there exists two positive constants h% and
A* such that

(8.125) A* t-v<m+V£v(x, t)<h* r^«+ 1>

for t>TB and a.e. #esupρ w( , t).

Let uf and uo*^Co(R) be the functions such that

0<u0*(x)^u(x, T6)<,ut(x) for a.e. *e=Λ,

w0Hί ^ 0 in R.

Let w* be the generalized solution of

(8.126) uf = (u*m)xx-{h* t-*m+1))n u*» in Rx [Γ6, oo)

with

u*(-,Te) = ut in R

and let u* be the generalized solution of

(8.127) u*t = («5)«-(A* r^- + 1 >) β nj in Λ x [Γβ, oo)

with

^*( > r 6) = w0iic in Λ .

By (8.125) w is a subsolution of (8.127) in Rx[T6y oo) and a supersolution of
(8.126) i n f i x [Γ6, oo), and we obtain by Lemma 4.3
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for t>T6 and a.e.

Therefore, by Lemma 5.2, we arrive at the desired estimates of \u{ y *)|«>,R and

supp **(-,*)•
By Lemma 8.1, we obtain also the desired estimates of | v{ , t) | oofR and supp

The proof of Theorem 1.1 is now complete,
Q.E.D. of Theorem 1.1.

9 Proof of Corollary 1.2

It suffies to prove

U ̂ 0 supp u( , t) = R in case of m = 2n—2 .

There exists a positive constant A* such that

*>(*> 0 ^ * ( * + 1 ) ~ 1 / ( Λ f + 1 ) for ί > 0 and a.e. » G Λ .

Let u% be the generalized solution of

u*t = (u%)xx-h*"(t+l)-»'<>"+Vu% in Λχ[0, oo)

with

w*( > °) = min(wo(#), 1) in Λ

Let tfjjcίiί be the generalized solution of

«**, = («!•)„-*••(*+l)^- + 1 >u A in ΛX[O, oo)

with

«**(•, 0) = min(tt0W, 1) in Λ ,

where »=w—1/4.
By Lemma 4.3, we obtain

(9.1) «**(*, ί)^W*(Λ;, 0^ιι(», t)

for ί > 0 and a e. Λ

Therefore, by Lemma 5.2 we have U ̂ o supp u%%( , t)=R9 and by (9.1) we con-
clude that U ,;>o supp u( , f)=R. Q.E.D.
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